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ABSTRACT

Mixture-of-Experts (MoE) models are promising architectures for massively mul-
tilingual neural machine translation and large language models due to the advan-
tage of sublinear scaling. However, the training of large MoE models is usu-
ally bottlenecked by the all-to-all communication (Lepikhin et al., 2020). To re-
duce the communication cost, we propose SCoMoE, an MoE architecture with
structured all-to-all communication, inspired by the hierarchical architecture of
the communication topology. SCoMoE encourages data to be communicated
across devices through fast intra-accelerator/node communication channels, re-
ducing communication throughput in the slow inter-node communication channel.
We slice the data on the sequence dimension (SCoMoE-Seq) into three communi-
cation groups and project the data on the feature dimension (SCoMoE-Feat) into
low-dimensional representations. To compensate the potential performance drop
caused by the routing locality in SCoMoE, we further propose a token cluster-
ing approach to aggregating related tokens from different devices before the MoE
layers. The sigmoid gating in the balanced router used in the token clustering
is substituted with the softmax gating with differential sorting. Experiments on
bilingual and massively multilingual machine translation demonstrate that SCo-
MoE achieves a speedup of 1.44x over GShard with comparable performance,
and substantially outperforms Gshard (2.8 BLEU) on OPUS-100 with a speedup
of 1.25x. Codes are available at https://github.com/ZhiYuanZeng/
fairseq-moe.

1 INTRODUCTION

Recent years have witnessed a substantial interest in exploring sparse architectures based on Mixture
of Experts for training massively multilingual machine translation (Lepikhin et al., 2020; Kim et al.,
2021) and large language models (Fedus et al., 2021; Zhang et al., 2021b; Ma et al., 2022; Du et al.,
2021; Zoph et al., 2022; Rajbhandari et al., 2022; Lin et al., 2021). Experts of MoE models are
distributed over multiple devices. Due to the sparse architecture where only a combination of experts
are selected to process each input, the number of experts and hence the scale of MoE models can be
sufficiently large while the computational cost is only sublinear to the number of parameters. Despite
the advantage of efficient computation, MoE models require expensive all-to-all communication, to
send the inputs and outputs of experts across the compute network. Previous study on GShard
(Lepikhin et al., 2020) has shown that as MoE models scale, the all-to-all communication cost
becomes the bottleneck for training.

To mitigate this issue, we propose Structured Communication based MoE (ScoMoE), which treats
the all-to-all communication in a structured way rather than equally across different devices. The
motivation behind SCoMoE is that the network bandwidth between devices and nodes is different
across the compute network: the bandwidth inside an accelerator (intra-accelerator) is faster than
that across accelerators, and the bandwidth inside a node (intra-node) is faster than that across nodes
(inter-node). Figure 1a visualizes the hierarchical structure of communication topology with a 9× 9
matrix, where different levels of communication are in different colors. We view the data flow in
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Figure 1: (a): The all-to-all communication contains three levels of communication with different
bandwidth: the fast intra-accelerator communication inside each accelerator (green squares), the
intra-node communication between Accelerator 0, 1 and Accelerator 3, 4 (blue squares), and the
slow inter-node communication between Node 0 and Node 1 (orange squares). (b): Slicing data on
the sequence dimension (left) and Projecting data on the feature dimension (right) into three groups
corresponding to three levels of communication. Each row of the data is a token embedding.

the all-to-all communication from the perspective of two dimensions: sequence dimension (tokens)
and feature dimension (embeddings of tokens). The proposed SCoMoE transforms (slicing or pro-
jecting) the data flow at either the sequence or feature dimension into three communication groups:
intra-accelerator, intra-node and global (inter-node) communication, as shown in Figure 1b. For the
data slicing on the sequence dimension, we select tokens for a communication group according to
the assignment scores of the tokens with the experts inside the group. To organize the data transfor-
mation on the feature dimension, we linearly project features into the three communication groups
with lower feature dimensionality and recast them back after the all-to-all communication.

Theoretically, structuring all-to-all communication in this way is faster than its original form, since
less data are transmitted through the slow inter-node communication channel. However, this may
hurt the performance, because intra-accelerator/intra-node communication can be processed by only
a part of experts. To alleviate this issue, we further propose a token clustering approach to ag-
gregating related tokens from different devices, which elevates the association of tokens inside each
device (accelerator/node). The proposed token clustering uses the balance router presented by Lewis
et al. (2021) for clustering, where each device is a cluster. In the balanced router, a sigmoid gate is
adopted to combine the inputs and outputs of experts, which could only broadcast the gradients to
the activated experts, even though it may be more suitable to dispatch the tokens to other experts.
Hence we propose to replace the sigmoid gate with the softmax gate via a straight-through trick
(Bengio et al., 2013) for better gradient broadcasting.

In a nutshell, our contributions are summarized as follows:

1. We propose SCoMoE that transforms the data flow in the all-to-all communication into
three groups according to the bandwidth structure of communication topology.

2. A token clustering method is proposed to dispatch the related tokens to the same devices to
alleviate the routing locality in the structured communication.

3. We propose to use softmax gate to substitue the sigmoid gate in the balanced router for
better gradient broadcasting.

4. Experiments on bilingual and massively multilingual machine translation demonstrate that
SCoMoE is faster than Gshard (Lepikhin et al., 2020) significantly with comparable or
even better translation performance. Further analysis discloses the strategies of selecting
hyper-parameters for SCoMoE.

2 RELATED WORK

MoE models (Jacobs et al., 1991; Jordan & Jacobs, 1994) are ensemble methods to integrate multiple
experts. Shazeer et al. (2017) propose a gating network to select a combination of experts and mix
data parallelism and model parallelism to increase the batch size. Gshard (Lepikhin et al., 2020)
utilizes the MoE parallelism proposed by Shazeer et al. (2017) to scale Transformer by replacing
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the MLP layer of Transformer with multiple MLP experts. Switch Transformer (Fedus et al., 2021)
substitutes the top-2 routing of Gshard with the top-1 routing, and trains large sparse models with a
selective precision strategy. Deepspeed-MoE (Kim et al., 2021) combines ZerO (Rajbhandari et al.,
2020) and MoE parallelism to train large MoE models. Many recent large language models (Fedus
et al., 2021; Zhang et al., 2021b; Ma et al., 2022; Du et al., 2021; Zoph et al., 2022) have been
trained with Gshard and its variants. A variety of new routers, e.g., hash router (Roller et al., 2021),
random router (Zuo et al., 2021) and balanced router (Lewis et al., 2021), have been proposed in lieu
of the top-2 router in GShard. We employ the balanced router proposed by the BASE Layer (Lewis
et al., 2021) for token clustering. The balanced router uses the auction algorithm (Bertsekas, 1992)
for balanced routing.

