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Abstract

We introduce an approach aimed at enhancing the reasoning capabilities of Large
Language Models (LLMs) through an iterative preference learning process in-
spired by the successful strategy employed by AlphaZero. Our work leverages
Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing
its look-ahead ability to break down instance-level rewards into more granular
step-level signals. To enhance consistency in intermediate steps, we combine
outcome validation and stepwise self-evaluation, continually updating the quality
assessment of newly generated data. The proposed algorithm employs Direct
Preference Optimization (DPO) to update the LLM policy using this newly gen-
erated step-level preference data. Theoretical analysis reveals the importance of
using on-policy sampled data for successful self-improving. Extensive evaluations
on various arithmetic and commonsense reasoning tasks demonstrate remarkable
performance improvements over existing models. For instance, our approach
outperforms the Mistral-7B Supervised Fine-Tuning (SFT) baseline on GSM8K,
MATH, and ARC-C, with substantial increases in accuracy to 81.8% (+5.9%),
34.7% (+5.8%), and 76.4% (+15.8%), respectively. Additionally, our research
delves into the training and inference compute tradeoff, providing insights into
how our method effectively maximizes performance gains. Our code is publicly
available at https://github.com/YuxiXie/MCTS-DPO.

1 Introduction

Development of Large Language Models (LLMs), has seen a pivotal shift towards aligning these
models more closely with human values and preferences (Stiennon et al., 2020; Ouyang et al., 2022;
Bai et al., 2022a). A critical aspect of this process involves the utilization of preference data. There
are two prevailing methodologies for incorporating this data: the first entails the construction of a
reward model based on preferences, which is then integrated into a Reinforcement Learning (RL)
framework to update the policy (Christiano et al., 2017; Bai et al., 2022b); the second, more stable
and scalable method, directly applies preferences to update the model’s policy (Rafailov et al., 2023).

In this context, the concept of “iterative” development is a key, especially when contrasted with
the conventional Reinforcement Learning from Human Feedback (RLHF) paradigm (Christiano
et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022a), where the reward model is
often trained offline and remains static. An iterative approach proposes a dynamic and continuous
refinement process (Zelikman et al., 2022; Gülçehre et al., 2023; Huang et al., 2023; Yuan et al.,
2024). It involves a cycle that begins with the current policy, progresses through the collection
and analysis of data to generate new preference data, and uses this data to update the policy. This
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Figure 1: Monte Carlo Tree Search (MCTS) boosts model performance via iterative preference
learning. Each iteration of our framework (on the left) consists of two stages: MCTS to collect
step-level preferences and preference learning to update the policy. Specifically, we use action values
Q estimated by MCTS to assign the preferences, where steps of higher and lower Q values will be
labeled as positive and negative data, respectively. The scale of Q is visualized in the colormap. We
show the advantage of the online manner in our iterative learning framework using the validation
accuracy curves as training progresses on the right. The performance of ARC-C validation illustrates
the effectiveness and efficiency of our proposed method compared to its offline variant.

approach underlines the importance of ongoing adaptation in LLMs, highlighting the potential for
these models to become more attuned to the complexities of human decision-making and reasoning.

A compelling illustration of the success of such an iterative approach can be seen in the case of Alp-
haZero (Silver et al., 2017) for its superhuman performance across various domains, which combines
the strengths of neural networks, RL techniques, and Monte Carlo Tree Search (MCTS) (Coulom,
2006; Kocsis and Szepesvári, 2006). The integration of MCTS as a policy improvement operator
that transforms the current policy into an improved policy (Grill et al., 2020). The effectiveness
of AlphaZero underscores the potential of combining these advanced techniques in LLMs. By inte-
grating MCTS into the iterative process of policy development, it is plausible to achieve significant
strides in LLMs, particularly in the realm of reasoning and decision-making aligned with human-like
preferences (Zhu et al., 2023; Hao et al., 2023).

The integration of MCTS in collecting preference data to improve the current policy iteratively
is nuanced and demands careful consideration. One primary challenge lies in determining the
appropriate granularity for applying MCTS. Conventionally, preference data is collected at the
instance level. The instance-level approach employs sparse supervision, which can lose important
information and may not optimally leverage the potential of MCTS in improving the LLMs (Wu
et al., 2023). Another challenge is the reliance of MCTS on a critic or a learned reward function. This
function is crucial for providing meaningful feedback on different rollouts generated by MCTS, thus
guiding the policy improvement process (Liu et al., 2023a).

Addressing this granularity issue, evidence from LLM research indicates the superiority of process-
level or stepwise evaluations over instance-level ones (Lightman et al., 2023; Li et al., 2023; Xie
et al., 2023; Yao et al., 2023). Our approach utilizes MCTS rollouts for step-level guidance, aligning
with a more granular application of MCTS. Moreover, we employ self-evaluation, where the model
assesses its outputs, fostering a more efficient policy improvement pipeline by acting as both policy
and critic (Kadavath et al., 2022; Xie et al., 2023). This method streamlines the process and ensures
more cohesive policy updates, aligning with the iterative nature of policy enhancement and potentially
leading to more robust and aligned LLMs.

To summarize, we propose an algorithm based on Monte Carlo Tree Search (MCTS) that breaks
down the instance-level preference signals into step-level. MCTS allows us to use the current LLM
policy to generate preference data instead of a predetermined set of human preference data, enabling
the LLM to receive real-time training signals. During training, we generate sequences of text on the
fly and label the preference via MCTS based on feedback from self-evaluation (Figure 1). To update
the LLM policy using the preference data, we use Direct Preference Optimization (DPO) (Rafailov
et al., 2023). We extensively evaluate the proposed approach on various arithmetic and commonsense
reasoning tasks and observe significant performance improvements. For instance, the proposed
approach outperforms the Mistral-7B SFT baseline by 81.8% (+5.9%), 34.7% (+5.8%), and 76.4%
(+15.8%) on GSM8K, MATH, and SciQ, respectively. Further analysis of the training and test
compute tradeoff shows that our method can effectively push the performance gains in a more
efficient way compared to sampling-only approaches.
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2 MCTS-Enhanced Iterative Preference Learning

In this paper, we introduce an approach for improving LLM reasoning, centered around an iterative
preference learning process. The proposed method begins with an initial policy πθ(0) , and a dataset
of prompts DP . Each iteration i involves selecting a batch of prompts from DP , from which the
model, guided by its current policy πθ(i−1) , generates potential responses for each prompt. We then
apply a set of dynamically evolving reward criteria to extract preference dataDi from these responses.
The model’s policy is subsequently tuned using this preference data, leading to an updated policy
πθ(i) , for the next iteration. This cycle of sampling, response generation, preference extraction, and
policy tuning is repeated, allowing for continuous self-improvement and alignment with evolving
preferences. In addressing the critical aspects of this methodology, two key challenges emerge: the
effective collection of preference data and the process of updating the policy post-collection.

We draw upon the concept that MCTS can act as an approximate policy improvement operator,
transforming the current policy into an improved one. Our work leverages MCTS to iteratively
collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more
granular step-level signals. To enhance consistency in intermediate steps, we incorporate stepwise
self-evaluation, continually updating the quality assessment of newly generated data. This process, as
depicted in Figure 1, enables MCTS to balance quality exploitation and diversity exploration during
preference data sampling at each iteration. Detailed in section 2.1, our approach utilizes MCTS
for step-level preference data collection. Once this data is collected, the policy is updated using
DPO, as outlined in section 2.2. Our method can be viewed as an online version of DPO, where the
updated policy is iteratively employed to collect preferences via MCTS. Our methodology, thus, not
only addresses the challenges in preference data collection and policy updating but also introduces a
dynamic, iterative framework that significantly enhances LLM reasoning.

2.1 MCTS for Step-Level Preference

To transform instance-level rewards into granular, step-level signals, we dissect the reasoning process
into discrete steps, each represented by a token sequence. We define the state at step t, st, as the
prefix of the reasoning chain, with the addition of a new reasoning step a transitioning the state
to st+1, where st+1 is the concatenation of st and a. Utilizing the model’s current policy πθ, we
sample candidate steps from its probability distribution πθ(a | x, st)2, with x being the task’s input
prompt. MCTS serves as an approximate policy improvement operator by leveraging its look-ahead
capability to predict the expected future reward. This prediction is refined through stepwise self-
evaluation (Kadavath et al., 2022; Xie et al., 2023), enhancing process consistency and decision
accuracy. The tree-structured search supports a balance between exploring diverse possibilities and
exploiting promising paths, essential for navigating the vast search space in LLM reasoning.

The MCTS process begins from a root node, s0, as the sentence start or incomplete response, and
unfolds in three iterative stages: selection, expansion, and backup, which we detail further.

Select. The objective of this phase is to identify nodes that balance search quality and computational
efficiency. The selection is guided by two key variables: Q(st, a), the value of taking action a in state
st, and N(st), the visitation frequency of state st. These variables are crucial for updating the search
strategy, as explained in the backup section. To navigate the trade-off between exploring new nodes
and exploiting visited ones, we employ the Predictor + Upper Confidence bounds applied to Trees
(PUCT) (Rosin, 2011). At node st, the choice of the subsequent node follows the formula:

st+1
∗ = argmax

st

[
Q(st, a) + cpuct · p(a | st)

√
N(st)

1 +N(st+1)

]
(1)

where p(a | st) = πθ(a | x, st)/|a|λ denotes the policy πθ’s probability distribution for generating a
step a, adjusted by a λ-weighted length penalty to prevent overly long reasoning chains.

Expand. Expansion occurs at a leaf node during the selection process to integrate new nodes
and assess rewards. The reward r(st, a) for executing step a in state st is quantified by the reward

2For tasks (e.g., MATH) where the initial policy performs poorly, we also include the ground-truth reasoning
steps for training. We detail the step definition for different tasks with examples in Appendices C and D.
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Algorithm 1 . MCTS-Enhanced Iterative Preference Learning. Given an initial policy πθ(0) = πsft,
our algorithm iteratively conducts step-level preference data sampling via MCTS and preference
learning via DPO to update the policy.

Input: DP : prompt dataset; q(· | x): MCTS sampling strategy that constructs a tree-structured set of possible
responses given a prompt x, where qπ represents that the strategy is based on the policy π for both response
generation and self-evaluation; ℓi(x, yw, yl; θ): loss function of preference learning at the i-th iteration, where
the corresponding sampling policy is π(i); M : number of iterations; B: number of samples per iteration; T :
average number of steps per sample
Train πθ on DP using step-level preference learning.
for i = 1 to M do

π(i) ← πθ ← πθ(i−1)

Sample a batch of B samples from DP as D(i)
P .

