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ABSTRACT

Although reinforcement learning (RL) can effectively enhance the reasoning ca-
pabilities of vision–language models (VLMs), current methods remain heavily
dependent on labor-intensive datasets that require extensive manual construction
and verification, leading to extremely high training costs and consequently con-
straining the practical deployment of VLMs. To address this challenge, we pro-
pose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement
through competitive visual games generated from arbitrary image pairs. Specif-
ically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play
Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where
the models engage in strategic reasoning and actions across multiple roles. Through
interactive gameplay, models autonomously generate their training data without
human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gami-
fied frameworks, Vision-Zero can generate games from arbitrary images, thereby
enhancing the model’s reasoning ability across diverse domains and showing strong
generalization to different tasks. We demonstrate this versatility using three distinct
types of image datasets: CLEVR-based synthetic scenes, charts, and real-world
images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play
Policy Optimization (Iterative-SPO), a novel training algorithm that alternates
between Self-Play and reinforcement learning with verifiable rewards (RLVR),
mitigating the performance plateau often seen in self-play-only training and achiev-
ing sustained long-term improvements. Despite using label-free data, Vision-Zero
achieves state-of-the-art performance on reasoning, chart question answering, and
vision-centric understanding tasks, surpassing other annotation-based methods.
Models and code will be released upon acceptance.

1 INTRODUCTION

Recent breakthroughs in vision-language models (VLMs) have demonstrated remarkable capabilities
across diverse multimodal tasks (Achiam et al., 2023; Team et al., 2023). However, current training
paradigms face fundamental scalability constraints: they depend heavily on human-curated data
through supervised fine-tuning (SFT) (Liu et al., 2023), reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022; Sun et al., 2023), and carefully engineered reward functions for
reinforcement learning with verifiable rewards (RLVR) (Guo et al., 2025). This dependency creates
two critical bottlenecks. First, a data scarcity problem—the extraordinary cost of multimodal
annotation limits both scale and diversity of training data, with datasets like COCO Attributes
requiring $60,480 for 200,000 objects (Patterson & Hays, 2016), Ego4D consuming over 250,000
annotation hours (Grauman et al., 2022), and Visual Genome mobilizing 33,000 annotators (Krishna
et al., 2017). Second, a knowledge ceiling—model capabilities remain fundamentally bounded by
human-generated supervision, preventing VLMs from discovering strategies beyond human expertise.

Self-Play offers a solution by eliminating human supervision through competitive dynamics (Silver
et al., 2017; Tesauro, 1995). In self-play, models learn by engaging in competitive interactions with
copies of themselves, receiving automatic feedback based on the outcomes of each interaction. As the
model improves, its opponents correspondingly advance, thus maintaining a consistently challenging
learning environment and driving continuous improvement. By removing the need for human
supervision during data generation, self-play has already surpassed the knowledge ceiling across
many domains: from TD-Gammon’s backgammon supremacy (Tesauro, 1995) to AlphaGo’s conquest
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(a) Supervised Learning (b) Reinforcement Learning (c) Vision-Zero

Figure 1: Vision-Zero Paradigm. (a) Supervised learning depends on human-curated reasoning
trajectories; (b) Reinforcement Learning, although enabling models to autonomously learn reasoning
processes via validated rewards, still relies heavily on expert-designed question-answer pairs. (c) In
contrast, Vision-Zero is a novel self-improvement paradigm entirely independent of human experience.
It constructs self-play games by leveraging image pairs that exhibit visual differences. Through the
interactive and strategic game, Vision-Zero continuously generates training data for VLMs, enabling
the model to achieve scalable self-improvement.

of Go (Silver et al., 2016; 2017) to OpenAI Five’s mastery of complex team coordination (Berner
et al., 2019). With the growing capabilities of LLMs, recent work has begun to import Self-Play into
LLMs training to reduce dependence on human intervention. These approaches construct Language
Gamification frameworks wherein LLMs compete under clearly defined game rules, incrementally
enhancing their competencies. For example, SPIRAL enhances LLM reasoning by having models
play games such as Tic-Tac-Toe and Kuhn Poker (Liu et al., 2025); Absolute Zero frames self-play
between proposer and solver (Zhao et al., 2025), achieving state-of-the-art results on mathematics
and coding tasks. However, extending self-play to VLMs remains largely unexplored, despite the
prohibitive costs of multimodal data that make such an approach particularly urgent.

An ideal self-play game environment should satisfy the following four conditions: (1) The skills
acquired by agents in order to win the game should closely align with those required by the target
tasks. (2) Skill growth should be scalable: as self-play progresses, the environment should continually
escalate difficulty so that ever stronger agents can emerge rather than converging to a fixed upper
bound. (3) The environment should be sufficiently diverse and complex to enable a wide range of
target tasks can satisfy conditions (1). (4) The environment should require no external data or only a
small amount of low-cost data, such as label-free data. To the best of our knowledge, existing visual
reasoning games fail to satisfy all of the above criteria simultaneously. For instance, Sudoku satisfies
conditions (2) and (4), but fails to meet (1) and (3). Due to the multimodal nature of VLMs, designing
a self-play environment that fulfills all four conditions requires joint consideration of both vision
and language modalities, which is non-trivial. Inspired by language-based social deduction games,
particularly those involving alternating rounds of statements and voting such as “Who Is the Spy?”,
we propose a novel visual reasoning game that addresses these four requirements.

We present Vision-Zero, the first gamified self-play framework that enables scalable self-
improvement of VLMs without requiring human annotations. We design a visual “Who Is
the Spy?” game based on subtly differing image pairs, which are generated either by an automated
image editing tool or rendered procedurally. By reasoning over and hypothesizing about these subtle
differences, agents gradually acquire stronger visual reasoning capabilities. This setup compels
models to engage in strategic reasoning across multiple roles while handling diverse visual inputs
such as CLEVR scenes (Johnson et al., 2017), charts, and natural images. We further propose Iterative
Self-Play Policy Optimization (Iterative-SPO), which alternates between Self-Play and RLVR. By
incorporating verifiable supervision into self-play, Iterative-SPO stabilizes training and prevents
premature convergence to equilibrium states, thereby ensuring consistent performance gains within
the Vision-Zero framework.

Vision-Zero provides a domain-agnostic framework that effectively leverages diverse image inputs,
enabling continuous improvement without reliance on task-specific datasets. Through a carefully
designed strategic visual gameplay, it strengthens reasoning, spatial understanding, and visual com-
prehension while reducing shortcut bias from text and negative capability transfer that are prevalent
in conventional VLM training methods. Moreover, its reliance on automated image editing supports
highly cost-efficient dataset construction. As shown in Fig. 2, Vision-Zero simultaneously en-
hances performance across tasks including reasoning, chart/OCR, and vision-centric tasks, surpassing
state-of-the-art baselines trained on expensive human-labeled datasets. These results underscore
Vision-Zero’s substantial potential and broad applicability as a pioneering zero-human-in-the-loop
training paradigm. Our contributions are as follows:
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Figure 2: Performance Comparison of Vision-Zero with SOTA post-training methods. All models
were post-trained on Qwen2.5-VL-7B. The numbers on the horizontal axis represent the accuracy of
Qwen2.5-VL-7B on different tasks, while the vertical axis represents the change in accuracy of the
trained model. Vision-Zero outperforms baselines trained on expensive human-labeled datasets.

• We propose Vision-Zero, the first gamified self-play framework for VLMs that achieves
zero-human-in-the-loop post-training, which supports label-free, domain-agnostic inputs
and enables highly cost-efficient dataset construction for scalable optimization.

• We introduce Iterative-SPO, a novel algorithm alternating between Self-Play and RLVR to
stabilize training and to avoid premature convergence.

• Extensive experiments demonstrate that Vision-Zero substantially enhances model perfor-
mance across various general tasks, surpassing strong baselines trained on costly human-
annotated datasets, especially on reasoning and mathematical tasks.

2 VISION-ZERO: A GENERALIZABLE GAMIFICATION TRAINING FRAMEWORK
This section introduces Vision-Zero, a general, scalable, and high-performing gamified VLM post-
training framework as illustrated in Fig. 3. We begin by describing the environment and training
data (Sect. 2.1). Next, to achieve sustainable performance improvements, we propose Iterative-SPO,
which alternates between Self-Play and RLVR (Sect. 2.2). Finally, we provide a comprehensive
analysis of the advantages of Vision-Zero compared to human-involved training methods (Sect. 2.3).

2.1 ENVIRONMENT AND DATA

Strategic Environment. As shown in Fig. 2, Vision-Zero draws inspiration from natural lan-
guage–based social deduction games, Who is the Spy. In this setting, multiple players participate: nc

civilians and a single spy. Each player is assigned an image, where the spy’s image differs subtly
from civilians, such as containing a missing, added, modified object. Each round consists two stages:

• Clue Stage. In this stage, players are informed of their role (civilian or spy). Each player
is then prompted to observe their image and provide a verbal clue that reflects its content
such as object descriptions or inferring from the image. Players speak in sequence, and
each player’s clues become visible to subsequent players; however, their thought processes
remain hidden. After multiple rounds clue stage, game enters decision stage.

• Decision Stage. In this stage, civilians are instructed to analyze all the provided clues in
conjunction with their own image to identify the spy. Since the spy knows their identity,
they do not participate in voting. If player is uncertain about who is spy, he can respond
with "n/a". Both the reasoning and final votes remain private to players.

Vision-Zero constitutes a highly strategic and challenging gaming environment. In the clue stage,
the spy must analyze and infer from others’ clues and their own image to identify altered elements,
aligning their clues with common elements to mislead civilians. Civilians must provide accurate,
clear clues to avoid suspicion while minimizing information leakage to the spy. During the decision
stage, civilians further analyze images and clues meticulously to detect inconsistencies and accurately
identify the spy. Detailed prompts for both stages are provided in the Appendix A.2.1 for reference.

Label-Free and Domain-Agnostic Data Input. The input to Vision-Zero is label-free yet flexible:
for each round, the environment requires only an image pair, where the original image Ic is provided
to civilians and a modified counterpart Is is provided to spy, forming an (Ic, Is) image pair. Thanks
to the design of Vision-Zero’s environment, it supports arbitrary image inputs, making it broadly
applicable across domains. To validate this generality, we experiment with three types of data:

• CLEVR Data. (Johnson et al., 2017) We automatically rendered 2,000 image pairs using
the CLEVR renderer. Each original image contains 4–6 randomly arranged objects, while
the corresponding modified image has two objects altered in both color and shape. All
objects in both original and modified images were randomly generated through automated
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Figure 3: Overall Framework of Vision-Zero. Vision-Zero comprises three core components.
Strategic Game Environment: Each role is required to exhibit strategic behavior tailored to diverse
scenarios, thereby simultaneously necessitating multiple capabilities. Label-free and Domain-
agnostic Data Input: Vision-Zero accepts arbitrary inputs to promote diversity and generalization.
To verify this, we train Qwen2.5-VL-7B for 100 iterations on Gobang and our environment and
evaluate on MathVision; results show that Vision-Zero effective generalization. Iterative-SPO: We
introduce a novel two-stage training algorithm. In the clue stage, models are trained via Self-Play
using a zero-sum reward inversely proportional to votes received. In the decision stage, models
undergo RLVR training with group normalization, using rewards based on vote correctness.

scripting. The entire rendering process required approximately 6 hours on an NVIDIA A100
GPU. Example training set samples are illustrated in Fig. 4 (left).

