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Abstract
With the widespread use of machine learning systems in our daily lives, it is important to con-
sider fairness as a basic requirement when designing these systems, especially when the systems
make life-changing decisions, e.g., COMPAS algorithm helps judges decide whether to release an
offender. For another thing, due to the cheap but imperfect data collection methods, such as crowd-
sourcing and web crawling, label noise is ubiquitous, which unfortunately makes fairness-aware
algorithms even more prejudiced than fairness-unaware ones, and thereby harmful. To tackle these
problems, we provide general frameworks for learning fair classifiers with instance-dependent la-
bel noise. For statistical fairness notions, we rewrite the classification risk and the fairness metric
in terms of noisy data and thereby build robust classifiers. For the causality-based fairness notion,
we exploit the internal causal structure of data to model the label noise and counterfactual fairness
simultaneously. Experimental results demonstrate the effectiveness of the proposed methods on
real-world datasets with controllable synthetic label noise.
Keywords: causal graph; counterfactual fairness; instance-dependent label noise.
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1. Introduction

Machine learning systems have been widely adopted in our daily life. The overwhelming advantages
for these systems are that they never get tired, and they approach (and sometimes surpass) human-
level benchmarks on a wide array of tasks (Danziger et al., 2011; Silver et al., 2016). Thereby, they
are entrusted with important tasks, i.e., making high-stakes decisions in loan applications (Mukerjee
et al., 2002), dating and hiring (Bogen and Rieke, 2018; Cohen et al., 2019), and even parole (Dres-
sel and Farid, 2018). Nevertheless, machine learning algorithms are very sensitive to biases which
render their decisions unfair1 (Mehrabi et al., 2021; Angwin et al., 2016; O’neil, 2016). One canon-
ical example is a decision support tool used by U.S. courts to assess the likelihood of a defendant be-
coming a recidivist, called COMPAS (Dressel and Farid, 2018). A bias against African-Americans
was found with this software in an analysis performed by the news organization ProPublica: COM-
PAS is more likely to assign a higher risk score to African-American offenders than to Caucasians
with the same profile.

To mitigate the bias in machine learning algorithms, plenty of methods, that can be roughly
divided into two broad groups, have been proposed. The first group of methods focuses on the sta-
tistical fairness notions, which discover the discrepancy of statistical metrics between individuals or
sub-populations, e.g., statistical parity (Dwork et al., 2012), equalized odds (Hardt et al., 2016), and
predictive parity (Chouldechova, 2017). This group of methods only considers the correlation but ig-
nores causal effect relations within the data, which can hardly assess the fairness sufficiently (Huan
et al., 2020). The second group of methods focuses on the causality-based fairness notions, which
additionally employs causal graphs to take knowledge about the structure of real-world datasets
into consideration (Makhlouf et al., 2020), e.g., fair on average causal effect (Khademi et al., 2019),
counterfactual fairness (Kusner et al., 2017), and counterfactual error rates (Zhang and Bareinboim,
2018).

However, the above methods are based on a strong assumption that labels are entirely accurate,
which is hard to achieve due to the way labels were generated, e.g., the ImageNet-scale dataset
was necessarily annotated by distributed workers in Amazon Mechanical Turk2 (Han et al., 2020b).
Northcutt et al. (2021) identified an average of 3.4% label noise in the test sets of 10 of the most
commonly-used computer vision, natural language, and audio datasets. It is well-known that label
noise degenerates the performance of deep networks, because deep networks easily overfit label
noise (Zhang et al., 2017; Han et al., 2020a; Wu et al., 2021; Bai et al., 2021; Xia et al., 2021). Lamy
et al. (2019); Fogliato et al. (2020); Wang et al. (2021); Liu and Wang (2021) designed experiments
to demonstrate that naively enforcing parity constraints on the noisy labels harms the accuracy of
the classifier for the groups that are not affected by label noise. To make things worse, label noise
also degenerates the fairness metrics and could make some fairness-aware algorithms even more
prejudiced than fairness-unaware ones.

To see this, first, we add two types of label noise, i.e., class-dependent label noise (CDLN) and
instance-dependent label noise (IDLN), onto a benchmark dataset ADULT3 (Dua and Graff, 2017).
For class-dependent label noise, given clean label Y , the noisy label Ỹ is conditionally independent
of the instance X , i.e., P (Ỹ | Y,X) = P (Ỹ | Y ). Instance-dependent label noise is more complex
and can capture the true structure of real-world datasets better. The noise rates are set to 0.3 and

1. Fairness is the absence of any prejudice or favoritism toward an individual or a group based on their inherent or
acquired characteristics (Saxena et al., 2019).