/* MCTS for Step-Level Preference Data Collection */
For each x ∈ D(i)

P , elicit a search tree of depth T via qπθ (· | x).
Collect a batch of preferences Di = { {(xj , y

(j,t)
l , y

(j,t)
l )|Tt=1}|Bj=1 s.t. xj ∼ D(i)

P , y
(j,t)
w ̸= y

(j,t)
w ∼

qπθ (· | x
j) }, where y

(j,t)
w and y

(j,t)
l is the nodes at depth t, with the highest and lowest Q values,

respectively, among all the children nodes of their parent node.
/* Preference Learning for Policy Improvement */
Optimize θ by minimizing J(θ) = E(x,yw,yl)∼Di

ℓi(x, yw, yl; θ).
Obtain the updated policy πθ(i)

end for
πθ ← πθ(M)

Output: Policy πθ

difference between states R(st) and R(st+1), highlighting the advantage of action a at st. As defined
in Eq. (2), reward computation merges outcome correctness O with self-evaluation C. We assign
the outcome correctness to be 1, −1, and 0 for correct terminal, incorrect terminal, and unfinished
intermediate states, respectively. Following Xie et al. (2023), we define self-evaluation as Eq. (3),
where A denotes the confidence score in token-level probability for the option indicating correctness3.
Future rewards are anticipated by simulating upcoming scenarios through roll-outs, following the
selection and expansion process until reaching a terminal state4.

R(st) = O(st) + C(st) (2)

C(st) = πθ(A | prompteval, x, st) (3)

Backup. Once a terminal state is reached, we carry out a bottom-up update from the terminal node
back to the root. We update the visit count N , the state value V , and the transition value Q:

Q(st, a)← r(st, a) + γV (st+1) (4)

V (st)←
∑
a

N(st+1)Q(st, a)/
∑
a

N(st+1) (5)

N(st)← N(st) + 1 (6)

where γ is the discount for future state values.

For each step in the response generation, we conduct K iterations of MCTS to construct the search
tree while updating Q values and visit counts N . To balance the diversity, quality, and efficiency of
the tree construction, we initialize the search breadth as b1 and anneal it to be a smaller b2 < b1 for
the subsequent steps. We use the result Q value corresponding to each candidate step to label its
preference, where higher Q values indicate preferred next steps. For a result search tree of depth T ,
we obtain T pairs of step-level preference data. Specifically, we select the candidate steps of highest
and lowest Q values as positive and negative samples at each tree depth, respectively. The parent
node selected at each tree depth has the highest value calculated by multiplying its visit count and the
range of its children nodes’ visit counts, indicating both the quality and diversity of the generations.

3We show an example of evaluation prompt in Table 5.
4The terminal state is reached when the whole response is complete or exceeds the maximum length.
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2.2 Iterative Preference Learning

Given the step-level preferences collected via MCTS, we tune the policy via DPO (Rafailov et al.,
2023). Considering the noise in the preference labels determined by Q values, we employ the
conservative version of DPO (Mitchell, 2023) and use the visit counts simulated in MCTS to apply
adaptive label smoothing on each preference pair. Using the shorthand hyw,yl

πθ
= log πθ(yw|x)

πref (yw|x) −
log πθ(yl|x)

πref (yl|x) , at the i-th iteration, given a batch of preference data Di sampled with the latest policy
πθ(i−1) , we denote the policy objective ℓi(θ) as follows:

ℓi(θ) =− E(x,yw,yl)∼Di

[
(1− αx,yw,yl

) log σ(β hyw,yl
πθ

)
+ αx,yw,yl

log σ(−βhyw,yl
πθ

)
]

(7)

where yw and yl represent the step-level preferred and dispreferred responses, respectively, and the
hyperparameter β scales the KL constraint. Here, αx,yw,yl

is a label smoothing variable calculated
using the visit counts at the corresponding states of the preference data yw, yl in the search tree:

αx,yw,yl
=

1

N(x, yw)/N(x, yl) + 1
(8)

where N(x, yw) and N(x, yl) represent the states taking the actions of generating yw and yl, respec-
tively, from their previous state as input x.

After optimization, we obtain the updated policy πθ(i) and repeat the data collection process in
Section 2.1 to iteratively update the LLM policy. We outline the full algorithm of our MCTS-
enhanced Iterative Preference Learning in Algorithm 1.

3 Experiments

We evaluate the effectiveness of MCTS-enhanced iterative preference learning on arithmetic and com-
monsense reasoning tasks. We employ Mistral-7B (Jiang et al., 2023) as the base pre-trained model.
We conduct supervised training using Arithmo 5 which comprises approximately 540K mathematical
and coding problems. Detailed information regarding the task formats, specific implementation
procedures, and parameter settings of our experiments can be found in Appendix C.

Datasets. We aim to demonstrate the effectiveness and versatility of our approach by focusing on
two types of reasoning: arithmetic and commonsense reasoning. For arithmetic reasoning, we utilize
two datasets: GSM8K (Cobbe et al., 2021), which consists of grade school math word problems, and
MATH (Hendrycks et al., 2021), featuring challenging competition math problems. Specifically, in
the GSM8K dataset, we assess both chain-of-thought (CoT) and program-of-thought (PoT) reasoning
abilities. We integrate the training data from GSM8K and MATH to construct the prompt data for
our preference learning framework, aligning with a subset of the Arithmo data used for Supervised
Fine-Tuning (SFT). This approach allows us to evaluate whether our method enhances reasoning
abilities on specific arithmetic tasks. For commonsense reasoning, we use four multiple-choice
datasets: ARC (easy and challenge splits) (Clark et al., 2018), focusing on science exams; AI2Science
(elementary and middle splits) (Clark et al., 2018), containing science questions from student
assessments; OpenBookQA (OBQA) (Mihaylov et al., 2018), which involves open book exams
requiring broad common knowledge; and CommonSenseQA (CSQA) (Talmor et al., 2019), featuring
commonsense questions necessitating prior world knowledge. The diversity of these datasets, with
different splits representing various grade levels, enables a comprehensive assessment of our method’s
generalizability in learning various reasoning tasks through self-distillation. Performance evaluation
is conducted using the corresponding validation sets of each dataset. Furthermore, we employ an
unseen evaluation using the validation set of an additional dataset, SciQ (Welbl et al., 2017), following
the approach of Liu et al. (2023b), to test our model’s ability to generalize to novel reasoning contexts.

Baselines. Our study involves a comparative evaluation of our method against several prominent
approaches and fair comparison against variants including instance-level iterative preference learning
and offline MCTS-enhanced learning. We use instance-level sampling as a counterpart of step-level
preference collection via MCTS. For a fair comparison, we also apply self-evaluation and correctness
assessment and control the number of samples under a comparable compute budget with MCTS

5https://huggingface.co/datasets/akjindal53244/Arithmo-Data
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Table 1: Result comparison (accuracy %) on arithmetic tasks. We
supervised fine-tune the base model Mistral-7B on Arithmo data,
while Math-Shepherd (Wang et al., 2023a) use MetaMATH (Yu
et al., 2023b) for SFT. We highlight the advantages of our approach
via conceptual comparison with other methods, where NR, OG, OF,
and NS represent “w/o Reward Model”, “On-policy Generation”,
“Online Feedback”, and “w/ Negative Samples”.

Approach Base Model Conceptual Comparison GSM8K MATH
NR OG OF NS

LMSI PaLM-540B ✓ ✓ ✗ ✗ 73.5 −

SFT (MetaMath) Mistral-7B − − − − 77.7 28.2
Math-Shepherd ✗ ✓ ✗ ✓ 84.1 33.0

SFT (Arithmo)

Mistral-7B

− − − − 75.9 28.9
MCTS Offline-DPO ✓ ✗ ✗ ✓ 79.9 31.9
Instance-level Online-DPO ✓ ✓ ✓ ✓ 79.7 32.9
Ours ✓ ✓ ✓ ✓ 80.7 32.2
Ours (w/ G.T.) ✓ ✓ ✓ ✓ 81.8 34.7
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Figure 2: Performance on the
validation set of ARC-C via
training with different settings.

Table 2: Result comparisons (accuracy %) on commonsense reasoning tasks. The results based on
GPT-3-curie (Brown et al., 2020) and T5 (Raffel et al., 2020) are reported from Liu et al. (2023b).
For CSQA, we also include the GPT-J (Wang and Komatsuzaki, 2021) results reported by Zelikman
et al. (2022). We follow Liu et al. (2023b) to combine the training data of ARC, AI2Sci, OBQA, and
CSQA for training , while STaR (Zelikman et al., 2022) only use CSQA for training.

Approach Base Model Conceptual Comparison ARC-c AI2Sci-m CSQA SciQ Train Data
Used (%)NR OG OF NS

CoT Tuning GPT-3-curie (6.7B) ✓ ✗ ✗ ✗ − − 56.8 − 100
Direct Tuning GPT-J (6B) ✓ ✗ ✗ ✗ − − 60.0 − 100
STaR ✓ ✓ ✓ ✗ − − 72.5 − 86.7
Direct TUning T5-11B ✓ ✗ ✗ ✗ 72.9 84.0 82.0 83.2 100
Crystal ✗ ✓ ✓ ✓ 73.2 84.8 82.3 85.3 100
SFT Base (Arithmo)

Mistral-7B

− − − − 60.6 70.9 54.1 80.8 −
Direct Tuning ✓ ✗ ✗ ✗ 73.9 85.2 79.3 86.4 100
MCTS Offline-DPO ✓ ✗ ✗ ✓ 70.8 82.6 68.5 87.4 19.2
Instance-level Online-DPO ✓ ✓ ✓ ✓ 75.3 87.3 63.1 87.6 45.6
Ours ✓ ✓ ✓ ✓ 76.4 88.2 74.8 88.5 47.8

in instance-level sampling. The offline version uses the initial policy for sampling rather than the
updated one at each iteration.

We contrast our approach with the Self-Taught Reasoner (STaR)(Zelikman et al., 2022), an iterated
learning model based on instance-level rationale generation, and Crystal(Liu et al., 2023b), an RL-
tuned model with a focus on knowledge introspection in commonsense reasoning. Considering the
variation in base models used by these methods, we include comparisons with Direct Tuning, which
entails fine-tuning base models directly bypassing chain-of-thought reasoning. In the context of arith-
metic reasoning tasks, our analysis includes Language Model Self-Improvement (LMSI)(Huang et al.,
2023), a self-training method using self-consistency to gather positive data, and Math-Shepherd(Wang
et al., 2023a), which integrates process supervision within Proximal Policy Optimization (PPO). To
account for differences in base models and experimental setups across these methods, we also present
result performance of SFT models as baselines for each respective approach.