• Chart Data. We randomly selected 1,000 images from the ChartQA (Masry et al., 2022)
training set as the original image set. For each original image, we utilized Gemini2.5-
Flash (Comanici et al., 2025) to generate modified images by randomly swapping numerical
attributes within each chart, producing modified images. The dataset includes line charts,
pie charts, and bar charts. Examples from this dataset are illustrated in Fig. 4 (middle).

• Real-World Data. We randomly sampled 1,000 image pairs from ImgEdit (Ye et al., 2025)
training set, a high quality image editing dataset containing real-world single-turn editing
pairs. Examples from this dataset are shown in Fig. 4 (right).

Owing to recent advances in high-quality image-editing models like ChatGPT (OpenAI, 2024)
and Nano Banana (Google DeepMind, 2024), the cost of generating Chart and Real-World datasets
remains modest, on the order of tens of dollars. We provide detailed descriptions of the data generation
pipelines in the Appendix A.2.2.

Overall, Vision-Zero provides a strategic game-based environment in which the model continu-
ously generates reasoning supervision through interactive gameplay and learns from verifiable
rewards, enabling scalable self-improvement. In addition, Vision-Zero supports label-free
and domain-agnostic data construction, allowing users to build domain-specific datasets at
minimal cost. As illustrated in the bottom-left of Fig. 3, Vision-Zero achieves sustained performance
improvement on the MathVision validation set, outperforming the original model by 3%, which is
unattainable in previously narrowly-defined game environments like Gobang.

2.2 ITERATIVE SELF-PLAY POLICY OPTIMIZATION

To enable sustained performance improvement within Vision-Zero, we introduce Iterative Self-Play
Policy Optimization (Iterative-SPO) which is a novel optimization algorithm that alternates between
self-play and RLVR. The workflow of Iterative-SPO is illustrated in Fig. 3.

Notation. Assume each round has n players: nc civilians and one spy, role set is defined as
K = {s} ∪ {c1, . . . , cnc

}. The spy and civilians hold images Is and Ic, respectively. In clue stage,
each player provide clue uk ∼ πk

θ ( · | Ik, h) , k ∈ K based on clue history h. In decision stage, a
voting mechanism returns vote counts v = (vs, vc1 , . . . , vnc

), where vcj represents number of votes
cj received due to being suspected of being spy, and vs represents the number of votes spy received.
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Clevr Data
Transform any two objects

Chart Data
Exchanges the data of two attributes

Real-world Data
Small change about object or the style

Figure 4: Visualization of the datasets used in Vision-Zero. We employ three representative data in
our experiments: (left) CLEVR-based data, (middle) Chart-based data, and (right) Real-world data.

Self-Play Policy Optimization in Clue Stage. During this stage, players seek to avoid raising
suspicion that they might be the spy. Moreover, the spy and civilians constitute two opposing sides,
and we employ Self-Play Policy Optimization to continuously enhance the model’s capabilities.

Zero-Sum Reward. Their rewards are designed according to the zero-sum game principle. Based on
these considerations, we define the Clue Stage reward rclues and rcluecj as follows:

rclues = −β
(
vs − v̄c

)
, rcluecj =

β

nc

(
vs − v̄c

)
− λ

(
vcj − v̄c

)
, j = 1, . . . , nc. (1)

where v̄c = 1
nc

∑nc

j=1 vcj denotes the average number of votes received by all civilians, β > 0
controls the intensity of competition between the spy and the civilians, and λ > 0 regulates the
penalty for behavioral inconsistency among civilians. Eqa.1 ensures that the total reward between the
spy and the civilians is zero, and that players receiving more votes are assigned lower rewards.

Role-Advantage Estimation (RAE). To mitigate the imbalance in win probability caused by asym-
metric role information, we apply RAE (Liu et al., 2025). Specifically, we initialize RAE coefficient
for the spy bs and the civilians bc to zero. The RAE coefficient and advantage at each round are:

bs = αbs + (1− α)rclues , bc = αbc + (1− α)
1

nc

nc∑
j=1

rcluecj , Aclue
k = rcluek − bk, k ∈ K (2)

where α denotes the decay rate, and the advantage values Aclue
k are computed by subtracting the

RAE from the original reward to eliminate information asymmetry.

Objective. With a reference policy πref, the optimization objective of Clue Stage is,

Lclue(θ) = −E

[
1

n

∑
k∈K

Aclue
k log πk

θ (uk | Ik, h)

]
+ τclue E

[
1

n

∑
k∈K

DKL

(
πk
θ ∥πk

ref

) ]
. (3)

where the KL term constrains updates to remain close to πref, stabilizing learning and preventing
degenerate utterances. Unbaselined returns are zero-sum to promote equilibrium-seeking dynamics.

RLVR in the Decision Stage. During this stage, the objective of each player is to correctly identify
and vote for the spy. Since civilians share aligned information, they can be regarded as a single group.
Therefore, we adopt the GRPO objective for Decision Stage.

Discrete Reward. Assume civilians take the full-round clues H and outputs ŝci ∼ qθ(· | H), i =
1, . . . , nc, where sci can be index of player (indicating vote for the player as spy), or ∅ (indicating
not clear who is spy and answer "n/a"): assume s⋆ is the true spy index. Define reward

rdecci = +1 if ŝci = s⋆,−0.5 elif ŝci = ∅,−1 else. (4)
This reward encourages players to make well-reasoned inferences. Even under highly challenging
conditions, it incentivizes acknowledging uncertainty rather than committing to an incorrect answer.

Group Norm & Objective. To remove round-specific difficulty, we apply group normalization:

µr = mean
[
rdecci

]
, σr = std

[
rdecci

]
, Adec

ci = (rdecci − µr)/(σr + ε), i = 1, ..., nc (5)
where ε > 0 prevents division by zero. With a reference distribution qref, we optimize the advantage-
weighted log-likelihood of the sampled votes with KL regularization:

5
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The metallic cylinder is to the right of the metallic sphere. 

The red cylinder is behind the yellow sphere and yellow cube.

The yellow cube is to the left of the metallic sphere.

🤖

👩

👧

👨

I need to carefully analyze the differences between my picture and 
the clues provided. PLAYER 1 mentioned a metallic cylinder to the 
right of a metallic sphere. PLAYER 2 described a red cylinder behind 
the yellow sphere. PLAYER 3 mentioned a yellow cube to the left of 
the metallic sphere. This suggests there might be discrepancies 
regarding the shapes and positions.

Given that I am the SPY, I have to ensure that my description doesn't 
reveal the replaced objects. I'll focus on describing features that 
align with what others might have seen, without pointing out any 
differences. Since the metallic cylinder is a common element, I can 
describe its position relative to other objects to keep it consistent 
with the previous clues.

The green cylinder is behind the metallic sphere.👿 😈

I need to describe my picture without revealing that two objects are 
different. Let's analyze the previous clues:

- PLAYER 1: The metallic cylinder is to the right of the metallic sphere.
- PLAYER 2: The red cylinder is behind the yellow sphere and yellow cube.
- PLAYER 3: The yellow cube is to the left of the metallic sphere.

From these clues, it seems that the red object is a cylinder, and there is a 
yellow cube. However, in my picture, these two objects are different. I 
need to describe something that aligns with the common picture but 
doesn't expose the differences.

I should focus on the relationships and features that are likely the same in 
all pictures. For example, the positions of the green cylinders, the metallic 
sphere, and the yellow sphere are probably consistent.

The metallic sphere is to the left of the yellow sphere.

👧PLAYER 4 is the spy! We don’t know!

PLANNING: 5 RETRIEVE: 5 DECOMPOSE:1 STRATEGIZE: 3 LOGIC: ❌ PLANNING: 5 RETRIEVE: 5 DECOMPOSE:5 STRATEGIZE: 5 LOGIC: ✅

Please describe the picture you see in one sentence.

What Civilians See What Spy See

Civ Win Spy Win

👩 Civ 1👨 Civ 2👧 Civ 3 👿 Spy

Before Training After Training

Figure 5: Visualization of spy reasoning in Vision-Zero. A comparison of model responses to
identical scenarios before and after training, as evaluated by GPT-based scoring, reveals substantial
improvements in planning, retrieval, decomposition, strategy formulation, and logical reasoning.

Ldec(θ) = −E

[
1

nc

nc∑
i=1

Adec
ci log qθ(ŝci | H)

]
+τdec E

[
1

nc

nc∑
i=1

DKL(qθ(· | H) ∥ qref(· | H))

]
. (6)

Iterative Stage Training. A pure self-play setup typically reaches a local equilibrium (Yao et al.,
2023; Balduzzi et al., 2019; Hu et al., 2020; Balduzzi et al., 2018), limiting exploration of new
reasoning paths. Conversely, standalone RL methods like RLVR risk knowledge saturation once
the available question set is mastered. To mitigate these issues, Iterative-SPO employs a two-
stage alternating training. When decision-stage performance indicates clue-stage saturation (easy
identification of the spy), training shifts to the clue stage to increase difficulty. Conversely, when
identifying the spy becomes challenging, training shifts back decision stage. Let Bt = {(Hi, s

⋆
i )}Bi=1

be a held-out mini-batch at iteration t. Define the average prediction accuracy acct and “n/a” rate nat
of players in the decision stage within a batch round:

acct =
1

B

B∑
i=1

1

[
argmax

y
qθ(y | Hi) = s⋆i

]
,nat =

1

B

B∑
i=1

qθ(∅ | Hi). (7)

We maintain exponential moving averages with smoothing ρ ∈ [0, 1):
¯acct = ρ ¯acct−1 + (1− ρ) acct, n̄at = ρ n̄at−1 + (1− ρ) nat, (8)

initialized as ¯acc0 = n̄a0 = 0. Let mt ∈ {0, 1} be the phase indicator (mt = 1 trains the CLUE stage,
mt = 0 trains the DECISION stage). We switch phases using hysteresis thresholds τ↑acc, τ

↑
err, τ

↑
na, τ

↓
na:

Decision → Clue: if mt = 0 and ¯acct ≥ τ↑acc and n̄at ≤ τ↓na, then set mt+1 = 1; (9)

Clue → Decision: if mt = 1 and
(
1− ¯acct ≥ τ↑err or n̄at ≥ τ↑na

)
, then set mt+1 = 0; (10)

otherwise mt+1 = mt. To avoid chattering, we require a minimum dwell time Kmin updates per
stage. With this gating, the per-iteration training loss is Lt = mt Lclue(θ) + (1−mt)Ldec(θ), and
gradients are applied only to the active module at iteration t. Algorithm is shown in Appendix A.2.3.

