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Abstract
Normalizing flows allow for tractable maximum
likelihood estimation of their parameters but are
incapable of modelling low-dimensional mani-
fold structure in observed data. Flows which
injectively map from low- to high-dimensional
space provide promise for fixing this issue, but
the resulting likelihood-based objective becomes
more challenging to evaluate. Current approaches
avoid computing the entire objective – which may
induce pathological behaviour – or assume the
manifold structure is known beforehand and thus
are not widely applicable. Instead, we propose
two methods relying on tricks from automatic dif-
ferentiation and numerical linear algebra to either
evaluate or approximate the full likelihood ob-
jective, performing end-to-end manifold learning
and density estimation. We study the trade-offs be-
tween our methods, demonstrate improved results
over previous injective flows, and show promising
results on out-of-distribution detection.

1. Introduction
Normalizing Flows (NFs) have recently become a staple of
generative modelling, and particularly for density estimation
(see Papamakarios et al. (2019) or Kobyzev et al. (2020) for
a review). Here, we typically have access to a set of points
in some high-dimensional space RD, which NFs model as
the pushforward of some simple distribution on RD through
a parametrized bijection. Although this construction can
admit tractable maximum likelihood training, the learned
density has D-dimensional support; this directly contradicts
the manifold hypothesis (Bengio et al., 2013) which states
that high-dimensional data lives on a lower-dimensional
manifold embedded in ambient space.

Instead, we may consider injective flows to circumvent this
misspecification. These now map a random variable on

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Rd into RD, defining a distribution on some d-dimensional
manifold embedded in RD. We have access to a change-
of-variable formula as in NFs, but the volume-change term
now becomes much more difficult to evaluate. While there
have been efforts towards training flows where the resulting
distribution is supported on a low-dimensional manifold (e.g.
(Rezende et al., 2020; Brehmer & Cranmer, 2020)), these
approaches either assume the manifold is known beforehand
or otherwise avoid the volume-change term. Both of these
are undesirable: in the former, we generally do not know the
manifold structure a priori; the latter can result in learning
manifolds to which it is difficult to assign density.

In this work, we show that likelihood-based density esti-
mation for injective flows can be made tractable. We pro-
pose two methods for backpropagating through the injective
volume-change term which rely on careful application of
forward- and backward-mode automatic differentiation. The
first method involves exact evaluation of this term and its
gradient which incurs a higher memory cost; the second
uses conjugate gradients and Hutchinson’s trace estimator
to obtain unbiased stochastic gradient estimates. Unlike
previous work, our methods do not need the data manifold
to be specified beforehand, and simultaneously estimate
this manifold along with the distribution on it end-to-end,
thus enabling maximum likelihood training to occur. Ours
are the first methods to backpropagate through the volume-
change term in ambient dimensions D approaching 1,000.
We study the trade-off between memory and variance in-
troduced by our methods and show improvements over in-
jective flow baselines for density estimation. We also show
that injective flows obtain state-of-the-art performance for
likelihood-based Out-of-Distribution (OoD) detection.

2. Background and Motivation
2.1. Rectangular Normalizing Flows

Standard NFs unrealistically result in the learned density
pX having D-dimensional support. To overcome this, we
first follow Brehmer & Cranmer (2020), where an injective
mapping gφ : Rd → RD with d < D is constructed. Here,
Z ∈ Rd is the low-dimensional variable used to model the
data as X := gφ(Z). A well-known result from differential
geometry (Krantz & Parks, 2008), provides a change-of-
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variable formula for x ∈Mφ := {gφ(z) : z ∈ Rd}:

pX(x) = pZ(zφ)
∣∣detJ[gφ]>(zφ)J[gφ](zφ)

∣∣−1/2 , (1)

where zφ := g−1φ (x), and pX(x) = 0 for x /∈ Mφ.
The Jacobian-transpose-Jacobian (JtJ) determinant now
characterizes the change in volume from Z to X . We
make several relevant observations: (i) The Jacobian ma-
trix J[gφ](g−1φ (x)) ∈ RD×d is no longer a square ma-
trix, and we thus refer to these flows as rectangular. (ii)
g−1φ :Mφ → Rd is only properly defined onMφ and not
RD, and pX is now supported on the d-dimensional man-
ifold Mφ. (iii) This is not a density with respect to the
Lebesgue measure; the dominating measure is the Rieman-
nian measure on the manifold Mφ (Pennec, 2006). (iv)
When d = D, we recover the standard change-of-variable.

Since data points x will almost surely not lie exactly on
Mφ, we use a left inverse g†φ : RD → Rd such that
g†φ(gφ(z)) = z for all z ∈ Rd in place of g−1φ . This ex-
ists by injectivity and is properly defined on RD, unlike g−1φ
which only exists on Mφ. Setting zφ := g†φ(x) in (1) is
equivalent to projecting x ontoMφ as x← gφ(g†φ(x)), and
then evaluating the density from (1) at the projected point.

Now, gφ is injectively constructed as follows:

gφ = f̃θ ◦ pad ◦ hη and g†φ = h−1η ◦ pad† ◦ f̃−1θ , (2)

where f̃θ : RD → RD and hη : Rd → Rd are both square
flows, φ := (θ, η), and pad : Rd → RD and pad† : RD →
Rd are defined as pad(z) = (z,0) and pad†(z, z′) = z,
where 0, z′ ∈ RD−d. We can thus rewrite (1) using this
specific form of gφ, with details in Appendix B.

Constructing flows with a tractable volume-change term
is more challenging than in the standard case. Brehmer &
Cranmer (2020) thus propose a two-step training procedure,
wherein fθ := f̃θ ◦ pad and hη are trained separately, to
avoid this calculation. Training fθ involves minimizing the
reconstruction error ‖x− fθ(f†θ (x))‖22, which encourages
the observed data to lie on Mθ. Then, since hη will not
appear in the determinant term in (1), it can be taken to
be any d-dimensional NF and, fixing θ, η can be learned
via maximizing its likelihood over the lower-dimensional
points {f†θ (xi)}i. In practice, gradients steps in θ and η are
alternated. This procedure circumvents evaluation of the
JtJ term, but we soon show that this comes with downsides.

2.2. Motivation

Dimensionality issues Problems originating from dimen-
sionality mismatch have been observed throughout the deep
generative modelling literature. Dai & Wipf (2019) show
that using powerful variational autoencoders supported on

RD to model data living in a low-dimensional manifold
results in the manifold itself being learned, but not the dis-
tribution on it. Cornish et al. (2020) demonstrate the draw-
backs of using normalizing flows for estimating the density
of topologically-complex data, but still model the support as
being D-dimensional; Behrmann et al. (2021) provide a re-
lated result characterizing non-invertibility of trained flows.
This body of work strongly motivates the development of
models whose support has matching topology – including
dimension – to that of the true data distribution.

