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Abstract
We introduce a framework for designing efficient
diffusion models for d-dimensional symmetric-
space Riemannian manifolds, including the torus,
sphere, special orthogonal group and unitary
group. Existing manifold diffusion models often
depend on heat kernels, which lack closed-form
expressions and require either d gradient evalua-
tions or exponential-in-d arithmetic operations per
training step. We introduce a new diffusion model
for symmetric manifolds with a spatially-varying
covariance, allowing us to leverage a projection
of Euclidean Brownian motion to bypass heat ker-
nel computations. Our training algorithm mini-
mizes a novel efficient objective derived via Ito’s
Lemma, allowing each step to run in O(1) gradi-
ent evaluations and nearly-linear-in-d (O(d1.19))
arithmetic operations, reducing the gap between
diffusions on symmetric manifolds and Euclidean
space. Manifold symmetries ensure the diffusion
satisfies an “average-case” Lipschitz condition,
enabling accurate and efficient sample generation.
Empirically, our model outperforms prior meth-
ods in training speed and improves sample quality
on synthetic datasets on the torus, special orthog-
onal group, and unitary group.

1. Introduction
Recently, denoising diffusion-based methods have achieved
significant success in generating synthetic data, including
highly realistic images and videos (OpenAI, 2023). Given a
datasetD sampled from an unknown probability distribution
π, a diffusion generative model aims to learn a distribution
ν that approximates π and generates new samples from ν.
While most diffusion models operate in Euclidean space Rd
(Ho et al., 2020; Rombach et al., 2022), several applications
require data constrained to a d-dimensional non-Euclidean
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manifold M, such as robotics (Feiten et al., 2013), drug
discovery (Cheng et al., 2021), and quantum physics (Cran-
mer et al., 2023), where configurations are often represented
on symmetric-space manifolds like the torus, sphere, spe-
cial orthogonal group SO(n), or unitary group U(n) where
d ≈ n2. A common approach enforces manifold constraints
by mapping samples from Euclidean space Rd to M, but
this often degrades sample quality due to distortions intro-
duced by the mapping (see Appendix D for details).

To address this, several works have developed diffusion
models constrained to non-Euclidean Riemannian manifolds
(De Bortoli et al., 2022; Huang et al., 2022; Lou et al., 2024;
Zhu et al., 2025; Yim et al., 2023). However, a significant
gap remains between the runtime and sampling guarantees
of Euclidean and manifold-based diffusion models. For in-
stance, while Euclidean models have a per-iteration runtime
of O(d) arithmetic operations and O(1) evaluations of the
model’s gradient, objectives of manifold diffusion models
often require exponential-in-d arithmetic operations, or eval-
uating Riemannian divergence operators which requireO(d)
gradient evaluations. Reducing this gap, particularly for
symmetric manifolds, remains an open challenge.

To understand the technical difficulty, first consider the Eu-
clidean case. A diffusion model consists of two components:
a forward process that adds noise over time T > 0 until
the data is nearly Gaussian, and a reverse process that starts
from a Gaussian sample and gradually removes the noise
to generate samples approximating the original distribution
π. A discrete-time Gaussian latent variable model is used to
approximate the reverse diffusion. In the manifold case, the
forward process corresponds to standard Brownian motion
on the manifold, and the reverse diffusion is its time-reversal.
However, Gaussians are not generally defined on manifolds.
To address this, previous works move to continuous time,
where infinitesimal updates converge to a Gaussian on the
tangent space. The reverse diffusion is then governed by a
stochastic differential equation (SDE) involving the mani-
fold’s heat kernel. The heat kernel pτ |b(·|b) represents the
density of Brownian motion at time τ , initialized at a point
b. Training the reverse diffusion model thus requires mini-
mizing an objective function dependent on the heat kernel.

Even in the Euclidean case, the training objective is non-
convex, and there are no polynomial-in-dimension runtime
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guarantees for the overall training process. However, the
closed-form expression of the Euclidean heat kernel allows
each training iteration to run in O(d) arithmetic operations
with O(1) gradient evaluations. For non-Euclidean mani-
folds, the lack of a closed-form heat kernel is a major bottle-
neck. On symmetric manifolds like orthogonal and unitary
groups, it can only be computed via inefficient series ex-
pansions requiring exponential-in-d runtimes. Alternatively,
training with an implicit score matching (ISM) objective re-
quires evaluating a Riemannian divergence, incurring O(d)
gradient evaluations per iteration. Due to these challenges,
approximations are often used, degrading sample quality.
Moreover, on manifolds with nonzero curvature, such as
orthogonal and unitary groups, standard Brownian motion
cannot be obtained via any projection from Rd. As a result,
prior works rely on numerical SDE or ODE solvers to sam-
ple the forward diffusion at each evaluation of the training
objective, introducing significant computational overhead.

In addition to denoising diffusions, several other generative
models on manifolds leverage probability flows, including
Moser flows (Rozen et al., 2021) and Riemannian normaliz-
ing flows (Mathieu & Nickel, 2020; Ben-Hamu et al., 2022).
More recent approaches include flow matching (Chen et al.,
2024) and mixture models of Riemannian bridge processes
(Jo & Hwang, 2024). These models often achieve sample
quality comparable to denoising diffusion models on mani-
folds but frequently face similar computational bottlenecks.

Our contributions. We study the problem of designing
efficient diffusion models when M is a symmetric-space
manifold, such as the torus Td, sphere Sd, special orthogo-
nal group SO(n), and unitary group U(n), where d ≈ n2,
as well as direct products of these manifolds, such as the
special Euclidean group SE(n) ∼= Rn×SO(n). We present
a new training algorithm (Algorithm 1) for these manifolds,
achieving per-iteration runtimes of O(d) arithmetic oper-
ations for Td and Sd, and O(d

ω
2 ) ≈ O(d1.19) for SO(n)

and U(n), where ω ≈ 2.37 is the matrix multiplication
exponent. Each iteration requires only O(1) gradient evalu-
ations of a model for the drift and covariance terms of the
reverse process. This significantly improves on previous
methods (see Table 1). For SO(n) and U(n), our approach
reduces gradient evaluations by a factor of d and achieves
an exponential-in-d improvement in arithmetic operations,
bringing runtime closer to the Euclidean case. We also pro-
vide a sampling algorithm (Algorithm 2) with guarantees on
accuracy and runtime. Given an ε-minimizer of our training
objective, the algorithm attains an ε × poly(d) bound on
total variation distance accuracy in poly(d) runtime (The-
orem 2.2), improving on the sampling accuracy bounds
of (De Bortoli et al., 2022), which are not polynomial in
d. Theorem 2.2 holds for general manifolds satisfying an
average-case Lipschitz condition (Assumption 2.1). Us-
ing techniques from random matrix theory, we prove this

condition holds for the manifolds of interest (Lemma B.4).

Our paper introduces several new ideas. For our training
result: (i) We define a novel diffusion on M. Unlike pre-
vious works, our diffusion incorporates a spatially varying
covariance term to account for the manifold’s nonzero cur-
vature. As a result, our forward diffusion can be computed
as a projection φ of Brownian motion in Rd onto M, which
can be efficiently computed via singular value decompo-
sition when M is SO(n) or U(n). This enables efficient
sampling from our forward diffusion in a simulation-free
manner—without SDE or ODE solvers—by directly sam-
pling from a Gaussian in Rd and projecting onto M. (ii) We
introduce a new training objective that bypasses the need
to compute the manifold’s heat kernel. By applying Itô’s
Lemma from stochastic calculus, we project the SDE for
a reverse diffusion in Euclidean space onto M. The drift
term of the resulting SDE is an expectation of the Euclidean
heat kernel. Since the Euclidean kernel has a closed-form
expression and the projection φ can be computed efficiently,
we evaluate the objective in time O(d

ω
2 ). (iii) While our

covariance term is a d× d matrix, we show that its structure,
arising from manifold symmetries, allows it to be computed
in time O(d

ω
2 )—sublinear in its d2 entries.

For the sampling result, we show that the reverse SDE on the
manifold M is deterministically Lipschitz, provided the pro-
jection map satisfies our average-case Lipschitz condition
(Lemma B.4). Since the projection introduces a spatially
varying covariance in the SDE on M, prior techniques based
on Girsanov’s theorem cannot be used to bound accuracy.
To address this, we develop an optimal transport-based ap-
proach, leading to a novel probabilistic coupling argument
that establishes the desired accuracy and runtime bounds.
This approach differs fundamentally from previous proofs
in Euclidean space (Chen et al., 2023b;a; Cheng et al., 2022;
Benton et al., 2024) and manifold-based diffusion models
(De Bortoli et al., 2022), which rely on Girsanov’s theorem.