Although sparse MoEs are computationally efficient, they suffer from frequent and expensive all-to-
all communication across the network. Gshard (Lepikhin et al., 2020) has shown that the all-to-all
communication becomes the bottleneck for training large MoEs. While the heterogeneous hierar-
chical network topology has been exploited to reduce the communication consumption, previous
studies (Lin et al., 2020; Castiglia et al., 2021) focus on the all-reduce communication in SGD
rather than the all-to-all communication in MoE. Tutel (Hwang et al., 2022) proposes a hierarchical
all-to-all communication approach for MoE, which performs all-to-all communication and layout
transformation inside a node, and then all-to-all communication across nodes. Although the hier-
archical all-to-all communication of Tutel reduces the number of communication hops, it increases
the amount of communication data. Hetu-MoE (Nie et al., 2022) introduces a hierarchical all-to-all
communication mechanism similar to that of Tutel. The difference is that Hetu-MoE dispatches
all data inside one node to one accelerator, which may cause memory overflow. Sparse-MLP (Lou
et al., 2022) shortens the communication time by eliminating 10% tokens before routing, accord-
ing to the importance scores between tokens and experts. However, removing tokens may hurt the
performance. Fast-MoE (He et al., 2021) optimizes the training speed of MoE on the computation
of experts, rather than communication. Task-level routing (Zhou et al., 2022) extracts a subset of
experts for inference which improves the inference efficiency, but only works for multilingual/multi-
task MoEs and the extracted submodel can only translate in one direction. Expert Choice Routing
(Kudugunta et al., 2021) speedups the convergence speed of MoE with better load balance, but
cannot reduce the time cost for each step.

Comparison with Tutel Although both SCoMoE and Tutel improve the all-to-all communica-
tion of MoE based on the hierarchical network topology, SCoMoE is significantly different from
Tutel in the following four aspects: 1) Motivation. Tutel attempts to decrease the communication
hops and increase the message size for inter-node communication while SCoMoE is proposed to
decrease the amount of data for inter-node communication and increase that for intra-node com-
munication. 2) Algorithm. The communication of Tutel is hierarchical, first intra-node, and then
inter-node. However, the communication of SCoMoE is structured, where different data are com-
municated in different groups (intra-accelerator/intra-node/inter-node). 3) Translation Performance.
The hierarchical all-to-all communication algorithm proposed by Tutel may improve the communi-
cation speed, but does not influence the translation performance. By contrast, SCoMoE changes the
routing of some data, which may serve as regularization and improve the translation performance.
4) Speedup. In certain situations, Tutel even slows down training while SCoMoE still improves
training speed. The comparison of the two methods on the training speed are shown in Figure 3d.
Despite these significant differences, SCoMoE is orthogonal to Tutel and the two methods can be
easily combined.

Massively Multilingual NMT Our work is also related to massively multilingual neural machine
translation, which is briefly reviewed in Appendix A due to the constraint of space.

3 MODEL

3.1 SPARSE MIXTURE-OF-EXPERTS AND ALL-TO-ALL COMMINICATION

Sparse MoE models usually extend Transformer architecture with MoE layers where only a combi-
nation of experts are activated for computation each time. Different experts do not share parameters,
as shown in Figure 2 (in blue), while other modules (in red) are shared across all devices.
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Given an input sequence X which contains n tokens {X1, ...,Xi, ...,Xn} with n token embed-
dings, sparse MoE models assign each token Xi to experts usually according to a token-to-expert
assignment matrix M :

M = XWE

Mij = WEj

⊤ ·Xi

(1)

WE is a projection matrix, where each column is corresponding to an expert embedding. Mij is
the assignment score between an expert embedding WEj

⊤ and a token embedding Xi. Given the
token-to-expert assignment matrix M , the top-2 gating router selects the top-2 experts for each input
token, while the balanced router assigns tokens to experts with the auction algorithm.

After the assignment, tokens are sent to their target experts via the all-to-all communication across
devices, where each device sends/receives (i.e., dispatches and combines) tokens to/from all other
devices. Experts in devices process the received tokens, and send the processed tokens back to their
original devices, which requires another all-to-all communication. The all-to-all communication
contains three levels of communication: intra-accelerator, intra-node, and inter-node, visualized in
green, blue and orange respectively in Figure 1a. The intra-accelerator communication is actually
copying data from the memory inside the corresponding accelerator, which is very fast. The intra-
node communication is the communication across different accelerators inside one node, which
is much faster than the inter-node communication across different nodes. However, most of the
communication in the all-to-all communication are the slowest inter-node communication, which
is visualized in orange in Figure 1a. Furthermore, the ratio of inter-node communication increases
quadratically with the number of nodes. Therefore, the all-to-all communication becomes very
expensive and hence the bottleneck for training large MoE models with many devices.

3.2 STRUCTURED ALL-TO-ALL COMMUNICATION

To reduce the all-to-all communication cost, we propose to transform the tokens for cross-device
communication into three groups corresponding to the three levels of communication: intra-
accelerator, intra-node and global communication.1 The key idea is to increase the amount of tokens
dispatched/combined in the fast intra-accelerator/node communication channels, and decrease the
amount of tokens in the slow inter-node communication channel. Intuitively, this structured all-to-
all communication acts like the multi-head attention where the inputs are projected into multiple
keys, queries and values before attention computation in that our structured communication trans-
forms the data into multiple groups for communication at different levels before expert computation.

Different from the vanilla MoE, we do not compute the token-to-expert assignment scores for all
experts. Instead, we aim to select the experts inside each accelerator for the intra-accelerator com-
munication, and the experts inside each node for the intra-node communication. As shown in Figure
2, the tokens in the intra-accelerator/node group can only be processed by the experts inside the
accelerator/node, while the tokens in the global group are processed by all experts. The processed
tokens are sent back to their original devices.

3.3 DATA TRANSFORMATION FOR STRUCTURED COMMUNICATION

The data transformation for the structured communication could be either on the sequence or feature
dimension. The difference of them is visualized in Figure 1b.

Data Slicing on the Sequence Dimension For the data transformation on the sequence dimension,
we slice the tokens into each communication group according to the token-to-expert assignment
scores introduced in the Section 3.1. The tokens to be sent to intra-accelerator/node devices have
the highest assignment score with the experts inside the devices. Specifically, the tokens for local
devices are collected via:

Xlocal = argTopK
i

∑
j∈Elocal

Mij (2)

where Mij is the assignment score between expert j and token i, Elocal is a set of experts distributed
at local devices, Xlocal is a set of tokens that have the top-k assignment scores with Elocal. k denotes

1We do not perform data transformation for inter-node communication.
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Figure 2: Architecture of the SCoMoE. Left: the overall structure of the model. Right: the detailed
structure of a SCoMoE layer. There are 2N layers in the model, N attention layers, N

2 shared
FNN layers and N

2 MoE layers (token clustering with the 2 succeeding FFN layers can be seen as
one MoE layer). The parameters of layers in blue are shared across different devices, while the
parameters of layers in red are expert parameters. The token clustering aggregates related tokens at
different devices together before structured communication layers. The aggregated tokens are sent
back to the original devices (Recover) after the SCoMoE layers. The SCoMoE layers transform the
data into three groups on either the sequence or feature dimension, and dispatch the transformed
data to the experts via the intra-accelerator, intra-node and global communication respectively. We
omit the process of combining the processed tokens into their original devices in the diagram for
simplicity.

the number of tokens to be dispatched to local devices, which is a hyper-parameter. The tokens for
both the intra-accelerator and intra-node communication are collected in this way. We primarily
select token for local communication, first intra-accelerator, then intra-node and finally for global
communication. We mask the token-to-expert assignment scores of the selected tokens with −∞ to
prevent the same tokens from being selected for multiple groups of communication.