Manifold flows A challenge to overcome for NFs on man-
ifolds is the JtJ term; this is currently handled in one of two
ways. The first assumes the manifold is known beforehand
(Rezende et al., 2020), limiting its general applicability to
low-dimensional data where the true manifold can be known.
The second group circumvents the computation of this term
entirely; this includes the aforementioned Brehmer & Cran-
mer (2020). Kumar et al. (2020) use a loose lower bound of
the log-likelihood and do not explicitly enforce injectivity,
so that the change-of-variable almost surely does not hold.
Cunningham et al. (2020) propose to convolve the manifold
distribution with Gaussian noise, which results in the model
having high-dimensional support.

Why optimize this term? We can imagine a situation
where, even if fθ maps to the correct manifold, it might
unnecessarily change volume in such a way that makes
correctly learning hη more challenging than it needs to
be. For example, there is nothing in the two-step objective
encouraging fθ to learn a manifold parametrized with a
well-controlled “speed”, which we observe to be an issue
in Figure 2 of the experiments. This is but one example
of a failure which could have been avoided by learning the
manifold in a density-aware fashion including the JtJ term.

3. Rectangular Flow Maximum Likelihood
3.1. Our Optimization Objective

We have noted that including JtJ in the optimization is
sensible, but (1) corresponds to the density of the projection
of x ontoMθ. Thus, optimizing only this would not result
in learning Mθ such that observed data lies on it, only
encouraging projected data points to have high likelihood.
Instead, we use the KKT conditions (Karush, 1939; Kuhn &
Tucker, 1951) to maximize the following Lagrangian in φ
subject to the constraint that the reconstruction error should
be smaller than some threshold:

log pZ(zφ)− log |detJ[hη](zφ)| (3)

− 1

2
log detJ>θ (x)Jθ(x)− β

∣∣∣∣∣∣x− fθ (f†θ (x)
)∣∣∣∣∣∣2

2
,
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where we treat β > 0 as a hyperparameter, and denote
J[fθ](f

†
θ (x)) as Jθ(x) and again zφ := g†φ(x) for simplicity.

We now make a technical but relevant observation about
our objective: since our likelihoods are Radon-Nikodym
derivatives with respect to the Riemannian measure onMθ,
different values of θ will result in different dominating mea-
sures. One should thus be careful to compare likelihoods
for models with different values of θ. However, thanks to
the smoothness of the objective over θ, we should expect
likelihoods for values of θ which are “close enough” to be
comparable for practical purposes. In other words, com-
parisons remain reasonable locally, and the gradient of the
volume-change term still contains information that helps
learningMθ in such a way that hη can easily learn a density
on the pulled-back dataset {f†θ (xi)}i.

3.2. Optimizing our Objective: Stochastic Gradients

All the terms in (3) are straightforward to evaluate and back-
propagate through except for the third one; in this section
we show how to obtain unbiased stochastic estimates of its
gradient. We now drop the dependence of the Jacobian on x
from our notation and write Jθ, knowing that the end com-
putation will be parallelized over a batch {xi}i. We assume
access to an efficient matrix-vector product routine, i.e. com-
puting J>θ Jθε can be quickly achieved for any ε ∈ Rd. We
elaborate on how we obtain these matrix-vector products in
the next section. It is a well known fact from matrix calculus
(Petersen & Pedersen, 2008) that:

∂

∂θj
log detJ>θ Jθ = tr

(
(J>θ Jθ)

−1 ∂

∂θj
J>θ Jθ

)
, (4)

where tr denotes the trace operator and θj is the j-th element
of θ. Next, we use Hutchinson’s trace estimator (Hutchinson,
1989), which says that for any matrix M ∈ Rd×d, tr(M) =
Eε[ε>Mε] for any Rd-valued random variable ε with zero
mean and identity covariance matrix. We can thus obtain an
unbiased stochastic estimate of our gradient as:

∂

∂θj
logdet J>θ Jθ≈

1

K

K∑
k=1

ε>k(J>θ Jθ)
−1 ∂

∂θj
J>θ Jθεk, (5)

where {εk}k are typically sampled either from standard
Gaussian or Rademacher distributions. Naïve computation
of the above estimate remains intractable without explic-
itly constructing J>θ Jθ. Fortunately, the J>θ Jθε terms can
be trivially obtained using the given matrix-vector prod-
uct routine, avoiding the construction of J>θ Jθ, and then
∂/∂θjJ

>
θ Jθε follows by taking the gradient w.r.t. θ.

Yet there is still the issue of computing ε>(J>θ Jθ)
−1 =

[(J>θ Jθ)
−1ε]>. We use Conjugate Gradients (CG) (Nocedal

& Wright, 2006) in order to achieve this. CG is an iterative
method to solve problems of the form Au = ε for given

A ∈ Rd×d (in our case A = J>θ Jθ) and ε ∈ Rd; we include
the CG algorithm in Appendix D for completeness. CG has
several important properties. First, it is known to recover the
solution (assuming exact arithmetic) after at most d steps,
which means we can evaluateA−1ε. The solution converges
exponentially (in the number of iterations τ ) to the true
value (Shewchuk et al., 1994), so often τ � d iterations are
sufficient for accuracy to many decimal places. Second, CG
only requires a method to compute matrix-vector products
against A, and does not require access to A itself. One such
product is performed at each iteration, and CG thus requires
at most d of these products, although again τ � d product
usually suffice. This results in O(τd2) solve complexity—
less than the O(d3) required by direct inversion. We denote
A−1ε computed with conjugate gradients as CG(A; ε). We
can then compute the estimator from (5) as:

∂

∂θj
logdet J>θ Jθ≈

1

K

K∑
k=1

CG
(
J>θ Jθ;εk

)> ∂
∂θj

J>θ Jθεk (6)

In practice, we implement this term by applying a
stop_gradient on the CG step, thereby allowing us to
avoid implementing a custom backward pass. We add this
term into (3) and write out in full the contribution of a point
x to the training objective in the Appendix (Equation (12)).