Empirically, our model trains significantly faster per iter-
ation than previous manifold diffusion models on SO(n)
and U(n), staying within a factor of 3 of Euclidean diffu-
sion models even in high dimensions (d > 1000) (Table
3). Moreover, our model improves the quality of generated
samples compared to previous diffusion models, achiev-
ing improved C2ST and likelihood scores and visual qual-
ity when trained on various synthetic datasets on wrapped
Gaussian (mixture) models and quantum evolution opera-
tors constrained to the torus, SO(n), and U(n) (Table 2 and
Figure 1). The magnitude of the improvements in runtime
and sample quality increases with dimension.

Thus, our results reduce the gap in training runtime and sam-
ple quality between diffusion models on symmetric mani-
folds and Euclidean space, contributing towards the goal of
developing efficient diffusion models on constrained spaces.
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2. Results
We begin by describing the geometric setup, projection
framework, and key assumptions used in our training
and sampling algorithms. Notation is summarized in Ap-
pendix G, and relevant background on Riemannian geometry
and manifold diffusions is provided in Appendix H.

2.1. Problem setup and projection framework

For a manifold M, we are given a projection map φ ≡
φM : Rd → M from a Euclidean space Rd of di-
mension d = O(dim(M)), and a restricted-inverse map
ψ ≡ ψM : M → Rd such that φ(ψ(x)) = x for all
x ∈ M. We sometimes abuse notation and refer to the
manifold’s dimension as d rather than “O(d)”, as this does
not change our runtime and accuracy guarantees beyond a
small constant factor. Denote by TxM the tangent space
of M at x. For our sampling algorithm (Algorithm 2), we
assume access to the exponential map exp(x, v) on M for
any x ∈ M and v ∈ TxM. In the setting where M is a
symmetric space, there are closed-form expressions which
allow one to efficiently and accurately compute the expo-
nential map. For instance, on SO(n) or U(n), the geodesic
is given by the matrix exponential and can be computed in
O(nω) = O(d

ω
2 ) ≈ O(n1.19) arithmetic operations. We

are also given a dataset D ⊆ M sampled from π with sup-
port on M. These projection maps are efficient to compute
and will be used throughout our framework for both training
and sampling on M.

We set φ : Rd → Rd and ψ : Rd → Rd as identity maps
when M = Rd. For the torus Td, φ(x)[i] = x[i] mod 2π
maps points to their angles, and ψ is its inverse on [0, 2π)d.
For the sphere Sd, φ(x) = x

∥x∥ , and ψ embeds the unit
sphere into Rd. For the unitary group U(n) (and special
orthogonal group SO(n)), we first define a map φ̂ which
takes each upper triangular matrix X ∈ Cn×n (or X ∈
Rn×n), computes the spectral decomposition U∗ΛU of X+
X∗, and outputs φ̂(X) = U . The spectral decomposition is
unique only up to multiplication of each eigenvector uj by
a root of unity eiϕj , where the phases (ϕ1, · · · , ϕn) lie on
the n-dimensional torus Tn (or, in the real case, a subset of
the torus). Thus, we define the projection map φ : Cn×n ×
Rn → M to be the concatenated map φ = (φ̂, φTn

) where
φTn

is the map defined above for the torus. The restricted-
inverse map ψ takes each matrix U ∈ M, computes U∗ΛU
where Λ = 1

ndiag(n, n− 1, . . . , 1), scales the diagonal by
1
2 , and outputs the upper triangular entries of the result. For
all of the above maps, ψ(M) is contained in a ball of radius
poly(d). Our general results hold under this assumption
on ψ. For manifolds M = M1 × M2, which are direct
products of manifolds M1 and M2, where one is given
maps φ1, ψ1 for M1 and φ2, ψ2 for M2, one can use the
concatenated maps φ = (φ1, φ2) and ψ = (ψ1, ψ2).

2.2. Training algorithm and runtime analysis

We now describe our training procedure and its computa-
tional benefits for symmetric manifolds.

Training. We give an algorithm (Algorithm 1) that mini-
mizes a nonconvex objective function via stochastic gradient
descent. This algorithm outputs trained models f(x, t) and
g(x, t) for the drift and covariance terms of our reverse dif-
fusion, and passes these trained models as inputs to our
sample generation algorithm (Algorithm 2). We show that
the time per iteration of Algorithm 1 is dominated by the
computation of the objective function gradient (Lines 12 and
14 in Algorithm 1), which requires calculating the gradient
of the projection map ∇φ as well as the model gradients
∇θf and ∇ϕg, where θ and ϕ are the model parameters of
f and g. When M is one of the aforementioned symmetric
manifolds, ∇φ can be computed at each iteration within
error δ in O(nω log( 1δ )) = O(dω/2 log( 1δ )) arithmetic oper-
ations in the case of the special orthogonal group SO(n) or
unitary group U(n), using the singular value decomposition
of an n × n matrix, or in O(d log( 1δ )) operations for the
sphere or torus. See Section 3.1 and Appendix E for details.

This significantly improves the per-iteration runtime of train-
ing diffusion models on symmetric manifolds (Table 1). For
instance, it achieves exponential-in-d savings in arithmetic
operations compared to Riemannian Score-based Genera-
tive Models (RSGM) (De Bortoli et al., 2022), as RSGM
requires summing Ω(2d) terms in truncated heat kernel ex-
pansions for manifolds like the torus, sphere, orthogonal, or
unitary groups, while our approach avoids this complexity.
If RSGM is instead trained with an implicit score matching
objective (ISM), which includes a Riemannian divergence
term that requires O(d) gradient evaluations, our model
achieves a factor of d improvement in the number of gradi-
ent evaluations. Similarly, we get a factor of d improvement
in gradient evaluations over Trivialized Momentum Diffu-
sion Models (TDM) (Zhu et al., 2025), which also rely on
ISM objectives, on manifolds like the orthogonal or unitary
group. It also improves upon Scaling Riemannian Diffusion
(SCRD) (Lou et al., 2024), where heat kernel computations
for orthogonal or unitary groups involve expansions with
Ω(2d) terms (SCRD does not provide an ISM objective).

Additionally, while RSGM and Riemannian Diffusion Mod-
els (RDM) (Huang et al., 2022) use deterministic heat kernel
approximations, these are asymptotically biased with fixed
error bounds. Stochastic approximations to the implicit
objective introduce dimension-dependent noise (Lou et al.,
2024). Our method improves the accuracy dependence from
polynomial to logarithmic in 1

δ . Unlike solvers for SDEs
or ODEs, which require polynomial-in- 1δ iterations, our for-
ward diffusion adds a Gaussian vector and projects onto the
manifold, achieving high accuracy with only logarithmic
cost in 1

δ .
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Table 1: Arithmetic operations plus model gradient evaluations to
compute objective function’s gradient within any error δ at each
iteration of training algorithm, on the unitary group U(n), special
orthogonal group SO(n), sphere, or torus, of dimension d ≡ n2

(number of grad. eval. depends on algorithm but not on manifold).

Algorithm Grad. Arithmetic Operations
eval. SO(n) or U(n) Sphere Torus

RSGM (heat ker.) 1 2d + poly(d, 1
δ
) same same

RSGM (ISM) d poly(d, 1
δ
) same same

TDM (heat ker.) 1 —— —— d log( 1
δ
)

TDM (ISM) d poly(d, 1
δ
) poly(d, 1

δ
) d log( 1

δ
)

RDM d poly(d, 1
δ
) same same

SCRD 1 2d + poly(d, 1
δ
) poly(d, 1

δ
) d log( 1

δ
)

This paper 1 d
ω
2 log( 1

δ
) d log( 1

δ
) d log( 1

δ
)

2.3. Sampling algorithm and theoretical guarantees

Next, we present our sampling algorithm, which uses the
trained models to simulate the reverse diffusion process.

Sampling procedure. Our training algorithm (Algorithm
1) outputs trained models f(x, t) and g(x, t) for the drift
and covariance terms of our reverse diffusion. We then use
these models to generate samples. First, we sample a point
z from the stationary distribution of the Ornstein-Uhlenbeck
process Zt on Rd, which is Gaussian distributed. Next, we
project this point z onto the manifold to obtain a point y =
φ(z), and solve the SDE dYt = f(Yt, t)dt + g(Yt, t)dBt
given by our trained model for the reverse diffusion’s drift
and covariance over the time interval [0, T ], starting at the
initial point y. To simulate this SDE, we can use any off-
the-shelf numerical SDE solver, which takes as input the
trained model for f and g, and the exponential map on
M. We give one such solver in Algorithm 2, and prove
guarantees for the accuracy of the samples it generates, and
its runtime, in Theorem 2.2. Our guarantees assume the
trained models f(x, t) and g(x, t) we hand to this solver
minimize our training objective within some error ε > 0.