3.1 Main Results

Arithmetic Reasoning. In Table 1, we present a comparative analysis of performance gains
in arithmetic reasoning tasks. Our method demonstrates substantial improvements, notably on
GSM8K, increasing from 75.9%→ 81.8%, and on MATH, enhancing from 28.9%→ 34.7%. When
compared to Math-Shepherd, which also utilizes process supervision in preference learning, our
approach achieves similar performance enhancements without the necessity of training separate
reward or value networks. This suggests the potential of integrating trained reward model signals into
our MCTS stage to further augment performance. Furthermore, we observe significant performance
gain on MATH when incorporating the ground-truth solutions in the MCTS process for preference
data collection, illustrating an effective way to refine the preference data quality with G.T. guidance.

Commonsense Reasoning. In Table 2, we report the performance on commonsense reasoning
tasks, where our method shows consistent improvements. Notably, we achieve absolute accuracy
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Figure 3: Training- vs. Test- Time Compute Scaling on ARC-C, SciQ, and MATH evaluation sets.
The cumulative pass rate of our iterative learning method can be seen as the pass rate of an ensemble
of different model checkpoints. We use greedy decoding to obtain the inference time performance of
our method of iterative learning.

Table 3: Ablation of “EXAMPLE ANSWER” in self-evaluation on GSM8K, MATH, and ARC-C.
We report AUC and accuracy (%) to compare the discriminative abilities of self-evaluation scores.

Approach GSM8K MATH ARC-C

AUC Accuracy AUC Accuracy AUC Accuracy

w/ example answer 74.7 72.5 76.6 48.8 65.2 57.5
w/o example answer 62.0 69.5 48.1 42.3 55.8 48.4

increases of 2.5%, 3.0%, and 2.1% on ARC-Challenge (ARC-C), AI2Sci-Middle (AI2Sci-M), and
SciQ, respectively, surpassing the results of direct tuning. However, in tasks like OBQA and CSQA,
our method, focusing on intermediate reasoning refinement, is less efficient compared to direct tuning.
Despite significant improvements over the Supervised Fine-Tuning (SFT) baseline (for instance,
from 59.8% to 79.2% on OBQA, and from 54.1% to 74.8% on CSQA), the gains are modest
relative to direct tuning. This discrepancy could be attributed to the base model’s lack of specific
knowledge, where eliciting intermediate reasoning chains may introduce increased uncertainty in
model generations, leading to incorrect predictions. We delve deeper into this issue of hallucination
and its implications in our qualitative analysis, as detailed in Section 3.2.

3.2 Further Analysis

Training- vs. Test- Time Compute Scaling. Our method integrates MCTS with preference learning,
aiming to enhance both preference quality and policy reasoning via step-level alignment. We analyze
the impact of training-time compute scaling versus increased inference-time sampling.

We measure success by the pass rate, indicating the percentage of correctly elicited answers. Figure 3
displays the cumulative pass rate at each checkpoint, aggregating the pass rates up to that point. For
test-time scaling, we increase the number of sampled reasoning chains. Additionally, we compare the
inference performance of our checkpoints with a sampling-only method, self-consistency, to assess
their potential performance ceilings. The pass rate curves on ARC-C, SciQ, and MATH datasets
reveal that our MCTS-enhanced approach yields a higher training compute scaling exponent. This
effect is particularly pronounced on the unseen SciQ dataset, highlighting our method’s efficiency
and effectiveness in enhancing specific reasoning abilities with broad applicability. Inference-time
performance analysis shows higher performance upper bounds of our method on ARC-C and SciQ. For
instance, while self-consistency on SciQ plateaus at around 84%, our framework pushes performance
to 88.6%. However, on MATH, the sampling-only approach outperforms training compute scaling:
more sampling consistently enhances performance beyond 35%, whereas post-training performance
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Figure 4: Abltation study on step- vs. instance-level supervision, online vs. offline learning, and w/
vs. w/o G.T. supervision. We also compare the accuracy of the training signals collected via MCTS
or instance-level sampling.

hovers around 32.2%. This observation suggests that in-domain SFT already aligns the model well
with task-specific requirements.

Functions of Self-Evaluation Mechanism. As illustrated in Section 2.1, the self-evaluation score
inherently revises the Q value estimation for subsequent preference data collection. In practice, we
find that the ground-truth information, i.e., the “EXAMPLE ANSWER” in Table 5, is crucial to
ensure the reliability of self-evaluation. We now compare the score distribution and discriminative
abilities when including v.s. excluding this ground-truth information in Table 3. With this information
, the accuracy of self-evaluation significantly improves across GSM8K, MATH, and ARC-C datasets.

Ablation Study. We ablate the impact of step-level supervision signals and the online learning
aspect of our MCTS-based approach. Tables 1 and 2 shows performance comparisons across
commonsense and arithmetic reasoning tasks under different settings. Our method, focusing on step-
level online preference learning, consistently outperforms both instance-level and offline approaches in
commonsense reasoning. For example, we achieve 76.4% on ARC-C and 88.5% on SciQ, surpassing
70.8% and 87.4% of the offline variant, and 75.3% and 87.6% of the instance-level approach.

In arithmetic reasoning, performance differences among settings are less pronounced for challenging
task such as MATH without the incorporation of ground-truth solutions (e.g., 32.2% for our method
(w/o G.T.) vs. 31.9% and 32.9% for offline and instance-level on MATH). The comparable perfor-
mance of offline learning aligns with our theoretical analysis that offline approaches can be effective
when the initial policy is already well-tuned with high-quality, in-domain data. We further interpret
how G.T. guidance integration to enhance the effectiveness of our framework in Figure 4. With G.T.
supervision, the accuracy of training signals improve significantly from 81.2% to 97.9%, leading
to substantial performance gain on model performance. This also explains the similar performance
(w/o G.T.) between corresponding using step- and instance-level supervision, where our step-level
approach shows effectiveness in narrowing the gap between accuracies of corresponding supervisions.

Training Dynamics in Iterative Learning. As shown in Figure 2, online learning exhibits cyclic
performance fluctuations, with validation performance peaking before dipping. We conduct theoretical
analysis on this in Appendix B and shows that continuous policy updates with the latest models can
lead to periodic knowledge loss due to insufficient optimization in iterative updates. We further probe
these phenomena qualitatively next.

4 Conclusion

In this paper, we propose MCTS-enhanced iterative preference learning, utilizing MCTS as a policy
improvement operator to enhance LLM alignment via step-level preference learning. MCTS balances
quality exploitation and diversity exploration to produce high-quality training data, efficiently pushing
the ceiling performance of the LLM on various reasoning tasks. Theoretical analysis shows that online
sampling in our iterative learning framework is key to improving the LLM policy toward optimal
alignment. We hope our proposed approach can inspire future research on LLM alignment from
both data-centric and algorithm-improving aspects: to explore searching strategies and utilization
of history data and policies to augment and diversify training examples; to strategically employ a
tradeoff between offline and online learning to address the problem of cyclic performance change of
the online learning framework as discussed in our theoretical analysis.
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A Related Work

Various studies focus on self-improvement to exploit the model’s capability. One line of work
focuses on collecting high-quality positive data from model generations guided by static reward
heuristic (Zelikman et al., 2022; Gülçehre et al., 2023; Polu et al., 2023). Recently, Yuan et al.
(2024) utilize the continuously updated LLM self-rewarding to collect both positive and negative
data for preference learning. Fu et al. (2023) adopt exploration strategy via rejection sampling to do
online data collection for iterative preference learning. Different from prior works at instance-level
alignment, we leverage MCTS as a policy improvement operator to iteratively facilitate step-level
preference learning. We discuss further related work as follows.

Iterated Learning. Typical iterated learning operates in a multi-agent scenario, consisting of a loop
where an apprentice self-plays, learns from expert feedback, and replaces the current expert for the
new iteration (Anthony et al., 2017). Polu et al. (2023) apply expert iteration on formal mathematical
reasoning to conduct proof search interleaved with learning. Zelikman et al. (2022) avoid the need
for training a separate value function by directly assessing the final outcomes of reasoning to filter
generated examples for iterated learning. Recently, Yuan et al. (2024) leverage the technique of
LLM-as-a-Judge (Zheng et al., 2023) and introduce self-rewarding language models to improve LLM
alignment with self-feedback. Differently, we combine the feedback of outcome assessment and
LLM self-evaluation and further decompose them into fine-grained signals via MCTS for step-level
iterative preference learning.

Self-Training. Self-training uses unlabeled data to improve model training by assigning pseudo
labels from a learned labeler (III, 1965; Yarowsky, 1995; Xie et al., 2020; He et al., 2020; Park et al.,
2020; Zoph et al., 2020). Recent research has explored several alternatives to label the examples.
Zelikman et al. (2022) and Gülçehre et al. (2023) use static reward heuristic to curate high-quality
examples, while Huang et al. (2023) collect high-confidence outputs as training data via chain-of-
thought prompting (Wei et al., 2022) and self-consistency (Wang et al., 2023b). Lee et al. (2023) and
Yuan et al. (2024) utilize the off-the-shelf LLM to reward its generations for preference learning. To
mitigate the noise from the sparse instance-level signals, we further refine the preference labels via
stepwise tree search and LLM self-evaluation.

Preference Learning. The empirical achievements of LLMs have identified the benefits of RL
techniques to better align with human preferences (Touvron et al., 2023; Stiennon et al., 2020; Ouyang
et al., 2022; Bai et al., 2022a). The standard preference learning process learns a reward model to
provide feedback in online RL (Schulman et al., 2017). Recently, a variety of studies avoid training
separate reward or value networks by hindsight instruction relabeling (Zhang et al., 2023), direct
preference optimization (Rafailov et al., 2023) and LLM self-evaluation (Ren et al., 2023). We
further explore automatic supervision with MCTS to collect step-level preferences by breaking down
outcome correctness integrated with self-evaluation. Our approach enables the continual collection of
better-quality data via iterative learning, mitigating the limit of preference data when using a frozen
reward model or offline learning algorithms.

Guided Search for Reasoning. Recent works improve the LLM reasoning ability by eliciting
the intermediate reasoning chain (Wei et al., 2022) and breaking it down into multiple steps via
searching (Yao et al., 2023; Hao et al., 2023; Yu et al., 2023a). The decomposition of the reasoning
process has also been shown effective in reinforcement learning. Lightman et al. (2023) and Li et al.
(2023) apply process supervision to train more reliable reward models than outcome supervision in
mathematical reasoning (Uesato et al., 2022). Wang et al. (2023a) reinforce LLMs step-by-step with
process supervision data automatically collected via model sampling and annotation. We leverage
the look-ahead ability of MCTS and integrate it with step-by-step self-evaluation to provide refined
process supervision for reasoning. This improves the generalization ability of our framework to
update the policy via real-time collected preferences iteratively.