Data Projection on the Feature Dimension To transform the data on the feature dimension, we
project the input sequence X with the dimensionality of dmodel to lower-dimensional representations
of dintra-accelerator, dintra-node and dglobal, with three different projections Wintra-accelerator, Wintra-node and
Wglobal:

Xintra-accelerator = XWintra-accelerator

Xintra-node = XWintra-node

Xglobal = XWglobal

dintra-accelerator + dintra-node + dglobal = dmodel

(3)

where X ∈ Rn×dmodel , Xintra-accelerator ∈ Rn×dintra-accelerator , Xintra-node ∈ Rn×nintra-node , Xglobal ∈ Rn×dglobal .
Xintra-accelerator, Xintra-node, Xglobal are projected sequences to be dispatched via different communi-
cation channels. We display these projections and projected sequences in different colors in Figure
2.

The dimensionality of data dispatched to experts is reduced into dintra-accelerator, dintra-node or dglobal.
Hence we also need to reduce the dimensionality of weights in experts correspondingly. As
an expert is actually a fully-connected network, which contains two linear projections W1 ∈
Rdmodel×dffn ,W2 ∈ Rdffn×dmodel .2 Specifically, we set the shape of the first projection to be (d̂, dffn),
and that of the second projection to be (dffn, d̂). d̂ ∈ {dintra-accelerator, dintra-node, dglobal}, corresponding

2We ignore the bias for simplicity.
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to the input dimension. Actually, the parameters of the experts are projected into three parts, each
of which is corresponding to one level of communication. The outputs of experts are recast back to
the original dimension (dmodel) with another three projections.

3.4 TOKEN CLUSTERING

The data slicing on the sequence dimension forces more tokens to be dispatched to local devices,
which may hurt the performance, as tokens dispatched to local devices are processed by only a few
experts inside the devices. To mitigate this issue, we propose to apply token clustering before the
SCoMoE layers. The token clustering is to aggregate related tokens to the same device (accelera-
tor/node), where each device is a cluster. Aggregating related tokens together will make it better
for the experts to process them. But the router of MoE usually assigns related tokens to the experts
(Zoph et al., 2022), why do we need the token clustering? The reason is that the router of SCo-
MoE assigns more tokens to the experts inside local devices, while token clustering can mitigate
this problem. It gathers the tokens that are related to the experts at the same devices together so that
the tokens at the same devices may have a stronger association with each other and can be better
processed by the same experts. We perform the token clustering before the first SCoMoE layer, and
recover the original token distribution after the last SCoMoE layer.

We average the embeddings of experts inside an accelerator/node as the embedding of the device
(either the accelerator or node), and assign tokens to devices in the same way as we assign tokens
to experts. But unfortunately, the commonly used top-2 gating (Lepikhin et al., 2020) and top-1
gating (Fedus et al., 2021) routers could not be used here, since these routers abandon some tokens
during routing. Therefore we resort to routers that keep all tokens, e.g, greedy router (Lewis et al.,
2021) and balanced router (Lewis et al., 2021). The greedy router allows tokens to be dispatched
to the top-1 expert according to the token-to-expert assignment matrix. However, different from the
commonly used top-1 gating (Fedus et al., 2021), the greedy router does not set capacity for each
expert, allowing any number of tokens to be sent to the same expert. When the greedy router is used
to route tokens to devices, it may send too many tokens to a single device as it is unbalanced, causing
out-of-memory issue. Incorporating the load balance loss (Lepikhin et al., 2020) does not help in
this case, since the out-of-memory issue may immediately happen at the beginning of training. In
contrast, the balanced router does not have the problem of the greedy router, which uses the auction
algorithm (Bertsekas, 1992) to assign the same number of tokens to each expert. But the auction
algorithm usually converges until many iterations, which is inefficient for autoregressive decoding.
Hence the BASE Layer (Lewis et al., 2021) uses the balanced router instead of the greedy router at
inference. In this work, we perform token clustering with the balanced router. However, we have
found a weakness of Base Layer in gradient broadcasting, and proposed Differentiable Sorting to
address it, which is described in Appendix B.

The token clustering aggregates the tokens of different sentences together, which cannot be input to
the self-attention layer. Therefore we have to change the order of Transformer layers, putting the
attention layers before the MoE layers. The new architecture is shown in Figure 2, where the shared
encoder/decoder layers are placed at the bottom, followed by the attention layers and MoE layers.
The design of the new architecture is due to the following reasons: (1) Press et al. (2020) have in-
vestigated the impact of the order of attention layers and feed-forward layers on the performance
and found that putting the attention layers before the feed-forward layers often yields good perfor-
mance. (2) Riquelme et al. (2021) find that the top MoE layers are more important than the bottom
MoE layers. (3) Intuitively, the training of sparse MoE layers is more unstable than the training of
the dense layers (Zoph et al., 2022). Hence, putting the stable dense layers at the bottom may help
stabilize the training of the entire architecture.

We put the balanced router before the first SCoMoE layer for token clustering. However, the token
clustering also requires the all-to-all communication. We remove one MoE layer to avoid extra com-
munication cost. Hence the number of SCoMoE layers is N/2−1 rather than N/2, as shown in Fig-
ure 2. To keep the same computation cost with the original model, we also insert two fully-connected
layers after the balanced router.3 The balanced router together with the two fully-connected layers

3Two fully-connected layer rather than one, since we use the top-2 gating in SCoMoE layers, where each
token is processed by two experts.
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act as the first MoE layer. Since the token clustering works on the sequence dimension, we only
apply the token clustering to the SCoMoE layer that slices the data on the sequence dimension.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

We evaluated the proposed SCoMoE on both bilingual and massively multilingual neural machine
translation. In bilingual NMT experiments, we used the WMT17-En-Fr corpus, which consists of
35,762,532 training sentences, while in the massively multilingual NMT experiments, the OPUS-
100 corpus (Zhang et al., 2020) was used, which consists of 100 languages and 107,924,846 training
examples. The details of these two datasets are shown in Table 2 of Appendix C. We used the script
of fairseq 4 to download and pre-process the WMT17-En-Fr dataset while the OPUS-100 dataset
was directly downloaded from the OPUS web.5 Both the WMT17-En-Fr and OPUS-100 dataset
were tokenized via the BPE algorithm (Sennrich et al., 2016). For the multilingual experiments, a
language token indicating the source language was prepended to each source sentence and similarly,
a target language token was prepended to each target sentence.

Models were trained in two settings: base model and large model. The base models have 6 en-
coder/decoder layers, 8 experts and dmodel = 512, which were trained on one node with 8 RTX
A6000 GPUs. The large models have 12 encoder/decoder layers, 32 experts, and dmodel = 1024,
which were trained on 4 nodes with 32 RTX A6000 GPUs. The 4 nodes were connected with In-
finiband, the bandwidth of which is 100 Gbps. The number of parameters in the base model is 0.2
billion while 4.1 billion in the large model. The details of the base and large model configuration
could be found in Table 3 of Appendix C.