Symmetry and forward diffusion structure. Our theo-
retical guarantees hold when M satisfies a symmetry prop-
erty and φ satisfies an “average-case” Lipschitz condition
(Assumption 2.1). This symmetry property requires that
each point z ∈ Rd can be parametrized as z ≡ z(U,Λ)
where U = φ(z) ∈ M and Λ ≡ Λ(z) ∈ A for some
A ⊆ Rd−dim(M) is another parameter. For instance, on
the sphere, U = z

∥z∥ is the projection onto the sphere, and
Λ = ∥z∥ is the distance to the origin. For SO(n) or U(n),
the parametrization comes from the spectral decomposition
z = UΛU∗, where U ∈ M and Λ is a diagonal matrix. On
the torus, U = φ(x) is the projection onto the torus, and
Λ ∈ 2πZd. Zt, t ≥ 0, is the Ornstein-Uhlenbeck process
on Rd, Xt := φ(Zt) is our forward diffusion process on
M, and Yt := XT−t its time-reversal (see Section 3.1).
This structure ensures that the reverse diffusion inherits
well-behaved properties from the Euclidean process.

Average-case Lipschitzness.
Assumption 2.1 (Average-case Lipschitzness). ∀t ∈ [0, T ]
there exists Ωt ⊆ Rd, whose indicator function 1Ωt

(x) de-
pends only on Λ ≡ Λ(x), for which P(Zt ∈ Ωt ∀ t ∈
[0, T ]) ≥ 1−α. For every x ∈ Ωt we have ∥∇φ(x)∥2→2 ≤
L1, ∥ d

dU∇φ(x)∥2→2 ≤ L1, ∥∇2φ(x)∥2→2 ≤ L2, and
∥ d
dU∇φ(x)∥2→2 ≤ L2. Moreover, ∥ d

dU x∥2→2 ≤ ∥x∥2.

Here ∥ · ∥2→2 denotes the operator norm and d
dU x denotes

the derivative of the parameterization of x = x(U,Λ) with
respect to U ∈ M. This assumption allows us to show that
the projected reverse diffusion is well-posed and numeri-
cally stable, enabling sample quality guarantees.

Verifying the assumption on common manifolds. We
choose projection maps φ that satisfy Assumption 2.1 with
small Lipschitz constants. For example, for Td, φ(x)[i] =
x[i]mod2π, i ∈ [d] is 1-Lipschitz on all Rd, trivially sat-
isfying the assumption. For the sphere, φ(x) = x

|x| is
2-Lipschitz outside a ball of radius 1

2 around the origin,
where the forward diffusion remains with high probability
1 − O(2−d). For U(n) (or SO(n)), φ(X), which com-
putes the spectral decomposition U∗ΛU of X + X∗, has
derivatives with magnitude bounded by the inverse eigen-
value gaps 1

λi−λj
. While singularities occur at points with

duplicate eigenvalues, random matrix theory shows that
eigengaps are w.h.p. bounded below by 1

poly(d) , ensur-
ing φ satisfies the average-case Lipschitz assumption. For
the unitary group, we show that Assumption 2.1 holds for
L1 = O(d1.5

√
Tα− 1

3 ) and L2 = O(d2Tα− 2
3 ) (Lemma

B.4). For the sphere, it holds for L1 = L2 = O(α− 1
d ).

For the torus, it holds for L1 = L2 = 1. These bounds,
derived in Appendix E, imply the assumption holds with
high probability under standard random matrix models.

Theoretical guarantees. We denote by ψ(M) :=
ψ(x) x ∈ M ⊆ Rd the pushforward of M wṙ.t. ψ.
Theorem 2.2 (Accuracy and runtime of sampling algo-
rithm). Let ε > 0, and suppose that φ : Rd → M satisfies
Assumption 2.1 for some L1, L2 ≤ poly(d) and α ≤ ε, and
ψ(M) is bounded by a ball of radius poly(d). Suppose
that f̂ and ĝ are outputs of Algorithm 2, and that f̂ and
ĝ minimize our training objective for the target distribu-
tion π with objective function value < ε. Then Algorithm
2, with inputs f̂ and ĝ, outputs a generated sample whose
probability distribution ν satisfies

∥ν−π∥TV < O(ε(d3L1+d
2L2) log

d
ε ) = Õ(ε×poly(d)).

Moreover, Algorithm 2, takes

O((d4L1 + d2L2) log
(
d
ε

)
) = poly(d)× log

(
d
ε

)
iterations, where each iteration requires one evaluation of
f̂ and ĝ, one evaluation of the exponential map on M, plus
O(d) arithmetic operations.
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Plugging in our bounds on the average-case Lipschitz con-
stants in the case of the torus, sphere, SO(n), and U(n)
(Lemma B.4) into Theorem 2.2, we obtain the following
guarantees for the accuracy and runtime of our sampling
algorithm for these symmetric manifolds:

Corollary 2.3. Suppose that M is Td, Sd, SO(n), or U(n)
with n =

√
d. Suppose that φ and ψ are chosen as specified

above for these manifolds. Suppose that f̂ and ĝ are outputs
of Algorithm 2, and that f̂ and ĝ minimize our training
objective for the target distribution π with objective function
value < ε. Then Algorithm 2, with inputs f̂ and ĝ, outputs a
generated sample whose probability distribution ν satisfies

∥ν − π∥TV ≤ O(ε× d6 log
(
d
ε

)
)

for the torus and sphere, and

∥ν − π∥TV < O(ε× d9 log
(
d
ε

)
)

for SO(n) and U(n). Moreover, Algorithm 2, takes
O(d4 log

(
d
ε

)
) iterations for the torus and sphere, and

O(d5.5 log
(
d
ε

)
) iterations for SO(n) and U(n)). Here each

iteration requires one evaluation of f̂ and ĝ, one evalua-
tion of the exponential map on M, plus O(d) arithmetic
operations.

Comparison with prior work. Theorem 2.2 improves
on the accuracy and runtime guarantees for sampling of
(De Bortoli et al., 2022) when M is one of the aforemen-
tioned symmetric manifolds, since their accuracy and run-
time bounds for sampling are not polynomial in the dimen-
sion d (for instance, the “constant” term C ≡ C(M, d) in
(De Bortoli et al., 2022) has an unspecified dependence on
the manifold and its dimension). Finally, we note that (Lou
et al., 2024; Huang et al., 2022) do not provide guarantees
on the accuracy and runtime of their sampling algorithm,
and that the runtime bounds for the sampling algorithm in
(Zhu et al., 2025) are not polynomial in dimension. Improv-
ing the dependency on dimension remains an open question
for future work.

Extension beyond symmetric manifolds. While our the-
oretical guarantees focus on symmetric manifolds, the al-
gorithm itself applies more broadly. In Appendix F, we
describe how projection maps φ and exponential maps can
be constructed for certain non-smooth or non-symmetric
spaces, such as convex polytopes. Although proving Lip-
schitz properties in these settings is more subtle due to
curvature or boundary singularities, our framework may
still apply empirically. Extending theoretical guarantees to
such general manifolds remains a promising direction for
future work.

An overview of the proof is given in Appendix A; the full
proof appears in Appendix B.

3. Algorithm derivation and proof highlights
3.1. Derivation of training & sampling algorithm

Given a standard Brownian motion Bt in Rd, a µ : Rd →
Rd and R : Rd → Rd×d, a stochastic process Xt satisfies
the SDE dXt = µ(Xt)dt+R(Xt)dBt with initial condition
x ∈ Rd if Xt = x+

∫ t
0
µ(Xs)ds+

∫ t
0
R(Xs)dBs.

Lemma 3.1 (Itô’s Lemma). Let ψ : Rd → Rk be a second-
order differentiable function, and let X(t) ∈ Rd be an Itô
diffusion. Then for all t ≥ 0 and all i ∈ [k], we have
dψ(Xt)[i] = ∇ψ(Xt)[i]

⊤dXt +
1
2dX

⊤
t ∇2ψ(Xt)[i]dXt.

The transition kernel pt|τ (y|x) is the probability (density)
thatX takes the value y at time t conditional onX taking the
value x at time τ . Given an initial distribution π, the prob-
ability density at time t is pt(x) =

∫
M pt|0(x|z)π(z)dz.

For any diffusion Xt, t ∈ [0, T ], its time-reversal Yt is the
stochastic process such that Yt = XT−t for t ∈ [0, T ]. Yt
is also a diffusion, governed by an SDE. In the special case
where Xt has identity covariance, dXt = b(Xt)dt+ dBt,
the reverse diffusion satisfies (Anderson, 1982)

dYt = −b(Yt)dt+∇ log pt(Yt)dt+ dBt. (1)

One can also define diffusions on Riemannian manifolds, in
which case dBt is the derivative of Brownian motion on the
tangent space (see (Hsu, 2002)). Below we show the key
steps in deriving our diffusion model, training algorithm
(Algorithm 1), and sampling algorithm (Algorithm 2).