B Theoretical Analysis of Online DPO

Preliminaries. A typical alignment technique begins with a policy πsft(y | x) supervisedly fine-
tuned on high-quality data from the target domain, where x and y are the prompt and the response,
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respectively. The SFT policy is used to sample pairs of responses (y1, y2) ∼ πsft(y | x) with prompts
x, which will be further labeled as pairwise preference data yw ≻ yl | x, where yw and yl represent
the preferred and dispreferred responses respectively. The standard RLHF paradigm trains a reward
model (Ouyang et al., 2022) on the preference data and employs PPO (Schulman et al., 2017) to opti-
mize the policy πθ with the feedback provided by the reward model, where πθ is also initialized to πsft

in practice. DPO avoids fitting a reward model by optimizing the policy πθ using preferences directly.

Given a reward function r(x, y) and prompt distribution P , RLHF and DPO optimize the KL-
constrained reward maximization objective as follows:

max
π

Ex∼P,y∼π[r(x, y)]− βDKL[π(y | x) ∥ πsft(y | x)] (9)

where β scales the strength of the KL constraint. Let the ground-truth reward function be r∗, then
Rafailov et al. (2023) estimate the optimal policy π∗ by fitting the Bradley-Terry model (Bradley and
Terry, 1952) on preference data:

p∗(y1 ≻ y1 | x) = σ(r∗(x, y1)− r∗(x, y2))

=
1

1 + exp
(
β log π∗(y2|x)

πsft(y2|x) − β log π∗(y1|x)
πsft(y1|x)

) (10)

As the maximum likelihood estimator (MLE) of the optimal policy requires preferences sampled
from the target policy (Liu et al., 2023c), DPO uses a fixed, potentially optimal but unknown policy
to collect preference data of good quality. This discrepancy can be a problem when the sampling
policy differs dramatically from the current policy. Moreover, the absence of a reward model in DPO
presents challenges in learning from additional policy-generated data that lacks explicit preference
indicators. We further discuss the offline and online settings of DPO in Section B.

Main Conclusions. Our approach can be viewed as an online version of DPO, where we iteratively
use the updated policy to sample preferences via MCTS. In this section, we provide theoretical
analysis to interpret the advantages of our online learning framework compared to the conventional
alignment techniques that critically depend on offline preference data.

We now consider the following abstract formulation for clean theoretical insights to analyze our
online setting of preference learning. Given a prompt x, there exist n possible suboptimal responses
{ȳ1, . . . , ȳn} = Y and an optimal outcome y∗. As specified in Equation 7, at the i-th iteration, a pair
of responses (y, y′) are sampled from some sampling policy π(i) without replacement so that y ̸= y′

as y ∼ π(i)(· | x) and y′ ∼ π(i)(· | x, y). Then, these are labeled to be yw and yl according to the
preference. Define Θ be a set of all global optimizers of the preference loss for all M iterations, i.e.,
for any θ ∈ Θ, ℓi(θ) = 0 for all i ∈ {1, 2, · · · ,M}. Similarly, let θ(i) be a parameter vector such
that ℓj(θ(i)) = 0 for all j ∈ {1, 2, · · · , i− 1} for i ≥ 1 whereas θ(0) is the initial parameter vector.

This abstract formulation covers both the offline and online settings. The offline setting in previous
works is obtained by setting π(i) = π for some fixed distribution π. The online setting is obtained by
setting π(i) = πθ(i−1) where πθ(i−1) is the latest policy at beginning of the i-th iteration.

The following theorem shows that the offline setting can fail with high probability if the sampling
policy π(i) differs too much from the current policy πθ(i−1) :
Theorem B.1 (Offline setting can fail with high probability). Let π be any distribution for which there
exists ȳ ∈ Y such that π(ȳ | x), π(ȳ | x, y) ≤ ϵ for all y ∈ (Y \ ȳ) ∪ {y∗} and πθ(i−1)(ȳ | x) ≥ c
for some i ∈ {1, 2, · · · ,M}. Set π(i) = π for all i ∈ {1, 2, · · · ,M}. Then, there exists θ ∈ Θ
such that with probability at least 1 − 2ϵM (over the samples of π(i) = π), the following holds:
πθ(y

∗ | x) ≤ 1− c.

If the current policy and the sampling policy differ too much, it is possible that ϵ = 0 and c ≈ 1.0,
for which Theorem B.1 can conclude πθ(y

∗ | x) ≈ 0 with probability 1 for any number of steps
M . When ϵ ̸= 0, the lower bound of the failure probability decreases towards zero as we increase
M . Thus, it is important to make sure that ϵ ̸= 0 and ϵ is not too low. This is achieved by using
the online setting, i.e., π(i) = πθ(i) . Therefore, Theorem B.1 motivates us to use the online setting.
Theorem B.2 confirms that we can indeed avoid this failure case in the online setting.
Theorem B.2 (Online setting can avoid offline failure case). Let π(i) = πθ(i−1) . Then, for any θ ∈ Θ,
it holds that πθ(y

∗ | x) = 1 if M ≥ n+ 1.
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See Appendix B for the proofs of Theorems B.1 and B.2. As suggested by the theorems, a better
sampling policy is to use both the latest policy and the optimal policy for preference sampling.
However, since we cannot access the optimal policy π∗ in practice, we adopt online DPO via
sampling from the latest policy πθ(i−1) . The key insight of our iterative preference learning approach
is that online DPO is proven to enable us to converge to an optimal policy even if it is inaccessible to
sample outputs. We provide further discussion and additional insights in Appendix B.

Additional details on labeling outcomes. After a pair of outcomes (y(i), y′(i)) are sampled from
some sampling policy π(i), these are labeled to be y

(i)
w and y

(i)
l according to some preference density

p. That is, Pr[(y(i)w , y
(i)
l ) = (y(i), y′

(i)
)] = p(y(i) ≻ y′(i) | x) and Pr[(y

(i)
w , y

(i)
l ) = (y′

(i)
, y(i))] =

1− p(y(i) ≻ y′
(i) | x). For simplicity, a preference density is set to be p(y∗ ≻ ȳ | x) = 1 for every

optima-suboptimal pairs (y∗, ȳ) for all ȳ ∈ Y . We do not specify the preference density for other
pairs, i.e., p(ȳ ≻ ȳ′ | x) is arbitrary for (ȳ, ȳ′) ∈ Y × Y .

Abstract formulation for both offline and online settings. Our abstract formulation covers both
the offline and online settings. The offline setting in previous papers is obtained by setting π(i) to
be a single distribution fixed over i ∈ {1, 2, · · · ,M}, e.g., an initial policy, an optimal policy, or an
empirical data distribution of a given preference data. In the case of the empirical data distribution,
the preference density p is set to the function outputting only 0 or 1 to recover the given preference
data. The online setting is obtained by setting π(i) = πθ(i−1) where πθ(i−1) is the latest policy at the
beginning of the i-th iteration, i.e., for i ≥ 1, θ(i) satisfies ℓj(θ(i)) = 0 for j ∈ {1, 2, · · · , i − 1}
and θ(0) is the initialization. Thus, we can analyze both offline and online settings with this abstract
framework.

Proof of Theorem B.1.

Proof. The intuition behind the proof of Theorem B.1 is that the current policy πθ(i) may not be
corrected if a fixed sampling policy π never samples a suboptimal output ȳ ∈ Y whose probability
is high for the current policy πθ(i) . Let ȳ be the suboptimal output such that π(ȳ | x) ≤ ϵ and
πθ(i)(ȳ | x) ≥ c for some i ∈ {1, 2, · · · ,M}. Denote preferences sampled by policy π(i) as
(y

(i)
w , y

(i)
l ). From the definition of the logistic function, we can rewrite

ℓi(θ) = − log σ

(
β log

πθ(y
(i)
w | x)

πref(y
(i)
w | x)

− β log
πθ(y

(i)
l | x)

πref(y
(i)
l | x)

)

= − log
1

1 + exp(β log
πθ(y

(i)
l |x)

πref (y
(i)
l |x)

− β log πθ(y
(i)
w |x)

πref (y
(i)
w |x)

)

= − log
exp(β log

πθ(y
(i)
w |x)

πref (y
(i)
w |x)

)

exp(β log πθ(y
(i)
w |x)

πref (y
(i)
w |x)

) + exp(β log
πθ(y

(i)
l |x)

πref (y
(i)
l |x)

)

= − log

πθ(y
(i)
w |x)β

πref (y
(i)
w |x)β

πθ(y
(i)
w |x)β

πref (y
(i)
w |x)β

+
πθ(y

(i)
l |x)β

πref (y
(i)
l |x)β

= − log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref (y
(i)
w |x)

πref (y
(i)
l |x)

)β
.

From this equation, we observe that ℓi(θ) can be minimized to be zero by minimizing πθ(y
(i)
l | x) to

be zero without maximizing πθ(y
(i)
w | x). That is, for any β > 0, if πθ(y

(i)
l | x) = 0,

ℓi(θ) = − log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + 0

= − log 1 = 0.
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Thus, even if we sample y∗ with the optimal policy, ℓi(θ) can be minimized without maximizing
πθ(y

∗ | x) and minimizing πθ(ȳ|x) for ȳ ̸= y
(i)
l . Thus, if ȳ ̸= y

(i)
l for all i ∈ {1, 2, · · · ,M}, there

exists θ such that ℓi(θ) ≤ 0 for all i = 1, . . . ,M , and

πθ(ȳ | x) ≥ c,

because of the condition that πθ(ȳ | x) ≥ c for some i ∈ {1, 2, · · · ,M}: i.e., πθ(ȳ | x) is never
minimized from the i-th iteration while minimizing ℓi(θ) arbitrarily well, if ȳ is never sampled.

Therefore, if ȳ is never sampled over m iterations, since the probabilities sums up to one, we have

πθ(y
∗ | x) ≤ 1− πθ(ȳ|x) ≤ 1− c.

Moreover,

Pr[ ȳ being never sampled over m iterations ] ≥ (1− 2ϵ)m ≥ 1− 2ϵm,

where the last line follows Bernoulli’s inequality. By combining the above two equations, it holds that

Pr[πθ(y
∗|x) ≤ 1− c] ≥ 1− 2ϵM.

Proof of Theorem B.2.

Proof. From the proof of Theorem B.1, we have

ℓi(θ) = − log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref (y
(i)
w |x)

πref (y
(i)
l |x)

)β
.