We compared our method with Gshard and its variant with a small capacity factor on translation
performance and training speed. We refer to our SCoMoE on the sequence dimension as SCoMoE-
Seq, and that on the feature dimension as SCoMoE-Feat. The Gshard with a small capacity factor
is referred to as Small-Cap-MoE. We set the ratio of tokens dispatched through the intra-accelerator
communication to be α (0 < α < 1), and the ratio through the intra-node communication to be
β (0 < β < 1), hence that through the global communication is γ = 1 − α − β (0 < γ < 1).
To simplify the comparison, we set either α or β to be non-zero, and the other to be 0. We refer
the SCoMoE-(Seq/Feat) with α > 0, β = 0, γ > 0 as SCoMoE-(Seq/Feat)-α, while that with
α = 0, β > 0, γ > 0 as SCoMoE-(Seq/Feat)-β. Please refer to Appendix C for more details about
experiment settings.

4.2 MAIN RESULTS

We evaluated the proposed methods on the WMT17-En-Fr and OPUS-100. We report the BLEU
score on the WMT17-En-Fr, and the average BLEU scores over all, English-to-any, and any-to-
English language pairs on the OPUS-100. Results are shown in Table 1. We also report the win-rate
and the speedup of all models over Gshard.

We evaluated the training speed on the dummy-mt task 6 of fairseq, since the training speed evaluated
on it is more stable. Each input sentence in the dummy-mt task is a series of numbers, e.g., “0, 1,
2, 3, 4, ...”, rather than the real sentence. We fixed the sequence length of all source and target
sentences to be 30, and trained models with 100 million dummy tokens without validation (It takes
920 steps to train each model).

Base Model The base SCoMoE was trained on a single node, hence we only need to consider the
ratio for the intra-accelerator communication (α). For a fair comparison on translation performance,
we set α for SCoMoE-Seq to 0.3, and that for SCoMoE-Feat to 0.5, the capacity factor of Small-Cap-

4https://github.com/pytorch/fairseq/blob/moe/examples/translation/
prepare-wmt14en2fr.sh

5https://opus.nlpl.eu/opus-100.php
6https://github.com/pytorch/fairseq/blob/moe/fairseq/benchmark/dummy_

mt.py
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Table 1: Translation performance of the base and large models on the test sets of OPUS-100
and WMT17-En-Fr. SCoMoE-(Seq/Feat)-α: the SCoMoE-(Seq/MT) with the intra-accelerator and
global communication. Time refers to the average time cost (ms) of all-to-all communication.

Setting Model Multilingual Bilingual speedup Time
All En-Any Any-En win-rate (%)

Base
(0.2B)

Transformer 23.43 19.64 27.17 26.2 37.39 2.00x -
Gshard 24.41 20.02 28.76 - 37.96 1.00x 1.6
Small-Cap-MoE 23.02 19.08 26.92 20.3 37.27 1.10x 1.33
SCoMoE-Seq-α 24.45 20.67 28.18 43.3 38.24 1.10x 1.14
SCoMoE-Feat-α 23.47 20.25 26.67 27.3 37.51 1.07x 1.13

Large
(4.1B)

Gshard 26.78 23.11 30.44 - 40.09 1.00x 27.0
Small-Cap-MoE 26.93 24.58 29.28 49.5 39.87 1.20x 21.3
SCoMoE-Seq-α 27.19 25.68 28.69 69.5 39.31 1.20x 20.3
SCoMoE-Feat-α 27.99 25.13 30.85 73.9 39.79 1.32x 17.4
SCoMoE-Seq-β 29.60 27.32 31.39 90.4 40.20 1.25x 16.8
SCoMoE-Feat-β 28.19 24.90 31.47 71.2 39.93 1.10x 19.9

MoE to 0.8, so that these models can be trained with a comparable training speed. More evaluation
on the training speed of SCoMoE can be found in Appendix E

From Table 1, we can observe that both SCoMoE-Seq/Feat and Small-Cap-MoE are faster than
Gshard by nearly 10%. But SCoMoE cost less communication time than Small-Cap-MoE. Why
do they still have similar training speed? The reason is that SCoMoE brings some extra over-
head on computation, which is analyzed in Appendix E. Although SCoMoE-Feat is slightly slower
than Small-Cap-MoE, it is better in terms of BLEU on both the WMT17-En-Fr and OPUS-100
dataset. While SCoMoE-Seq is comparable or even better than Gshard on both the WMT17-En-Fr
and OPUS-100 dataset, due to the proposed token clustering and differentiable sorting. We further
demonstrate the effectiveness of the two methods in Appendix F and G.

Large Model The large SCoMoE models were trained on multiple nodes, hence both SCoMoE-
Seq-α and -β were evaluated. We set α = 0.2 for SCoMoE-Seq-α and 0.5 for SCoMoE-Feat-α,
which have the comparable training speed with SCoMoE-Seq/Feat-β with β = 0.5. We set the
capacity factor of Small-Cap-MoE to 1.0, while that of other models was set to 1.25. From Table 1,
it is clear that all variants of SCoMoE are faster and consume less communication time than Gshard
significantly. Among the 4 variants, SCoMoE-Feat-α is the fastest. It is reasonable since we set α
of SCoMoE-Feat-α to 0.5, but that for SCoMoE-Seq-α to only 0.3. We provide the training speed
comparison of SCoMoE with more settings of α and β in Appendix E. It can also be seen that
SCoMoE-Seq-α is faster than SCoMoE-Seq-β but takes more communication time. This is because
that SCoMoE uses the top-2 routing, where each token is computed in two experts. In comparison,
tokens for intra-accelerator communication are computed in a single expert inside the accelerator,
which reduces computational time.

We have also found that all variants of SCoMoE achieve better translation performance than both
Gshard and its variant Small-Cap-MoE on the OPUS-100 dataset. They also perform comparably
to Gshard on the WMT17-En-Fr dataset. Among the 4 variants of SCoMoE, SCoMoE-Seq-β is the
best in terms of BLEU on both OPUS-100 and WMT17-En-Fr. It is surprising that SCoMoE-Seq-β
outperforms Gshard by 2.8 BLEU on OPUS-100, but only 0.1 BLEU on WMT17-En-Fr. We conjec-
ture that MoE models are easy to overfit on low-resource languages (Costa-jussà et al., 2022), while
our method can mitigate this issue by regularizing the routing of MoE. We have shown the improve-
ments of SCoMoE on different languages in Appendix D to validate this hypothesis. Overall, all
variants of SCoMoE are faster than Gshard with comparable or better translation performance.

The best settings of α/β for SCoMoE From Table 1, we can roughly see that SCoMoE-Seq/Feat-
β have better translation performance, while SCoMoE-Seq/Feat-α are faster. We further compared
the translation performance of them with different settings of α or β. The results are shown in Figure
3a and 3b. According to Figure 3a, SCoMoE-Seq-α is better with a smaller α in terms of BLEU,
which is not surprising since increasing α will reduce the amount of data for global communica-
tion. But SCoMoE-MoE-β achieves better translation performance with larger βs. Furthermore,
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(a) (b) (c) (d)

Figure 3: BLEU and Speedup of SCoMoE at different settings. (3a): BLEU of SCoMoE-Seq-
α/β with different α/β. (3b): Speedup of SCoMoE-Seq-α/β with different α/β. (3c): Speedup
of SCoMoE-Seq-α/β with different number of experts. (3d): Speedup of SCoMoE-Seq-α with
different batch sizes.