Forward diffusion. Let Zt be a diffusion on Rd initialized
at q0 = ψ(π). We choose Zt to be the Ornstein-Uhlenbeck
process, dZt = − 1

2Ztdt+ dBt, whose stationary distribu-
tion isN(0, Id). Zt is easy to sample as it has a closed-form
Gaussian transition kernel qt|τ . Let Xt := φ(Zt), the pro-
jection of Zt onto M. Xt is our model’s forward diffusion.

Reverse diffusion SDE. Let Yt := XT−t denote the time-
reversal ofXt. Yt is a diffusion on M, and its distribution at
time T equals the target distribution π. It follows the SDE:

dYt = f⋆(Yt, t)dt+ g⋆(Yt, t)dBt, (2)

for some functions f⋆(x, t) : M × [0, T ] → TxM and
g⋆(x, t) : M → TxM×TxM. Here dBt is the derivative
of standard Brownian motion on M’s tangent space. We
write dBt ≡ dBxt when x ∈ M is clear from context.

We cannot directly apply (1) to derive a tractable SDE for the
reverse diffusion Yt on M, as the transition kernel pt|τ of the
forward diffusion Xt on M lacks a closed form expression.
Instead, we first use (1) to obtain an SDE for the reverse dif-
fusion of Zt ∈ Rd, dHt = (Ht/2+ 2∇ log qT−t(Ht))dt+
dBt. We use Itô’s Lemma to project this SDE onto M,
giving an SDE for Yt (see Appendix B.1),

dYt=E[(∇φ(Ht)
⊤+

dH⊤
t

2 ∇2φ(Ht))dHt

∣∣φ(Ht)=Yt] (3)
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Training algorithm’s objective function. From (3), we
show one can train a model f , g for f⋆, g⋆ by solving an
optimization problem (Lemma B.2). Here, f, g ∈ C(M×
[0, T ], TxM) are continuous functions from M× [0, T ] to
the tangent space TxM and t ∼ Unif[0, 1]. Jφ denotes the
Jacobian of φ, that is, Jφ(x) : Rd → Tφ(x)M is the linear
operator which maps any v ∈ Rd to the derivative of φ in
the direction of v.

minf EtEb∼π[∥(∇φ(ZT−t))
⊤ ZT−t−ψ(b)e−(T−t)/2

e−(T−t)−1

+ 1
2 tr(∇

2φ(ZT−t))− f(φ(ZT−t), t)∥2|Z0 = ψ(b)], (4)

ming EtEb∼π[∥Jφ(ZT−t))
⊤Jφ(ZT−t)

−g(φ(ZT−t), t)
2∥2F |Z0 = ψ(b)]. (5)

Sublinear computation of training objective. For mani-
folds with non-zero curvature, such as the sphere, SO(n),
and U(n), our forward and reverse diffusions differ from
prior works and incorporate a spatially-varying covariance
term to account for curvature. This allows the forward
diffusion to be computed as a projection φ of the Ornstein-
Uhlenbeck process in Rd ≡ Rn×n (or Cn×n) onto the
manifold. For SO(n) or U(n), φ is computed by one sin-
gular value decomposition U∗ΛU of the Gaussian matrix
ZT−t+Z

∗
T−t, requiring O(nω) = O(d

ω
2 ) arithmetic opera-

tions, where d = Θ(n2) is the manifold dimension. This en-
ables computation of the drift term’s gradient (4) in O(d

ω
2 )

arithmetic operations and one gradient evaluation of f .

To train the reverse diffusion’s SDE, we also need to model
the covariance term (5), a d×d = n2×n2 matrix. To achieve
a per-iteration runtime sublinear in the d2 = n4 matrix
entries, we leverage the special structure of the covariance
matrix, which arises from the manifold’s symmetries. For
example, the forward diffusion U(t) ∈ SO(n) (or U(t) ∈
U(n)) is governed by the following system of SDEs:

dui(t)=
∑
j∈[n]\{i}(αij(t)dBijuj(t)−

βij(t)
2 ui(t))dt (6)

where αij(t) := E [1/(λi(t)−λj(t))|φ(Zt) = U(t)] and
βij(t) := E [1/(λi(t)−λj(t))

2|φ(Zt) = U(t)] ∀i, j ∈ [n]. To
train a model for this covariance term with sublinear run-
time, we exploit the symmetries of the underlying group.
These symmetries ensure the covariance term in (6) is fully
determined by n2 scalar terms αij(t) for i, j ∈ [n] and
the n × n matrix U . Thus, it suffices to train a model
A(U, t) ∈ Rn×n for these n2 terms by minimizing the ob-
jective ∥A(U, t)−A∥2F , where A is the n× n matrix with
entries Aij = 1/(λi(t)−λj(t)), and λi(t) is the ith diagonal
entry of Λ ≡ Λ(t). A similar method applies to efficiently
train the covariance term for the sphere (see Appendix E).

Sampling algorithm. To (approximately) sample from π,
we approximate the drift and covariance terms of the reverse
diffusion (2) via trained models f̂ , ĝ obtained by solving (4)

(in practice, f̂ , ĝ are neural networks f̂θ, ĝϕ, and θ, ϕ outputs
of Algorithm 1). We initialize this SDE at φ(N(0, Id)), the
pushforward of N(0, Id) onto M with respect to φ.

dŶt = f̂(Ŷt, t)dt+ĝ(Ŷt, t)dBt, Ŷ0 ∼ φ(N(0, Id)). (7)

To generate samples, we numerically simulate the SDE (7)
for ŶT by discretizing it with a small time-step ∆ > 0:

ŷi+1 = exp(ŷi, f̂(ŷi, t)∆ + ĝ(ŷi, t)
√
∆ξi), (8)

i ∈ {0, . . . , T/∆}, initialized at ŷ0 ∼ φ(N(0, Id)).

Algorithm 1 Training algorithm

Input: A way to compute a “projection” φ : Rd →M, and its
gradient

Input: A way to compute a map ψ :M→ Rd s.t. φ(ψ(x)) = x
∀x ∈M

Input: Dataset D = {x10, . . . , xm0 } ⊆ M. Hyperparam. T > 0
Input: Models fθ̂ :M× [0, T ]→ TM and gϕ̂ :M× [0, T ]→
TM×TM. θ̂ ∈ Ra1 , ϕ̂ ∈ Ra2 denote trainable parameters

Input: Initial parameters θ0 ∈ Ra1 , ϕ0 ∈ Ra2
Input: Hyperparameters: Number of stochastic gradient descent

iterations r ∈ N. Step size η > 0, batch size b

1: Define, ∀θ̂ ∈ Ra1 ẑ ∈ Rd, b, x ∈ M,
t̂ ∈ [0, T ], the objective function F (θ̂; b, ẑ, x̂, t̂) :=

∥(∇φ(ẑ))⊤ ẑ−ψ(b)e−(T−t)/2

e−(T−t)−1
+ 1

2
tr(∇2φ(ẑ))− f(x̂, t̂)∥2

2: Define ∀θ̂ ∈ Ra2 ẑ ∈ Rd, b, x ∈M, t̂ ∈ [0, T ], the objective
G(ϕ̂; b, ẑ, x̂, t̂) := ∥Jφ(ẑ)⊤Jφ(ẑ)− (gϕ̂(x̂, t̂))

2∥2F
3: Set θ ← θ0, ϕ← ϕ0

4: for i = 1, . . . , r do
5: Sample a random batch S ⊆ [m] of size b,
6: Sample t ∼ Unif([0, T ])
7: for j ∈ S do
8: Sample ξ ∼ N(0, Id)

9: Set zj ← ψ(xj0)e
− 1

2
(T−t) +

√
1− e−(T−t) ξ

10: Set xj ← φ(zj)
11: end for
12: Compute Γ← 1

b

∑
j∈S ∇θF (θ;xj0, zj , xj , t)

13: θ ← θ − ηΓ
14: Compute Υ← 1

b

∑
j∈S ∇ϕG(ϕ;xj0, zj , xj , t)

15: ϕ← ϕ− ηΥ
16: end for
17: output: Parameters θ, ϕ for the models fθ and gϕ

Algorithm 2 Sampling algorithm
Input: A way to compute the value of the exponential map

exp(x, v) on some manifoldM, for any x ∈M, v ∈ TxM
Input: A way to compute the “projection” map φ : Rd →M
Input: Models fθ̂ :M× [0, T ]→ TM and gϕ̂ :M× [0, T ]→
TM×TM. θ̂ ∈ Ra1 , ϕ̂ ∈ Ra2 denote trainable parameters

Input: Parameters θ, ϕ (from output of Algorithm 1),
Input: T > 0, N ∈ N, ∆ > 0 such that T/∆ ∈ NZ.