This alternating scheme provides two main benefits: (1) It prevents the model from stagnating in a
strategic equilibrium or knowledge plateau by dynamically switching training stages upon detecting
stagnation signals, thus ensuring continuous improvement (empirically verified in Sect. 3.2). (2)
Alternating self-play with RLVR introduces supervised signals, stabilizing training and preventing
common pitfalls like role collapse (Wang et al., 2020; Yu et al., 2024) or divergence (Heinrich &
Silver, 2016; Vinyals et al., 2019). In summary, Iterative-SPO provides a stable paradigm that
integrates self-play with RLVR optimization to achieve sustained performance improvement.
2.3 ADVANTAGE ANALYSIS

Vision-Zero has three key advantages. Firstly, Vision-Zero leverages domain-agnostic data inputs
through image differences, allowing it to accept diverse data without reliance on specific image
types. This universality enables direct utilization of existing high-quality image datasets, leading
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Table 1: Performance Comparison of Vision-Zero and SOTA models on Reasoning and Math,
evaluated on VLMEvalKit. All results are obtained under same settings, except ViGaL-Snake and
ViGaL-Rotation, whose results are obtained from the original paper due to unavailable models.
Vision-Zero outperforms baselines trained on extensive manually annotated datasets in related tasks.

Method MathVista MathVision WeMath MathVerse LogicVista DynaMath Avg.

Proprietary Model
GPT4o 61.4 30.4 40.0 50.2 45.9 32.3 43.4
Gemini2.0-Flash 73.4 41.3 57.1 54.4 56.2 43.7 54.4

Performance on Qwen2.5-VL-7B
Qwen2.5-VL-7B 68.2 25.4 36.1 49.0 47.2 20.9 41.1
R1-OneVision-7B 64.1 24.1 35.8 47.1 44.5 21.4 39.5
MM-Eureka-Qwen-7B 73.0 26.9 36.2 50.3 42.9 24.2 42.9
VLAA-Thinker-7B 68.0 26.4 36.0 51.7 47.2 21.9 41.9
OpenVLThinker-7B 70.2 25.3 36.5 47.9 44.3 21.2 40.9
ViGaL-Snake 70.7 26.5 – 51.1 – – –
ViGaL-Rotation 71.2 26.3 – 50.4 – – –
ViGaL-Snake+Rotation 71.9 27.5 36.9 52.4 46.5 22.9 43.0
VisionZero-Qwen-7B (CLEVR) 72.6 28.1 39.8 51.9 50.1 22.3 44.1
VisionZero-Qwen-7B (Chart) 72.2 27.6 39.2 52.1 50.6 21.9 43.9
VisionZero-Qwen-7B (Real-World) 72.4 28.0 39.5 52.2 50.3 22.1 44.1

(a) Winning Rate (b) Avg. Token Length (Clue) (c) Avg. Token Length (Decision)

Figure 6: Evolution of win rate and token length during Vision-Zero training. Win rates are
evaluated over 100 rounds (50 civilian, 50 spy) against corresponding untrained reference models;
civilians win by correctly identifying the spy. Token length are collected across these rounds.

to generalizable performance improvements at minimal cost, as evidenced by superior benchmark
results (Fig. 2). Secondly, Vision-Zero demands simultaneous analysis of visual and textual
inputs, addressing spatial relationships and object details, thereby concurrently enhancing reasoning,
visual comprehension, and OCR capabilities. This integrated approach effectively mitigates common
challenges such as text shortcut bias and negative capability transfer, as illustrated in Fig. 5. Lastly,
Vision-Zero employs a highly cost-efficient data curation strategy, rapidly generating datasets
using advanced editing tools like ChatGPT and NanoBanana. This approach significantly reduces
costs compared to traditional manual labeling, accelerating practical applications of targeted VLMs.

3 EXPERIMENTS
To thoroughly evaluate Vision-Zero, we first outline the experimental setup, the datasets, and the
baselines. Next, we evaluate its performance and cost-efficiency across diverse tasks (Sect. 3.1). We
then conclude by analyzing model generalizability and the effectiveness of Iterative-SPO. (Sect. 3.2).

Models, Datasets & Baselines. We evaluated Vision-Zero using three models—Qwen2.5-VL-
7B (Bai et al., 2025), InternVL3-8B, and InternVL3-14B (Zhu et al., 2025)—across 14 tasks in
reasoning, chart analysis, and vision-centric domains. Detailed model and dataset information is in
the Appendix A.3.1. We compared our models against SOTA methods R1-OneVision-7B (Yang et al.,
2025b), MM-Eureka-Qwen-7B (Meng et al., 2025), VLAA-Thinker-7B (Zhou et al., 2025), and
OpenVLThinker-7B (Deng et al., 2025) (all post-trained via RLVR on human-labeled data), as well
as ViGaL (Xie et al., 2025), which collects game data initially and subsequently training on them.

Training and Hyperparameter Settings. We detail the hyperparameters used for Vision-Zero
training below. Each round included four civilians (nc = 4) and two clue-stage speeches. To maintain
balanced rewards (-1 to 1 range), we set clue hyperparameters β = λ = 0.1. Decay coefficients for
role advantage (α), accuracy, and "n/a" rates (ρ) were adopted from Liu et al. (2025) as α = ρ = 0.95.
KL regularization weights were set as defaults (τdec = τclue = 0.04). Empirically set stage-switching
thresholds were τ↑acc = 0.9, τ↑err = 0.4, τ↑na = 0.5, τ↓na = 0.1, with minimum rounds per stage
Kmin = 5 and patience P = 20. Models were trained for 100 iterations with a batch size of 128 using
the VLM-R1 (Shen et al., 2025) code framework. Qwen2.5-VL-7B was trained on the CLEVR-based,
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Table 2: Performance comparison between Vision-Zero and other state-of-the-art models on
Chart Understanding and Vision-Centric benchmarks. All models are evaluated using the open-
source platform VLMEvalKit. Additional results on related datasets are provided in the Appendix
A.4.

Chart Understanding Vision-Centric
Model ChartXiV_RQ FunctionQA PaperQA ReachQA RealWorldQA MMVP BLINK MuirBench

Proprietary Model
GPT-4o 47.1 80.7 47.4 53.3 75.4 86.3 68.0 68.0
Gemini2.0-Flash 61.2 - - 63.0 73.2 83.0 63.5 64.6

Performance on Qwen2.5-VL-7B
Qwen2.5-VL-7B 42.5 82.3 68.4 50.8 68.1 76.8 55.2 58.2
R1-OneVision-7B 35.3 69.4 64.2 46.5 58.0 61.3 48.7 46.3
MM-Eureka-Qwen-7B 43.2 79.0 73.7 51.3 66.1 74.3 54.0 61.1
VLAA-Thinker-7B 41.3 79.0 68.4 50.4 65.4 71.6 53.0 57.1
OpenVLThinker-7B 44.1 83.8 73.7 51.5 60.2 71.3 49.9 52.8
ViGaL-Snake+Rotation 41.8 82.3 73.7 51.8 66.5 74.6 55.6 57.8
VisionZero-Qwen-7B (CLEVR) 44.3 83.8 68.4 52.0 68.5 79.2 56.1 58.6
VisionZero-Qwen-7B (Chart) 46.6 85.5 73.7 53.8 68.2 77.9 57.2 59.4
VisionZero-Qwen-7B (Real-World) 45.2 83.8 73.7 52.5 68.5 79.5 57.5 59.8

chart-based, and real-world datasets (Fig. 3); InternVL3 was trained only on the CLEVR-based
dataset to test generalizability. Further details are provided in Appendix A.3.2.

3.1 MAIN RESULTS

Sustainable Performance Growth. To verify Vision-Zero’s capability to achieve sustained perfor-
mance growth, we evaluated the models’ win rates against a fixed, untrained reference model and
measured average token lengths in the Clue and Decision stages on CLEVR data. As shown in Fig. 6,
win rates consistently increased during training, with Qwen2.5-VL-7B improving from 50% to 71%.
Average token lengths increased substantially, particularly in the Decision stages (e.g., InternVL3-8B
and InternVL3-14B grew from 250 to approximately 400 tokens), suggesting enhanced reasoning
capabilities facilitated by Iterative-SPO.

Strong Task Generalization Capability. To assess whether the performance gains from the Vision-
Zero environment generalize to broader reasoning and mathematics tasks, we evaluate our models
on six benchmark datasets. The experimental results are presented in Tab. 1. As demonstrated,
Vision-Zero models consistently outperform state-of-the-art baseline methods across various bench-
marks. Specifically, VisionZero-Qwen-7B (CLEVR) and VisionZero-Qwen-7B (Real-World) achieve
performance gains of ~3% over the base model, and VisionZero-Qwen-7B (Chart) improves by
~2.8%. In contrast, even the most advanced baseline method yields just ~1.9% improvement. Notably,
all baseline methods rely on training with hundreds or even thousands of mathematics and reasoning
samples. As a comparison, our Vision-Zero environment does not explicitly include any mathematics-
specific task training; rather, it enhances the models’ logical reasoning capabilities through strategic
gameplay in natural language contexts. These results clearly indicate that the capabilities learned
by models from the Vision-Zero environment can effectively generalize to broader mathematics and
reasoning tasks, even surpassing models explicitly trained on those large scale task specific datasets.

Cross-Capability Negative Transfer Mitigation. A key challenge in VLM post-training is cross-
capability negative transfer, where models trained on specific tasks often perform worse on others.
As shown in Tab. 2, Vision-Zero-trained models effectively mitigate such negative transfer. Specifi-
cally, VisionZero-Qwen-7B (CLEVR) enhances vision-centric task performance, notably increasing
MMVP accuracy from 76.8% to 79.2%. Notably, VisionZero-Qwen-7B(Chart) achieves signifi-
cantly larger gains on chart understanding benchmarks, improving accuracy by an average of +3.9%
across the four datasets. VisionZero-Qwen-7B(CLEVR) and VisionZero-Qwen-7B(RealWorld) also
exhibit consistent improvements due to enhanced reasoning ability. This demonstrates that Vision-
Zero’s strategic, multi-capability training environment significantly alleviates negative transfer issues
common in traditional single-capability training paradigms. Moreover, thanks to the task-agnostic
nature of Vision-Zero, it enables significant performance gains on diverse target tasks such as chart
understanding or vision-centric reasoning, through the low-cost construction of task-specific data.

Low Costs. Vision-Zero significantly reduces dataset construction costs and training time compared
to traditional RLVR methods (Tab. 3). Due to its reliance solely on unlabeled data, Vision-Zero
incurs zero labeling costs. In contrast, previous training methods typically require extensive human
or model-generated chain-of-thought (CoT) annotations and answer labeling, consuming significant
amounts of time and human resources. In addition, due to the high sample efficiency of Vision-Zero,
it achieves superior model performance with significantly fewer training iterations. As shown in Tab.
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Table 3: Comparison of dataset construction costs, training costs and model performance across
methods. Label Cost refers to the number of tokens generated by teacher or judging LLMs during
data curation; for consistency, all token counts are recalculated using the Qwen2.5 tokenizer. Since
VIGAL and Vision-Zero are trained on unlabeled data, they incur no labeling cost. To estimate
training time cost, we refer to each baseline’s original paper to obtain the number of samples used
during RL training, and multiply this by a standard GRPO cost per sample to simulate the expected
time consumption under a fully fair setting. For some methods, the value is shown as ≥ because we
only account for RL cost, excluding SFT. For Vision-Zero, the training time cost is getted by directly
measured. Details on all estimates are provided in the Appendix A.3.3.