SCoMoE-MoE-β is even comparable to Gshard when β = 0.9, suggesting that only a small propor-
tion (10%) of tokens need to be communicated in global communication and that intra-node com-
munication is sufficient for the majority of tokens. SCoMoE-Seq-β with small βs underperforms
Gshard, the reason for which can be found in Table 4 where Gshard also suffers from performance
drop with token clustering and reordering.

With regard to the comparison on the training speed (Figure 3b), the speedup of SCoMoE-seq-
α/β over Gshard increases nearly linearly with the increment of α/β. The rate of increment for
SCoMoE-seq-α is around 1.0, while that for SCoMoE-seq-β is 0.5. Therefore, to achieve the
best speedup without performance drop in BLEU, we can set α of SCoMoE-seq-α to 0.3 and β
of SCoMoE-seq-β to 0.9, which can lead to a speedup of 1.28x and 1.44x respectively. We can also
set β of SCoMoE-seq-β to 0.5, which achieves the highest BLEU scores and a speedup of 1.25x.

Scaling in model and batch size The speedup of SCoMoE is also dependent on the model size
and batch size. Figure 3c and 3d compares the training speed of SCoMoE with different number
of experts and batch sizes. From Figure 3c, it is clear that the speedup of SCoMoE increases with
more experts, but the trend is not so significant when the number of experts increases to 48. It is
due to that the communication cost is more expensive with more devices. Similarly, SCoMoE also
has a more significant speedup with larger batch sizes, as shown in Figure 3d. In Figure 3d, we
also display the training speed of Gshard with the hierarchical all-to-all communication proposed in
Tutel (Hwang et al., 2022). However, the hierarchical communication of Tutel even slows down the
training. The reason may be that the intra-node bandwidth in our experiments is not fast (PCIe) and
that the number of devices is not very large (32).

Other Experiments and Analyses In addition to the main results, we conducted further experi-
ments and analyses, which are presented in Appendix, including the analysis on why SCoMoE can
improve translation performance (D), extensional evaluation on training and translation speed of
SCoMoE (E, J), ablation study (F,G,H), tuning α, β, γ simultaneously (I) and performance vs. time
evaluation (K).

5 CONCLUSION

In this paper, we have presented SCoMoE to reduce the all-to-all communication time of MoEs,
by encouraging more data to dispatch through the fast intra-accelerator/node communication chan-
nel, and less data through the slow inter-node communication channel. By slicing/projecting the
data on the sequence/feature dimension, we transform the data into three groups corresponding to
three levels of communication. To alleviate the performance drop caused by routing locality, we
further propose the token clustering to aggregate related tokens from different devices, and replace
the sigmoid gate of the balanced router with the softmax gate through differentiable sorting. Ex-
periments on bilingual and massively multilingual neural machine translation demonstrate that our
SCoMoE speeds up Gshard significantly with comparable or even better performance. The empiri-
cal evaluation and theoretical analysis on the training speed and communication time cost discloses
the speedups achieved by our method under different setting and network bandwidth. The ablation
study demonstrates the benefit of the proposed token clustering and differentiable sorting.
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APPENDIX

A RELATED WORK ON MASSIVELY MULTILINGUAL MACHINE
TRANSLATION

Recent years have witnessed an upsurge of interest in multilingual neural machine translation
(MNMT) that trains a single NMT model to translate multiple languages (Johnson et al., 2017; Ha
et al., 2016; Aharoni et al., 2019; Arivazhagan et al., 2019). Efforts have been devoted to pushing
the limits of MNMT in terms of the number of languages supported by adding language-specific pa-
rameters (Wang et al., 2018; 2019; Zhang et al., 2020; Jin & Xiong, 2022; Xu et al., 2021), adapters
(Bapna & Firat, 2019; Zhu et al., 2021; Zhang et al., 2021a; Sun & Xiong, 2022), or increasing
the depth (Huang et al., 2019) and width Fan et al. (2021) of the model. In addition to these, MoE
has become a popular architecture to scale MNMT to massively MNMT (Lepikhin et al., 2020;
Kim et al., 2021; Costa-jussà et al., 2022). In this work, we also conduct experiments on massively
MNMT to show the effectiveness of SCoMoE.

B DIFFERENTIABLE SORTING

The auction algorithm in the balanced router is not differentiable, hence the BASE Layer (Lewis
et al., 2021) learns the expert embedding via the sigmoid gate (Srivastava et al., 2015):

X ′
i = σ(Mij) · expertj(Xi) + (1− σ(Mij)) ·Xi (4)
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Expert Expert

Figure 4: The visualization of differentiable sorting. The sorting projection Wsort from the auction
algorithm, and the broadcast probability matrix Wsoftmax are combined together via the straight-
through trick to sort the sequence. The sorted four tokens are divided into two groups, per corre-
sponding to one expert.

where the output of the MoE layer X ′
i is the combination of the expert input Xi and expert out-

put expertj(Xi) that are integrated with the normalized assignment score Mij . The gradients are
broadcast through the sigmoid gate to update the parameters of the expert embeddings. But only the
embeddings of the activated experts can receive the gradients, even though we have computed the
assignment scores between any tokens and experts. With the gradients from the sigmoid gate, we
only know how to update the assignment scores of the activated experts, which is not available for
other experts. A straightforward solution to this is to replace the sigmoid gate with the softmax gate.
However, the softmax operator requires multiple inputs, but only one expert is activated for each
token. We notice that the auction algorithm assigns tokens to experts via sorting, which could be
implemented as a linear projection with a sparse matrix, where each row and column only contains
one non-zero value. Each row of the matrix could be seen as selecting a token from the sequence for
an expert. We implement the sorting via linear projection:

Xsort = Wsort ·X (5)
where the sorted sequence Xsort is obtained by the projection Wsort on the input sequence X . If the
number of sorted tokens is n, and the number of experts is m, n/m tokens will be assigned to each
expert. We visualize the sorting with a 4×4 sparse projection on a sequence of length 4 in Figure 4.
The tokens in the sorted sequence are assigned to two experts. The assigned tokens often have the
max or top-k scores with the expert, therefore each row could be seen as the argmax or argtopk on
the token-to-expert assignment matrix. The softmax is the approximation to the argmax, if we set
the temperature to a small value. Therefore, we share the gradients of the projection matrix with the
softmax matrix via the straight-through trick (Bengio et al., 2013):

Wsort = Wauction +Wsoftmax − detach(Wsoftmax)

Wsoftmax = softmax(
M⊤

τ
)

(6)

Wsort is the combination of the sorting projection Wauction from the auction algorithm, Wsoftmax,
which is the normalized assignment matrix, and detach(Wsoftmax), which has the same value as
Wsoftmax but cannot broadcast the gradients. τ is the temperature which controls the sharpness of the
softmax distribution. The lower the temperature is, the better the softmax approximates the argmax.
Wsort is equal to Wauction in the forward computation. Wsoftmax has the same gradients as Wsort in
the backward propagation, although Wsoftmax does not have influence on the training loss.