1: Sample z0 ∼ N(0, Id), and Set ŷ0 ← φ(z0)
2: for i = 0, 1, . . . , T/∆− 1 do
3: Sample ξ ∼ N(0, Id).
4: Set ŷi+1 ← exp(ŷi, f̂(ŷi, i∆)∆+ ĝ(ŷi, i∆)

√
∆ξi)

5: end for
6: output ŷT/∆
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3.2. Highlights of proof of sampling guarantees

Girsanov transformations, used in prior works to bound
accuracy, do not apply to our diffusion due to its spatially
varying covariance. We adopt an optimal transport approach,
selecting an optimal coupling between the “ideal” diffusion
Yt, governed by the SDE dYt = f⋆(Yt, t)dt+g

⋆(Yt, t)dBt,
and the diffusion Ŷt, where f⋆, g⋆ are replaced by our
trained model f̂ , ĝ, within an error ε. We first construct a
simple coupling between Yt and Ŷt by setting the underlying
Bt in their SDEs equal. Applying comparison theorems for
manifolds of non-negative curvature to the coupled SDEs,
we prove a generalization of Gronwall’s inequality to SDEs
on manifolds (Lemma B.3).

W2(Ŷt, Yt) ≤ (ρ2(Ŷ0, Y0) + ε)ect, (9)

where ρ is geodesic distance on M and W2 the Wasserstein
distance. (9) holds if f⋆, g⋆ are c-Lipschitz on all of M.

Showing “average-case” Lipschitzness. φ is not in general
Lipschitz. E.g., on SO(n) and U(n), φ(Z) has singularities
at points where the eigengaps of Z + Z∗ vanish. By using
tools from random matrix theory, we instead show φ satis-
fies an “average-case” Lipschitzness, on a set Ωt on which
the diffusion Zt ∈ Rd remains w.h.p. (Lemma B.4). Next,
we show that for f⋆, g⋆ to be c-Lipschitz everywhere on M,
it is sufficient for φ to only satisfy average-case Lipschitz-
ness. To do this, we express f⋆ (and g⋆) as an integral over
the eigenvalues Λ of Zt + Z∗

t = UΛU∗,

f⋆(U, t) ∝
∫
[∇φ(Z)⊤∇ log qT−t|0(Z)+ · · · ]1Ωt

(Z)dΛ.

Due to the manifold’s symmetries, we observe Ωt (and the
entire integrand) depend only on Λ, not the eigenvectors
U ∈ U(n). This allows us to show the integral “smooths out”
the singularities of φ, and that f⋆(U, t) (and g⋆) are poly(d)-
Lipschitz at every U ∈ U(n) on the manifold (Lemma B.6).

Improved coupling to obtain poly(d) bounds. While we
have shown our model’s SDE is c = poly(d)-Lipschitz on
M, after times τ > 1

c = 1
poly(d) , our Wasserstein bound (9)

grows exponentially with d. To overcome this, we define
a new coupling between Yt, Ŷt which we “reset” after time
intervals of length τ = 1/c by converting our Wasserstein
bound into a total variation (TV) bound after each interval.
Key to converting the bound is to show that w.h.p. the
projection φ has poly(d)-Lipschitz Jacobian everywhere in
a ball of radius 1/poly(d) around our diffusion. By alternating
between Wasserstein and TV bounds, we get error bounds
which grow proportional to T/τ = poly(d) (Lemma B.7).

Handling instability on SO(n). These proof ideas extend
easily to the torus and sphere. For SO(n), an additional chal-
lenge arises: w.h.p., gaps between neighboring eigenvalues
become exponentially small in d over short time intervals
due to weaker “electrical repulsion” between eigenvalues of

real-valued random matrices. During these intervals, the dif-
fusion moves at exp(d) velocity. Despite this, we show that
a step size of 1/poly(d, 1δ ) suffices to simulate a random
solution to the SDE with a distribution δ-close to the correct
one. During these intervals, interactions between eigenvec-
tors nearly separate into slow-moving eigenvectors and pairs
of fast-moving eigenvectors, with a simple transition kernel
from the invariant measure on SO(2) (see Appendix B.7).

4. Empirical results
We provide proof-of-concept simulations to compare the
quality and efficiency of our algorithms to key prior works.

Datasets. We evaluate the quality of samples generated by
our model on synthetic datasets from the torus Td, the spe-
cial orthogonal group SO(n), and the unitary group U(n).
The torus provides a simple, zero-curvature geometry for
initial validation, while SO(n) and U(n) test the model
on more complex geometries. Datasets include unimodal
wrapped Gaussians on Td, multimodal Gaussian mixtures
on SO(n), and time-evolution operators of a quantum oscil-
lator with random potentials on U(n), for varying dimen-
sions d = n2. We also separately analyze per-iteration
runtime to study scaling across dimensions, requiring only
a single training step and limited computational resources.

For the torus Td, following several works (De Bortoli et al.,
2022; Zhu et al., 2025), we train diffusion models on data
sampled from wrapped Gaussians on tori of different di-
mensions d ∈ {2, 10, 50, 100, 1000}, with mean 0 and co-
variance 0.2Id (See Appendix C.1 for definition of wrapped
Gaussian). For U(n), following (Zhu et al., 2025), we use
a dataset on U(n) of unitary matrices representing time-
evolution operators eitH of a quantum oscillator. In our sim-
ulations, we consider a wider range of n ∈ {3, 5, 9, 12, 15}
(corresponding to manifold dimensions d = n(n−1)

2 ∈
{3, 10, 36, 66, 105}) when evaluating sample quality, and
n ∈ {3, 5, 10, 30, 50} (d ∈ {3, 45, 435, 1225}) when evalu-
ating runtime. Here t is time, H = ℏ

2m∆ − V is a Hamil-
tonian, and ∆ is the Laplacian. V is a random potential
V (x) = ω2

2 ∥x− x0∥2 with angular momentum ω sampled
uniformly on [2, 3] and x0 ∼ N (0, 1). As ∆, V are infinite-
dimensional operators, matrices in U(n) are obtained by
retaining the (discretized) top-n eigenvectors of ∆, V . For
SO(n), following (Zhu et al., 2025), we use datasets sam-
pled from a mixture of a small number k of wrapped Gaus-
sians on SO(n). We set k = 2 and use the same values of n
as on U(n).

Algorithm. We use Algorithm 1 to train our model, and
Algorithm 2 to generate samples. Each algorithm takes as in-
put a projection map φ and restricted inverse ψ, with choices
for Td, SO(n), and U(n) detailed in Section 2. For SO(n)
and U(n), we use the projection map φ̂ defined in Section 2,
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as it suffices to generate high-quality samples in our simu-
lations. In both algorithms, the drift function f̂(·, ·) for the
reverse diffusion is parameterized by a neural network. De-
tails on the network architecture, training iterations, batch
size, and hardware are provided in Appendix C.2.1

The function ĝ(·, ·), which models the covariance in our
model’s reverse diffusion SDE, vanishes on Td. On SO(n),
U(n), ĝ is a n2 × n2 matrix. This matrix has a special
structure (see Section 3.1), allowing it to be parameterized
by d = n2 numbers. We may thus parametrize ĝ(x, t) by a
neural net with inputs x of dimension d, t of dimension 1,
and output dimension d. Network architecture is the same
as for f̂(·, ·).

Benchmarks. We compare samples generated by our model
to those from RSGM (De Bortoli et al., 2022), TDM (Zhu
et al., 2025), and a “vanilla” Euclidean diffusion model.
RSGM and TDM are included as they have demonstrated
improved sample quality and runtime over previous mani-
fold generative models, such as Moser Flow (Rozen et al.,
2021) on Td and SO(3). TDM also outperforms RSGM and
Flow Matching (Chen et al., 2024) on higher-dimensional
torus datasets and shows better sample quality on SO(n)
and U(n), where RSGM and RDM (Huang et al., 2022) lack
experiments for n > 3. All models are trained with the same
iterations, batch size, and architecture (see Appendix C.2).

For the Euclidean diffusion model, samples are constrained
to the manifold M by preprocessing via φ̃ and postprocess-
ing via ψ̃. For M = Td, φ̃(x)[i] = x[i] mod 2π, and
ψ̃ is its inverse on [0, 2π)d. For SO(n) and U(n), φ̃(X)
computes the U from the singular value decomposition
X = UΣV ∗, and ψ̃ is the usual embedding.

RSGM and TDM are trained using their divergence-based
ISM objective, which is prohibitively slow for large dimen-
sions. To fully train these models and evaluate their sample
quality, we follow their implementation and use a stochastic
estimator for the ISM divergence. We do not compare to
TDM on the torus, as their specialized heat kernel objective
does not generalize beyond the torus or Euclidean space.