Data Cost Training Performance

Method Prepare Method Num
(RL)

Label Cost
(Tokens) Method Interact Time Cost MMMu MMMupro

Qwen2.5-VL-7B – – – – – – 54.3 37.0
R1-OneVision-7B Programmatic

construction with
human checks.

10k ≥ 1.1 M SFT+GRPO ✗ ≥ 170 A100-Hours 51.9 32.6
VLAA-Thinker-7B 25k 29.6 M SFT+GRPO ✗ ≥ 120 A100-Hours 48.2 31.9
OpenVLThinker-7B 9k 5.7 M SFT+GRPO ✗ ≥ 125 A100-Hours 54.8 22.1
MM-Eureka-Qwen-7B 15k - GRPO ✗ ≈ 700 A100-Hours 55.8 36.9
ViGaL-Snake Collected in

game environment
via PPO policy

72k 0 RLOO ✗ ≈ 170 A100-Hours
55.8 36.6

ViGaL-Rotation 54.1 37.7
ViGaL-Snake+Rotation 58.0 37.4

VisionZero-Qwen-7B
(CLEVR) Batch render scenes 2k 0 Alternating Self-

play+ GRPO ✓ 127 A100-Hours 58.8 37.7

(a) Qwen2.5-VL-7B (b) InternVL3-8B

Figure 7: Taining effectiveness comparison between Vision-Zero and the original GRPO. We
compare Vision-Zero and GRPO under identical hardware settings to evaluate training cost and effi-
ciency. Specifically, for the original GRPO, we trained on the MM-Eureka dataset using 8×NVIDIA
A100 (80GB) GPUs with a batch size of 128 for 100 iterations on both Qwen2.5-VL-7B and
InternVL3-8B. Vision-Zero is trained for the same setting on the Clever dataset using the same
hardware. We evaluate the performance of checkpoints from different iterations on MathVista.

3, Vision-Zero requires only 127 A100-hours, which is substantially lower than prior GRPO-based
approaches. This underscores Vision-Zero’s substantial practical value in real-world applications.

High Training Efficiency. Although Vision-Zero involves multi-round interactions, it does not
introduce substantial training overhead. On one hand, Vision-Zero adopts a fixed interaction pattern
(two clue rounds followed by one decision round), enables fully parallelized forward and backward
passes across multiple games, with no asynchronous delays or gradient conflicts. On the other hand,
each sample in Vision-Zero generates multiple actions, thereby providing denser learning signals
and higher sample efficiency compared to standard single-turn RL setups. To empirically validate
the training efficiency of Vision-Zero, we conducted experiments comparing the training time and
efficiency of the original GRPO and Vision-Zero over the same number of iterations using identical
hardware. As shown in Fig. 7, Vision-Zero achieves markedly higher sample efficiency, resulting in
3.3 × and 6.4 × improvements in overall training efficiency on Qwen2.5-VL-7B and InternVL3-8B,
respectively. Furthermore, it yields higher final performance on the validation set. These results
highlight the superior training efficiency of Vision-Zero compared to the original GRPO framework.

3.2 ABLATION STUDIES

Model Generalizability. To assess Vision-Zero’s generalizability, we trained InternVL models and
evaluated their performance on reasoning and math tasks. Tab. 4 shows VisionZero-InternVL3-8B
and VisionZero-InternVL3-14B improved accuracy by 1.8% and 1.6%, respectively, across reasoning
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Table 4: Model generalizability of Vision-Zero. We train InternVL3-8B and InternVL3-14B
within the Vision-Zero using the CLEVR-based dataset. As a baseline, we train InternVL3-8B
and InternVL3-14B with vanilla GRPO on the MM-Eureka training set under the same setting as
Vision-Zero, and evaluate all models on six reasoning benchmarks.

Model MathVista MathVision WeMath MathVerse LogicVista DynaMath Avg.

Performance on InternVL3-8B
InternVL3-8B 60.4 21.3 26.8 32.2 40.5 26.8 34.7
MM-Eureka-InternVL-8B 62.4 22.1 26.8 32.1 38.9 28.7 35.2
VisionZero-InternVL3-8B 62.2 24.2 28.7 32.9 41.8 29.2 36.5

Performance on InternVL3-14B
InternVL3-14B 74.1 33.8 42.3 43.3 51.6 30.1 45.8
MM-Eureka-InternVL-14B 75.2 34.5 42.5 44.2 45.2 30.9 45.4
VisionZero-InternVL3-14B 75.4 34.8 44.9 45.1 53.1 31.3 47.4
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Figure 8: Performance Comparison between Iterative-SPO and pure Self-play / pure RLVR
training. (left) Winning Rate (right) Performance on LogicVista. We evaluate under three settings:
(1) Iterative-SPO; (2) Pure Decision: Clue stage frozen, training only Decision stage via RLVR; (3)
Pure Clue: Decision stage frozen, training only Clue stage via Self-Play.

tasks. Compared to the baseline trained using the MM-Eureka dataset and GRPO framework, Vision-
Zero consistently enhances the reasoning capabilities of InternVL3-8B and InternVL3-14B models
by 1.3% and 2%, respectively. Notably, despite differences in visual encoders, pre-training strategies,
and training procedures between the QwenVL and InternVL model series, Vision-Zero consistently
improves performance across these models, highlighting its robust generalization capabilities.

Superiority of Iterative-SPO. Finally, we evaluate the superiority of Iterative-SPO compared to
single-mode training by training Qwen2.5-VL-7B under three distinct settings: (1) Pure clue-stage
training: the decision stage is frozen (forward-pass only, without gradient updates); (2) Pure decision-
stage training: the clue stage is frozen, with only the decision stage updated; and (3) Iterative-SPO. As
shown in Fig. 8, Iterative-SPO substantially outperforms both single-mode approaches, particularly
surpassing pure clue-stage training, which experiences slower performance gains and premature
equilibrium. This occurs because pure self-play lacks directly verifiable rewards—the reward
signal originates from the decision-maker, and when decision quality is insufficient to effectively
discriminate roles, the model performance plateaus prematurely. Alternating training mitigates this
limitation, achieving sustainable performance improvements; for example, on the LogicVista dataset,
it improves final accuracy by 2% over pure self-play and 1% over pure RLVR training.

4 CONCLUSION

We introduce Vision-Zero, the first gamified self-play framework for VLMs that achieves zero-human-
in-the-loop post-training, addressing self-play training challenges through a strategic environment and
domain-agnostic inputs. Our novel Iterative Self-Play Policy Optimization (Iterative-SPO) algorithm
alternates self-play with RLVR, incorporating supervisory signals to stabilize training and avoid
suboptimal equilibria. Experiments show Vision-Zero significantly improves VLM performance
on reasoning, chart/OCR, and vision-centric tasks while substantially reducing dataset construction
costs compared to traditional human-labeled datasets, providing an economical, flexible, and robust
solution for accelerating VLM development and real-world application.
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REPRODUCIBILITY STATEMENT

We will fully release the model checkpoints and source code to facilitate reproducibility of our results.
We provide all prompt design of the gameplay environment in Appendix A.2.1. Implementation
details, including the experimental setup, hyperparameters can be found in Appendix A.3. Dataset
preparation details can be found in Appendix A.2.2. Algorithm details are shown in Appendix A.2.3.
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A APPENDIX

Organization In this Appendix, we provide in-depth descriptions of the materials that are not covered
in the main paper, and report additional experimental results. The document is organized as follows:

• A.1- Related Work
• A.2- Vision-Zero Design Details

– A.2.1- Prompt Setting
– A.2.2- Dataset Preparation
– A.2.3- Iterative-SPO algorithm

• A.3- Experiments Setting
– A.3.1- Model, Dataset and Baselines
– A.3.2- Training and Hyperparameter Settings
– A.3.3- Training Cost Estimation of Baselines

• A.4- Supplementary Experimental Results
– A.4.1- Comprehensive Evaluation on Chart/OCR Tasks
– A.4.2- Comprehensive Evaluation on Vision-Centric Tasks
– A.4.3- Comparison with Contrastive RLVR
– A.4.4- Comparison with Chart-Specialized Models
– A.4.5- Comparison of CoTs on General QA Task Before and After Training.
– A.4.6- Stability Analysis of Editor Capabilities
– A.4.7- Parameter and Module Ablation

• A.5- Limitation and Future Work
• A.6- The Use of Large Language Models

A.1 RELATED WORK

Multi-Agent RL for Vision-Language Models. Self-play has emerged as a powerful paradigm
for improving vision-language models without extensive human annotation. Konyushkova et al.
(2025) introduce dialog games for VLM self-improvement, where agents engage in goal-oriented play
centered on image identification, demonstrating iterative improvement through successful interaction
filtering. Foundation model self-play (Dharna et al., 2025) shows how open-ended strategy innovation
emerges from competitive interactions between models. SPIRAL (Liu et al., 2025) develops truly
online multi-agent multi-turn RL, showing that training on zero-sum games improves reasoning
capabilities that generalize to novel downstream tasks—particularly relevant for the multi-turn nature
of undercover games. Zhai et al. (2024) present the first framework to fine-tune VLMs using RL with
task-specific rewards, achieving state-of-the-art performance without expert data. RL-VLM-F (Wang
et al., 2024c) automatically generates reward functions using VLM feedback on image observation
pairs, while Rocamonde et al. (2023) demonstrate that VLMs like CLIP can serve as zero-shot reward
models with strong scaling effects.