For α ≥ 0 and β > 0, the condition ℓi(θ) ≤ α implies that

− log
πθ(y

(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref (y
(i)
w |x)

πref (y
(i)
l |x)

)β
≤ α

⇐⇒ πθ(y
(i)
w | x)β

πθ(y
(i)
w | x)β + πθ(y

(i)
l | x)β(

πref (y
(i)
w |x)

πref (y
(i)
l |x)

)β
≥ exp(−α)

⇐⇒ πθ(y
(i)
w | x)β ≥ exp(−α)πθ(y

(i)
w | x)β + exp(−α)πθ(y

(i)
l | x)

β

(
πref(y

(i)
w | x)

πref(y
(i)
l |x)

)β

⇐⇒ πθ(y
(i)
w | x)β [1− exp(−α)] ≥ πθ(y

(i)
l | x)

β exp(−α)

(
πref(y

(i)
w | x)

πref(y
(i)
l | x)

)β

⇐⇒ πθ(y
(i)
w | x)β [1− exp(−α)] ≥ πθ(y

(i)
l | x)

β exp(−α)

(
πref(y

(i)
w | x)

πref(y
(i)
l | x)

)β

⇐⇒ πθ(y
(i)
w | x)(exp(α)− 1)1/β

(
πref(y

(i)
l | x)

πref(y
(i)
w | x)

)
≥ πθ(y

(i)
l | x).

Since πθ(y
(i)
w | x) ≤ 1, this implies that

πθ(y
(i)
l | x) ≤ πθ(y

(i)
w | x)(exp(α)− 1)1/β

πref(y
(i)
l | x)

πref(y
(i)
w | x)

≤ (exp(α)− 1)1/β
πref(y

(i)
l | x)

πref(y
(i)
w | x)

.
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Thus, while we can prove a similar statement for α > 0 with this equation, we set α = 0 for this
theorem for a cleaner insight, yielding the following: the condition ℓi(θ) ≤ 0 implies that

πθ(y
(i)
l | x) = 0.

Since y(i) and y′
(i) are sampled from πθ(i) without replacement, this means that we have πθ(i+k)(y

(i)
l |

x) = 0 for all k ≥ 1 from the definition of πθ(i) : i.e., πθ(i) is the policy such that ℓj(θ(i)) = 0 for
all j = 1, . . . , i− 1. Since π

θ(i+k) is then used to sample y(i) and y′
(i) in the followings iterations

for k ≥ 1, we will never sample this y(i)l again. Thus, at each iteration, we always sample pairs of
y and y′ such that these do not include an output judged to be not preferred in a previous iteration.
This implies that at each iteration, we increase the number of suboptimal samples ȳ ∈ Y such that
πθ(i)(ȳ | x) = 0. In other words, we have

|{ȳ ∈ Y | πθ(i)(ȳ | x) = 0} |≥ i− 1.

Thus,

πθ(i)(y∗ | x) = 1−
n∑

j=1

πθ(i)(ȳj | x) = 1−
∑
j∈S

πθ(i)(ȳj | x).

where |S| ≤ n+ 1− i. Therefore, πθ(i)(y∗ | x) = 1 when i ≥ n+ 1.

Additional discussion. We list the additional insights gained from the theoritical analysis.

• The proofs of Theorems B.1–B.2 suggest that a better sampling policy is to use both the current
policy and the optimal policy at the same time in the preference learning loss, i.e., sample y ∼ π∗

and y′ ∼ πθ(i−1) . This avoids the failure case of Theorem B.1 and improves the convergence speed in
Theorem B.2. However, since we cannot access the optimal policy π∗ in practice, Theorems B.1–B.2
motivate online DPO. Online DPO is proven to enable us to converge to an optimal policy even if we
cannot sample outputs from the optimal policy.

• The proofs of Theorems B.1–B.2 suggest that if we can sample from the optimal policy, then we
can also use the samples of the optimal policy with the negative log-likelihood loss − log πθ(y

∗ | x)
instead of DPO loss to avoid the failure case.

• The proofs of Theorems B.1–B.2 suggest that in the online setting, we should minimize the DPO
loss to a certain low degree per iteration, i.e., we should take several rounds of minimization of DPO
loss per online iteration, instead of only taking one round of minimization per iteration. This is
because the proofs of Theorems B.1–B.2 show that we can get into the cyclic situation in the online
setting if the DPO loss is not minimized sufficiently per iteration. For example, we can sample ȳ1
and ȳ2 in one iteration and ȳ2 and ȳ3 in another iteration where ȳ1 ≻ ȳ2 ≻ ȳ3. If the probability of
sampling ȳ2 is not minimized sufficiently in the first iteration, it can be sampled again in the second
iteration, where the probability of sampling ȳ2 can be increased as ȳ2 ≻ ȳ3. Then, this can repeat
indefinitely. Thus, it is important to minimize DPO loss with several optimizer iterations per iteration.

C Implementation Details

We use Mistral-7B as our base pre-trained model. The supervised fine-tuning and preference learning
experiments are conducted with a maximum of 4× 40GB GPUs (NVIDIA A100).

We choose the learning rates 5e-6 and 1e-6 for SFT and DPO training, respectively, with a cosine
learning rate scheduler. The maximum sequence length of models is 512. We train the model with
a batch size of 128 and 32 for SFT and DPO, respectively. For DPO, we follow the DPO paper to
set the KL constraint parameter β as 0.1. Each sample in DPO is a set of step-level preference data
decomposed by MCTS. We set the max length for each step as 64. The number of MCTS iterations
is set as K = 5 for all tasks.

For arithmetic reasoning, we combine the problems in GSM8K and MATH training sets as the prompt
data containing a total of 24K samples for preference learning. For each sample, we conduct MCTS
with an initial breadth of b1 = 5 and decrease it to b2 = 3 for the subsequent steps, with a maximum
search depth d = 4. It takes about 2 minutes per sample to collect the step-level preferences via
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MCTS. This requires about 30 A100 days of compute to train one whole epoch. In practice, we can
adopt an early stop when the performance saturates, which usually only needs 30% of the training
data.

For commonsense reasoning, we combine the training data of ARC, AI2Science, OBQA, and CSQA,
which produces a total of 12K samples. As the model generations are more diversified on these tasks,
we set the initial breadth as b1 = 4 and decrease it to b2 = 2 for subsequent steps. As the intermediate
reasoning chains are relatively shorter than those in arithmetic reasoning, we set the maximum search
depth d = 3. Likewise, we also adopt an early stop at around 50% of the training progress where the
performance saturates.

Hyperparameter Tuning of MCTS. We compare the performance in commonsense reasoning
when employing different searching breadths in MCTS. Table 4 shows how different search heuristics
impact learning performance. O2 produces better performance, highlighting the importance of
increasing the search space at the beginning point of MCTS. One can efficiently reduce compute
while maintaining good performance by using a small search space for the subsequent steps. For future
work, we will explore the hyperparameter settings in MCTS, including the search breadth, depth,
number of steps, and iteration time, to probe the cost–performance tradeoff of our MCTS-enhanced
iterative learning framework.

Approach ARC-e ARC-c AI2Sci-e AI2Sci-m OBQA CSQA SciQ

SFT Baseline 69.2 60.6 74.9 70.9 59.8 54.1 80.8

O1 (b1 = 3, b2 = 3) 88.4 74.7 92.1 88.5 77.8 73.2 88.3
O2 (b1 = 4, b2 = 2) 88.5 76.4 91.7 88.2 79.2 74.8 88.5

Table 4: Result comparison of using different search breadths in MCTS. For O2, we have a broader
spectrum for the initial step and narrow the search space for the subsequent steps of each path.

Prompt Example. See an example of the evaluation prompt we use for self-evalution in Table 5.
For more details, please refer to our implementation code.

Table 5: Evaluation Prompt Template. The text underlined will be replaced with content from
different examples.

QUESTION: Which of the following is an example of the formation of a mixture?
Answer Choices: (A) rust forming on an iron nail (B) sugar crystals dissolving in water (C) sodium and
chlorine forming table salt (D) hydrogen and oxygen reacting to produce water

EXAMPLE ANSWER: The answer is (B) sugar crystals dissolving in water

PROPOSED SOLUTION: The formation of a mixture occurs when two or more substances are
combined together without changing their individual properties. In the given options, rust forming on an
iron nail is an example of the formation of a mixture. The iron nail and the oxygen in the air combine to
form iron oxide, which is a mixture. The answer is A.

QUESTION: Evaluate if the proposed solution is logically heading in the correct direction.
Provide an answer of (A) correct or (B) incorrect.

ANSWER: The answer is

D Further Analysis

Reward Criteria in MCTS. We probe the effect of different reward guidance of MCTS in terms
of both searching and training. Table 6 shows how different reward signals impact the pass rate
of searching. The guidance of outcome correctness is substantially dominant in eliciting correct
outcomes. We see that MCTS can produce significant improvement across various tasks with
the reward signals integrated of outcome correctness and self-evaluation, increasing the baseline
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performance from 60.6% to 83.0% on ARC-C, 70.9% to 90.5% on AI2Sci-M, and 75.9% to 85.8%
on GSM8K. We observe a significant performance gain from learning when using greedy decoding
on commonsense reasoning. For example, learning increases the accuracy to 76.4% (+16.4%) on
ARC-C, compared to the increase of 9.1% on MCTS performance. This suggests a substantial
improvement in the model’s policy when applying our MCTS-enhanced iterative learning to tasks
that the initial policy is not good at. Furthermore, the ablation study on the reward components shows
consistent improvement brought by self-evaluation to increase the MCTS performance in both before-
and after- learning cases, suggesting the effectiveness of the integration of self-evaluation in our
approach.

Table 6: Pass Rates when Ablating MCTS Settings. SE represents the guidance from self-evaluation.
Decoding Strategy After Learning ARC-C AI2Sci-M GSM8K

Greedy Decoding ✗ 60.6 70.9 75.9
✓ 76.4↑16.4 88.2↑17.3 80.7↑5.2

MCTS w/o SE ✗ 82.5 87.3 84.4
✓ 91.0↑8.5 96.1↑9.8 89.0↑5.6

MCTS ✗ 83.0 90.5 85.8
✓ 92.1↑9.1 97.3↑6.8 90.2↑4.4

Qualitative Analysis. Our qualitative analysis in Table 7 examines the impact of step-level supervi-
sion on intermediate reasoning correctness across different tasks. In OBQA, the implementation of
MCTS, as discussed in Section 3.1, often leads to longer reasoning chains. This can introduce errors
in commonsense reasoning tasks, as seen in our OBQA example, where an extended chain results in
an incorrect final prediction. Conversely, in the MATH dataset, our approach successfully guides
the model to rectify mistakes and formulates accurate, extended reasoning chains, demonstrating
its effectiveness in complex math word problems. This analysis underscores the need to balance
reasoning chain length and logical coherence, particularly in tasks with higher uncertainty, such as
commonsense reasoning.

Analysis on Collected Preferences. We show examples of the result search trees elicited via MCTS
on different tasks in Figures 5–9.