2. https://www.mturk.com/
3. The ADULT dataset is from UCI ML Repository with gender as the sensitive attribute

2



FAIR CLASSIFICATION WITH INSTANCE-DEPENDENT LABEL NOISE

Table 1: Means and Stds of classification accuracy and fairness score (p value. The higher the
value, the better the fairness.) on ADULT dataset with two kinds of label noise over 5
trials. UC denotes the method which optimizes the training loss unconstrainedly.

CDLN-0.3 CDLN-0.4 IDLN-0.3 IDLN-0.4

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

p-Fair 80.46±0.35 28.37±4.28 79.90±0.33 31.44±7.42 80.35±0.26 24.18±6.14 79.86±0.29 25.07±9.87

UC 83.47±0.30 28.89±4.14 82.76±0.42 32.03±6.20 83.38±0.24 25.93±5.46 82.84±0.45 26.37±8.23

0.4:

P (Ỹ = −1 | Y = 1, X) = P (Ỹ = 1 | Y = −1, X) = 0.3 (0.4). (1)

Then we implement the algorithm (p-Fair) in Zafar et al. (2017) to learn a fair classifier. Zafar
et al. (2017) considered two distinct notions: disparate treatment and disparate impact (Barocas and
Selbst, 2016), and employed p%-rule:

min

P
(
Ŷ = 1 | A = 1

)
P
(
Ŷ = 1 | A = 0

) , P
(
Ŷ = 1 | A = 0

)
P
(
Ŷ = 1 | A = 1

)
 ≥ p

100
, (2)

as a constraint in the objective function, where Ŷ is the predicted label and A is the protected
attribute. As shown in Table 1, the fairness-aware method (p-Fair) gives more unfair and misleading
decisions than the vanilla unconstrained method (UC) under the influence of both kinds of label
noise. At the same noise rate, IDLN is more harmful and thus more challenging.

Figure 1: Means of classification accuracy on
ADULT dataset over 5 trials.

For fairness-aware algorithms employing
causality-based fairness notions, the fairness
metrics could be robust to label noise to
some extent. For example, counterfactual fair-
ness (Kusner et al., 2017) requires that chang-
ing the value of protected attribute A, while
holding things that are not causally dependent
on A constant, will not change the distribu-
tion of the predicted label. One straightforward
strategy to achieve counterfactual fairness is to
build a classifier only consisting of the non-
descendants of A. From Figure 2, we can see
that the label noise does not change the internal
causal structure of instances. The original non-
descendant Z is still the non-descendant of A,
which means the classifier built only with Z is robust to label noise with respect to the counterfac-
tual fairness. Although the fairness is maintained, the decline in accuracy is unavoidable. Figure 1
shows that the classification accuracy of the classifier only using non-descendants Z decreases as
the noise rate increases. Especially when the data are clean, the gap between the counterfactually
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Figure 2: Postulated causal graph. Label noise does not change the internal structure of (A,W,Z).

fair classifier and the unconstrained classifier is huge, indicating there is a huge information loss of
the counterfactually fair classifier.

In this paper, we provide general frameworks for learning fair classifiers with instance-dependent
label noise. For statistical fairness notions, we rewrite the classification risk and the fairness metric
in terms of noisy data and thereby build robust classifiers. For the causality-based fairness no-
tion, we exploit the internal causal structure of data to model the label noise and counterfactual
fairness (Kusner et al., 2017) simultaneously. Specifically, we postulate a general causal graph as
shown in Figure4 2 and employ the variational autoencoder (VAE) framework (Kingma and Welling,
2013) to make full use of the causal graph which can infer latent variables U and Y by maximizing
the joint likelihood of observable variables. In this way, our method also compensates for the infor-
mation loss, because W contains information from its parents A and U , and we extract the U -part
information in W by reconstructing W with U .

The rest of this paper is organized as follows: In Section 2, we formulate the problem of fair
classification with label noise. In Section 3 and 4, we provide general frameworks for learning fair
classifiers with instance-dependent label noises for statistical fairness notions and the counterfactual
fairness notion, respectively. Experimental results are discussed in Section 5. We conclude our
paper in Section 6.

2. Preliminaries

We consider the binary fair classification problem. Let D be the distribution of a pair of random
variables (X,Y ) ∈ X × {−1, 1}, where X ⊂ Rd and d represents the feature dimension. X can
be denoted in detail as a triple (A,Z,W ), where A is a protected attribute; Z is a non-descendant
variable of A, denoting some root-level attributes; W is the low-level attributes. In real-world
datasets, the clean label cannot be observed. Instead, we can only observe the noisy label Ỹ . In
this case, we have a sample {(a1, z1, w1, ỹ1), . . . , (an, zn, wn, ỹn)} drawn from a noisy distribution
Dρ of the random variables (A,Z,W, Ỹ ) as shown in Figure 2. We aim to learn a robust and fair
classifier that could assign clean labels to test data by exploiting the sample with noisy labels.