3.3. AD Considerations: The Exact Method and the
Forward-Backward AD Trick

Here we derive the routine for vector products against J>θ Jθ,
along with an exact method that avoids Hutchinson’s esti-
mator but has increased memory requirements. We will
use commonly-known properties of AD to derive our ap-
proach, which we review in Appendix E. First, consider
the problem of explicitly constructing Jθ. This construction
can then be used to evaluate J>θ Jθ and exactly compute
its log determinant, thus avoiding having to use stochas-
tic gradients as in the previous section. We refer to this
procedure as the exact method. Naïvely, one might try to ex-
plicitly construct Jθ using only backward-mode AD, which
would require D vector-Jacobian products (vjps) of the
form v>Jθ – one per basis vector v ∈ RD. A better way
to explicitly construct Jθ is with forward-mode AD, which
only requires d Jacobian-vector products (jvps) Jθε, again
one per basis vector ε ∈ Rd. We use a custom implementa-
tion of forward-mode AD in the popular PyTorch (Paszke
et al., 2019) library1 for the exact method, as well as for the
forward-backward AD trick described below.

We now explain how to combine forward- and backward-
mode AD to obtain efficient matrix-vector products against

1PyTorch has a forward-mode AD implementation which
relies on the “double backward” trick, which is known to be
memory-inefficient. See https://j-towns.github.io/
2017/06/12/A-new-trick.html for a description.

https://j-towns.github.io/2017/06/12/A-new-trick.html
https://j-towns.github.io/2017/06/12/A-new-trick.html
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J>θ Jθ in order to obtain the tractable gradient estimates
from the previous section. Note that v := Jθε can be com-
puted with a single jvp call, and then J>θ Jθε = [v>Jθ]

>

can be efficiently computed using only a vjp call. We refer
to this way of computing matrix-vector products against
J>θ Jθ as the forward-backward AD trick. Note that (12) re-
quires K(τ + 1) such matrix-vector products, which might
appear less efficient as it could be greater than the d jvps re-
quired by the exact method. However, the stochastic method
is much more memory-efficient than its exact counterpart
when optimizing: of the K(τ + 1) matrix-vector products
needed to evaluate (12), only K require gradients with re-
spect to θ. Thus onlyK jvps andK vjps, along with their
intermediate steps, must be stored in memory over a training
step. In contrast, the exact method requires gradients for
every one of its d jvp computations, which requires storing
these along with their intermediate steps in memory.

Our proposed methods thus offer a memory-variance trade-
off. Increasing K in the stochastic method results in larger
memory requirements which imply longer training times,
as the batch size must be set lower. On the other hand,
the larger the memory cost, the smaller the variance of the
gradient. This still holds true for the exact method, which
results in exact gradients, at the cost of increased memory
requirements (as long as K � d; if K is large enough the
stochastic method should never be used over the exact one).

4. Experiments
We compare our methods against that of Brehmer & Cran-
mer (2020), and study the memory vs. variance trade-off.
We include all experimental details in Appendix H. Figure 2
shows how the two-step method (TS) correctly recovers the
manifold, but not the distribution on it when trying to learn
a simple von Mises ground truth distribution on the unit
circle in R2, which our method (ML) handily recovers.

Trained on FMNIST

Figure 1. OoD detection with
RNFs-ML (exact).

We also compare the
methods with the tabu-
lar datasets used by Pa-
pamakarios et al. (2017),
along with MNIST and
FMNIST. Due to space
constraints, we include
our results in Appendix
A, where we show that:
(i) our maximum likeli-
hood methods better re-
cover the target distri-
bution, as measured by
FID score (Heusel et al.,
2017); (ii) our stochas-
tic version with K = 1 is competitive against its more
memory-hungry alternatives; and (iii) rectangular flows

RNFs-ML (exact) density RNFs-ML (exact) speed

von Mises ground truth Distribution of f†
θ∗ (X)

RNFs-TS density RNFs-TS speed

Figure 2. Left column: RNFs-ML (exact) (top), von Mises ground
truth (middle), and RNF-TS (bottom). Right column: Speed at
which fθ∗ maps to Mθ∗ (measured as l2 distance between uni-
formly spaced consecutive points in R mapped through fθ∗ ) for
RNFs-ML (exact) (top), RNFs-TS (bottom), and distribution hη

has to learn in order to recover the ground truth, fixing θ∗ (middle).
We can see that RNFs-ML map from low to high dimensions at a
more constant speed, thus providing a simpler z distribution for
hη to learn. RNFs-TS map at a higher speed towards the top of the
circle which impacts density estimates.

perform very well for OoD detection. In particular, they
assign higher likelihoods to FMNIST than to MNIST when
trained on the former, contrary to what has been observed
in previous NFs literature (Nalisnick et al., 2019), as can be
seen in Figure 1.

5. Conclusions
In this paper we argue for the importance of likelihood-
based training of rectangular flows, and introduce two meth-
ods allowing to do so. We study the benefits of our methods,
and empirically show that they are preferable to current al-
ternatives. We anticipate improvements to our methods with
more powerful flow architectures than RealNVP, along with
advancements in specifying flow models with more flexible
topological properties.
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A. Main Experimental Results
In all our experiments, w use the real NVP (Dinh et al., 2017) architecture for all flows, except we do not use batch
normalization (Ioffe & Szegedy, 2015) as it causes issues with vjp computations. We point out that all comparisons remain
fair, including a detailed explanation of this phenomenon in Appendix F, along with all experimental details in Appendix H.
Throughout, we use the labels RNFs-ML for our maximum likelihood training method, RNFs-TS for the two-step method,
and RNFs for rectangular NFs in general. For most runs, we found it useful to anneal the likelihood term(s). That is, at the
beginning of training we optimize only the reconstruction term, and then slowly incorporate the other terms. This likelihood
annealing procedure helped avoid local optima where the manifold is not recovered (large reconstruction error) but the
likelihood of projected data is high.

A.1. Simulated Data

We consider a simulated dataset where we have access to ground truth, which allows us to empirically verify the deficiencies
of RNFs-TS. We use a von Mises distribution, which is supported on the one-dimensional unit circle in R2. Figure 2 shows
this distribution, along with its estimates from RNFs-ML (exact) and RNFs-TS. As previously observed, RNFs-TS correctly
approximate the manifold, but fail to learn the right distribution on it. In contrast we can see that RNFs-ML, by virtue of
including the Jacobian-transpose-Jacobian term in the optimization, manage to recover both the manifold and the distribution
on it (top left panel), while also resulting in an easier-to-learn low-dimensional distribution (middle right panel) thanks to
fθ∗ mapping toMθ∗ at a more consistent speed (top right panel). We do point out that, while the results presented here
are representative of usual runs for both methods, we also had runs with different results which we include in Appendix
H. We finish with the observation that even though the line and the circle are not homeomorphic and thus RNFs are not
perfectly able to recover the support, they manage to adequately approximate it.