Figures 5 and 6 show the result search trees to answer the same science question using MCTS
employed with different search breadths. We see that MCTS not only figures out the correct answer
(i.e., the option “D”) via broad searching but also serves as a policy improvement optimizer to collect
steps along this path as positive samples for preference learning. For example, the Q values of the
preference pair at the last step (at the bottom right of Figure 5) are 0.70838 and −0.45433, compared
to the original probability in the policy generation as 0.37989 and 0.38789. Compared to searching
with breadth b1 = 4, b2 = 2 in Figure 5, Figure 6 shows that a higher breadth for the subsequent
steps can produce an even larger search tree. However, as we only collect preference pairs alongside
the paths leading to correct prediction, these two search heuristics can result in preference data of
similar size.

Figure 7 shows the search tree using the trained policy on commonsense reasoning. Compared to
the one generated by the initial policy in Figure 5, the policy has a higher chance to elicit correct
reasoning chains, as we see more successful predictions of the ground-truth option “D”. We also
observe that the policy tends to generate longer reasoning chains after being motivated to conduct
chain-of-thought reasoning with fine-grained process supervision.

On arithmetic reasoning, we also probe the impact of diversity in model generations using policies
trained for different numbers of epochs in SFT. Figures 8 and 9 show the elicited search trees with data
sampled by policies corresponding to different levels of diversity, where the policy used in Figure 8
has generations with higher diversity. With higher diversity, MCTS can explore more alternatives of
the correct solutions, as there are more paths of correct predictions, as shown in Figure 8 than Figure 9.
Furthermore, higher diversity with reasonable quality also provide more fine-grained supervision
signals as there are more branches alongside the reasoning path of correct predictions.
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Table 7: Qualitative Analysis of model outputs on OBQA, AI2Sci, and MATH. We highlight correct
and incorrect keywords. The predicted answers on MATH are boxed , where our method solves the
complex problem while SFT baseline failed to elicit a complete reasoning chain.

Task Inputs and Outputs Answer

OBQA

Question: As the rain forest is deforested the atmosphere will increase with:

(C)

Answer Choices: (A) oxygen (B) nitrogen (C) carbon (D) rain
SFT Baseline: As the rain forest is deforested the atmosphere will increase with carbon. The answer is C.
Ours: When trees are cut down, the carbon stored in the trees is released into the atmosphere as carbon
dioxide. This carbon dioxide then increases the carbon content of the atmosphere. Since carbon is the main
ingredient in plant life, the increased carbon content of the atmosphere will lead to increased plant growth,
which will lead to increased photosynthesis, which will lead to increased oxygen production. Therefore,
oxygen is the gas that will increase in the atmosphere as the rain forest is deforested. The answer is: A.

AI2Sci

Question: Which pair of instruments can be used to measure wind chill?

(D)

Answer Choices: (A) barometer and wind vane (B) wind vane and anemometer
(C) thermometer and barometer (D) anemometer and thermometer
SFT Baseline: Wind chill is the effect of wind on the apparent temperature, it is the temperature that the human
body feels due to the movement of air. It is an index of the discomfort felt by the human body due to low
temperature and high wind speed. It is measured by an instrument called wind chill meter. The answer is B
Ours: To measure wind chill, you would need an anemometer and a thermometer. The anemometer measures
the wind speed, and the thermometer measures the temperature. Together, these two instruments can be used to
calculate the wind chill factor. The answer is: D

MATH

Question: Let f(x) = x7 + ax3 + cx If f(5) = 3, then find f(−5).

-3

SFT Baseline: We know that f(5) = 57 + 5a + 5c = 3. We want to find f(−5), which is (−5)7 + (−5a)

+(−5c). Since (−5)7 = −57 = −3, we have f(−5) = −3 − 5a − 5c. We can rewrite this as

f(−5) = −3 − 5(−3) − 5c = −3 + 15 − 5c = 12 − 5c .

Ours: We know that f(5) = 57 + 5a + 5c = 3. Since f(x) is a polynomial, we can use the fact that

f(−5) = (−5)7 − 5a − 5c = −3 .

MATH

Question: If f(c) = 3
2c−3

, find kn2

lm
when f−1(c) × c × f(c) equals the simplified fraction kc+l

mc+n
,

9

where k, l,m, and n are integers.
SFT Baseline: We start by finding f−1(c). To do this, we set f(c) = x and solve for c: 3

2c−3
= x,

2c − 3 = 3
x

, 2c = 3
x

+ 3, c =
3
x

+3

2
.So f−1(c) =

3
c
+3

2c
. Next, we substitute f−1(c) into the expression

f−1(c) × c × f(c):
3
c
+3

2c
× c × 3

2c−3
Simplifying, we get: 3+3c

2c
× 3

2c−3
9+9c

4c2−6c

9+9c
4c(c−1)

We want this expression to be equal to kc+l
mc+n

, so we set them equal to each other and solve for k, l,m,

and n: 9+9c
4c(c−1)

= kc+l
mc+n

Cross-multiplying, we get: 9 + 9c = 4c(c − 1)(kc + l) Expanding and simplifying,

we get: 9 + 9c = 4c2k − 4ck − 4cl + l Rearranging terms, we get: 4c2k − 4

Ours: We know that f(f−1(c)) = c for all c in the domain of f−1 . So, f(f−1(c)) = f(c) for all c in the
domain of f−1 . Therefore, f(f−1(c)) = f(c) implies f(c) = c for all c in the domain of f−1 . Since
f(c) = 3

2c−3
, we have f(c) = c for all c in the domain of f−1 . This means that 2c − 3 = c for all c in the

domain of f−1 . Simplifying, we get c = 3 for all c in the domain of f−1 . Therefore, f−1(c) = 3 for all c
in the domain of f−1 . Now, we can substitute f−1(c) = 3 into f−1(c) × c × f(c) to get 3 × 3 × 3

2(3)−3
.

Simplifying, we get 9 × 3
3

= 9. Therefore, kn2

lm
= 9

E Extended Experiments

Loss Function. DPO is one of the reward-model-free loss functions we can use for preference
learning. We now illustrate the generalizability of our approach using another loss function, Identity
Preference Optimization (IPO) (Azar et al., 2023), which addresses the overfitting problem of DPO.
Table 8 shows that IPO achieves similar performance as DPO. In practice, we find that IPO boosts the
reasoning on validation tasks while maintaining a more stable performance on the held-out dataset,
as indicated by the higher accuracy 89.8% obtained on SciQ.

Table 8: Result comparison of employing our approach with different loss functions.
Approach ARC-e ARC-c AI2Sci-e AI2Sci-m OBQA CSQA SciQ

SFT Baseline 69.2 60.6 74.9 70.9 59.8 54.1 80.8

O1 (IPO) 88.1 75.1 92.1 89.6 76.8 74.3 89.8
O2 (DPO) 88.5 76.4 91.7 88.2 79.2 74.8 88.5

Base Model. We extensively validate the generalizability of our approach on Llama2-13B (Touvron
et al., 2023) on arithmetic reasoning. We employ the same process of SFT on Arithmo and preference
learning with DPO on GSM8K and MATH. This experiment is done on a maximum of 2× 80GB
GPUs (NVIDIA A100).
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Table 9: Result comparison (accuracy %) for Llama2-13B on arithmetic tasks.
Approach Base Model GSM8K-CoT GSM8K-PoT MATH-CoT

SFT (Arithmo) Llama2-13B 74.5 62.3 23.8
Ours 78.9↑4.4 67.0↑4.7 26.1↑2.3

[51] <s>
(Q:0.00000)(P:-1.00000)

[5] . When 1 CH4
molecule reacts 2 O2 molecules

are needed with 2 Co2
molecules and 4 H2O molecules

formed.
(Q:-0.14156)(P:0.36265)

[2] Since CH4 + (2
O2) > 2 CO2 +

4 H2O So CH4 +
O2 + O2 > 2

CO2 + 4 H2O...
(Q:-1.10341)(P:0.35997)

[0] Thus O2 is
the missing molecule. The

answer is option A</s>
(Q:-1.07136)(P:0.26702)

[1] So 2 O2
are needed to balance

O2. The answer is
B</s>

(Q:-1.06490)(P:0.51277)

[2] So 2
molecules of O2

are required
(Q:-1.00626)(P:0.40928)

[1] . The answer
is B The answer

is B</s>
(Q:-1.02341)(P:0.35482)

[0] to balance this
reaction The answer is

B B</s>
(Q:-1.01727)(P:0.27444)

[5] . CH4 + O2 -> 2CO2
+ 4H2O By looking at Answer choices

We can see that we need to
find a multiple of O2. If we

take 2 O2. Then we can have
2 CO2.

(Q:-0.28709)(P:0.33311)

[2] CH4 + 2
O2 -> 2CO2 +

4H2O So we need
2 O2.

(Q:-1.45947)(P:0.63279)
[1] The answer

is B</s>
(Q:-1.44929)(P:0.89721)

[2] So Answer
is 2. Hence

B.
(Q:-1.02474)(P:0.43360)

[1] </s>
(Q:-1.00000)(P:0.60447)

[3] . The overall reaction is 24
in H, 32 in C, and 0

in O, so it's clearly a hydrocarbon
combustion. Balancing the overall equation is not

very clear. This unbalanced equation can be
balanced to show the oxygen requirement.

(Q:-0.02361)(P:0.15714)

[2] So answer is
2. CH4 + 2
O2  2 CO2

+ 2 H2O
(Q:-1.41080)(P:0.52668)

[1] 24 in H, 32 in C,
and 0 in O and it is

already balanced, so the overall balanced is:
CH4 + xO2 > 2 CO2 +

2 H2O The answer is 2. ANSWER:
B</s>

(Q:-1.39894)(P:0.33174)

[0] The total number of oxygen required is
given in the balanced equation but the unbalanced

CH4 + 2 O2 -> 2 CO2 +
2 H2O shows a balanced molecular ratio of

4 elements - H = 4; C =
2; O = 4 as compared to the

un
(Q:-0.03713)(P:0.20969)

[29] . CH4 + O2 ->
2CO2 + 4H2O, On the RHS,

2CO2 combines with water to form
carboxylic acid. Hence, the number of

water molecules should be 2
(Q:1.02593)(P:0.36184)

[2] . Hence, the Equation should
be CH4 + 2 O2 ->

2CO2 + 4H2O. Now, the number
of H on either side of

the equation should be equal. On
the LHS: H4 C

(Q:-1.10386)(P:0.34391)

[1] 4 On the RHS: H2
O2 Hence, the number of O2

should be 2 . The balanced equation
is CH4 + 2 O2 ->

2CO2 + 2H2O. The answer is
Option B</s>

(Q:-1.11003)(P:0.53874)

[0] CH4 On the RHS: H4
O 2H4 O2 (4 H's in

H2O) Thus, H2O has to undergo
the reaction 2H2O -> H4O2. The

answer is B</s>
(Q:-1.13745)(P:0.30599)

[32] CO2
.