4. We will take benchmark dataset ADULT (Dua and Graff, 2017) as an example to demonstrate how this causal graph
interprets the data in Section 4.2.
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2.1. Label Noise

The label noise structure is usually formulated by a C×C transition matrix, where C is the number
of classes. The ij-th element of a transition matrix is Tij(x) = P (Ỹ = j | Y = i,X = x), which
represents the probability that the instance x with the clean label Y = i actually has a noisy label
Ỹ = j. It can establish the connection between noisy posterior and clean posterior, i.e., P (Ỹ |
X) = T>P (Y | X). Utilizing a transition matrix, consistent algorithms can be built (Natarajan
et al., 2013; Scott, 2015; Liu and Tao, 2016; Patrini et al., 2017; Li et al., 2021). However, without
assumptions, the transition matrix is not identifiable (Xia et al., 2019). The most commonly used
assumption is the class-dependent noise assumption: given the clean label Y , the noisy label Ỹ
is conditionally independent of instance X , i.e., P (Ỹ = j | Y = i,X = x) = P (Ỹ = j |
Y = i). Under this assumption, one can use anchor points (Liu and Tao, 2016) to estimate the
transition matrix. Nevertheless, the real-world noise is barely class-dependent, which narrows down
the application scenarios of this simplified label noise model. In this paper, we study the practical
instance-dependent label noise, and we make use of the causal graph to help to identify the transition
relationship P (Ỹ = j | Y = i,X = x).

2.2. Causal Graph and Structural Causal Model

We follow (Pearl et al., 2000) to use the Directed Acyclic Graph (DAG) with arrows pointing from
the parent (direct cause) node to the child (direct effect) node as a formalism to represent causal
relationships. Based on the DAG, we use structural causal models (SCMs) to represent the causal
mechanism underlying the data distribution: variables can be expressed by a function of their parents
with exogenous noise. For Figure 2, the corresponding structural causal model can be written as

Z = f(U, εZ), Y = f(U,Z, εY ), W = f(U,A,Z, Y, εW ), Ỹ = f(A,Z, Y,W, εỸ ). (3)

Each equation captures a conditional distribution of the term on the left side, conditioned on terms
on the right side (excluding the exogenous variable). Note that the last equation is exactly repre-
senting the transition relationship P (Ỹ |A,Z, Y,W ) we want to identify.

3. Statistically Fair Classification with Instance-dependent Label Noise

In this section, we demonstrate how to rewrite the classification risk and the fairness metric in terms
of noisy data and thereby build robust classifiers for statistical fairness notions.

For almost all the statistically fair classification problem, they can be formulated by a con-
strained optimization problem. Generally, we minimize the classification error L(·) on training data
subject to a specific statistical fairness constraint Fair(·):

minimize
N∑
n=1

L(f(xn), yn)

subject to Fair(X,Y, f) = 0.

(4)

The clean optimization problem can be statistically linked to the noisy optimization problem
with the transition relationship. Next, we propose two general methods and for illustration, we spe-
cialize them for two representative fairness notions: equalized odds and p-Fair, respectively. Meth-
ods designed for them can be easily extended to equal opportunity and demographic parity (Hardt
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et al., 2016; Dwork et al., 2012; Verma and Rubin, 2018).

Equalized Odds (Hardt et al., 2016). For the classification error part, we show how to use impor-
tance reweighting technique (Bruzzone and Marconcini, 2009; Liu and Tao, 2016) to consistently
estimate it:

E(X,Y )∼D[L(f(X), Y )]

=

∫
PD(X,Y )L(f(X), Y )dX dY

=

∫
PDρ(X,Y )

PD(X,Y )

PDρ(X,Y )
L(f(X), Y )dX dY

= E(X,Y )∼Dρ

[
PD(X,Y )

PDρ(X,Y )
L(f(X), Y )

]
= E(X,Y )∼Dρ

[β(X,Y )L(f(X), Y )],

(5)

where β(x, y) = PD(X=x,Y=y)
PDρ (X=x,Y=y) . To calculate β(x, y), we only need noisy data and the noise rate.