A.2. Tabular Data

We now turn our attention to the tabular datasets used by Papamakarios et al. (2017), now a common benchmark for NFs
as well. As previously mentioned, one should be careful when comparing models with different supports, as we cannot
rely on test likelihoods as a metric. We take inspiration from the FID score (Heusel et al., 2017), which is commonly used
to evaluate quality of generated images when likelihoods are not available. The FID score compares the first and second
moments of a well-chosen statistic from the model and data distributions using the squared Wasserstein-2 metric (between
Gaussians). Instead of using the last hidden layer of a pre-trained classifier as is often done for images, we take the statistic to
be the data itself: in other words, our metric compares the mean and covariance of generated data against those of observed
data with the same squared Wasserstein-2 metric. We include the mathematical formulas for computing both FID and our
modified version for tabular data in Appendix G. We use early stopping with our FID-like score across all models. Our
results are summarized in Table 1, where we can see that RNFs-ML consistently do a better job at recovering the underlying
distribution. Once again, these results emphasize the benefits of including the Jacobian-transpose-Jacobian in the objective.
Interestingly, except for HEPMASS, the results from our stochastic version with K = 1 are not significantly exceeded by
the exact version or using a larger value of K, suggesting that the added variance does not result in decreased empirical
performance. We highlight that no tuning was done (except on GAS for which we changed d from 4 to 2), RNFs-ML
outperforming RNFs-TS out-of-the-box here (details are in Appendix H). We report training times in Appendix H, and
observe that RNFs-ML take a similar amount of time as RNFs-TS to train for datasets with lower values of D, and while we
do take longer to train for the other datasets, our training times remain reasonable and we often require fewer epochs to
converge.

A.3. Image Data and Out-of-Distribution Detection

We also compare RNFs-ML to RNFs-TS for image modelling on MNIST and FMNIST. We point out that these datasets
have ambient dimension D = 784, and being able to fit RNFs-ML is in itself noteworthy: to the best of our knowledge no
previous method has scaled optimizing the Jacobian-transpose-Jacobian term to these dimensions. We use FID scores both
for comparing models and for early stopping during training. We also used likelihood annealing and set d := 20, with all
experimental details again given in Appendix H. We report FID scores in Table 2, where we can see that we outperform
RNFs-TS. Our RNFs-ML (K = 1) variant also outperforms its decreased-variance counterparts. This is partially explained
by the fact that we used this variant to tune RNFs-ML, but we also hypothesize that this added variance can be helpful
because of the remaining (non-dimension-based) topological mismatch. Nonetheless, once again these results suggest that
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Table 1. FID-like metric for tabular data (lower is better). Bolded runs are the best or overlap with it.

Method POWER GAS HEPMASS MINIBOONE

RNFs-ML (exact) 0.069± 0.014 0.138± 0.021 0.486± 0.032 0.978± 0.082
RNFs-ML (K = 1) 0.083± 0.015 0.110± 0.021 0.779± 0.191 1.001± 0.051
RNFs-ML (K = 10) 0.113± 0.037 0.140± 0.013 0.495± 0.055 0.878± 0.083
RNFs-TS 0.178± 0.021 0.161± 0.016 0.649± 0.081 1.085± 0.0622

Table 2. FID scores (lower is better) and decision stump OoD accuracy (higher is better).

Method
FID OoD ACCURACY

MNIST FMNIST MNIST→ FMNIST FMNIST→MNIST

RNFs-ML (exact) 36.09 296.01 92% 91%
RNFs-ML (K = 1) 33.98 288.39 97% 78%
RNFs-ML (K = 4) 42.90 342.91 77% 89%
RNFs-TS 35.52 318.59 98% 96%

the variance induced by our stochastic method is not empirically harmful. We also report training times in Appendix H,
where we can see the computational benefits of our stochastic method.

We further evaluate the performance of RNFs for OoD detection. Nalisnick et al. (2019) pointed out that square NFs trained
on FMNIST assign higher likelihoods to MNIST than they do to FMNIST. While there has been research attempting to
fix this puzzling behaviour (Alemi et al., 2017; 2018; Choi et al., 2018; Ren et al., 2019), to the best of our knowledge
no method has managed to correct it using only likelihoods of trained models. Figure 1 shows that RNFs remedy this
phenomenon, and that models trained on FMNIST assign higher test likelihoods to FMNIST than to MNIST. This correction
does not come at the cost of strange behaviour now emerging in the opposite direction (i.e. when training on MNIST, see
Appendix H for a histogram). Table 2 quantifies these results (arrows point from in-distribution datasets to OoD ones)
with the accuracy of a decision stump using only log-likelihood, and we can see that the best-performing RNFs models
essentially solve this OoD task. While we leave a formal explanation of this result for future work, we believe this discovery
highlights the importance of properly specifying models and of ensuring the use of appropriate inductive biases, in this case
low intrinsic dimensionality of the observed data. We point out that this seems to be a property of RNFs, rather than of
our ML training method, although our exact method is still used to compute these log-likelihoods at test time. We include
additional results on OoD detection using reconstruction errors – along with a discussion – in Appendix H, where we found
the opposite unexpected behaviour: FMNIST always has smaller reconstruction errors, regardless of which dataset was used
for training.

B. Injective Change-of-Variable Formula and Stacking Injective Flows

First, we note the density of projected points, and then we will derive it. Defining fθ := f̃θ ◦ pad and f†θ := pad† ◦ f̃−1θ ,
our construction of gφ yields:

pX(x) = pZ

(
g†φ(x)

) ∣∣∣detJ[hη]
(
g†φ(x)

)∣∣∣−1 ∣∣∣detJ[fθ]
>
(
f†θ (x)

)
J[fθ]

(
f†θ (x)

)∣∣∣−1/2 . (7)

We now derive (7) from (1) (with g†φ in place of g−1φ ). By the chain rule, we have:

J[gφ]
(
g†φ(x)

)
= J[fθ]

(
f†θ (x)

)
J[hη]

(
g†φ(x)

)
. (8)
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The Jacobian-transpose Jacobian term in (1) thus becomes:

∣∣∣detJ[gφ]>
(
g†φ(x)

)
J[gφ]

(
g†φ(x)

)∣∣∣−1/2 (9)

=
∣∣∣detJ[hη]>

(
g†φ(x)

)
J[fθ]

>
(
f†θ (x)

)
J[fθ]

(
f†θ (x)

)
J[hη]

(
g†φ(x)

)∣∣∣−1/2
=
∣∣∣detJ[hη]>

(
g†φ(x)

)∣∣∣−1/2 ∣∣∣detJ[fθ]
>
(
f†θ (x)

)
J[fθ]

(
f†θ (x)

)∣∣∣−1/2 ∣∣∣detJ[hη]
(
g†φ(x)

)∣∣∣−1/2
=
∣∣∣detJ[hη]

(
g†φ(x)

)∣∣∣−1 ∣∣∣detJ[fθ]
>
(
f†θ (x)

)
J[fθ]

(
f†θ (x)

)∣∣∣−1/2 ,
where the second equality follows from the fact that J[hη]>(g†φ(x)), J[fθ]

>(f†θ (x))J[fθ](f
†
θ (x)), and J[hη](g†φ(x)) are all

square d× d matrices; and the third equality follows because determinants are invariant to transpositions. The observation
that the three involved matrices are square is the reason behind why we can decompose the change-of-variable formula for
gφ as applying first the change-of-variable formula for hη , and then applying it for fθ.