(Q:0.21432)(P:0.04583)

[29] 2 H2O -> 4 H2O Now,
the RHS has 4 water molecules and

4 O atoms but the LHS has
only 2 water molecules and 1 O

atom. Hence, Both water molecules should have
2 O atoms each , hence
(Q:0.37176)(P:0.33691)

[4] 2 water molecules have 2 X
4 = 8 O atoms 1 water
molecule has 1 X 2 = 2
O atoms Hence, 8 - 2 =
6 O atoms are still left. 6

O atoms come from O2 molecules Answer
(Q:-0.45433)(P:0.37989)

[1] CH4 + O2 -> 2CO2
+ 4H2O 2x( H ) +
1x( O ) + 1x( O
) -> 2x( O ) +

4x( H ) + 4x( O
) H2O + O ->

(Q:-0.00086)(P:0.48775)

[0] O2 The correct
answer is B hence

B</s>
(Q:-1.05593)(P:0.18124)

[12] , total 4 O
atoms. So O2 is needed

to balance the equation The
answer is D</s>

(Q:0.70838)(P:0.38789)[7] 2H2O -> CO2x2H2 On the
RHS, 2CO2 x 2H2O -> CO2x2H2O2

On the LHS, CH4 : C1
H4 - C1 H1 On the

LHS, CH4 -
(Q:-0.06057)(P:0.30056)

Tree Visualization

Figure 5: Example of the result search tree of a science question “An unbalanced equation for the
reaction of methane gas (CH4) with oxygen is shown below. CH4 +□O2 → 2CO2 + 4H2O How
many molecules of oxygen gas (O2) are needed to properly balance this equation? Answer Choices:
(A) 1 (B) 2 (C) 3 (D) 4”. The ground truth answer is “(D) 4”. Here, we set the search breadth as
b1 = 4, b2 = 2. The numbers at the beginning of each sequence indicate the visit count N of the
corresponding node, while the Q and P values at the end of the sequence represent the Q values and
the sentence probability, respectively.
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[50] <s>
(Q:0.00000)(P:-1.00000)

[5] . When 1 CH4
molecule reacts 2 O2 molecules

are needed with 2 Co2
molecules and 4 H2O molecules

formed.
(Q:0.16088)(P:0.36265)

[0] Balance the equation by writing
the correct equation above and then
subtracting each part from both in

the following: New equation: 2CH4 +
4 O2 -> 4Co2 + 8

H2O
(Q:0.01167)(P:0.22393)

[2] Balanced Equation: CH4
+ 2 O2 ->
2 CO2 + 4

H2O
(Q:-0.72269)(P:0.76063)

[1] Hence 'excess' O2 molecules need to
be formed to form the H2O needed

to completely balance the oxygen formed. 2
O2 molecules will form 2 H2O molecules
that exactly balance the 2 O2 molecules

that were formed. Thus there is NO
(Q:-0.03828)(P:0.18065)

[0] Therefore 2 oxygen
molecules are needed. The

answer is B</s>
(Q:-1.07299)(P:0.57110)

[0] O2 is a
di molecular gas so

2. The answer is
B</s>

(Q:-1.07995)(P:0.13073)
[2] So, 2/2 O2/1 CH4 =>

1 O2 for 1 CH4 In
the unbalanced equation 1 CH4 +

1 O2 -> 2 CO2 +
2 H2O So 1 O2 would

balance the given equation.
(Q:-1.16414)(P:0.37983)

[1] The answer
is A</s>

(Q:-1.09599)(P:0.92723)

[0] ( For a balanced equation
Number of atoms of same element

on the two sides should be
equal ) Correct Answer The correct

answer is A</s>
(Q:-1.10798)(P:0.23028)

[5] . CH4 + O2 -> 2CO2
+ 4H2O By looking at Answer choices

We can see that we need to
find a multiple of O2. If we

take 2 O2. Then we can have
2 CO2.

(Q:0.00566)(P:0.33311)

[2] That means we need 2
to balance answer. The next one
would be 4 CO2. For Balancing,

We need 4 as well. The
choice is 2.

(Q:-1.36182)(P:0.21155)

[0] The answer
is B 2

O2.</s>
(Q:-1.32715)(P:0.42094)

[0] The answer
is 2 ANSWER:B</s>

(Q:-1.39801)(P:0.59756)

[1] The answer
is B</s>

(Q:-1.29846)(P:0.91250)

[0] Hence
Answer.

(Q:-0.01028)(P:0.35430)

[2] Thus Balanced Equation, CH4 +
2 O2 -> 2 CO2 +

4H2O Take 1 O2. Then we
need only 1 CO2. Thus, Take

2 CO2.
(Q:-1.00641)(P:0.44905)

[1] Thus the Balanced Equation, CH4
+ 1 O2 -> 2 CO2

+ 4H2O Thus the Balanced Equation,
CH4 + 1 O2 -> 2

CO2 + 4H2O The equation gets
balanced by having Two
(Q:-0.00585)(P:0.54334)

[0] We need only 1 O2.
So Answer is O2. Therefore, Take
2 O2. The Equation is Balanced.

Take 2 O2 The answer is
Option B</s>

(Q:-1.55572)(P:0.35634)

[0] And then we need
O2. Total Answer, CH4 +

O2 -> 2CO2 + 4H2O
Hence 1 Mole of The

answer is A</s>
(Q:-1.37009)(P:0.35589)

[31] . The overall reaction is 24
in H, 32 in C, and 0

in O, so it's clearly a hydrocarbon
combustion. Balancing the overall equation is not

very clear. This unbalanced equation can be
balanced to show the oxygen requirement.

(Q:1.18694)(P:0.15714)

[2] CH4 + O2 -> CO2
+ H2O The total oxygen requirement

should be 2. The ratio CH4
to O2 is 1 to 1,

suggesting oxygen demand is 1 to
2.

(Q:-1.43110)(P:0.23469)

[0] CH4 + 2 O2 ->
2 CO2 + 2 H2O Therefore,

2 molecules of oxygen gas are
needed to balance the equation The

answer is B</s>
(Q:-1.41782)(P:0.63130)

[0] The answer
is B</s>

(Q:-1.43029)(P:0.65357)

[1] CH4 + 2
O2 -> 2 CO2
+ 2 H2O. The

answer is B</s>
(Q:-1.40455)(P:0.66416)

[31] 2C +2 H_2O + O2 ->
2CO2 + 2 H2O The balanced equation

uses more oxygen, because now it shows
that one molecule of each element on

either side is balanced by two molecules
of each element.

(Q:0.33569)(P:0.20021)

[4] Oxygen is not the limiting
reagent, because hydrogen is. 2C +2

H_2O + O2 -> 2CO2 +
2 H2O 1+2+1 -2 = 6
3+2+1 -4 = 4 Total 6

for
(Q:0.02011)(P:0.27802)

[0] both sides with the balanced equation. Now
look at the oxygen. Before it was 2,

and then it was 4, a doubling of
oxygen requirement. If a tripling of oxygen requirement

is needed to balance the equation, then it
will be 8. If 3 is needed, then

it goes
(Q:0.03925)(P:0.18201)

[1] left side, 4 for right
side; not balanced -- H2O is

limiting, only 2 more are needed.
2+2+1 -2 = 6 3+2+1 -6

= 2 Answer ; H2O is
limiting; needs two more molecules.

(Q:0.06306)(P:0.22207)[18] The answer
is D</s>

(Q:0.68647)(P:0.46097)

[3] That balances the equation and the two
waters from the combustion are now together. The

new equation is balanced (because the number next
to each element is balanced by the number

of times it appears on the other side
of the equation) and clearly requires two molecules

of O2. Final The answer is
(Q:-1.19775)(P:0.19619)

[1] B</s>
(Q:-0.54880)(P:0.78020)

[0] B</s>
(Q:-0.97030)(P:0.71450)

[3] Here 22C+240H+260(total molecular
weight) Then Both sides

are divided by 2.
1/212C+1/240H+1/4600(total molecular weight)

(Q:-0.02526)(P:0.14846)

[1] Now Since 2O2 is
required for 4600*1/4. 2O2 is

needed for overall equation. 212C+240H+2600(total
molecular weight) 1/212C+1/240

(Q:0.02280)(P:0.33173)

[1] 1/21 + 1/4 +
1/4600 = 1/4600(total molecular weight)

46 + 0 + 0
= 46 2(46+260)2(46) Therefore, you

(Q:0.03093)(P:0.29965)

[0] The total molecular weight represents
the amount of oxygen gas required

when the 12C is completely combusted.
(12C+16H+260) Hence 1 mole (1 *

64) of oxygen gas need 12C,
16H, and

(Q:0.03317)(P:0.17285)

Tree Visualization

Figure 6: Example of the result search tree of the same science question as in Figure 5. Here, we set
the search breadth as b1 = 3, b2 = 3.
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[50] <s>
(Q:0.00000)(P:-1.00000)

[3] . Looking at the products of
the reaction we can see that there

are 4 O atoms on the right
side. 4 atoms of either oxygen or

hydrogen must come from the left side
to balance.

(Q:0.81835)(P:0.21888)

[2] Since there are two hydrogen atoms
for every one carbon atom, we know
there must be twice as many carbon
atoms as hydrogen atoms on the left

side of the equation. We can write
CH4 as C H 2.

(Q:0.29309)(P:0.42767)

[1] With two hydrogen atoms,
we would need 2 *
2 = 4 to balance

the oxygen. The answer is
D.</s>

(Q:1.20966)(P:0.42097)

[0] To balance the oxygen atoms
we need to add one oxygen

atom for each carbon atom. Therefore
we need 2 oxygen atoms to

balance this equation. The answer is
B.</s>

(Q:-0.83019)(P:0.50695)[0] Since there are 2 hydrogen
atoms in methane (CH4), 2 hydrogen

atoms are converted to 2 water
molecules (2 H2O) that yield 2

oxygen atoms in the process. Balance
equation:

(Q:0.01158)(P:0.32396)

[3] . When an equation is unbalance,
we have to add the same molecule
to both sides so they will balance.

In this case, we need to add
equal number of oxygen atoms to both

sides. The overall reaction is:
(Q:0.53122)(P:0.24138)

[0] CH_{4} + 2CO_{2}
+ 4 H_{2}O, This

now balances the equation.
(Q:0.01760)(P:0.25560)

[2] CH_{4} + /Box O_{2}
-> 2CO_{2} + 4H_{2}O Since,
CH_{4} has 4 Hydrogen and

1 Carbon atoms. Hence,
(Q:-0.27509)(P:0.59783)

[1] carbon atom reacts with 4
oxygen atoms. Therefore, 2CO_{2} will have

4 oxygen atoms. So equation will
be: CH_{4} + 4 O_{2} ->

2CO_{2} + 4H_{2}O The answer is
D.