Let

T−1(x) = P (Ỹ = +1 | Y = −1, X = x), T+1(x) = P (Ỹ = −1 | Y = +1, X = x),

then we have

P (Ỹ = y | X = x) = (1− T−1(x)− T+1(x))P (Y = y | X = x) + T−y(x)

and

β(x, y) =
P (Ỹ = y | X = x)− T−y(x)

(1− T−1(x)− T+1(x))P (Ỹ = y | X = x)
. (6)

For the equalized odds constraint part, the original one is |γ0

(
Ŷ
)
− γ1

(
Ŷ
)
| = 0, where

γa(Ŷ ) , {P (Ŷ = 1 | A = a, Y = 1), P (Ŷ = 1 | A = a, Y = 0)}. Now we rewrite the first term
of γ0

(
Ŷ
)

:

P (Ŷ = 1 | A = a, Y = 1)

=
P (Ŷ = 1, A = a, Y = 1)

P (A = a, Y = 1)

=
P (Ŷ = 1, A = a, Y = 1)P (A = a, Ŷ = 1)

P (A = a, Y = 1)P (A = a, Ŷ = 1)

=
P (Y = 1 | A = a, Ŷ = 1)P (A = a, Ŷ = 1)

P (A = a, Y = 1)

=

(
P (Ỹ = 1 | A = a, Ŷ = 1)− T−1(a)

)
P (A = a, Ŷ = 1) (1− T−1(a)− T+1(a))

(1− T−1(a)− T+1(a))
(
P (Ỹ = 1, A = a)− T−1(a)

)
=

(
P (Ỹ = 1 | A = a, Ŷ = 1)− T−1(a)

)
P (A = a, Ŷ = 1)

P (Ỹ = 1, A = a)− T−1(a)
,

(7)
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where all variables are accessible, either observable or learnable, and

T−1(a) = P (Ỹ = +1 | Y = −1, A = a), T+1(a) = P (Ỹ = −1 | Y = +1, A = a).

Note that this group transition relation Ty(a) can be derived from the individual one Ty(x). The
detailed derivation process is provided in Appendix A.

The rest three terms can be rewritten in a similar way. At this point, we can use noisy data to
learn a robust classifier with equalized odds.

p-Fair (Zafar et al., 2017). For the classification error part, we show how to employ a transi-
tion matrix to learn a consistent classifier (Patrini et al., 2017). Let f(X) output the posterior of
Y ∈ {−1, 1}, i.e., f(X) = P (Y | X), then P (Ỹ | X) = T>(X)f(X). Therefore, by minimizing
L(T>(X)f(X), Ỹ ), the learned f is consistent with the one learned on clean data.

For the p-Fair fairness constraint, the original one is Demographic Parity |P (Ŷ |A = 0) −
P (Ŷ |A = 1)| = 0. In practice, they use a soft one | 1

N

∑N
i=1 (ai − a) f(x)| ≤ c, where c is a

threshold. Note that the consistent classifier f is for clean data, which means we can directly sub-
stitute it to the constraint. We name this modified method Robust-p-Fair (R-p-Fair).

In practical implementation, we employ the Lagrange multipliers method (Bertsekas, 2014) to trans-
fer a constraint to a regularization term. If the instance-dependent transition matrix is not given, we
can approximate it for one instance by a combination of the transition matrices for the parts of the
instance. Estimating the transition matrix will be much easier if a small clean set is given (Xia et al.,
2019, 2020).

4. Counterfactually Fair Classification with Instance-dependent Label Noise

In this section, we consider the causality-based fairness notion. We elaborate on how to make full
use of the causal graph to design a robust and counterfactually fair classifier. Then we showcase
how to implement the algorithm in practice.

4.1. Counterfactual Fairness

Intuitively, counterfactual fairness requires that changingA, while holding things that are not causally
dependent on A constant, will not change the distribution of the predictor h:

Definition 1 (Kusner et al., 2017) Predictor h is counterfactually fair if under any context X = x
and A = a,

P (hA←a(U) = y | X = x,A = a) = P (hA←a′(U) = y | X = x,A = a)

for all y and for any value a a′ attainable by A.

One straightforward strategy to achieve counterfactual fairness is the following:

Lemma 2 (Kusner et al., 2017) Let G be the causal graph of the given model. Then classifier will
be counterfactually fair if it is a function of the non-descendants of A.

A major concern of this strategy is that it totally discards W and loses much information. W
inherently contains information from its parents A and U , and we extract the U -part information in
W by reconstructing W with U .
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4.2. How the Causal Graph Interprets the Data

Here we take the benchmark dataset ADULT (Dua and Graff, 2017) as an example to demonstrate
how this causal graph (Figure 2) interprets the data:

• A represents the protected attribute ‘Gender’.

• Z represents the other root-level attributes, i.e., ‘Age’, ‘Race’, and ‘Native country’, which
are not affected by the protected attribute A.