As the shape of the probability matrix Wsoftmax is different from that of Wsort, (m,n) vs. (n,m),
we cannot add them directly. Each row of Wsoftmax is a set of probabilities assigning tokens to an
expert, which are corresponding to n/m rows of Wsort as we need to assign n/m tokens to each
expert according to the same distribution. For the example in Figure 4, both the first and second row
of sparse matrix Wauction are corresponding to the first row of the probability matrix Wsoftmax. We
reshape Wsoftmax from (m,n) to (n, n) by repeating each row of the matrix to n/m rows. In Figure
4, we reshape the matrix from (2,4) to (4,4), by repeating the first and second row of the matrix
Wsoftmax to the first two and second two rows of the broadcast matrix.

15



Published as a conference paper at ICLR 2023

C DETAILS ON EXPERIMENT SETTINGS

Table 2: The statistics of the WMT17-En-Fr and OPUS-100 dataset.

Datasets Languages Train Validation Test

WMT17-En-Fr En-Fr 35,762,532 26,854 3003
OPUS-100 100 107,924,846 188× 1000 188× 1000

Table 3: The configuration of base and large models. Enc/Dec-Layer denotes the number of en-
coder/decoder layers.

Setting Enc-Layer Dec-Layer dmodel Experts GPU Nodes Parameters (B)

Base 6 6 512 8 8 1 0.2
Large 12 12 1024 32 32 4 4.1

Figure 5: Data distribution of different languages in OPUS-100.

We used the MoE branch of fairseq 7 to implement our MoE models. We prevented the padding
tokens from being sent to experts by masking their assignment scores. The capacity factor of the
base model was set to 1, while that of the large model was set to 1.25 following the suggestion
of (Zoph et al., 2022). The tokens with small assignment scores to an expert were dropped if the
expert was out-of-capacity. All models used pre-normalization to stabilize the training. We have
found that the MoE models are unstable to train in the large setting, hence we reduced the gradient
norm by gradient clipping (i.e., gradient norm was clipped to be no more than 0.5) and gradient
accumulation (accumulating the gradients every 4 steps). The gradients of experts were divided
by the square root of the number of accelerators, which also reduced the gradient norm and may
improve the stabilization of training. We have also found that the MoE model trained in multilingual
experiments could not perform well at inference, and that increasing the load-balance loss weight
from 0.01 (default value) to 0.1 significantly improves the performance. Therefore, we set the load-
balance loss weight to 0.1 in the multilingual experiments, and 0.01 in the bilingual experiments.

The Adam optimizer (Kingma & Ba, 2015a) with learning rate = 5e−4, α = 0.9, β = 0.98, was
used to optimize our models. We employed the inverse-square-root learning schedule (Kingma &
Ba, 2015b), with the number of warm-up step being set to 4000. The batch size was set to be 4096
tokens. The dropout rate was 0.3 for bilingual experiments and 0.1 for multilingual experiments.
Both the base and large models were trained for 10 epochs. The checkpoint with the best perfor-
mance on the validation set was selected for testing. In the bilingual experiments, we evaluated the
performance on the validation set with BLEU. In the multilingual experiments, the perplexity (ppl)
on the validation set was used for faster validation. The BLEU score was computed via sacrebleu
(Post, 2018).8

7https://github.com/pytorch/fairseq/tree/moe
8The signature of the sacrebleu:BLEU+case.mixed+lang.xx-xx+numrefs.1+smooth.exp+tok.13a+version.1.5.1.

xx-xx denotes the language direction, e.g., en-fr
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(a) (b)

Figure 6: Convergence curves of Gshard and SCoMoE on the validation set of OPUS-100 (6a) and
WMT17-En-Fr (6b).

Figure 7: Improvements of SCoMoE-Seq-β over Gshard in terms of BLEU on different languages
of OPUS-100. Blue/yellow indicate that the language is a rich-/low-resource language.

D WHY SCOMOE IS BETTER ON MULTILINGUAL MACHINE TRANSLATION

In Table 1, the improvement of SCoMoE-Seq-β on multilingual OPUS-100 is much more significant
than that on bilingual WMT17-En-Fr. We plot the convergence curves of Gshard and SCoMoE on
validation set of OPUS-100 and WMT17-En-Fr in Figure 6a and 6b respectively. It is clear that the
convergence curves of SCoMoE are more smooth than Gshard on both OPUS-100 and WMT17-En-
Fr. Gshard obtains its best perplexity on OPUS-100 at the 20kth step, but its perplexity increases as
the training continues. While the convergence curve of Gshard on WMT17-En-Fr is also fluctuated,
it tends towards getting better. Therefore, Gshard only overfits on OPUS-100. This is reasonable,
since WMT17-En-Fr contains much more data than any single language pair in OPUS-100 does.
In Figure 5, we illustrate the data distribution of different language pairs in OPUS-100. It is clear
that only half of language pairs have about 1 million parallel sentence pairs, while other language
pairs have much less data. We also show the improvements of SCoMoE over Gshard on different
language pairs of OPUS-100 in Figure 7, where we visualize different language pairs in different
colors according to whether the language is low-resource or rich-resource. We define a language
pair as a low/rich-resource language pair according to whether the data size of this language pair
is larger than the median size (640k) of all language pairs. From Figure 7, we can observe that
the large improvements (> 8 BLEU) of SCoMoE are all achieved on the low-resource language
pairs. Among these language pairs, en-af only has 274,821 sentence pairs, but gets the greatest
improvement of nearly 16 BLEU. All of these suggest that SCoMoE alleviates the overfitting issue
of Gshard especially on low-resource language pairs.

E EVALUATION ON TRAINING SPEED AND COMMUNICATION TIME

In this section, we compared the training speed and communication time of SCoMoE-Seq and
SCoMoE-Feat with different settings of α and β. We report the training speed in the metric of
words-per-second (WPS), which is the number of tokens that the model can process per second, and
the time cost of each all-to-all communication in milliseconds.

17



Published as a conference paper at ICLR 2023

(a) (b) (c) (d)

Figure 8: (8a): The speed of base SCoMoE with different α. (8b): The communication time of base
SCoMoE with different α. (8c): The speed of large SCoMoE with different α/β. (8d) The com-
munication time of large SCoMoE with different α/β. SCoMoE-Seq/Feat-α denotes the SCoMoE-
Seq/Feat with the intra-accelerator and global communication, for which the x-axis is the ratio of
the intra-accelerator communication (α). SCoMoE-Seq/Feat-β denotes the SCoMoE-Seq/Feat with
the intra-node and global communication, for which the x-axis is the ratio of the intra-node commu-
nication (β).

Base Model We tuned the ratio of the intra-accelerator communication (α) from 0 to 0.5, and
illustrated the training speed and communication time of SCoMoE at different ratios in Figure 8a
and 8b respectively. In spite of training with fixed dummy inputs, the training speed of the base
models is still unstable. Hence we trained the same model for three times and show the mean and
the standard deviation over the three runs in Figure 8a and 8b.