This property, unlike in the case of standard flows, does not always hold. That is, the change-of-variable formula for a
composition of injective transformations is not necessarily equivalent to applying the injective change-of-variable formula
twice. To see this, consider the case where g1 : Rd → Rd2 and g2 : Rd2 → RD are injective, where d < d2 < D and let
g = g2 ◦ g1. Clearly g is injective by construction, and thus the determinant from its change-of-variable formula at a point
z ∈ Rd is given by:

detJ[g]>(z)J[g](z) = detJ[g1]>(z)J[g2]> (g1(z))J[g2] (g1(z))J[g1](z), (10)

where now J[g1](z) ∈ Rd2×d and J[g2](g1(z)) ∈ RD×d2 . Unlike the determinant from (9), this determinant cannot be
easily decomposed into a product of determinants since the involved matrices are not all square. In particular, (10) need not
match:

detJ[g1]>(z)J[g1](z) · detJ[g2]>(g1(z))J[g2](g1(z)), (11)

which would be the determinant terms from applying the change-of-variable formula twice. Note that this observation does
not imply that a flow like g could not be trained with our method, it simply implies that the detJ[g]>(z)J[g](z) term has
to be considered as a whole, and not decomposed into separate terms. It is easy to verify that in general, only an initial
d-dimensional square flow can be separated from the overall Jacobian-transpose-Jacobian determinant.

C. Full Hutchinson-Based Objective
Here, we provide the full contribution of a point x to the objective containing Hutchinson’s estimator and conjugate gradients:

log pZ

(
g†φ(x)

)
− log

∣∣∣detJ[hη]
(
g†φ(x)

)∣∣∣− β ∣∣∣∣∣∣x− fθ (f†θ (x)
)∣∣∣∣∣∣2

2
(12)

− 1

2K

K∑
k=1

stop_gradient
(
CG
(
J>θ Jθ; εk

)>)
J>θ Jθεk.

D. Conjugate Gradients
We outline the CG algorithm in Algorithm 1, whose output we write as CG(A; ε) in the main manuscript. Note that CG does
not need access to A, just a matrix-vector product routine against A, mvp_A(·). If A is symmetric positive definite, then CG
converges in at most d steps, i.e. its output matches A−1ε and the corresponding residual is 0, and CG uses thus at most d
calls to mvp_A(·). This convergence holds mathematically, but can be violated numerically if A is ill-conditioned, which is
why the τ < d condition is added in the while loop.
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Algorithm 1 CG
Input :mvp_A(·), function for matrix-vector products against A ∈ Rd×d

ε ∈ Rd
δ ≥ 0, tolerance

Output :A−1ε
u0 ← 0 ∈ Rd // current solution
r0 ← −ε // current residual
q0 ← r0
τ ← 0
while ||rτ ||2 > δ and τ < d do
vτ ← mvp_A(qτ )
ατ ← (r>τ rτ )/(q>τ vτ )
uτ+1 ← uτ + ατqτ
rτ+1 ← rτ − ατvτ
βτ ← (r>τ+1rτ+1)/(r>τ rτ )
qτ+1 ← rτ+1 + βτqτ
τ ← τ + 1

end
return uτ

E. Automatic Differentiation
Here we summarize the relevant properties from forward- and backward-mode automatic differentiation (AD) which we
use in the main manuscript. Let f be the composition of smooth functions f1, . . . , fL, i.e. f = fL ◦ fL−1 ◦ · · · ◦ f1. For
example, in our setting this function could be fθ, so that f1 = pad, and the rest of the functions could be coupling layers
from a D-dimensional square flow (or the functions whose compositions results in the coupling layers). By the chain rule,
the Jacobian of f is given by:

J[f ](z) = J[fL](f̄L−1(z)) · · ·J[f2](f̄1(z))J[f1](z), (13)

where f̄l := fl ◦ fl−1 ◦ · · · ◦ f1 for l = 1, 2, . . . , L− 1. Forward-mode AD computes products from right to left, and is thus
efficient for computing jvp operations. Computing J[f ](z)ε is thus obtained by performing L matrix-vector multiplications,
one against each of the Jacobians on the right hand side of (13). Backward-mode AD computes products from left to right,
and would thus result in significantly more inefficient jvp evaluations involving L − 1 matrix-matrix products, and a
single matrix-vector product. Analogously, backward-mode AD computes vjps of the form v>J[f ](z) efficiently, using L
vector-matrix products, while forward-mode AD would require L− 1 matrix-matrix products and a single vector-matrix
product.

Typically, the cost of evaluating a matrix-vector or vector-matrix product against J[fl+1](f̄l) (or J[f1](z)) is the same as
computing f̄l+1(z) from f̄l(z), i.e. the cost of evaluating fl+1 (or the cost of evaluating f1 in the case of J[f1](z)) (Baydin
et al., 2018). jvp and vjp computations thus not only have the same computational cost, but this cost is also equivalent to
a forward pass, i.e. computing f .

When computing f , obtaining a jvp with forward-mode AD adds the same memory cost as another computation of f since
intermediate results do not have to be stored. That is, in order to compute J[fl](f̄l−1(z)) · · ·J[f1](z)ε, we only need to store
J[fl−1](f̄l−2(z)) · · ·J[f1](z)ε and f̄l−1(z) (which has to be stored anyway for computing f ) in memory. On the other hand,
computing a vjp with backward-mode AD has a higher memory cost: One has to first compute f and store all the intermedi-
ate f̄l(z) (along with z), since computing v>J[fL](f̄L−1(z)) · · ·J[fl](f̄l−1(z)) from v>J[fL](f̄L−1(z)) · · ·J[fl+1](f̄l(z))
requires having f̄l−1(z) in memory.