We do not compare to SCRD (Lou et al., 2024), as their
implementation is limited to efficient heat kernel expansion
for SO(n) and U(n) with n = 3. For n > 3, the cost
of their expansion grows exponentially with n, making it
infeasible for higher dimensions.

Metrics. For the torus, as in (De Bortoli et al., 2022; Zhu
et al., 2025)), we evaluate the quality of generated samples
by computing their log-likelihood. For SO(n) and U(n), we
use the Classifier Two-Sample Test (C2ST) metric (Lopez-
Paz & Oquab, 2017). The C2ST metric was previously used

1Our code can be found at github.com/mangoubi/Efficient-
Diffusion-Models-for-Symmetric-Manifolds

in e.g. (Leach et al., 2022) to evaluate sample quality of
diffusion models on SO(n) for n = 3. It measures the abil-
ity of a classifier neural network to differentiate between
generated samples and samples in a test dataset. This met-
ric allows one to evaluate sample quality in settings where
computing the likelihood may be intractable, as may be the
case for diffusion models on SO(n) and U(n) for larger
n. We use the C2ST metric on SO(n) and U(n) instead of
log-likelihood, as we found that computing log-likelihood
for n > 3 poses additional computational challenges, while
C2ST can be computed efficiently. See Appendix C.3 for
definitions of log-likelihood and C2ST, and additional de-
tails.

Results for generated sample quality. For the torus,
we compare our model, a Euclidean diffusion model, and
RSGM on a dataset sampled from a wrapped Gaussian on
the d-dimensional torus for different values of d. Our model
has the lowest negative log-likelihood (NLL) for d ≥ 10,
and its NLL degrades with the dimension at a much slower
rate than the Euclidean model and RSGM (Table 2; lower
NLL indicates better-quality sample generation).

For U(n), we train our model, a Euclidean diffusion model,
RSGM, and TDM on a dataset on U(n) comprised of dis-
cretized quantum oscillator time-evolution operators, for
n ∈ {3, 5, 9, 12, 15}. For n ≥ 9, our model achieves the
lowest C2ST score; a lower C2ST score indicates higher-
quality sample generation (Figure 1, top). Visually, we
observe our model’s generated samples more closely re-
semble the target distribution than benchmark models’ for
n ≥ 9 (see Figure 1, bottom, for n = 15, Appendix C.4 for
other n). Improvements on SO(n) were similar to those on
U(n) (see Appendix C.4).

Table 2: Negative log-likelihood (NLL) when training on
a wrapped Gaussian dataset on the torus of different di-
mensions d. Lower NLL indicates better-quality sample
generation. Our model’s NLL increases more slowly with d,
and is lower for d ≥ 10, than Euclidean and RSGM models.

Method d = 2 d = 10 d = 50 d = 100 d = 1000

Euclidean 0.61±.02 0.61±.02 0.66±.04 8.18±.42 8.7±.37
RSGM 0.42±.03 0.49±.05 0.62±.06 1.45±.21 2.51±.17
Ours 0.49±.04 0.47±.03 0.50±.05 0.52±.09 0.97±.19

Results for runtime. We evaluate the per-iteration training
runtime on U(n) on a wider range of n = 3, 5, 10, 30, 50

(corresponding to manifold dimensions of d = n(n−1)
2 ∈

{3, 10, 45, 435, 1225}). Our model’s per-iteration runtime
remains within a factor of 3 of the Euclidean model’s for
all n. Per-iteration runtimes of TDM and RSGM, with ISM
objective, increase more rapidly with dimension and are,
respectively, 45 and 57 times greater than the Euclidean
model’s for n = 50 (Table 3). Similar runtime improve-
ments were observed on SO(n) (Table 6 in Appendix C.2).
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Table 3: Per-iteration training runtime in seconds on U(n).
The fastest manifold-constrained diffusion model is in bold;
the Euclidean model is in gray for comparison. Our model’s
runtime remains within a factor of 3 of the Euclidean
model’s for all n. Runtimes of TDM, RSGM increase more
rapidly with dimension d = Θ(n2) and are, respectively, 45
and 57 times greater than the Euclidean model’s for n = 50
(d = 1225).

Method n = 3 n = 5 n = 10 n = 30 n = 50
Euclidean 0.19±.01 0.19±.01 0.20±.01 0.20±.01 0.21±.01
RSGM 1.03±.02 1.22±.08 1.51±.03 3.98±.19 11.55±.31
TDM 0.91±.08 1.07±.06 2.46±.09 3.77±.17 9.43±.23
Ours 0.36±.00 0.36±.00 0.36±.00 0.46±.01 0.60±.01

Summary. We find that, as predicted by our theoretical
training runtime bounds in Table 1, the per-iteration training
runtime of our model is significantly faster, and grows more
slowly with dimension, than previous manifold diffusion
models on U(n) (similar improvements were observed for
SO(n)). Our algorithm’s runtime remains within a small
constant factor of the per-iteration runtime of the Euclidean
diffusion model, at least for n ≤ 50 (corresponding to a
manifold dimension of d ≤ 1225), nearly closing the gap
with the per-iteration runtime of the Euclidean model.

Moreover, we find that (except in very low dimensions) our
model is capable of improving on the quality of samples
generated by previous diffusion models, when trained on dif-
ferent synthetic datasets on the torus, SO(n) and U(n). The
magnitude of the improvement increases with dimension.

Method n = 3 n = 5 n = 9 n = 12 n = 15

Euclidean .69±.03 .75±.04 .87±.04 .97±.02 1.00±.01
RSGM .79±.04 .92±.04 .97±.03 1.00±.02 1.00±.01
TDM .73±.04 .91±.02 .99±.02 1.00±.01 1.00±.01
Ours .75±.05 .80±.04 .84±.04 .88±.05 .90±.04

Figure 1: C2ST scores when training on datasets of quantum
evolution operators on U(n) (top). Lower scores indicate
better-quality generated samples (range is [0.5, 1]). For n ≥
9, our model has the best C2ST scores. Generated samples
are plotted for n = 15 (bottom); axes are two matrix entries.

5. Conclusion and future work
We introduce a new diffusion model with a spatially varying
covariance structure, enabling efficient training on sym-
metric manifolds with non-zero curvature. By leveraging
manifold symmetries, we ensure the reverse diffusion satis-
fies an “average-case” Lipschitz condition, which underpins
both the accuracy and efficiency of our sampling algorithm.

Our approach improves training runtime and sample quality
on symmetric manifolds, significantly narrowing the gap be-
tween manifold-based diffusion models and their Euclidean
counterparts. Furthermore, the model naturally extends to
conditional generation: given a conditioning variable y, one
can feed y as an additional input to the learned drift and co-
variance functions, mirroring conditional diffusion models
in Euclidean settings.

Several open directions remain. One is to extend our frame-
work to more general manifolds—such as the manifold of
positive semi-definite matrices, or other domains admitting
a projection oracle satisfying suitable average-case smooth-
ness properties (see Appendix F). Another direction is to
handle distributions supported on a union of manifolds with
varying dimensions, such as the GEOM-DRUGS dataset
(Jing et al., 2022), which lies on a union of tori.

Finally, while our method yields polynomial-in-d bounds
on sampling accuracy—improving upon prior works that
lacked such guarantees—tightening this dependence re-
mains an important challenge for future research.

Impact statement
Diffusion generative models that generate data constrained
to symmetric manifolds can significantly enhance the soci-
etal impact of machine learning applications. These include
areas such as drug discovery and robotics, where molecular
or robotic configurations can be represented as points on
symmetric manifolds, as well as quantum mechanics ap-
plications like quantum chemistry, materials science, and
microelectronics. Moreover, our focus on improving the
efficiency of generative models has clear environmental ben-
efits. Reducing the computational costs associated with
training and sampling minimizes energy consumption, help-
ing to lower the carbon footprint of machine learning ap-
plications. This is particularly relevant as the demand for
large-scale generative models continues to grow. However,
generative modeling also presents potential risks. For exam-
ple, such models can be used to generate fake news videos
or to train robots and drones for harmful purposes when
misused by malicious actors. While our work is primarily
theoretical, limiting its direct negative impact, it is important
to remain mindful of both the positive and negative impli-
cations of applying generative modeling technologies in
sensitive domains. Balancing these considerations is essen-
tial to responsibly harness the potential of generative models
in advancing critical scientific and societal challenges while
mitigating risks and environmental impacts.
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A. Proof outline of Theorem 2.2
In the following, for any random variable X , we denote its probability distribution by LX . As already mentioned, previous
works use Girsanov’s theorem to bound the accuracy of diffusion methods. However, Girsanov transformations do not exist
for our diffusion as it has a non-constant covariance term which varies with the position x. Thus, we depart from previous
works and instead use an optimal transport approach based on a carefully chosen optimal coupling between the “ideal
diffusion” Yt and the algorithm’s process ŷt Specifically, denoting by µt the distribution of Yt and by νt the distribution of
Ŷt, the goal is to bound the Wasserstein optimal transport distance W2(µt, νt) := infκ∈K(µt,νt) E(Yt,Ŷt)

[ρ2(Ŷt, Y2)] where
K(µ, ν) is the collection of all couplings of the distributions µ and ν, and ρ is the geodesic distance on M. Towards this
end, we would like to find a coupling κ which (approximately) minimizes E(Yt∼µt,Ŷt∼νt)[ρ

2(Ŷt, Y2)] at any given time t.