From Figure 8a, we observe that the two models can be trained faster as the ratio of intra-accelerator
communication (α) increases, except that the training of both SCoMoE-Seq and SCoMoE-Feat be-
comes slower when the ratio is 0.1, but with less communication time than when the ratio is 0. This
suggests that the structured communication reduces the communication time but may cause addi-
tional overhead. The extra overhead is probably from the computation, since computations in each
expert are also split into multiple groups corresponding to multiple communication groups, which
is slower than performing all computations at the same time. Even if we set the ratio of the intra-
accelerator communication to 0, SCoMoE-Seq is still significantly faster than Gshard. The reason
is that the communication cost of token clustering is half as that of the top-2 routing. We also notice
that the SCoMoE-Seq is always faster than SCoMoE-Feat, and requires less communication time.
This is because the token clustering is only applied to the SCoMoE-Seq.

Large Model Both SCoMoE-Seq/Feat-α and -β can be used for training large models. The dif-
ferences between them is that SCoMoE-Seq/Feat-β accelerate the training speed with the intra-node
communication instead of the intra-accelerator communication. We have compared the training
speed and communication time of them with different settings of α/β in Figure 8c and 8d respec-
tively. Overall, all variants of SCoMoE train faster and require less communication time as α or β
increases. It is also clear that SCoMoE-Seq/Feat-α is always faster than SCoMoE-Seq/Feat-β. This
is not surprising as the intra-accelerator communication is much faster than the intra-node commu-
nication. But we also notice that the training speed and communication time of SCoMoE-Feat-β
is not significantly better than Gshard until β reaches 0.5, while that for SCoMoE-Seq-β linearly
scales as β increases. The reason for this might be that the amount of communication time is related
to the shape of communicated tensor. It seems that the communication will be faster if the feature
dimension is the power of 2.

Theoretic Analysis on Communication Time We have empirically evaluated the training speed
and the amount of communication time of SCoMoE by varying α and β. The bandwidth of com-
munication has a great impact on these empirical results in practice. To complement the empirical
evaluation, we further theoretically analyze the amount of time required by the all-to-all communica-
tion and estimate speedups that can be achieved by the proposed structured communication method.
We estimate the all-to-all communication time as the combination of the intra-node, and inter-node
communication time as the time cost for the intra-accelerator communication (memory copy) is neg-
ligible in comparison to the other two communication channels. Suppose that the total amount of
data for communication is D MB, and the number of accelerators in one node is m. Given that, the
amount of data for the intra-/inter-node communication is D

m /D(m−1)
m . Suppose that the bandwidth

of the intra/inter-node communication is B1/B2 MB/s. The amount of the all-to-all communication
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time (seconds) can be estimated as follows:

Tall-to-all =
D

mB1
+

D(m− 1)

mB2

=
D(m− 1)

m
(

1

(m− 1)B1
+

1

B2
)

(7)

According to the equation, increasing the bandwidth of the inter-node communication (B2) is more
beneficial than increasing the bandwidth of the intra-node communication (B1) as 1

m−1 ≤ 1. If we
set the ratio of the intra-node communication to β (α = 0, 0 < β < 1), the amount of the all-to-all
communication time can be computed as:

Tβ = (1− β)Tall-to-all + β
D

B1

= (1− β)(
D

mB1
+

D(m− 1)

mB2
) + β

D

B1

= (1− β)
D(m− 1)

m
(
1

B2
− 1

B1
) +

D

B1

(8)

The absolute value of the derivative of β is proportional to 1
B2

− 1
B1

. Either decreasing B2 or in-
creasing B1 would make the SCoMoE more efficient. Therefore, If the bandwidth of the intra-node
communication is slow, it is better to set β = 0. Typically, there are two types of intra-node connec-
tions with different bandwidths: PCIE and NVlink/NVSwitch. The NVlink/NVSwitch connection
is much faster than the PCIE connection. Furthermore, the network interface controller (NIC) is also
connected with accelerators through PCIE. More communications sharing PCIE connections, will
make the communication slower. Therefore, we recommend to set β > 0, α = 0 if fast intra-node
connections with NVlink/NVSwitch are available, and α > 0, β = 0 if slow intra-node connec-
tions with PCIE are used. We use the PCIE connections in our experiments, hence the speedup of
SCoMoE-β should be more significant with the fast NVlink/NVSwitch connections.

F EFFECTS OF TOKEN CLUSTERING

Table 4: The translation performance and training speed of Gshard and SCoMoE-Seq with/without
token clustering and layer reordering. ✓/ × denotes with/without. Clustering denotes the token
clustering. Reordering denotes changing the order of layers according to the architecture in Figure
2

.

Model Clustering Reordering Multilingual Bilingual Speed

Gshard × × 24.41 37.96 1x
Gshard × ✓ 22.73 38.29 1x
Gshard ✓ ✓ 22.86 37.93 1.1x

SCoMoE-Seq × × 22.81 38.0 1.05x
SCoMoE-Seq ✓ ✓ 24.45 38.24 1.1x

We compared the translation performance and training speed of Gshard and SCoMoE with vs. with-
out token clustering. Results are shown in Table 4. It could be seen that the Gshard with token
clustering or layer reordering performs comparably to Gshard without using them on bilingual trans-
lation, but is significantly worse than the original GShard on multilingual translation. Results of
SCoMoE demonstrate that token clustering can significantly benefit our model on both bilingual
and multilingual machine translation in terms of both BLEU and training speed. The reason for
that Gshard with token clustering and reordering has the same training speed (1.1x) with SCoMoE
are in two folds: 1) Token clustering speeds up the training of both Gshard and SCoMoE, since the
communication cost of token clustering is only half as that of Top2Gate routing. 2) SCoMoE brings
additional computational overhead and requires a setting of higher α to be faster than Gshard, which
has been discussed in Appendix E.
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(a) (b)

Figure 9: (a) The translation performance of SCoMoE-Seq with different temperatures on the test
set of OPUS-100 and WMT17-En-Fr. The horizontal dashed line denotes the BLEU scores of
the SCoMoE-Seq with the sigmoid gate on OPUS-100 and WMT17-En-Fr. (b) The translation
performance of Gshard with different eval-capacity-factor. The two horizontal dashed lines denote
the BLEU scores of the standard Transformer on OPUS-100 (blue) and WMT17-En-Fr (red). The
two dashed lines in Figure (a) are overlapped together.

G IMPORTANCE OF DIFFERENTIABLE SORTING

We conducted experiments to investigate how the temperature of softmax affect the performance.
We compared the translation performance of SCoMoE-Seq with different temperatures. Results are
plotted in Figure 9a, from which we could see that the performance of the model is sensitive to the
temperature. We also report the performance of SCoMoE-Seq with the sigmoid gate as the baseline,
which is also displayed in Figure 9a (the horizontal dashed line). It could be seen that SCoMoE-Seq
with the softmax gate is consistently better than that with the sigmoid gate at different temperatures.