F. Batch Normalization
We now explain the issues that arise when combining batch normalization with vjps. These issues arise not only in our
setting, but every time backward-mode AD has to be called to compute or approximate the gradient of the determinant term.
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We consider the case with a batch of size 2, x1 and x2, as it exemplifies the issue and the notation becomes simpler. Consider
applying fθ (without batch normalization) to each element in the batch, which we denote with the batch function Fθ:

Fθ(x1, x2) := (fθ(x1), fθ(x2)) . (14)

The Jacobian of Fθ clearly has a block-diagonal structure:

J[Fθ](x1, x2) =

(
J[fθ](x1) 0

0 J[fθ](x2)

)
. (15)

This structure implies that relevant computations such as vjps, jvps, and determinants parallelize over the batch:

(v1, v2)>J[Fθ](x1, x2) =
(
v>1 J[fθ](x1), v>2 J[fθ](x2)

)
(16)

J[Fθ](x1, x2)

(
ε1
ε2

)
=

(
J[fθ](x1)ε1
J[fθ](x2)ε2

)
detJ[Fθ]

>(x1, x2)J[Fθ](x1, x2) = detJ[fθ]
>(x1)J[fθ](x1) detJ[fθ]

>(x2)J[fθ](x2).

In contrast, when using batch normalization, the resulting computation FBNθ (x1, x2) does not have a block-diagonal
Jacobian, and thus this parallelism over the batch breaks down, in other words:

(v1, v2)>J
[
F

(BN)
θ

]
(x1, x2) 6=

(
v>1 J[fθ](x1), v>2 J[fθ](x2)

)
(17)

J
[
FBNθ

]
(x1, x2)

(
ε1
ε2

)
6=
(
J[fθ](x1)ε1
J[fθ](x2)ε2

)
detJ

[
FBNθ

]>
(x1, x2)J

[
FBNθ

]
(x1, x2) 6= detJ[fθ]

>(x1)J[fθ](x1) detJ[fθ]
>(x2)J[fθ](x2),

where the above 6= signs should be interpreted as “not generally equal to” rather than always not equal to, as equalities could
hold coincidentally in rare cases.

In square flow implementations, AD is never used to obtain any of these quantities, and the Jacobian log determinants
are explicitly computed for each element in the batch. In other words, this batch dependence is ignored in square flows,
both in the log determinant computation, and when backpropagating through it. Elaborating on this point, AD is only used
to backpropagate (with respect to θ) over this explicit computation. If AD was used on FBNθ to construct the matrices
and we then computed the corresponding log determinants, the results would not match with the explicitly computed log
determinants: The latter would be equivalent to using batch normalization with a stop_gradient operation with respect
to (x1, x2) but not with respect to θ, while the former would use no stop_gradient whatsoever. Unfortunately, this
partial stop_gradient operation only with respect to inputs but not parameters is not available in commonly used
AD libraries. While our custom implementation of jvps can be easily “hard-coded” to have this behaviour, doing so
for vjps would require significant modifications to PyTorch. We note that this is not a fundamental limitation and that
these modifications could be done to obtain vjps that behave as expected with a low-level re-implementation of batch
normalization, but these fall outside of the scope of our paper. Thus, in the interest of performing computations in a manner
that remains consistent with what is commonly done for square flows and that allows fair comparisons of our exact and
stochastic methods, we avoid using batch normalization.

G. FID and FID-like Scores
For a given dataset {x1, . . . , xn} ⊂ RD and a set of samples generated by a model {x(g)1 , . . . , x

(g)
m } ⊂ RD, along with a

statistic T : RD → Rr, the empirical means and covariances are given by:

µ̂ :=
1

n

n∑
i=1

T (xi), Σ̂ :=
1

n− 1

n∑
i=1

(T (xi)− µ̂) (T (xi)− µ̂)
> (18)

µ̂(g) :=
1

m

m∑
i=1

T
(
x
(g)
i

)
, Σ̂(g) :=

1

m− 1

m∑
i=1

(
T
(
x
(g)
i

)
− µ̂(g)

)(
T
(
x
(g)
i

)
− µ̂(g)

)>
. (19)
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Table 3. Training times in seconds, “K > 1” means K = 10 for tabular data and K = 4 for images.

Dataset
RNFs-ML (exact) RNFs-ML (K = 1) RNFs-ML (K > 1) RNFs-TS

EPOCH TOTAL EPOCH TOTAL EPOCH TOTAL EPOCH TOTAL

POWER 53.8 4.13e3 67.4 6.76e3 136 1.14e4 45.1 3.83e3
GAS 37.3 2.51e3 62.7 4.51e3 80.1 5.24e3 43.2 3.49e3
HEPMASS 143 1.01e4 146 8.28e3 159 1.20e4 29.1 2.42e3
MINIBOONE 49.3 4.16e3 26.3 2.01e3 29.8 2.94e3 4.61 481
MNIST 2.40e3 2.59e5 1.71e3 1.57e5 3.03e3 3.20e5 2.13e2 3.90e4
FMNIST 2.34e3 2.59e5 1.72e3 1.50e5 3.15e3 2.10e5 1.04e2 1.11e4

The FID score takes T as the last hidden layer of a pretrained inception network (Szegedy et al., 2015), and evaluates
generated sample quality by comparing generated moments against data moments. This comparison is done with the squared
Wasserstein-2 distance between Gaussians with corresponding moments, which is given by:∣∣∣∣∣∣µ̂− µ̂(g)

∣∣∣∣∣∣2
2

+ tr

(
Σ̂ + Σ̂(g) − 2

(
Σ̂Σ̂(g)

)1/2)
, (20)

which is 0 if and only if the moments match. Our proposed FID-like score for tabular data is computed the exact same way,
except no inception network is used. Instead, we simply take T to be the identity, T (x) = x.

H. Experimental Details
First we will comment on hyperparameters/architectural choices shared across experiments. The D-dimensional square
flow that we use, as mentioned in the main manuscript, is a RealNVP network (Dinh et al., 2017). In all cases, we use the
ADAM (Kingma & Ba, 2015) optimizer and train with early stopping against some validation criterion specified for each
experiment separately and discussed further in each of the relevant subsections below. We use no weight decay. We also do
not use batch normalization in any experiments for the reasons mentioned above in Appendix F. We use a standard Gaussian
on d dimensions as pZ in all experiments.