As a first attempt, we consider the simple coupling where we couple the “ideal” reverse diffusion Yt,

dYt = f⋆(Yt, t)dt+ g⋆(Yt, t)dBt, (10)

and the reverse diffusion Ŷt given by our trained model f̂ , ĝ,

dŶt = f̂(Ŷt, t)dt+ ĝ(Yt, t)dBt. (11)

To couple these two diffusions, we set their Brownian motion terms dBt to be equal to each other at every time t. In a
similar manner, we can also couple Ŷt and the discrete-time algorithm ŷi by setting the Gaussian term ξi in the stochastic
finite difference equation (8) to be equal to ξi = 1√

∆

∫∆(i+1)

∆i
dBtdt for every i.

Step 1: Bounding the Wasserstein distance for everywhere-Lipschitz SDEs. To bound the Wasserstein distance
W2(Yt, ŷt) ≤W2(Yt, Ŷt) +W2(Ŷt, ŷt), we first prove a generalization of Gronwall’s inequality to Stochastic differential
equations on manifolds (Lemma B.3). Gronwall’s inequality (Gronwall, 1919) says that if R : [0, T ] → R satisfies the
differential inequality d

dtR(t) ≤ β(t)R(t) for all t > 0, where the coefficient β(t) : [0, T ] → R may also be a function of t,
then the solution to this differential inequality satisfies R(t) ≤ R(0)e

∫ t
0
β(s)ds.

Towards this end, we first couple Yt and Ŷt by setting their Brownian motion terms dBt equal to each other and then derive
an SDE for the squared geodesic distance ρ2(Ŷt, Yt) using Itô’s lemma. Taking the expectation of this SDE gives an ODE
for E[ρ2(X̂t, Xt)],

dE[ρ2(X̂t, Xt)]

= E

[
∇ρ2(X̂t, Xt)

⊤
(
f⋆(Xt, t)

f̂(X̂t, t)

)
+

1

2
Tr

(
g⋆(Xt, t) 0
ĝ(Xt, t) 0

)⊤

∇2ρ2(X̂t, Xt)

(
g⋆(Xt, t) 0
ĝ(Xt, t) 0

)]
dt. (12)

To bound each term on the r.h.s., we first observe that, roughly speaking, due to the non-negative curvature of the manifold,
by the Rauch comparison theorem (Rauch, 1951), each derivative on the r.h.s. is no larger than in the Euclidean case
M = Rd where ρ2(X̂t, Xt) = ∥X̂t −Xt∥22. Hence, we have that∣∣∣∣∇ρ2(X̂t, Xt)

⊤
(
f⋆(Xt, t)

f̂(X̂t, t)

)∣∣∣∣ ≤ 2∥X̂t −Xt∥ × ∥f⋆(Xt, t)− f̂(X̂t, t)∥ ≤ 2∥X̂t −Xt∥(c∥X̂t −Xt∥+ ε),

as long as we can show that f⋆ is c- Lipschitz for some c > 0 (see Step 2 below). Bounding the covariance term in a similar
manner, and applying Gronwall’s lemma to the differential inequality, we get that

W2(Ŷt, Yt) ≤ E[ρ2(Ŷt, Yt)] ≤ (ρ2(Ŷ0, Y0) + ε)ect. (13)

Step 2: Showing that our diffusion satisfies an “average-case” Lipschitz condition. To apply (13), we must first show
that the drift and diffusion terms f⋆ and g⋆ are Lipschitz on M. Towards this end, we would ideally like to apply bounds on
the derivatives of the projection map φ : Rd → M which defines our diffusion Yt. Unfortunately, in general, φ may not be
differentiable at every point. This is the case for the sphere, where the map φ(z) = z

∥z∥ has a singularity at z = 0. This
issue also arises in the case of the unitary group and orthogonal group, since the derivative of the spectral decomposition
φ(z) = U∗ΛU has singularities at any matrix z which has an eigenvalue gap λi − λi+1 = 0.
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To tackle this challenge, we show that, for the aforementioned symmetric manifolds, the forward diffusion Zt in Rd remains
in some set Ωt ⊆ Rd with high probability 1−α, on which the map φ(Zt) has derivatives bounded by poly(d) (Assumption
2.1 and Lemma B.4). We then show how to “remove” the rare outcomes of our diffusion that do not fall inside Ωt. As our
forward diffusion Xt (and thus the reverse diffusion Yt = XT−t) remains at every t inside Ωt with probability ≥ 1− α,
removing these “bad” outcomes only adds a cost of α to the total variation error.

Showing that φ has poly(d) derivatives w.h.p. (showing that Assumption 2.1 holds). We first consider the sphere, which is
the simplest case (aside from the trivial case of the torus, where the derivatives of φ are all O(1) at every point). In the case
when data is on the sphere, which we embed as a unit sphere in Rd, one can easily observe that e.g. ∥∇φ(z)∥ ≤ O(1) for
any z outside a ball of radius r ≥ Ω(1) centered at the origin. As the volume of a ball of radius r = α is 1

rd
, one can use

standard Gaussian concentration inequalities to show that the Brownian motion Xt will remain outside this ball for time T
with probability roughly 1−O( 1

rdT
).

We next show that the Lipschitz property holds for the unitary group U(n). We first recall results from random matrix theory,
which allow us to bound the eigenvalue gaps of a matrix with Gaussian entries. Specifically, these results say that roughly
speaking, if X0 is any matrix and Xt = X0 +B(t), where B(t) is a symmetric matrix with i.i.d. N(0, t) entries undergoing
Brownian motion, one has that the eigenvalues γ1(t) ≥ · · · ≥ γn(t) of Xt satisfy for all s ≥ 0 (see e.g. (Anderson et al.,
2010; Mangoubi & Vishnoi, 2023; 2025)),

P

 ⋂
t∈[t0,T ]

{
γi+1(t)− γi(t) ≤ s

1

poly(n)
√
t

} ≤ O
(
s

1
2

)
. (14)

Thus, if we define Ωt to be the set of outcomes of such that γi+1(t)− γi(t) ≤ α2 1
poly(n)

√
t
, we have that P(Xt ∈ Ωt ∀t ∈

[t0, T ]) ≥ 1− α.

Our high-probability bound on Ωt allows us to show that φ satisfies a Lipschitz property at “most” points Ωt. However, if
we wish to apply (13), we need to show that the drift term f⋆ and the covariance term g⋆ in our diffusion satisfy a Lipschitz
property at every point in Rd. Towards this end, we first make a small modification to the objective function which allows us
to exclude outcomes {Xt}t∈[0,T ] of the forward diffusion such that Xt /∈ Ωt for some t ∈ [0, T ]. Specifically, we multiply
the objective function (4) by the indicator function 1Ωt(z). As determining whether a point z ∈ Ωt requires only checking
the eigenvalue gaps (when M is the unitary or orthogonal group), computing 1Ωt(z) can be done efficiently using the
singular value decomposition.