Undercover and Social Deduction Games in AI. The undercover game paradigm has been explicitly
explored in recent work. Dong et al. (2024) introduce the Multi-Perspective Team Tactic (MPTT)
framework for "Who is Undercover?", integrating self-perspective, identity-determination, self-
reflection, and multi-round teammate finding to cultivate human-like language expression. Liang
et al. (2023) implement an interactive multi-agent framework with human-in-the-loop capabilities,
supporting strategic deception and voting mechanics directly applicable to our proposed VLM variant.
Studies on social deduction games reveal important insights: Yoo & Kim (2024) demonstrate that GPT-
4 achieved 80.65% accuracy in detecting deceivers in Mafia games versus 28.83% for humans, while
Kim et al. (2024) identify four major reasoning failures in obscured communication—inadequate
information processing, insufficient strategic thinking, lack of theory of mind, and poor temporal
reasoning. However, these studies primarily focus on evaluating models’ social capabilities through
gameplay and rely on prompt engineering to emulate human-like behavior. In contrast, Vision-Zero
is the first approach to model the social reasoning game "Who is the Spy" as a self-play environment
designed explicitly for training Vision-Language Models (VLMs) to enhance their performance.
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Game-Based Training and Evaluation for VLMs. Recent benchmarks reveal both the potential
and challenges of VLMs in game environments. BALROG (Paglieri et al., 2024) aggregates 6 game
environments testing short-term and long-term planning, finding severe deficiencies in vision-based
decision-making even for GPT-4o. Wang et al. (2025a) present evaluation frameworks with core
tasks directly relevant to undercover game phases: Perceiving, Question Answering, Rule Following,
and End-to-End Playing. VideoGameBench (Zhang et al., 2025) reveals frontier models achieve
only 0.48% completion rate on popular video games. Novel training approaches leverage games to
improve VLM capabilities: G1 (Chen et al., 2025a) introduces VLM-Gym addressing the "knowing-
doing" gap through mutual bootstrapping between perception and reasoning during RL training,
while JARVIS-VLA (Li et al., 2025) achieves 40% improvement through Act from Visual Language
Post-Training.

Visual Description and Discrimination Tasks. Description-based discrimination aligns naturally
with undercover game mechanics. Menon & Vondrick (2022) introduce "classification by description"
using descriptive features rather than broad categories, providing inherent explainability for why
agents identify certain images as different. The odd-one-out paradigm directly maps to undercover
game structure: Chito et al. (2025) present DINO-based models for spatial and relational reasoning
across multiple views, while Mohammadi et al. (2020) develop weakly-supervised tasks showing
high correlation with abstract visual reasoning—providing foundations for identifying the different
image among a set.

Multi-Agent Communication in Vision-Language Tasks. Multi-agent visual communication
has seen significant progress. COMMA (Ossowski et al., 2024) presents the first comprehensive
benchmark for collaborative work among multimodal agents, featuring vision-language puzzles
requiring complementary information access. Qiu et al. (2022) model emergent communication
through sketching between neural agents, defining metrics for evaluating conventions applicable
to how agents develop shared description strategies. Visual referential games promote systematic
generalization: Denamganaï et al. (2023) investigate compositionality with the Obverter architecture,
while Lazaridou et al. (2018) show how referential games with pixel input enable linguistic communi-
cation emergence, providing theoretical foundations for VLMs learning to describe and discriminate
through game play.

Contrastive RLVR for VLM Post-Training. Recent work has explored contrastive RLVR as a
scalable paradigm for post-training VLMs using automatically constructed image sets. MiCo (Chen
et al., 2025b) is a representative example for multi-image reasoning: it constructs image triplets
consisting of two augmentations of the same image and a third, similar but different image, prompts
the VLM to produce chain-of-thought comparisons and a ternary same/different pattern, and uses
an automatically computed accuracy reward under Augmented-GRPO to strengthen fine-grained
multi-image comparison. ViCrit (Wang et al., 2025b) instead builds a caption-hallucination proxy
task: starting from paragraph-length human captions, it injects a single subtle visual error and
trains the VLM, via GRPO and an exact-match span reward, to localize the hallucinated phrase,
thereby improving visual perception and hallucination robustness with fully verifiable supervision.
GeometryZero (Wang et al., 2025c) introduces group-contrastive policy optimization for geometry
reasoning, contrasting auxiliary-construction trajectories within a group to decide when additional
constructions are beneficial. Vision-Zero is complementary to these contrastive RLVR approaches.
Its gamified setting turns generic unlabeled image pairs into a scalable training environment, beyond
the primarily perception- or comparison-oriented gains of prior contrastive RLVR tasks.

A.2 VISION-ZERO DESIGN DETAILS

Due to space limitations in the main text, this section elaborates on critical implementation details
that were previously omitted. We organize the discussion into three parts: (i) the prompt design used
during training, (ii) the construction pipeline of training data across domains, and (iii) the formal
description of the Iterative Self-Play Policy Optimization (Iterative-SPO) algorithm.

A.2.1 PROMPT SETTING

The training process simulates gameplay using a sequence of structured prompts, guiding the model
through two reasoning stages. We provide below the full prompts used for training on the CLEVR-
based visual reasoning task. These prompts are carefully engineered to enforce role-aware generation
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and role-consistent reasoning. The design enforces clear behavioral separation between SPY and
NOT SPY players, ensuring that the model learns to generate clues consistent with its assigned role
and to identify inconsistencies during inference.

For other domains, we adopt the same prompt structure with minimal domain-specific modifications:
Chart-based data: The Clue Stage prompt specifies that "two attributes in the chart have been
swapped" if the agent is a SPY. This models table-style manipulations in bar plots or pie charts;
Real-world image datasets: The SPY instruction is modified to indicate that “some objects or parts of
the scene differ” — a softer deviation that reflects the less controllable variation in natural scenes.

In actual training, prompts are dynamically composed. We implement a templating mechanism
where placeholder tokens (e.g., player_id, round_num) are automatically filled based on the synthetic
episode. Similarly, role-specific insertions (e.g., “You are the spy with the different picture”) are
programmatically inserted based on the assigned role. This enables batched multi-agent simulation
across thousands of games with minimal manual intervention, while still enforcing precise behavioral
roles.

CLUE STAGE PROMPT

You are PLAYER {player_id} of the game "Who is the spy?". This is ROUND {round_num}.
Your task is to describe your picture in one sentence, which can only be about the features of
objects and the relationship between objects.

Your role: SPY (you have the different picture)
Your role: NOT SPY (you have the same picture as most others)

Game Instructions:
• There are num_players players in total. Only one player sees a different picture, and the
pictures seen by all other players are the same.
• Player who are voted as the odd player will be severely punished, so you should convince
others that you are not the odd player.
• In the odd player’s picture, two objects are replaced with different ones, but they remain in the
same positions as in the original image.

You are the spy with the different picture. Two objects in your picture are different from what
others see, but they remain in the same positions as in the original image.

You are not the spy. Your picture is the same as most other players’ pictures.

What you should do:
1. Compare your picture with all previous clues to understand what others are seeing.
2. If you are NOT the spy: Describe a clear, specific feature of your picture that does not overlap
with previous clues. This will help establish what the "normal" picture looks like.
3. If you are the spy: Be strategic! You know your picture is different, so either:
- Describe features that are the same as others (if you can infer what they’re seeing)
- Describe features from your different picture in a way that doesn’t reveal the differences
- Focus on describing objects or aspects that might still be similar with what others see

Required output format:
First, conduct your private step-by-step reasoning — may include suspicions, probabilities,
deception, etc. Then, put your one-sentence description of your picture inside \boxed{}.
Example answer: \boxed{The cylinder is to the left of the cube}; \boxed{The yellow object is
the largest object}; \boxed{The red object is the smallest object}.

DECISION STAGE PROMPT

You are analyzing a game of "Who is the Spy?" where num_players players have just provided
clues about their pictures. Your task is to identify which player is the spy (the one with the
different picture) based on their clues.
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Game Setup:
• There are num_players players in total. Only one player sees a different picture (the spy), and
the pictures seen by all other players are the same.
• In the spy’s picture, two objects are replaced with different ones, but they remain in the same
positions as in the original image.
• Each player provided a clue trying to describe their picture while avoiding suspicion.
• The spy tries to blend in by giving clues that seem consistent with what others see.
• Non-spy players try to give distinctive clues that help identify the spy.

Your Task:
Analyze all the clues and determine which player is most likely the spy. Look for:
1. Clues that seem inconsistent with the majority
2. Clues that are deliberately vague or generic
3. Clues that might be trying to mislead others
4. Patterns that suggest deception or uncertainty
The image you see shows the ORIGINAL picture (what non-spy players see). Compare the
clues against this reference.

Required Output Format:
First, conduct your private step-by-step reasoning — may include suspicions, probabilities,
deception, etc. Then, put your final answer (PLAYER_NUMBER or N/A) inside \boxed{}. If
you are uncertain, you can answer N/A. Example answer: \boxed{1}; \boxed{2}; \boxed{3};
\boxed{N/A}.
All Clues from the Clue-giving Stage:

A.2.2 DATASET PREPARATION

CLEVR-based Data. CLEVR is a controlled synthetic environment expressly built to study visual
reasoning with minimal dataset bias and rich, program-level supervision. Its images are rendered
from complete scene graphs, and the benchmark has become a standard stress-test for multi-step
reasoning in vision-language systems (VQA/VLM). CLEVR scenes are procedurally sampled and
rendered with Blender in headless mode, emitting both images and a fixed-format JSON that records
each object’s attributes and pose; the official generator exposes a simple CLI that renders images
from the JSON scene specification. This design makes the pipeline lightweight and embarrassingly
parallel. The “CLEVR universe” fixes the attribute vocabulary up front. Shapes are from cube,
sphere, cylinder. Sizes are small, large. Materials are metal (shiny), rubber (matte). Colors come
from an eight-color palette—commonly enumerated as gray, red, blue, green, brown, purple, cyan,
yellow—and scenes are populated under simple geometric constraints (no interpenetration, all objects
at least partially visible; randomized camera and lighting). These choices simplify perception so
models’ performance reflects reasoning rather than recognition shortcuts.

We automatically render 2k training pairs with the CLEVR renderer. Each pair consists of an original
image and a modified image. Every image is accompanied by its scene JSON; the pair also carries a
compact change log (IDs of changed objects and their before/after attributes). For each scene, we
sample 4–6 objects with attributes drawn uniformly from the CLEVR spaces above, while enforcing
standard CLEVR placement rules (no overlap/interpenetration and sufficient margins so spatial
relations are unambiguous). Camera pose and lights are jittered per scene, following the official
generator’s practice of randomizing viewpoint and illumination. Given an original scene JSON, we
randomly select two objects and replace only their color and shape (leaving other attributes and the
global layout unchanged unless a minimal nudge is needed to maintain non-overlap). Concretely:

• Step 1: Generate original JSON and render.

• Step 2: Edit the JSON in place for two objects: shape ← new shape, color ← new color.

• Step 3: Re-render with Blender from the modified JSON to obtain the paired image.

CLEVR generation is stateless per scene and the official script supports GPU-accelerated Blender
rendering (CUDA flag) in batch mode, so we parallelize across processes. On a single NVIDIA A100,
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end-to-end rendering of the 2k pairs completes in roughly 6 hours in our environment, consistent
with the repo’s recommendation to invoke Blender headless with GPU enabled.

Chart-based Data. In our preliminary attempts to generate chart data, we explored direct editing of
chart images via NanoBanna and ChatGPT; however, we found this approach extremely challenging,
because current image editing models and tools struggle to reliably control fine-grained graphical
attributes (such as exact axis ticks, bar widths, label alignment, and consistent color scales) without
introducing visual artifacts or distortions (a known limitation of current image editing in diffusion/in-
painting frameworks) Therefore, to achieve stable, controllable editing and generation, we eventually
adopted the following pipeline:

• We let GPT-4o ingest the original chart image and output a JSON file encoding every
attribute’s numerical value (e.g. data points, axis bounds, legend mapping) as well as
auxiliary metadata (chart type, color scheme, layout constraints);

• We prompt GPT-4o to swap two attributes arbitrarily and rewrite the JSON accordingly;

• We feed the new JSON into a Python plotting module to render a new chart.