• W represents the low-level attributes, e.g., ‘Workclass’, ‘Capital-gain’, and ‘Marital-status’,
which are caused by the background variable U and root-level attributes A and Z: U →
W ← (A,Z).

• U is a latent variable and can be seen as ‘Background’ of people, which causes those non-
protected attributes, making U a confounder of W and Z: W ← U → Z.

• Y represents the clean but latent label, the annual income, which is influenced by the back-
ground and root-level attributes of people: U,Z → Y . Note that, to fulfill counterfactual
fairness, we intentionally block the path from A to Y . Meanwhile, annual income (not the
salary of a job) acts as a cause of the low-level attributes: Y → W . For example, people
with lower annual income are less willing to do ‘Without-pay’ work, which is one kind of
‘Workclass’. For another example, people with higher annual income pay more attention to
investment and wealth management and thereby have a larger ‘Capital-gain’. Besides, annual
income can obviously affect ‘Marital-status’.

• Ỹ represents the noisy label, which is a common child of the observable variables and clean
label: (A,Z,W, Y )→ Ỹ .

Based on this causal graph, we can only feed U and Z to the classifier f to infer the clean
label Y , which, according to the Lemma 2, makes f counterfactually fair. Specifically, we employ
the variational autoencoder (VAE) framework (Kingma and Welling, 2013) to make full use of
the causal graph which can infer latent variables U and Y by maximizing the joint likelihood of
observable variables. Moreover, exploiting the causal graph contributes to the identifiability of the
transition relationship between clean and noisy labels (Yao et al., 2021).

4.3. VAE based Causal Inference

The joint distribution p(U,A,Z,W, Ỹ , Y ) specified by the causal graph in Figure 2 and the struc-
tural causal model Eq. (3) can be factorized as follows:

p(U,A,Z,W, Ỹ , Y )

= p(A)p(U)p(Z | U,A)p(Y | U,A,Z)p(W | U,A,Z, Y )p(Ỹ | U,A,Z, Y,W )

= p(A)p(U)p(Z | U)p(Y | U,Z)p(W | U,A,Z, Y )p(Ỹ | A,Z, Y,W ).

(8)

Note that although A is involved in the reconstruction of W and Ỹ , it does not causally affect how
U and Z infer Y . Namely, the counterfactual fairness still holds.

In the encoding phase, we infer the latent variable U and Y from observable variables Z. With-
out loss of generality, we choose prior p(U) to be simple, i.e., Gaussian. We use an encoder with a
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learnable parameter φ to model the distribution p(U, Y | A,Z,W, Ỹ ). Since A and its descendant
W are not allowed to build the classifier, and given its all parents U and Z, Y is independent on
(A,W, Ỹ ), the encoder can be simplified as:

qφ(U, Y | A,Z,W, Ỹ ) = qφ1(U | A,Z,W, Ỹ )qφ2(Y | U,A,Z,W, Ỹ )

= qφ1(U | Z)qφ2(Y | U,Z),
(9)

where qφ2(Y | U,Z) can be employed as a counterfactually fair classifier f .
In the decoding phase, given that p(U) is Gaussian, we need four decoders corresponding to the

rest four terms on the right side of Eq. (8), as:

pθ(U,A,Z,W, Ỹ , Y ) = p(A)p(U)pθ1(Z | U)pθ2(Y | U,Z)pθ3(W | U,A,Z, Y )pθ4(Ỹ | A,Z, Y,W ).
(10)

We denote Θ = {φ1, φ2, θ1, θ2, θ3, θ4} the parameter set of this VAE network. In the evaluation
phase, we first sample U from qφ1(U | Z) and then use (U,Z) to infer Y with qφ2(Y | U,Z). Note
that φ2 and θ2 are the same, which both model the generation process of Y . It is because Y is a
latent intermediate variable such that modeling Y can be treated as either encoding or decoding.
Hereinafter we refer to them collectively using classifier f .

Then, because the data likelihood pΘ(A,Z,W, Ỹ ) is intractable, instead of maximizing the data
likelihood, we learn Θ by minimizing the negative evidence lower bound (ELBO) (Kingma and
Welling, 2013). ELBO is a lower bound of the likelihood, which is preferred for optimization
because it can be calculated efficiently.

Starting with maximizing the data likelihood pΘ(A,Z,W, Ỹ ), we can derive the negative ELBO
as follows (the detailed derivation process is provided in Appendix B):

−ELBO , −E(u,y)∼qφ(u,y|z) [log pθ1(z | u)]− E(u,y)∼qφ(u,y|z) [log pθ3(w | u, a, z, y)] (11)

− E(u,y)∼qφ(u,y|z) [log pθ4(ỹ | a, z, y, w)] + DKL(qφ1(u | z)‖p(u)), (12)

where DKL is the Kullback–Leibler divergence function. Although the above ELBO does not ex-
plicitly involve the counterfactually fair classifier f , the prediction Y plays an important role in the
second and third terms of ELBO, which pushes f to be optimized.