H EFFECT OF CAPACITY FACTOR AT INFERENCE

The capacity factor is of importance to the training of MoE models (Yang et al., 2021). In our
multilingual NMT experiments, we have found that the models trained on the OPUS-100 dataset
performs poorly on the test set, unless with a high capacity factor, substantially higher than that
used during training. For convenience, we refer to the capacity factor at inference as eval-capacity-
factor. The capacity during training and inference can be computed as follows:

capacitytrain =
2× number of tokens

number of experts
× capacity-factor (9)

capacityeval = number of tokens × eval-capacity-factor (10)

We evaluated the trained Gshard model with different eval-capacity-factors and show the perfor-
mance in Figure 9b. The model for evaluation was trained with the capacity factor of 1.0. The
performance of Gshard is even worse than the standard Transformer, when the eval-capacity-factor
is smaller than 0.75. Setting eval-capacity-factor=0.75 is equivalent to setting capacity-facor=3.0
if the number of experts is 8, which is very expensive. The costs for communication, computation
and memory are all proportional to the capacity factor, hence running Gshard on the OPUS-100
dataset is expensive. We also show the impact of eval-capacity-factor on the translation perfor-
mance on the WMT17-En-Fr dataset in Figure 9b. It is interesting that the performance of Gshard
on WMT17-En-Fr decreases as the eval-capacity-factor increases, which is opposite to the obser-
vation on OPUS-100. Increasing the eval-capacity-factor changes the routing of MoE, which may
hurt the performance. But why do the the multilingual MoE models require a large capacity? We
conjecture that the routing of multilingual MoE is language-specific, i.e., the tokens in related lan-
guages are routed to the same experts. In our experiments, each batch contains multiple languages
during training, but only one language at inference. Therefore, sentences in the same language are
routed to the same experts at inference, which causes these experts to overflow and tokens to be dis-
carded. To validate our hypothesis and alleviate this problem, we increase the load-balance weight
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Table 5: The results of SCoMoE with different settings of α, β and γ on the testset of WMT17-En-
Fr. SCoMoE-Seq* and SCoMoE-Feat* indicate the models where α, β and γ are all positive.

Model α β γ Speedup BLEU

Gshard - - - 1x 40.09

SCoMoE-Seq-α 0.2 0 0.8 1.2x 39.3
SCoMoE-Seq-β 0 0.5 0.5 1.25x 40.20
SCoMoE-Seq* 0.2 0.2 0.6 1.23x 39.6
SCoMoE-Seq* 0.2 0.5 0.3 1.41x 40.07

SCoMoE-Feat-α 0.5 0 0.5 1.32x 39.79
SCoMoE-Feat-β 0 0.5 0.5 1.10x 39.93
SCoMoE-Feat* 0.25 0.25 0.5 1.16x 40.39
SCoMoE-Feat* 0.25 0.5 0.25 1.26x 40.50

in Gshard from 0.01 to 0.1, and observe significant improvements in Figure 9b. But we still need a
high capacity factor for the inference of multilingual MoE models. We leave the issue to our future
work.

I SETTING α, β AND γ TO BE NON-ZERO SIMULTANEOUSLY

Although there are three communication channels, we have only used two of them in SCoMoE-α
(α =0, β >0, γ >0) and SCoMoE-β (α =0, β >0, γ >0) in our previous experiments, since it is
difficult to tune three hyperparameters at the same time. In this section, we investigated whether it
is beneficial to set α, β, γ to be non-zero at the same time. In Figure 3a, we have observed that α
should be set to a small value for a comparable performance with Gshard. Therefore we set α to
be 0.2 and 0.25 for SCoMoE-Seq and SCoMoE-Feat respectively. The results are shown in Table 5.
Comparing SCoMoE-Seq* with SCoMoE-Seq-α and SCoMoE-Seq-β, we can find that keeping α
and β non-zero at the same time could speed up the model training without the performance drop.
Furthermore, SCoMoE-Seq* with (α = 0.25, β = 0.5, γ = 0.25) is even better than that with
(α = 0.25, β = 0.25, γ = 0.5) in terms of both BLEU and training speed. Therefore, it is better for
us to set a small α and a large β for SCoMoE-Seq*.

SCoMoE-Feat also benefits from setting α, β and γ to be non-zero at the same time, especially
for the improvement on BLEU. It is reasonable because increasing communication channels for
SCoMoE means that each token can be computed in more experts. This is similar to increasing
heads in multi-head attention.

J COMPARISON OF TRANSLATION SPEED

In previous experiments, all reported results on speed are those of training speed. In this section we
compared the speed of autoregressive decoding of SCoMoE and analyzed the influence of hyper-
parameters on translation. For SCoMoE-Seq, the hyperparameters of each communication channel
α, β, γ could be tuned at inference and be different from the values at training. Therefore, we tuned
α and β for SCoMoE-Seq-α and SCoMoE-Seq-β respectively and report BLEU and translation
speed in Figure 10a and 10b respectively.

Overall, the speedup of SCoMoE during autoregressive decoding is weaker than that at training.
It can be seen that SCoMoE-Seq-α is faster than Gshard consistently at different settings of α.
SCoMoE-Feat-α also shows a slight speedup over Gshard. However, both SCoMoE-Seq-β and
SCoMoE-Feat-β are slightly slower than Gshard at inference. The reason is that the communication
during autoregressive inference is bottlenecked by the frequency rather than the size of communica-
tion data at inference. But one exception is that SCoMoE-Seq-β with β = 0 is faster than Gshard
due to the token clustering.

With regard to the translation performance, both SCoMoE-Seq-α and -β obtain their best perfor-
mance with α/β = 0. It is also clear that the performance of them decreases as α/β increases.
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(a) (b)

Figure 10: Comparison of SCoMoE during autogressive decoding in terms of BLEU (10a) and
the decoding speed (10b) on the testset of WMT17-En-Fr. The x-axis (α/β) represent the hyper-
parameters tuning at inference instead of training, which is different from that in Figure 3a and 3b.
SCoMoE-Seq/Feat-α and SCoMoE-Seq/Feat-β are trained with (α = 0.5, β = 0., γ = 0.5) and
(α = 0., β = 0.5, γ = 0.5) respectively.

(a) (b)

(c)

Figure 11: Performance-Time curves of SCoMoE-Seq-α (11a), SCoMoE-Seq-β (11b) and
SCoMoE-Feat (11c) on validation set of WMT17-En-Fr.

All in all, it is better to set α/β to be 0 for SCoMoE-Seq at inference in terms of both translation
performance and speedup. We use this setting to report BLEU scores for SCoMoE-Seq in other
sections.
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K PERFORMANCE-TIME CURVES

We have shown the improvements of SCoMoE over Gshard in both training speed and translation
performance, but it is still unclear how much time SCoMoE could save compared with Gshard. It
is also interesting to see whether SCoMoE could benefit from more training steps. Therefore we
compare the performance-time curves of SCoMoE-Seq-α, SCoMoE-Seq-β and SCoMoE-Feat with
Gshard in Figure 11a, Figure 11b and Figure 11c respectively. We can see that almost all SCoMoE
variants are superior to Gshard after being trained for 45,000 seconds. And they achieve 50 BLEU
at around 80,000 seconds, while Gshard requires 129,000 seconds. Among all variants, SCoMoE-
seq with (α=0.,β=0.5,γ=0.5) and (α=0.3,β=0.,γ=0.7) seem to be the best. We then trained these
two variants with more steps (12 epochs and 15 epochs respectively) so that they were trained with
time comparable to that of Gshard (10 epochs). The results of extra steps are illustrated with dashed
lines in Figure 11a and Figure 11b. It can be seen that these two variants obtain improvements
with more training steps and their final performance is much better than Gshard. Most variants of
SCoMoE-Feat converge at around 80,000 steps, and only see little improvements with more training
steps.
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