This paradigm is robust to typical failures of AI editors and fully leverages the strong captioning and
scene-parsing abilities of current multimodal LLMs.

For our dataset, we randomly sampled 1,000 original charts from ChartQA’s training set to ensure
visual and data diversity, so that derived pairs reflect ChartQA’s spectrum of chart styles and com-
plexity. ChartQA’s dataset spans three canonical chart types — line plots, bar charts, and pie charts —
capturing both simple and complex variants in real-world sources. Thanks to the fully automated
pipeline, the entire generative process incurs only on the order of tens of US dollars.

A.2.3 ITERATIVE-SPO ALGORITHM

In this section, we describe the algorithm of Iterative Self-Play Policy Optimization (Iterative-SPO)
algorithm, as detailed in Alg. 1. As mentioned in the main paper, Iterative-SPO achieves sustained
performance improvement by incorporating supervision signals into the self-play framework through
a two-stage alternating training procedure.

Algorithm 1 Iterative Self-Play Policy Optimization(Iterative-SPO)

Input: Role set K = {spy} ∪ {c1, . . . , cnc}; reference policies πspyref , π
civ
ref ; hyperparams β, λ, α, τclue, ρ,

τ↑
acc, τ

↑
err, τ

↑
na, τ

↓
na,Kmin, P ; learning rates ηθ, ηθ .

1: Init RAE bs←0, bciv←0; Stage switch metrics ¯acc←0, n̄a←0; Stage m←0 (Decision).
2: for t = 1, . . . , T do
3: if m = 1 then ▷ CLUE Stage
4: Each player gives clue uk ∼ πk

θ (· | Ik, h) based on the historical dialogue h and input picture Ik.
5: Obtain votes from the decision stage v = (vs, vc1 , . . . , vcnc

) and v̄c← 1
nc

∑nc
j=1 vcj .

6: Zero-Sum Rewards: rclues ←−β (vs− v̄c); rcluecj ←
β
nc

(vs− v̄c)−λ (vcj − v̄c) for j = 1, . . . , nc.
7: Role Advantage Estimation: bs←αbs + (1− α)rclues , bciv←αbciv + (1− α) 1

nc

∑
j r

clue
cj .

8: RAE-based Advantages: Aclue
s ←rclues − bs; Aclue

cj ←rcluecj − bciv for j = 1, . . . , nc.
9: else ▷ DECISION Stage

10: Each citizen casts vote ŝci ∼ qθ(· | H) based on the clue information H and the input image Ik.
11: Reward: rdecci ← 1ifŝci = s⋆(correct); rdecci ← −0.5if ŝci = ∅ (unsure); rdecci ← −1else (wrong).
12: Group-norm Advantage: Adec

ci = (rdecci − µr)/(σr + ε)

13: Policy update: Apply KL-regularized policy gradient as Eq. 3 or Eq. 6 to update πθ or qθ .
14:
15: Stage Switch: Calculate average prediction accuracy acct and “n/a” rate nat of players in the decision

stage within a batch round: acct = 1
B

∑
i 1[argmaxy qθ(y | Hi) = s⋆i ], nat =

1
B

∑
i qθ(∅ | Hi).

16: Update EMAs ¯acc←ρ ¯acc + (1− ρ) acct; n̄a←ρ n̄a + (1− ρ) nat, d← d+ 1.
17: if m = 0 and ¯acc≥τ↑

acc and n̄a≤τ↓
na and d≥Kmin then m←1, d←0 ;

18: if m = 1 and
(
1− ¯acc≥τ↑

err or n̄a≥τ↑
na

)
and d≥Kmin then m←0, d←0;

19: return θ, θ
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A.3 EXPERIMENTS SETTING

In this section, we provide a comprehensive account of the experimental settings used throughout
our study. We detail the choices for (1) models, datasets, and baselines, (2) training procedures and
hyperparameter configurations.

A.3.1 MODEL, DATASET AND BASELINES

Models. We evaluate three open-weight vision–language models. Qwen2.5-VL-7B-Instruct is a 7B
instruction-tuned VLM from the Qwen family; it upgrades the vision stack with a window-attention
ViT and SwiGLU/RMSNorm, and is designed for strong document/chart understanding, structured
JSON outputs, grounding, and even long-video/agentic use cases. InternVL3-8B is the 8B member of
the InternVL3 series that follows a “ViT-MLP-LLM” design by pairing an InternViT-300M vision
encoder with a Qwen2.5-7B language core via an MLP projector; it introduces Variable Visual
Position Encoding and native multimodal pre-training to improve multi-image/video perception and
OCR/chart/document reasoning. InternVL-14B is an earlier 14B vision-language foundation model
(224-px variant) trained on large-scale web corpora such as LAION, COYO, CC12M/CC3M, SBU,
and Wukong, and is commonly used for zero-shot classification, retrieval, and captioning baselines.

Datasets. We evaluate on a broad suite of public benchmarks. MathVista (Lu et al., 2024) combines
6,141 problems drawn from 28 existing multimodal math datasets plus three newly created sets
(IQTest, FunctionQA, PaperQA) to probe fine-grained visual–mathematical reasoning. MathVision
(MATH-V) (Wang et al., 2024b) curates 3,040 competition-grade problems with visual contexts across
16 disciplines and five difficulty levels for rigorous multimodal math assessment. We-Math (Qiao
et al., 2024) collects 6.5K visual math problems organized over 67 hierarchical knowledge concepts
to analyze LMM reasoning behaviors. MathVerse (Zhang et al., 2024b) offers 2,612 diagram-based
problems, each converted into six modality variants to stress-test vision vs. text contributions. Log-
icVista (Xiao et al., 2024) targets logical cognition in visual contexts with 448 multiple-choice
questions spanning five task types and nine capabilities, each paired with human rationales. Dy-
naMath (Zou et al., 2025) is a dynamic robustness benchmark that perturbs seed questions (e.g.,
values, function graphs) to test stability of visual math reasoning. ChartXIV (Wang et al., 2024d) is a
realistic chart understanding benchmark comprising 2,323 diverse charts from scientific papers with
both descriptive and reasoning questions that stress-test MLLMs beyond template-based chart QA.
FunctionQA (Lu et al., 2024) is a visual mathematical reasoning dataset focusing on algebraic rea-
soning over functional plots, requiring fine-grained interpretation of curves, variables, and equations.
PaperQA (Lu et al., 2024) is a scientific reasoning dataset built on academic paper figures, designed to
evaluate models’ ability to interpret complex visualizations and answer content-based questions about
scientific literature. ReachQA (He et al., 2025) is a synthesized chart reasoning dataset containing
3k reasoning-intensive charts and 20k Q&A pairs, constructed to enhance both chart recognition
and higher-level visual reasoning in MLLMs. RealWorldQA (Zhang et al., 2024c) (released with
Grok-1.5 Vision) contains 700+ real-scene images—many vehicle-captured—each with a question
and easily verifiable answer. MMVP (Zhang et al., 2024a) is built from “CLIP-blind” image pairs
to assess nine basic visual pattern failures via 300 VQA items. BLINK (Fu et al., 2024) recasts 14
core perception tasks into 3,807 multiple-choice questions that humans solve “within a blink” but
remain challenging for current MLLMs. MuirBench (Wang et al., 2024a) focuses on multi-image
understanding with 11,264 images and 2,600 MCQs across 12 tasks and 10 relation types, including
paired unanswerable variants for robustness.

Baselines. We benchmark against five recent multimodal reasoning baselines. R1-OneVision-
7B (Yang et al., 2025b) is a Qwen2.5-VL–based VLM trained on the R1-OneVision corpus with
a cross-modal reasoning pipeline that converts images into structured textual representations to
enable step-wise “R1-style” multimodal reasoning. MM-Eureka-Qwen-7B (Meng et al., 2025)
introduces the MMK12 dataset and employs rule-based reinforcement learning with online filtering
and a two-stage training strategy to stabilize multimodal math reasoning at the 7B scale. VLAA-
Thinker-7B (Zhou et al., 2025) is trained on VLAA-Thinking—a corpus of step-by-step visual
reasoning traces with both SFT and RL splits—used to probe SFT vs. RL for R1-like reasoning
and reporting SOTA on OpenCompass as of April 2025. OpenVLThinker-7B (Deng et al., 2025)
follows an iterative SFT→RL regimen (e.g., GRPO) that consistently improves performance on
MathVista/EMMA/HallusionBench, evidencing the synergy of SFT and RL for complex multimodal
reasoning. ViGaL (Snake+Rotation) (Xie et al., 2025) post-trains a 7B model purely via RL on
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simple arcade-style games (Snake and a 3D rotation puzzle), where combining the two games yields
stronger out-of-domain generalization (e.g., math, geometry) than either alone.

A.3.2 TRAINING AND HYPERPARAMETER SETTINGS

To facilitate stable and effective training, we selected VLM-R1 as the foundational model architecture
for the Vision-Zero framework, ensuring compatibility with established benchmarks. The detailed
hyperparameter configurations employed in our experiments are summarized in Tab. 5. Specifically,
all Vision-Zero models underwent training for 100 iterations across diverse datasets, followed by
rigorous evaluation of their post-training performance to measure generalization and robustness.

Table 5: Vision-Zero training hyperparameters.