So far, the classifier outputs a counterfactually fair prediction Y , which can be treated as cluster
numbers but not clean class labels. Since Y is a latent intermediate variable, the map between the
value of Y (+1 or −1) to the semantic class (positive or negative) is lost. To map Y to semantic
clean labels, noisy labels Ỹ are the only thing we have that could help. In case f is severely misled
by Ỹ , we introduce a data augmentation technique Mixup (Zhang et al., 2018), which generates a
weighted combination of random instance pairs from the training data:

x̂ = λxi + (1− λ)xj , (13)

ŷ = λyi + (1− λ)yj , (14)

where weights λ are independently sampled from a Beta distribution for each augmented example.
Mixup prevents f from overfitting noisy labels in two aspects. First, it increases the complexity
of the training data, which makes it difficult for a network to learn. Second, by combining differ-
ent features (labels) with one another, a network does not get overconfident about the relationship
between the features and their labels.

9
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Algorithm 1 Robust Counterfactually Fair Classification (RCFC).

Input: A training sample of observable variables (A,Z,W, Ỹ ).
1: Encode U :
2: µ, σ = qφ1(Z) . reparameterization trick
3: U = µ+ σε . where ε is an auxiliary noise variable ε ∼ N (0, 1)
4: Encode Y :
5: Y = qφ2(U,Z)
6: Decode (Reconstruct) Z,W, Ỹ :
7: Ẑ = pθ1(U) . where Ẑ is the predicted value of Z.
8: Ŵ = pθ3(U,A,Z, Y ) . where Ŵ is the predicted value of W .
9: Ỹ � = pθ4(A,Z, Y,W ) . where Ỹ � is the predicted value of Ỹ .

10: Update the parameter set Θ by minimizing −ELBO and the Mixup loss.
11: Output: Encoder qφ1(Z); Classifier f (Encoder qφ2(U,Z)).

4.4. Practical Implementation

The proposed algorithm is summarized in Algorithm 1.
For the negative ELBO part, the first three terms are exactly reconstruction errors (Kingma and

Welling, 2013). Therefore, in practice, we use mean squared error to measure the reconstruction
errors for (Ẑ, Ŵ ) with respect to (Z,W ), and we use cross-entropy loss to measure the reconstruc-

tion errors for ˆ̃Y with respect to Ỹ . As for the last DKL term, first we use the reparameterization
trick (Kingma and Welling, 2013) to sample U once from qφ1(u | z), and µ, σ are continuous
variables with gradients. Note that U can also be the average value of several sampling results to
decrease the variance. Then, we calculate DKL term with the closed-form solution provided by
Kingma and Welling (2013):

DKL(qφ1(u | z)‖p(u)) = −1

2

J∑
j=1

(
1 + log

((
σ

(i)
j

)2
)
−
(
µ

(i)
j

)2
−
(
σ

(i)
j

)2
)
, (15)

where J is the dimension of U .
For the mixup loss part, we first concatenate U and Z as input I , and then apply the mixup

technique to classifier f with pairs (I , Ỹ ). Here, we use cross-entropy loss.

5. Experiments

In this section, we examine how the proposed methods learn a robust fair classifier against instance-
dependent label noise.
Dataset. We employ two widely used benchmark datasets:

• ADULT (Dua and Graff, 2017). The prediction task is to determine whether a person makes
over $50K a year, with gender as the protected attribute. The detailed information for this
dataset and how it complies with the causal graph have been elaborated in Section 1.

• BANK (Dua and Graff, 2017). The prediction task is to determine whether a client subscribes
to a term deposit, with gender as the protected attribute. We select personal attributes except

10
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Table 2: Means and Standard deviations of classification accuracy and fairness score (p value) on
ADULT dataset over 5 trials.

ADULT IDLN-0.1 IDLN-0.2 IDLN-0.3 IDLN-0.4

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

SSL 71.63±5.16 14.22±5.48 63.68±5.02 21.24±6.87 58.80±4.17 25.90±5.09 51.20±8.13 34.45±6.05

p-Fair 69.46±6.83 30.08±7.19 61.89±4.96 32.85±5.92 58.50±4.42 35.10±5.53 49.85±7.83 40.43±4.97

R-p-Fair 69.97±7.18 41.78±1.02 63.27±3.94 38.35±3.69 59.46±4.67 39.74±5.08 51.42±8.78 41.02±4.47

gender and the credit history attributes as the other root-level attribute Z. Those loan-relevant
and property-relevant attributes are selected as the low-level attributesW . We drop social and
economic context attributes because they are irrelevant.