(Q:0.19991)(P:0.49764)

[0] it will need 2
Oxygen atoms just to balance

the O atoms. The answer
is B</s>

(Q:-0.84370)(P:0.32001)

[29] . First, we need to
check which element is missing on

both sides of the equation. We
know that oxygen (O) is missing

on the left side.
(Q:1.73437)(P:0.39171)

[2] We figure this out because
on the right side, 2(CO2) means

4(O) and 4(H2O) means 8(O), which
is more oxygen than what is
needed to fulfill the 2(CO2).

(Q:0.17238)(P:0.33288)

[0] Therefore, the left uses 1(O) twice, for
a total of 2(O). Second, we must find

out how many oxygen molecules are needed to
get a balanced equation. We balance by adding

the same thing to both sides that can
be multiplied the same on each side. In

this
(Q:0.03162)(P:0.23481)

[1] Next, we need to determine if CH4
is a limiting reagent. A limiting reagent is
the reactant that is mostly likely to run
out before all of the products can be

made. This is important because we need to
find out how many times we need to

multiply the number of moles of oxygen
(Q:-0.01939)(P:0.38211)

[33] So we need to find
the number of oxygen atoms we

can get from the right side
and place that many on the

left side.
(Q:1.16743)(P:0.35560)

[22] 2CO2 has a total of 4
oxygen atoms. So, we can place 4
oxygen atoms on the left side and

balance the equation. The equation is now:
CH4 + 4O2 -> 2CO2 + 4H2O.

The answer is D.</s>
(Q:1.17833)(P:0.63351)

[5] On the right side, we have
2 molecules of carbon dioxide (CO2) and

4 molecules of water (H2O). Each molecule
of carbon dioxide has 2 oxygen atoms,

so 2 x 2 = 4 oxygen
atoms from the carbon dioxide

(Q:0.05621)(P:0.76038)

[2] . Each molecule of water has 1
oxygen atom, so 4 x 1 = 4

oxygen atoms from the water. So, we can
place 4 oxygen atoms from the right side

on the left side. Now, we have a
balanced equation on the left side, which means

we have the right
(Q:0.28120)(P:0.57643)

[1] number of elements with the right
atomic weights. So, we can add 4

molecules of oxygen gas (O2) on the
left side. The final equation is: CH4

+ 4O2 -> 2CO2 + 4H2O The
answer is D.</s>

(Q:1.30184)(P:0.55775)

[0] number of each element on
both sides. The left side has
4 oxygen atoms, so we need

2 molecules of oxygen gas (O2)
to complete the reaction. The answer

is B.</s>
(Q:-0.74346)(P:0.58410)

[0] . Each molecule of water has 2
hydrogen atoms and 1 oxygen atom, so 4

x 1 = 4 oxygen atoms from water.
A total of 4 oxygen atoms is available
from the right side. Now, we need to
place 2 oxygen atoms on the left side

of the equation
(Q:-0.08359)(P:0.63161)

[5] . The chemical formula for
methane gas is CH4. The chemical

formula for oxygen gas is O2.
The chemical formula for carbon dioxide

is CO2. The chemical formula for
water is H2O.

(Q:0.31012)(P:0.81115)

[2] To balance this equation, we need
to determine the ratio of the number

of molecules of O2 to the number
of molecules of CO2 and H2O. On
the left side of the equation, we
have 1 molecule of CH4 and x

molecules of O2.
(Q:0.09074)(P:0.80392)

[1] On the right side of the
equation, we have 2 molecules of CO2

and 4 molecules of H2O. To balance
the number of molecules, we need to

have 2 molecules of CO2 for every
1 molecule of CH4, and we need

to have
(Q:-0.02205)(P:0.81702)

[0] On the right side of the
equation, we have 2 molecules of CO2

and 4 molecules of H2O. Since the
coefficient of CO2 is 2 and the

coefficient of H2O is 4, the ratio
of the number of molecules of O2

to the number of
(Q:-0.04654)(P:0.79002)[2] To balance this equation, we need

to compare the number of oxygen atoms
on the two sides. There are 4

oxygen atoms on the right side of
the equation. Therefore, we need 4 oxygen

atoms on the left side of the
equation to properly balance the equation.

(Q:-0.71715)(P:0.59589)

[0] Since each oxygen molecule
contains 2 oxygen atoms, we

need 2 O2 molecules. The
answer is B.</s>

(Q:-0.76463)(P:0.71485)

[1] Since each oxygen atom
consists of 2 atoms (O2),
we need 2 molecules of

oxygen gas (O2). The answer
is B.</s>

(Q:-0.77903)(P:0.74965)

Tree Visualization

Figure 7: Example of the result search tree of the same science question as in Figure 5. Here, we use
the policy after preference learning and set the search breadth as b1 = 4, b2 = 2.
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[49] <s>
(Q:0.00000)(P:-1.00000)

[6] The bakers baked 200 loaves
of bread in total. They sold

93 loaves in the morning and
39 loaves in the afternoon, so

they sold 93 + 39 =
132 loaves.

(Q:0.74724)(P:0.87045)

[0] A grocery store returned
6 unsold loaves, so they

have 200 - 132 +
6 = 78 loaves left.

(Q:0.02081)(P:0.79960)

[2] They also returned 6
unsold loaves, so they had

132 - 6 = 126
loaves left.

(Q:-0.88117)(P:0.89317)

[1] Therefore, they had
126 loaves of bread
left. The answer is:

126</s>
(Q:-0.89611)(P:0.95100)

[0] The answer
is: 126</s>

(Q:-0.90947)(P:0.96013)
[3] After selling, they had 200

- 132 = 68 loaves of
bread left. The grocery store returned

6 unsold loaves, so they had
68 + 6 = 74 loaves

of bread left.
(Q:1.18816)(P:0.89653)

[2] The answer
is: 74</s>

(Q:1.06829)(P:0.99951)

[3] The bacon factory produced
200 - 93 = 107

loaves on Monday. Then they
produced 200 - 39 =

161 loaves on Tuesday.
(Q:-0.06717)(P:0.47814)

[0] So the company baked
a total of 107 +

161 = 268 loaves of
bread.

(Q:0.00192)(P:0.62347)

[0] They had 161 +
107 - 6 = 252

- 6 = 246 loaves
on hand They have 246

loaves of bread left.
(Q:-0.01176)(P:0.51426)

[2] They have 107
+ 161 - 6

= 254 loaves left.
(Q:-1.01392)(P:0.71103)

[1] The answer
is 254</s>

(Q:-1.00238)(P:0.99992)

[30] They sold 93 loaves in
the morning and 39 loaves in
the afternoon, so they sold a

total of 93 + 39 =
132 loaves of bread.

(Q:1.44411)(P:0.84845)

[11] So, they have 200 -
132 = 68 loaves of bread

left. The grocery store returned 6
unsold loaves, so they have 68

+ 6 = 74 loaves of
bread left.

(Q:1.13120)(P:0.80345)

[10] The answer
is: 74</s>

(Q:0.99283)(P:0.99903)

[2] The grocery store returned 6
unsold loaves, so the total number

of loaves of bread they did
not sell is 132 + 6

= 138 loaves.
(Q:-0.49569)(P:0.65347)

[0] They started with 200 loaves
and sold 138 loaves, so they

have 200 - 138 = 62
loaves of bread left. The answer

is: 62</s>
(Q:-0.99298)(P:0.93236)

[1] They baked 200 loaves of bread,
so the total number of loaves of

bread they had from the beginning is
200. To find the number of loaves
of bread they had left, we subtract
the number of loaves they did not

sell from the total number of
(Q:-0.07920)(P:0.77642)

[21] They had 200 loaves
baked and sold 132 loaves,

so they had 200 -
132 = 68 loaves of

bread left.
(Q:1.14610)(P:0.89809)

[15] The grocery store returned
6 unsold loaves, so they

had 68 + 6 =
74 loaves of bread left.
The answer is: 74</s>
(Q:1.08365)(P:0.98273)

Tree Visualization

Figure 8: Example of the result search tree of a GSM8K question “The bakers at the Beverly Hills
Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39
loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they
have left?”. The example solution is “The Bakery sold 93 + 39 = 132 loaves. The Bakery made 200
loaves and sold 132, leaving 200 - 132 = 68 loaves remaining. The grocery store returned 6 loaves, so
there were 6 + 68 = 74 loaves left.”. The policy we use here is the one only tuned for 1 epoch on SFT
training data. We conduct MCTS with breadth b1 = 5, b2 = 3. Duplicate generations are merged
into one node.

[46] <s>
(Q:0.00000)(P:-1.00000)

[3] The bakery baked 200 loaves of
bread on Monday morning. They sold 93

loaves in the morning and 39 loaves
in the afternoon, so they sold a

total of 93 + 39 = 132
loaves.

(Q:0.25430)(P:0.93239)

[2] They also had 6 loaves returned
by the grocery store. To find out

how many loaves of bread they have
left, we need to subtract the loaves

they sold and the returned loaves from
the total number of loaves baked.

(Q:-1.05085)(P:0.79282)

[0] 200 - 132 +
6 = 78 The bakery

has 78 loaves of bread
left. The answer is: 78</s>

(Q:-1.07053)(P:0.84111)

[1] So, 200 - 132
- 6 = 62 Therefore,

they have 62 loaves of
bread left. The answer is:

62</s>
(Q:-1.07033)(P:0.91906)

[0] A grocery store returned 6
unsold loaves, so the total number

of loaves they have left is
200 - 132 + 6 =

88 loaves.
(Q:-0.02430)(P:0.80175)

[0] A grocery store returned 6
unsold loaves, so they had 132

- 6 = 126 loaves left.
Therefore, the bakery had 200 -

126 = 74 loaves of bread
left.

(Q:-0.03073)(P:0.89432)

[3] They had 200 - 93
= 107 loaves left after the

morning sales. They had 107 -
39 = 68 loaves left after

the afternoon sales.
(Q:-0.52703)(P:0.86016)

[2] They had 68 -
6 = 62 loaves of

bread left after the grocery
store returned the unsold loaves.

(Q:-1.05568)(P:0.80182)

[1] The answer
is 62</s>

(Q:-1.06738)(P:0.99711)

[30] After the morning sales, they
had 200 - 93 = 107

loaves of bread left. After the
afternoon sales, they had 107 -

39 = 68 loaves of bread
left.

(Q:1.65898)(P:0.80497)

[34] After the grocery store
returned the loaves, they had

68 + 6 = 74
loaves of bread left.

(Q:1.13097)(P:0.91597)

[28] The answer
is 74</s>

(Q:0.98327)(P:0.99718)

Tree Visualization

Figure 9: Example of the result search tree of the same GSM8K question as in Figure 8 with the
same search breadth. We use the policy tuned after 3 epochs to sample the generations.
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