Symbol Meaning Value

nc Number of civilians per round 4
β, λ Clue-stage reward scaling / clue regularization coefficients 0.1
α, ρ Decay coefficients for role advantage (α) and accuracy / “n/a” rates (ρ). 0.95
τdec, τclue KL regularization weights (decoder / clue) 0.04
τ↑
acc Stage-switch (up) threshold for accuracy 0.9
τ↑
err Stage-switch (up) threshold for error rate 0.4
τ↑
na Stage-switch (up) threshold for “n/a” rate 0.5
τ↓
na Stage-switch (down) threshold for “n/a” rate 0.1
Kmin Minimum number of rounds per stage 5
P Patience (number of rounds before forcing change) 20

# iterations Total training iterations 100
Batch size Training batch size 128

We utilized a training batch size of 128, precisely calculated as the product of nproc_per_node
(8), gradient_accumulation_steps (16), and num_generations (8). This carefully
chosen batch size aligns with standard VLM training paradigms, effectively ensuring stable opti-
mization dynamics. Moreover, our training setup is fully integrated with state-of-the-art optimization
techniques and libraries, including FlashAttention-2 and DeepSpeed ZeRO-3, maximizing training
efficiency and scalability while maintaining full methodological consistency with VLM-R1 standards.

torchrun --nproc_per_node="8" \
--nnodes="1" \
--node_rank="0" \
--master_addr="127.0.0.1" \
--master_port="12350" \
src/open_r1/grpo_jsonl.py \
--deepspeed local_scripts/zero3_model_parallel.json \
--output_dir $OUTPUT_BASE_DIR/$RUN_NAME \
--model_name_or_path Qwen/Qwen2.5-VL-7B-Instruct \
--dataset_name "dynamic_clevr_spotdiff" \
--use_dynamic_dataset \
--epoch_size $EPOCH_SIZE \
--data_generator_type clevr_spotdiff \
--clevr_images_dir $CLEVR_IMAGES_DIR \
--clevr_scenes_dir $CLEVR_SCENES_DIR \
--clevr_num_players $NUM_PLAYERS \
--clevr_num_rounds $NUM_ROUNDS \
--training_phase $TRAINING_PHASE \
--data_generator_seed 42 \
--max_anyres_num 6 \
--max_prompt_length 8000 \
--max_completion_length 512 \
--num_generations 8 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 16 \
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--logging_steps 1 \
--bf16 \
--torch_dtype bfloat16 \
--beta 0.04 \
--report_to wandb \
--gradient_checkpointing true \
--attn_implementation flash_attention_2 \
--num_train_epochs 15 \
--learning_rate 1e-5 \
--warmup_ratio 0.1 \
--lr_scheduler_type cosine \
--run_name $RUN_NAME \
--save_steps 5 \
--save_only_model true \
--reward_funcs clevr_clue_format_with_votes clevr_decision_accuracy \
--dispatch_batches False \
--val_split_ratio 0.0 \
--num_iterations 1

A.3.3 TRAINING COST ESTIMATION OF BASELINES

Here we report how the label cost and training time cost were estimated in Tab.3 of the main text.

Label cost (tokens). For label cost, we count tokens generated by teacher or judging LLMs during
data curation. For R1-OneVision, VLAA-Thinker, OpenVLThinker and MM-Eureka we directly
reuse the token counts reported in Perception-R1 (Xiao et al., 2025). All token counts are recomputed
using the Qwen2.5 tokenizer for consistency. For ViGaL, it collects trajectories in game environments
and calls GPT-4o only once to draft static reasoning instructions shared across all samples, so we set
its label cost to zero. Vision-Zero uses fully CLEVR scenes with rule-based rewards and does not
invoke any external LLM during data construction, thus its label cost is zero.

RL Training time cost (GPU-hours). All compared methods use GRPO-style RL, so we approxi-
mate their RL compute with a unified per-sample cost. From Perception-R1 we know that RL training
on ≈ 1.4K distinct samples for 25 epochs (about 3.5 × 104 RL samples in total) consumes 167.4
A100-hours after accounting for judge utilization. This gives an average cost

c ≈ 167.4

3.5× 104
≈ 4.8× 10−3 A100-hours per RL sample. (11)

For each baseline, we extract from the original paper the number of distinct RL examples and epochs,
compute the total number of RL training samples NRL, and estimate its RL cost as

T ≈ c ·NRL. (12)

When the epoch count is not reported, we conservatively assume one epoch, so the reported GPU-
hours are lower bounds. For VisionZero-Qwen-7B (CLEVR), instead of using the above approxima-
tion we directly measure the wall-clock RL training time on 8×A100-80G GPUs.

A.4 SUPPLEMENTARY EXPERIMENTAL RESULTS

A.4.1 COMPREHENSIVE EVALUATION ON CHART/OCR TASKS

While we partially presented Vision-Zero’s results on selected chart and OCR tasks in the main text,
Tab. 9 illustrates a comprehensive evaluation across an extended set of tasks. Notably, VisionZero-
Qwen-7B consistently surpasses baseline methods across diverse OCR and chart-based tasks. Par-
ticularly, VisionZero-Qwen-7B (Chart) exhibits superior performance and significant capability
enhancement due to its targeted training on chart datasets. For example, on the InfoVQA benchmark,
VisionZero-Qwen-7B (Chart) improved the performance of the original model by approximately
4%, outperforming the state-of-the-art ViGal by 14%. This substantial improvement arises because
baselines trained extensively on reasoning datasets typically suffer from task overfitting, whereas
Vision-Zero circumvents this limitation by concurrently fostering multiple capabilities.
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Table 6: Performance comparison between Vision-Zero and other models on OCR, Chart, and
Document Understanding. All models are evaluated using the open-source platform VLMEvalKit.

Model AI2D ChartQA TextVQA DocVQA InfoVQA OCR Bench SEEDBench2

Proprietary Model
GPT4o 84.4 85.7 82.2 91.1 78.2 73.9 72.0

Performance on Qwen2.5-VL-7B
Qwen2.5-VL-7B-Instruct 84.7 86.1 85.5 94.8 82.3 88.3 70.4
R1-OneVision-7B 82.2 – – – – 81.0 66.4
MM-Eureka-Qwen-7B 84.1 77.3 81.1 81.1 71.7 86.7 68.2
VLAA-Thinker-7B 84.0 84.3 82.9 92.7 71.8 86.9 67.4
OpenVLThinker-7B 81.8 – – – – 83.3 68.0
ViGaL-Snake+Rotation 84.5 79.9 82.2 92.5 72.7 86.8 69.1
VisionZero-Qwen-7B (CLEVR) 84.5 86.3 85.3 94.9 82.5 88.1 69.5
VisionZero-Qwen-7B (Chart) 85.8 87.2 86.4 95.9 86.5 89.0 70.9
VisionZero-Qwen-7B (Real-World) 84.8 86.3 85.4 95.2 82.3 88.5 69.8

A.4.2 COMPREHENSIVE EVALUATION ON VISION-CENTRIC TASKS

Moreover, as shown is Tab. 7, Vision-Zero achieves top-tier performance across six distinct vision-
centric task groups. VisionZero-Qwen-7B (CLEVR), whose training data has stronger visual emphasis
compared to VisionZero-Qwen-7B (Chart), obtains even better results. Specifically, VisionZero-
Qwen-7B (CLEVR) surpasses state-of-the-art baselines by 1.1% on average across the six task
categories. These results underscore the potential and applicability of Vision-Zero as the first
zero-human-in-the-loop training paradigm.

Table 7: Performance comparison between Vision-Zero and other state-of-the-art models on Vision-
Centric benchmarks. All models are evaluated using the open-source platform VLMEvalKit.

Model RealworldQA MMVP MMStar BLINK MuirBench CRPE Avg.

Proprietary Model
GPT4o 75.4 86.3 – 68.0 68.0 – –

Performance on Qwen2.5-VL-7B
Qwen2.5-VL-7B-Instruct 68.1 76.8 64.6 55.2 58.2 76.4 66.6
R1-OneVision-7B 58.0 61.3 57.8 48.7 46.3 75.3 57.9
MM-Eureka-Qwen-7B 66.1 74.3 65.9 54.0 61.1 76.7 66.4
VLAA-Thinker-7B 65.4 71.6 60.4 53.0 57.1 74.6 63.7
OpenVLThinker-7B 60.2 71.3 59.1 49.9 52.8 75.8 61.5
ViGaL-Snake+Rotation 66.5 74.6 62.6 55.6 57.9 76.7 65.7
VisionZero-Qwen-7B (CLEVR) 68.5 79.2 65.2 57.2 59.4 76.9 67.7
VisionZero-Qwen-7B (Chart) 68.2 77.9 64.7 56.1 58.6 76.2 66.9
VisionZero-Qwen-7B (Real-World) 68.5 79.5 65.8 57.5 59.8 77.0 68.0

A.4.3 COMPARISON WITH CONTRASTIVE RLVR

To evaluate the advantages of Vision-Zero over prior contrastive RLVR methods in enhancing VLM
reasoning capabilities, we conducted a direct comparison under identical training conditions with
MiCo (Chen et al., 2025b).

Specifically, to align with the MiCo-7B setup, we trained Vision-Zero on the OmniEdit dataset using
the Qwen2.5-VL-7B model for 100 iterations with a batch size of 128. In contrast, MiCo-7B was
trained for 600 iterations with the same batch size. Although Vision-Zero adopts a multi-round
training paradigm, its overall training cost remains comparable. As shown in Tab. 8, we evaluated
Vision-Zero’s reasoning performance on six benchmark datasets consistent with those used for
MiCo-7B, with MiCo’s results taken directly from its original paper.
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Table 8: Performance Comparison of Qwen2.5VL-7B and MiCo-7B across multiple benchmarks.

Model MuirBench Blink Hallusion MMStar MMMU MathVista

Qwen2.5VL-7B 58.4 55.5 69.5 64.1 54.1 67.1
MiCo-7B 60.5 57.2 69.6 65.6 54.8 67.9
VisionZero-Qwen-7B(OminiEdit) 62.4 58.9 71.2 66.2 55.7 69.1

The results demonstrate that, whereas MiCo is primarily optimized for multi-image difference
reasoning, Vision-Zero benefits from a strategically constructed training environment that better
targets the development of reasoning skills. As a result, Vision-Zero consistently outperforms MiCo
across all six general reasoning benchmarks. This indicates that the combination of a self-play game
mechanism and a strategic interaction environment enables Vision-Zero to equip the model with
significantly stronger general-purpose reasoning capabilities than contrastive RLVR approaches.

A.4.4 COMPARISON WITH CHART-SPECIALIZED MODELS

To thoroughly evaluate whether Vision-Zero can enhance a model’s chart understanding capabilities
and establish its superiority in the chart reasoning domain, we conduct a dedicated comparison
against models specifically fine-tuned for chart understanding, including ECD (Yang et al., 2025a),
Bespoke-MiniChart-7B (Tang et al., 2025) and Chart-R1-7B (–, 2025). We compare the number of
chart images, the number of QA annotations used for training, and the final performance on standard
chart understanding benchmarks.

Table 9: Performance Comparison of VisionZero-Qwen-7B(chart) and chart-specialized models
across multiple benchmarks.

Model Chart Number QA Number ChartXiv_RQ ReachQA Avg.

Qwen2.5VL-7b - - 42.5 50.8 46.7
ECD-Qwen2.5VL-7b 10.5k 320k 40.2 53.5 46.9
Bespoke-MiniChart 13.0k 91k 46.2 54.0 50.1
Chart-R1-7B 21.9k 32.7k 46.2 - -
VisionZero-Qwen-7B(chart) 2.0k 0 46.6 53.8 50.2

As shown in the Tab. 9, VisionZero-Qwen-7B (Chart) achieves comparable or superior performance
to models trained on large-scale chart-specific data—without requiring any QA supervision. Notably,
on ChartXIV_QA, VisionZero-Qwen-7B delivers a 4.1% improvement, surpassing models that were
explicitly trained on chart datasets. These results highlight Vision-Zero’s ability to generalize across
domains and demonstrate its potential as a cost-effective and competitive training framework for
enhancing model performance in diverse visual reasoning tasks.

A.4.5 COMPARISON OF COTS ON GENERAL QA TASK BEFORE AND AFTER TRAINING.