For all datasets, of which 10% are split as test data. The rest 90% is for training, of which 10%
are split as validation data. We use validation data for model selection. The final output model is
selected with the highest validation accuracy.

Noisy labels generation. For clean datasets, we artificially corrupt the class labels of training
and validation sets following the instance-dependent label noise generalization method in Xia et al.
(2020). We generate noisy datasets of {0.1, 0.2, 0.3, 0.4} four noise levels.

Network structure and optimization. For a fair comparison, all experiments are conducted on
NVIDIA GeForce RTX 2080 Ti, and all methods are implemented by PyTorch. The dimension of
background variable U is set to 2. We employ a three-layer MLP with the Softsign activation func-
tion for every single model. The batch size is set to 128. We use SGD optimizer with momentum 0.9
and an initial learning rate 0.001. Learning rate is updated by ReduceLROnPlateau, which reduces
learning rate when a metric (here we choose training loss as the metric) has stopped improving.

Baselines. We compare our methods R-p-Fair and RCFC with six baselines of four types:
• Standard supervised learning (SSL). It takes all the features as input and noisy labels as the target,

which is not fair.
• p-Fair (Zafar et al., 2017). It takes all the features exceptA as input and noisy labels as the target,

which is softly fair with fairness metric p value. We reimplement this method with Pytorch.
• Ablation-U (Ab-U). It postulates background variable U but does not model the label noise.
• Ablation-N (Ab-N). It models the label noise but does not postulate background variable U .
• Counterfactual fairness learning (CFL) (Kusner et al., 2017) . It only uses non-descendants to

make predictions, which is counterfactually fair.
• Counterfactual fairness learning with Mixup (CFL-M). Based on CFL, it additionally applies

mixup technique, which is both counterfactually fair and kind of robust to label noise.
Results. The results in Table 2 and Table 4 show that there is a steady lift of our method on the
classification accuracy and fairness score, compared with baseline methods. However, all statistical
methods suffer from label noise to a great extent. It is because IDLN is ill-defined and handling it
with purely statistical relations is not sufficient.
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Table 3: Means and Standard deviations of classification accuracy on ADULT dataset over 5 trials.

ADULT 0.1 0.2 0.3 0.4

Ab-U 65.13±1.97 65.16±2.39 64.10±3.98 61.03±9.97

Ab-N 73.07±2.46 73.30±2.08 70.61±2.44 61.41±9.27

CFL 66.17±1.22 67.20±3.24 63.27±5.67 61.11±8.69

CFL-M 69.07±2.86 64.65±3.79 64.42±4.04 63.90±4.29

RCFC 74.69±0.42 74.65±0.42 74.30±0.44 72.96±1.91

Table 4: Means and Standard deviations of classification accuracy and fairness score (p value) on
BANK dataset over 5 trials.

BANK IDLN-0.1 IDLN-0.2 IDLN-0.3 IDLN-0.4

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

SSL 84.54±4.23 35.49±15.27 66.60±12.87 19.49±5.63 58.69±4.92 18.51±5.95 56.31±4.90 17.80±5.64

p-Fair 87.22±1.80 43.08±21.69 67.00±13.00 18.65±5.34 58.62±5.04 18.53±5.69 57.16±5.20 17.90±5.54

R-p-Fair 87.18±2.33 49.57±27.26 76.02±7.08 25.20±7.08 60.43±4.90 18.54±4.88 60.71±6.36 19.32±5.02

Table 5: Means and Standard deviations of classification accuracy on BANK dataset over 5 trials.

BANK 0.1 0.2 0.3 0.4

Ab-U 87.19±1.78 85.86±2.19 81.48±4.93 68.43±11.35

Ab-N 87.51±0.71 86.75±1.37 85.52±4.08 76.74±9.81

CFL 84.09±7.23 72.09±14.92 58.29±16.08 55.42±14.11

CFL-M 80.40±7.70 74.09±12.35 64.98±8.41 58.85±8.32

RCFC 88.77±0.61 88.76±0.62 88.72±0.61 86.40±1.88

The results in Table 3 and Table 5 demonstrate that our method achieves distinguished classifi-
cation accuracy and is counterfactually fair. Compared with counterfactually fair methods CFL-M
and CFL, our method additionally extracts as much as possible knowledge from the data in the
precondition of satisfying a fairness requirement. These credits should go to the postulated causal
graph which captures the data structure well. The results of ablation studies Ab-U and Ab-N show
that exploiting causal relations and modeling label noise are both significant.