Compute We ran our two-dimensional experiments on a Lenovo T530 laptop with an Intel i5 processor, with negligible
training time per epoch. We ran the tabular data experiments on a variety of NVIDIA GeForce GTX GPUs on a shared
cluster: we had, at varying times, access to 1080, 1080 Ti, and 2080 Ti models, but never access to more than six cards in
total at once. For the image experiments, we had access to a 32GB-configuration NVIDIA Tesla v100 GPU. We ran each of
the tabular and image experiments on a single card at a time, except for the image experiments for the RNFs-ML (exact) and
(K = 10) models which we parallelized over four cards.

Table 3 includes training times for all of our experiments. Since we used FID-like and FID scores for ealy stopping, we
include both per-epoch and total times. Per epoch times of RNFs-ML exclude epochs where the Jacobian-transpose-Jacobian
log determinant is annealed with a 0 weight, although we include time added from this portion of training into the total time
cost. Note throughout this section we also consider one epoch of the two-step baseline procedure to be one full pass through
the data training the likelihood term, and then one full pass through the data training the reconstruction term.

H.1. Simulated Data

The data for this experiment is simulated from a von Mises distribution centred at π2 projected onto a circle of radius 1.
We randomly generate 10,000 training data points and train with batch sizes of 1,000. We use 1,000 points for validation,
performing early stopping using the value of the full objective and halting training when we do not see any validation
improvement for 50 epochs. We create visualizations in Figure 2 and Figure 3 by taking 1,000 grid points equally-spaced
between −3 and 3 as the low-dimensional space, project these into higher dimensions by applying the flow gφ, and then
assign density to these points using the injective change-of-variable formula (1). In this low-dimensional example, we use
the full Jacobian-transpose-Jacobian which ends up just being a scalar as d = 1. We commence likelihood annealing (when
active) on the 500-th training epoch and end up with a full likelihood term by the 1000-th.

For the D-dimensional square flow fθ, we used a 5-layer RealNVP model, with each layer having a fully-connected coupler
network of size 2 × 10, i.e. 2 hidden layers each of size 10, outputting the shift and (log) scale values. The baseline
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additionally uses a simple shift-and-scale transformation in d-dimensional space as hη; we simply use the identity map for
hη in this simple example.

We perform slightly different parameter sweeps for the two methods based on preliminary exploration. For the baseline
two-step procedure, we perform runs over the following grid:

• Learning rate: 10−3, 10−4.

• Regularization parameter (β): 100, 1,000, 10,000 (which for this method is equivalent to having a separate learning
rate for the regularization objective).

• Likelihood annealing: True or False.

For our method, we search over the following, excluding learning rate since our method was stable at the higher rate of
10−3:

• Regularization parameter (β): 10, 50, 200.

• Likelihood annealing: True or False.

Empirically we found the two-step baseline performed better with the higher regularization, which also agrees with the
hyperparameter settings from their paper.

Divergences on RNFs-TS between our codebase and the implementation of (Brehmer & Cranmer, 2020) Although
we were able to replicate the baseline RNF-TS method, there were some different choices made in the codebase of the
baseline method (available here: https://github.com/johannbrehmer/manifold-flow), which we outline
below:

• The baseline was trained for 120 epochs and then selects the model with best validation score, whereas we use early
stopping over an (essentially) unlimited number of epochs.

• The baseline weights the reconstruction term with a factor of 100 and the likelihood term with a factor of 0.1. This is
equivalent in our codebase to setting β = 1,000, and lowering the learning rate by a factor of 10.

• The baseline uses cosine annealing of the learning rate, which we do not use.

• The baseline includes a sharp Normal base distribution on the pulled-back padded coordinates. We neglected to include
this as it isn’t mentioned in the paper and can end up resulting in essentially a square flow construction.

• The baseline uses the ADAMW optimizer (Loshchilov & Hutter, 2019) to fix issues with weight decay within ADAM
(which they also use). We stick with standard ADAM as we do not use weight decay.

• The baseline flow reparametrizes the scale s of the RealNVP network as s = σ(s̃ + 2) + 10−3, where s̃ is the
unconstrained scale and σ is the sigmoid function, but this constrains the scale to be less than 1 + 10−3. This appears
to be done for stability of the transformation (cf. the ResNets below). We instead use the standard parametrization of
s = exp(s̃) as the fully-connected networks appear to be adequately stable.

• The Baseline uses ResNets with ReLU activation of size 2× 100 as the affine coupling networks. We use MLPs with
tanh activation function instead.

• The baseline uses a dataset which is not strictly on a manifold. The radius of a point on the circle is sampled from
N (1, 0.012). We use a strictly one-dimensional distribution instead with a von Mises distribution on the angle as noted
above.

In general, we favoured more standard and simpler choices for modelling the circle, outside of the likelihood annealing
which is non-standard.

https://github.com/johannbrehmer/manifold-flow
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RNFs-ML (exact) density RNFs-TS density RNFs-TS density

RNFs-ML (exact) speed RNFs-TS speed RNFs-TS speed

Figure 3. Densities (top row) and speeds (bottom row) for additional runs. Failed runs not recovering neither manifold nor the distribution
on it, RNFs-ML (exact) (left column) and RNFs-TS (right column). Successful RNFs-TS run (middle column).

We note that, while the results reported in the main manuscript are representative of common runs, both for RNFs-ML (exact)
and RNFs-TS; not every single run of RNFs-ML (exact) obtained results as good as the ones from the main manuscript.
Similarly, some runs of RNFs-TS recovered better likelihoods than the one from the main manuscript. We emphasize
again that the results reported on the main manuscript are the most common ones: most RNFs-ML (exact) runs correctly
recovered both the manifold and the distribution on it, and most RNFs-TS runs recovered only the manifold correctly. For
completeness, we include in Figure 3 some of the rare runs where results were different than the ones reported in the main
manuscript. Interestingly, we can see that the successful RNFs-TS run, which managed to recover the distribution on the
manifold, had more constant speeds than other RNFs-TS runs.

H.2. Tabular Data

For the tabular data, we use the GAS, POWER, HEPMASS, and MINIBOONE datasets, preprocessed as in Papamakarios
et al. (2017), although we neglect to use a test dataset as we simply compared moments on the trained data, as is typically
done with the FID score. We did not observe problems with overfitting in practice for any of the methods. We use the
FID-like metric with the first and second moments of the generated and observed data as described in Appendix G for early
stopping, halting training after 20 epochs of no improvement.

We again use a RealNVP flow in D dimensions but now with 10 layers, with each layer having a fully-connected coupler
network of hidden dimension 4 × 128. The d-dimensional flow here is also a RealNVP, but just a 5-layer network with
couplers of size 2× 32.