To intuitively demonstrate how the "Who is Spy" game enhances model performance on general QA
tasks, we present illustrative examples comparing model thinking before and after training on identical
general QA tasks. As shown in the boxes below, the trained model clearly demonstrates improved
thought processes and logical reasoning, explicitly understanding the steps required. Additionally, it
more accurately focuses on critical information in images, exhibiting enhanced key content-capturing
abilities, directly leading to more accurate responses.

This improvement arises from two primary factors: first, the capabilities required by the "Who is Spy"
game closely overlap with those needed for general QA tasks. For instance, during the clue-giving
stage, the model must identify differences between images and text, directly training fine-grained
visual comparison and comprehension skills. Second, the strategic and challenging environment of
the "Who is Spy" game encourages models to cultivate meticulous reasoning and logical thinking
habits during responses, further contributing to improved performance in general QA tasks.
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Example1: Comparison of CoTs Before and After Training

Question: How many countries have people working for more than 35 hours over the years?

Untrained Model: The graph compares the average usual weekly hours worked by women over the age
of 15 across three countries (Romania, Portugal, and Switzerland) from 1995 to 2007. Each country is
represented by a different colored line: Romania is blue, Portugal is orange, and Switzerland is dark blue.
From 1995 to 2007, the line representing Romania (blue) is consistently above the 35-hour mark on the
y-axis, which measures average usual weekly hours. The lines for Portugal and Switzerland are below
the 35-hour mark throughout this period. Thus, only one country, Romania, shows average weekly hours
worked exceeding 35 hours over the entire period displayed.

Trained Model: To determine how many countries have people working for more than 35 hours on average
weekly over the years from 1995 to 2007, let’s analyze the data shown in the graph step by step:
1. **Identify the countries represented:** - Romania (in blue) - Portugal (in orange) - Switzerland (in light
blue)
2. **Analyze the hours worked for each country:** - **Romania:** The blue line representing Romania
shows that the average usual weekly hours worked remain consistently above 35 hours throughout the
entire period from 1995 to 2007. - **Portugal:** The orange line representing Portugal shows that the
average usual weekly hours worked also remain consistently above 35 hours over the same period. -
**Switzerland:** The light blue line representing Switzerland shows that the average usual weekly hours
worked remain consistently below 35 hours over the entire period.
3. **Determine the countries with averages above 35 hours:** - From the above analysis, Romania and
Portugal have average usual weekly hours worked consistently above 35 hours. - Switzerland has average
usual weekly hours worked consistently below 35 hours.
Therefore, the number of countries with people working for more than 35 hours on average weekly over
the years is **2**.

Example2: Comparison of CoTs Before and After Training

Question: How many bricks are missing in the wall?

Untrained Model: To determine how many bricks are missing in the wall, we need to count the number of
bricks that are not present in the wall structure. Let’s analyze the image step by step.
1. **Identify the pattern of the missing bricks:** - The missing bricks form a zigzag pattern from the top
left to the bottom right of the wall.
2. **Count the missing bricks in each row:** - **Top row:** 1 brick is missing. - **Second row:**
2 bricks are missing. - **Third row:** 3 bricks are missing. - **Fourth row:** 2 bricks are missing. -
**Bottom row:** 1 brick is missing.
3. **Sum the number of missing bricks:** - Add the number of missing bricks from each row: 1 + 2 + 3 +
2 + 1 = 9 Therefore, the total number of bricks missing in the wall is 9.

Trained Model: To find out how many bricks are missing in the wall, we need to count the voids where
bricks should be but aren’t.
1. Count the missing bricks in the top row: 1 brick. 2. Count the missing bricks in the second row: 2 bricks.
3. Count the missing bricks in the third row: 2 bricks. 4. Count the missing bricks in the fourth row: 1
brick.
Adding these up, we get a total of 1 + 2 + 2 + 1 = 6 bricks missing.
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A.4.6 STABILITY ANALYSIS OF EDITOR CAPABILITIES

To assess whether Vision-Zero heavily depends on high-performance image editors, we introduced
20% noise into the RealWorld dataset to simulate scenarios of partial editing failures. Specifically,
we replaced 10% of the modified images (provided to the spy) with blank images and another 10%
with images identical to the originals (provided to civilians). We then trained the model on this noisy
dataset and evaluated its performance on the validation set.

The experimental results, summarized in the Tab. 10, indicate that Vision-Zero maintains performance
improvements even with partially failed edits. Although the improvement is slightly lower compared
to training without noise, the model still achieves an average accuracy increase of 2.8% over the
baseline. This demonstrates Vision-Zero’s strong robustness to editing failures, highlighting that it
can enhance model performance without relying heavily on sophisticated image editors.

Table 10: Performance of the model trained on dataset containing images that failed to be edited.

Model Mathvista MathVison WeMath MathVerse LogicVista DynaMath Avg.

Qwen2.5VL-7b 68.2 25.4 36.1 49.0 47.2 20.9 41.1
VisionZero-Qwen-7B (Real-World) 72.4 28.0 39.5 52.2 50.3 22.1 44.1

VisionZero-Qwen-7B (Real-World+Noise) 72.2 27.5 39.2 52.4 50.1 21.9 43.9

We also present the model’s responses to failed image edits (when the spy input is a blank image)
in the block below. It can be observed that even when faced with failed edits, the model continues
to reason effectively, leveraging alternative available information to maximize rewards. Thus, even
image pairs resulting from unsuccessful edits remain valuable training samples for the model.

Example3: Reasoning of the model when editing failure (the spy obtained a blank image)

Civ1: The red cube is in front of the purple cylinder.
Civ2: There are two small cubes, one blue and one purple, near the purple cylinder and the red cube.
Civ3: The purple cylinder is behind the red cube and the two small cubes.

Spy: - **Player 1’s clue**: The red cube is in front of the purple cylinder. - **Player 2’s clue**: There
are two small cubes, one blue and one purple, near the purple cylinder and the red cube. - **Player 3’s
clue**: The purple cylinder is behind the red cube and the two small cubes.
Given that I am the SPY, my image has two different objects from the others, but their positions remain the
same. Based on the clues:
- The common elements seem to be: - A red cube - A purple cylinder - A blue small cube - A purple small
cube
- My differences could be: - The color or shape of one of the small cubes (blue or purple) - Possibly the
position or size, but as per rules, only color and specific features should be described.
Since descriptions so far mention color and proximity, I should maintain consistency and describe features
that align with their clues to avoid suspicion.
Description: The red cube is in front of the purple cylinder and the two small cubes.

A.4.7 PARAMETER AND MODULE ABLATION

In this section, we conduct ablation studies on the key parameters introduced in Vision-Zero, including
the number of civilian players, the number of clue rounds, and the Role-Advantage Estimation (RAE)
module, to analyze the robustness of Vision-Zero and the contribution of each component.

We first evaluate whether Vision-Zero can improve model performance under different numbers of
players. We train models with 2, 3, and 4 civilian players (with the spy always fixed to one) and
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report the results in the Tab. 11. Vision-Zero consistently improves model performance across all
player settings, demonstrating its robustness to variations in player count. As the number of players
increases, the game environment becomes more challenging, resulting in more reasoning steps and
reward signals per sample, thus yielding greater performance gains. Even in the minimal two-player
setting, the model still achieves an average improvement of 1.3% across six benchmarks.

Table 11: Performance of the model under different numbers of players.

Model Mathvista MathVison WeMath MathVerse LogicVista DynaMath Avg.

Qwen2.5VL-7b 68.2 25.4 36.1 49.0 47.2 20.9 41.1
VisionZero-Qwen-7B (CLEVER Civ=2) 69.7 26.5 37.2 50.6 48.9 21.2 42.4
VisionZero-Qwen-7B (CLEVER Civ=3) 72.6 28.1 39.8 51.9 50.1 22.3 44.1
VisionZero-Qwen-7B (CLEVER Civ=4) 73.2 28.0 40.0 52.1 51.8 24.1 44.9

We also examine the effect of varying the number of clue rounds in each game by training models
with 1, 2, and 3 clue rounds. As shown in the Tab. 12, the performance gain is small when only a
single clue round is used, due to insufficient information available for the decision stage and limited
opportunities for multi-step integration during training. In contrast, using two or three clue rounds
leads to notable improvements, achieving average gains of 3% and 4.1% across six benchmarks. As
the number of clue rounds increases, the model is required to process and integrate more information,
resulting in progressively stronger performance.

Table 12: Performance of the model under different round numbers of clue stage.

Model Mathvista MathVison WeMath MathVerse LogicVista DynaMath Avg.

Qwen2.5VL-7b 68.2 25.4 36.1 49.0 47.2 20.9 41.1
VisionZero-Qwen-7B (CLEVER Clue_Rd = 1) 68.0 26.5 36.5 48.2 47.2 21.2 41.3
VisionZero-Qwen-7B (CLEVER Clue_Rd = 2) 72.6 28.1 39.8 51.9 50.1 22.3 44.1
VisionZero-Qwen-7B (CLEVER Clue_Rd = 3) 73.1 29.0 40.5 52.2 52.0 24.3 45.2

To assess the importance of the RAE module, we compare models trained with and without RAE.
In the no-RAE setting, we update the model weights directly based on the reward after the clue
stage without subtracting the role-advantage baseline. The results in the Tab. 13 show that removing
RAE leads to negative performance gains. This occurs because spies and civilians inherently
possess asymmetric information due to differences in their assigned images and roles. As a result,
the game can be intrinsically easier or harder depending on the role. Without adjusting for role
advantages, directly backpropagating rewards based on win/loss signals fails to reflect the model’s
true performance level, preventing effective learning. These findings highlight the critical importance
of the RAE module in Vision-Zero.

Table 13: Performance of the model under w/ and w/o RAE module.

Model Mathvista MathVison WeMath MathVerse LogicVista DynaMath Avg.

Qwen2.5VL-7b 68.2 25.4 36.1 49.0 47.2 20.9 41.1
VisionZero-Qwen-7B (CLEVER w/ RAE) 72.6 28.1 39.8 51.9 50.1 22.3 44.1
VisionZero-Qwen-7B (CLEVER w/o RAE) 65.2 21.3 30.1 47.2 44.3 16.1 37.4

A.5 LIMITATION AND FUTURE WORK

In this section, we discuss potential limitations of Vision-Zero and outline directions for future
research. Firstly, the implementation of Vision-Zero relies on image editors to produce differentiated
image pairs. Consequently, its application might be limited in highly specialized or resource-
constrained domains, such as medical imaging, scientific charts, and remote sensing, where such
edited data might not be readily available. Secondly, the current framework is designed around
single-image observations and pairwise edits. Extending this framework to richer modalities, includ-
ing extended videos, complex multi-image contexts, or interactive 3D environments, may require
significant redesign of the game mechanics and training algorithms. Addressing these limitations
constitutes an essential direction for future work.
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A.6 THE USE OF LARGE LANGUAGE MODELS

In this work, we used ChatGPT-4o (OpenAI) and Gemini 2.5 Flash (Google) to assist with image
generation for dataset construction. Specifically, the models were prompted to edite visual content
used in training datasets. We gratefully acknowledge their utility in facilitating efficient data synthesis.
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