As the noise rate increases, the accuracy of all baselines decreases significantly while there is
just a slight drop for our method. Even for challenging noise rates of 0.4, our method achieves
good accuracy, uplifting about 15 and 30 points on ADULT and BANK, respectively. CFL-M and
CFL have similar performances on both datasets, which means the mixup technique itself does
not handle the instance-dependent label noise effectively. It also reflects the improvements of our
method are mainly benefited from the proposed causal model which contributes to the identifiability
of the transition relationship between clean and noisy labels.
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6. Conclusions

This paper proposed general frameworks for learning fair classifiers with instance-dependent label
noise. We notice that label noise not only degenerates the classification accuracy but misleads the
fairness-aware algorithms even more prejudiced than fairness-unaware ones. We adapt statistically
fair methods to the label noise setting and build consistent classifiers. Then we postulate a gen-
eral causal graph, which can interpret the real-world datasets well. By exploiting the causal graph,
we design an algorithm that both strictly achieves counterfactual fairness and identifies the transi-
tion relationship between clean and noisy labels. Experiments conducted on benchmark datasets
demonstrate the effectiveness of our method.
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Appendix A. Derivation process of getting Ty(a) from Ty(x)

Here we take T−1(a) as an example. Let X ′ , (Z,W ) and Xa , (A = a, Z,W ):

T−1(a) = P (Ỹ = +1 | Y = −1, A = a)

=

∫
P (X ′ = x′, Ỹ = +1, Y = −1, A = a) dx′∫

P (X ′ = x′, Y = −1, A = a) dx′

=

∫
P (Ỹ = +1 | X = xa, Y = −1)P (Y = −1 | X = xa)P (xa) dxa∫

P (Y = −1 | X = xa, )P (xa) dxa

=

∫
T−1(xa)P (Y = −1 | X = xa)P (xa) dxa∫

P (Y = −1 | X = xa)P (xa) dxa
,

(16)

where P (Y = −1 | X = x) = P (Ỹ=−1|X=x)−T+1(x)
(1−T−1(x)−T+1(x)) . In practice, we can use the above equation to

consistently estimate T−1(a).

Appendix B. Derivation process of the negative ELBO

To derive the ELBO, we start with maximizing the data likelihood pΘ(A,Z,W, Ỹ ):

log pΘ(a, z, w, ỹ) (17)

= log

∫
u

∫
y
pΘ(a, z, w, ỹ, y, u)dy du (18)

= log

∫
u

∫
y

pΘ(a, z, w, ỹ, y, u)

qφ1(u | z)qφ2(y | u, z)
qφ1(u | z)qφ2(y | u, z)dy du (19)

= log E(u,y)∼qφ(u,y|z)

[
pΘ(a, z, w, ỹ, y, u)

qφ1(u | z)qφ2(y | u, z)

]
(20)

≥ E(u,y)∼qφ(u,y|z)

[
log

pΘ(a, z, w, ỹ, y, u)

qφ1(u | z)qφ2(y | u, z)

]
, ELBO (Jensen’s Inequality) (21)

= E(u,y)∼qφ(u,y|z)

[
log

p(a)p(u)pθ1(z | u)pθ2(y | u, z)pθ3(w | u, a, z, y)pθ4(ỹ | a, z, y, w)

qφ1(u | z)qφ2(y | u, z)

]
(22)

= E(u,y)∼qφ(u,y|z) [log pθ1(z | u)] + E(u,y)∼qφ(u,y|z) [log pθ3(w | u, a, z, y)] (23)

+ E(u,y)∼qφ(u,y|z) [log pθ4(ỹ | a, z, y, w)] (24)

+ E(u,y)∼qφ(u,y|z)

[
log

p(u)

qφ1(u | z)

]
+ E(u,y)∼qφ(u,y|z) [log p(a)] (25)

= E(u,y)∼qφ(u,y|z) [log pθ1(z | u)] + E(u,y)∼qφ(u,y|z) [log pθ3(w | u, a, z, y)] (26)

+ E(u,y)∼qφ(u,y|z) [log pθ4(ỹ | a, z, y, w)]−DKL(qφ1(u | z)‖p(u)) + log p(a). (27)

Since log p(a) is a constant, we drop it in ELBO. Then, the final negative ELBO can be defined as:

−ELBO , −E(u,y)∼qφ(u,y|z) [log pθ1(z | u)]− E(u,y)∼qφ(u,y|z) [log pθ3(w | u, a, z, y)] (28)

− E(u,y)∼qφ(u,y|z) [log pθ4(ỹ | a, z, y, w)] + DKL(qφ1(u | z)‖p(u)). (29)
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