In all methods, we use a regularization parameter of β = 50. We introduce the likelihood term with low weight after 25
epochs, linearly increasing its contribution to the objective until it is set to its full weight after 50 epochs. We select d as bD2 c,
except for ML methods on D = 8 GAS which use d = 2 (noted below). We use a learning rate of 10−4. For the methods
involving the Hutchinson estimator, we use a standard Gaussian as the estimating distribution. We also experimented with a
Rademacher distribution here but found the Gaussian to be superior.

Results reported on the main manuscript are the mean of 5 runs (with different seeds) plus/minus standard error. Occasionally,
both RNFs-ML and RNFs-TS resulted in failed runs with FID-like scores at least an order of magnitude larger than other
runs. In these rare instances, we did another run and ignored the outlier. We did this for both methods, and we do point out
that RNFs-ML did not have a higher number of failed runs.

As mentioned in the main manuscript, GAS required slightly more tuning as RNFs-ML did not outperform RNFs-TS when
using d = 4. We instead use latent dimension d = 2, where this time RNFs-ML did outperform. Since RNFs-TS did
better with d = 4, we report those numbers in the main manuscript. Otherwise, our methods outperformed the baseline
out-of-the-box, using parameter configurations gleaned from the image and circle experiments.
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Table 4. Parameter combinations investigated for MNIST runs. Note that the final two rows are irrelevant for RNF-ML (exact) and
RNF-TS. We include "short names" for ease of listing parameters for the runs in Table 2.

PARAMETER SHORT NAME MAIN VALUE ALTERNATIVES

Likelihood Annealing LA True False
Reconstruction parameter β 50 5, 500, 10000
Low dimension d 20 10, 15, 30
D-dim flow coupler D NET 8× 64 4× 64
d-dim flow layers d LAYERS 5 10
Hutchinson distribution HUTCH Gaussian Rademacher
CG tolerance (normalized) tol 1 0.001

Table 5. Parameter choices for the MNIST runs reported in Table 2.

METHOD LA β d D NET d LAYERS HUTCH tol

RNFs-ML (exact) True 5 20 8× 64 10 N/A N/A
RNFs-ML (K = 1) True 5 20 8× 64 10 Gaussian 0.001
RNFs-ML (K = 4) True 50 20 8× 64 5 Gaussian 1
RNFs-TS True 50 20 8× 64 5 N/A N/A

H.3. Image Data and Out-of-Distribution Detection

In this set of experiments, we mostly tuned the RNFs-ML methods on MNIST for K = 1 – applying any applicable settings
to RNFs-TS on MNIST as well – which is likely one of the main reasons that RNFs-ML perform so well for K = 1 vs.
the exact method or K = 4. The reason why we spent so much time on K = 1 is that it was the fastest experiment to run
and thus the easiest to iterate on. Our general strategy for tuning was to stick to a base set of parameters that performed
reasonably well and then try various things to improve performance. A full grid search of all the parameters we might have
wanted to try was quite prohibitive on the compute that we had available. Some specific details on settings follow below.

For the D-dimensional square flow, we mainly used the 10-layer RealNVP model which exactly mirrors the setup that Dinh
et al. (2017) used on image data, except we neglect to include batch normalization (as discussed in Appendix F) and we also
tried reducing the size of the ResNet coupling networks from 8 × 64 to 4 × 64 for computational purposes. For further
computational savings, we additionally attempted to use a RealNVP with fewer layers as the D-dimensional square flow,
but this performed extremely poorly and we did not revisit it. For the d-dimensional square component, we used another
RealNVP with either 5 or 10 layers, and fully-connected coupler networks of size 4× 32. We also looked into modifying
the flow here to be a neural spline flow (Durkan et al., 2019), but this, like the smaller D-dimensional RealNVP, performed
very poorly as well. This may be because we did not constrain the norm of the gradients, although further investigation is
required. We also looked into using no d-dimensional flow for our methods as in the circle experiment, but this did not work
well at all.

For padding, we first randomly (although this is fixed once the run begins) permute the d-dimensional input, pad to get to
the appropriate length of vector, and then reshape to put into image dimension. We also pad with zeros when performing the
inverse of the density split operation (cf. the z to x direction of Dinh et al. (2017, Figure 4(b))), so that the input is actually
padded twice at various steps of the flow.

When we used likelihood annealing, we did the same thing as for the tabular data: optimize only the reconstruction term for
25 epochs, then slowly and linearly introduce the likelihood term up until it has a weight of 1 in the objective function after
epoch 50.

We summarize our attempted parameters in Table 4. For some choices of parameters, such as likelihood annealing set
to False, d = 15, 30, β = 10,000, and CG tolerance set to 1, we had very few runs because of computational reasons.
However, we note that the run with low CG tolerance ends up being the most successful run on MNIST. We have included
“SHORT NAMES” in the table for ease of listing hyperparameter values for the runs in Table 2, which we now provide for
MNIST and FMNIST in Table 5 and Table 6 respectively.

Figure 4 shows best RNFs-ML log-likelihoods for models trained on MNIST (left panel), and we can see that indeed
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Table 6. Parameter choices for the FMNIST runs reported in Table 2.

METHOD LA β d D NET d LAYERS HUTCH tol

RNFs-ML (exact) True 50 20 8× 64 10 N/A N/A
RNFs-ML (K = 1) True 50 20 8× 64 5 Rademacher 1
RNFs-ML (K = 4) True 50 20 8× 64 10 Rademacher 1
RNFs-TS False 5 20 4× 64 10 N/A N/A

Trained on MNIST Trained on FMNIST Trained on MNIST

Figure 4. OoD log-likelihood histograms trained on MNIST (left), and OoD reconstruction error histograms trained on FMNIST (middle)
and MNIST (right). Log-likelihood results (left) are RNFs-ML (exact), and reconstruction results (middle and right) are RNFs-ML
(K = 1). Note that green denotes in-distribution data, and blue OoD data; and colors do not correspond to datasets.

MNIST is assigned higher likelihoods than FMNIST. We also include OoD detection results when using reconstruction error
instead of log-likelihoods, for models trained on FMNIST (middle panel) and MNIST (right panel). We observed similar
results with RNFs-TS. Surprisingly, it is now the reconstruction error which exhibits puzzling behaviour: it is always lower
on FMNIST, regardless of whether the model was trained on FMNIST or MNIST. Once again, this behaviour also happens
for RNFs-TS, where the reconstruction error is optimized separately. We thus hypothesize that this behaviour is not due to
maximum likelihood training, and rather is a consequence of inductive biases of the architecture.