Bounding the Lipschitz constant of f⋆ and g⋆. Recall that (when, e.g., M is one of the aforementioned symmetric manifolds)
we may decompose any z ∈ Rd as z ≡ z(U,Λ) where U ∈ M. Note that 1Ωt(z) is not a continuous function of z. However,
we will show that, as 1Ωt(z(U,Λ)) depends only on Λ, multiplying our objective function by 1Ωt does not make f⋆ and g⋆

discontinuous (and thus does not prevent them from being Lipschitz). This is because f⋆ and g⋆ are given by conditional
expectations conditioned on U , and can thus be decomposed as integrals over Λ. Towards this end we express f⋆ as an
integral over the parameter Λ,

f⋆(U, t) = cU

∫
Λ∈A

[
∇φ(z(U,Λ))⊤∇ log qT−t|0(z(U,Λ)) +

1

2
tr∇2φ(z(U,Λ))

]
qT−t(z(U,Λ))1Ωt

(Λ)dΛ,

where cU is a normalizing constant. Differentiating with respect to U ,

d

dU
f⋆(U, t) = Ez(U,Λ)∼qT−t

[
d

dU
(∇φ(z(U,Λ))⊤∇U log qT−t|0(z(U,Λ))

+
1

2
tr(∇2φ(z(U,Λ))))1Ωt

(Λ)

∣∣∣∣ V = U

]
+ · · · , (15)

where “· · · ” includes three other similar terms. To bound the terms on the r.h.s. of (15), we apply Assumption 2.1 which says
that the operator norms of ∇φ, ∇2φ, d

dU∇φ and d
dU∇

2φ are all bounded above by poly(d) whenever z ∈ Ωt. To bound
the term ∇U log qT−t|0(z(U,Λ)) we note that ∇ log qT−t|0(z(U,Λ)) is the drift term of the reverse diffusion in Euclidean
space. This term was previously shown to be dC2-Lipschitz for all t ≥ Ω( 1d ) when the support of the data distribution in Rd
lies in a ball of radius C (see, e.g., Proposition 20 of (Chen et al., 2023b)). Thus, plugging in the above bounds into (15) we
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have that ∥ d
dU f

⋆(U, t)∥2→2 ≤ poly(d). A similar calculation shows that ∥ d
dU g

⋆(U, t)∥2→2 ≤ poly(d). This immediately
implies that f⋆(U, t) and g⋆(U, t) are poly(d)-Lipschitz at every U ∈ M.

Step 3: Improving the coupling to obtain polynomial-time bounds. Now that we have shown that f⋆ and g⋆ are poly(d)-
Lipschitz, we can apply (13) to bound the Wasserstein distance: W2(Ŷt+τ , Yt+τ ) ≤ (ρ2(Ŷt, Yt) + ε)ecτ ∀τ ≥ 0, where
c ≤ poly(d).

Moreover, with slight abuse of notation, we may define ŷt+τ to be a continuous-time interpolation of the discrete process ŷ.
Applying (13) to this process, we get that, roughly, W2(Ŷt+τ , ŷt+τ ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ for τ ≥ 0. Thus, we get a
bound on the Wasserstein error,

W2(Yt+τ , ŷt+τ ) ≤W2(Ŷt+τ , Yt+τ ) +W2(Ŷt+τ , ŷt+τ ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ , τ ≥ 0. (16)

Unfortunately, after times τ > 1
c = 1

poly(d) , this bound grows exponentially with the dimension d. To overcome this

challenge, we define a new coupling between Yt and Ŷt which we “reset” after time intervals of length τ = 1
c by converting

our Wasserstein bound into a total variation bound after each time interval. Towards this end, we use the fact that if at
any time t the total variation distance satisfies ∥LYt

− Lŷt∥TV ≤ α, then there exists a coupling such that Yt = Ŷt with
probability at least 1− α. In other words, w.p. ≥ 1− α, we have ρ(ŷt+τ , Yt+τ ) = 0, and we can apply inequality (16) over
the next time interval of τ without incurring an exponential growth in time. Repeating this process T

τ times, we get that
∥LYT

− LŷT ∥ ≤ α× T
τ , where the TV error grows only linearly with T .

Converting Wasserstein bounds on the manifold to TV bounds. To complete the proof, we still need to show how to convert
the Wasserstein bound into a TV bound (Lemma B.7). Towards this end, we begin by showing that the transition kernel
p̃t+τ+∆̂|t+τ ( · |Ht+τ ) of the reverse diffusion Ht in Rd is close to a Gaussian in KL distance:

DKL(N(Ht+τ + ∆̂∇p̃T−t−τ (Ht+τ ), ∆̂Id) ∥ p̃t+τ+∆̂|t+τ ( · |Ht+τ )) ≤
ατ

T
.

One can do this via Girsanov’s theorem, since, unlike the diffusion Yt on the manifold, the reverse diffusion in Euclidean
space Ht does have a constant diffusion term (see e.g. Theorem 9 of (Chen et al., 2023b)).

Next, we use the fact that with probability at least 1− α τ
T the map φ in a ball of radius 1

poly(d) about the point Ht+τ has
c-Lipschitz Jacobian where c = poly(d), and that the inverse of the exponential map exp(·) has O(1)-Lipschitz Jacobian, to
show that the transition kernel pt of Yt = φ(Ht) satisfies

DKL(ν1 ∥ pt+τ+∆̂|t+τ ( · |Yt+τ )) ≤ (1 + ∆̂c)d
ατ

T
≤ 2

ατ

T

if we choose ∆̂ ≤ O( 1
cd ), where ν1 := expYt+τ

(N(Yt+τ + ∆̂f⋆(Yt+τ , t+ τ), ∆̂g⋆2(Yt+τ , t+ τ)Id)).

Next, we plug in our Wasserstein bound W (Yt+τ , ŷt+τ ) ≤ O(ε) into the formula for the KL divergence between two
Gaussians to bound ∥LYt+τ+∆̂

− Lŷt+τ+∆̂
∥TV. Specifically, noting that Lŷt+τ+∆̂|ŷt = expŷt+τ

(N(ŷt+τ + ∆̂f(ŷt+τ , t +

τ), ∆̂g2(ŷt+τ , t+ τ)Id)), we have that

DKL

(
ν1,Lŷt+τ+∆̂|ŷt+τ

)
= Tr

((
g⋆2(Yt+τ , t+ τ)

)−1
g2(ŷt+τ , t+ τ)

)
−d+ log

det g⋆2(Yt+τ , t+ τ)

det g2(ŷt+τ , t+ τ)
+ w⊤(∆̂g⋆2(Yt+τ , t))−1

w.

where w := Yt+τ − ŷt+τ + ∆̂(f⋆(Yt+τ , t+ τ)− f(ŷt+τ , t+ τ)). Since with probability ≥ 1− α τ
T we have g⋆(Yt+τ ) ⪰

poly(d), plugging in the error bounds ∥f⋆(Yt+τ , t) − f(Yt+τ , t)∥ ≤ ε and ∥g⋆(Yt+τ , t) − g(Yt+τ , t)∥F ≤ ε and the
c-Lipschitz bounds on f⋆ and g⋆, where c = poly(d), (Assumption 2.1), we get that DKL(ν1,Lŷt+τ+∆̂

) ≤ O(ε2c2). Thus,
by Pinsker’s inequality, we have

∥LYt+τ+∆̂
− Lŷt+τ+∆̂

∥TV − ∥LYt
− Lŷt∥TV ≤

√
DKL(ν1 ∥ pt+τ+∆̂|t+τ ( · |Yt+τ ))

+
√
DKL(ν1∥Lŷt+τ+∆̂|ŷt) ≤ O(εc). (17)
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Step 4: Bounding the accuracy. Recall that qt is the distribution of the forward diffusion Zt in Euclidean space after
time t, which is an Ornstein-Uhlenbeck process. Standard mixing bounds for the Ornstein-Uhlenbeck process imply that,
∥qt − N(0, Id)∥TV ≤ O(Ce−t) for all t > 0 (see e.g. (Bakry et al., 2014)), where C ≤ poly(d) is the diameter of the
support of ψ(π). Thus, it is sufficient to choose T = log(Cε ) to ensure ∥LYT

− π∥TV = ∥qT −N(0, Id)∥TV ≤ O(ε).

As (17) holds for all t ∈ τN, the distribution ν = LŷT of our sampling algorithm’s output satisfies, since τ = 1
c ,

∥π − ν∥TV = ∥LYT
− π∥TV + ∥LYT

− ν∥TV ≤ O

(
ε+ εc

T

τ

)
= O

(
εc2 log

(
dC

ε

))
= Õ(ε× poly(d)).

Step 5: Bounding the runtime. Since our accuracy bound requires T = log(dC/ε), and requires a time-step size of
∆ = cd ≤ 1

poly(d) , the number of iterations is bounded by T
∆ = cdT ≤ O (poly(d)× log (dC/ε)) .

Step 6: Extension of sampling guarantees to special orthogonal group. Similar techniques can be used in the case of the
special orthogonal group. However, in the case of the special orthogonal group we encounter the additional challenge that,
with high probability Ω(1), the gaps between neighboring eigenvalues γi+1(t)− γi(t) may become exponentially small in
d, over very short time intervals of length O( 1

ed
). Over these intervals, our diffusion moves at exp(d) velocity. Despite this,

we show that a 1/poly(d, 1δ ) step size is sufficient to simulate a random solution to its SDE with probability distribution
δ-close to the correct distribution. Specifically, from the matrix calculus formula for φ one can show that the SDE for the
eigenvectors of the forward diffusion satisfy (these evolution equations, discovered by Dyson, are referred to as Dyson
Brownian motion (Dyson, 1962))

dγi(t) = dBii(t) +
∑
j ̸=i

dt

γi(t)− γj(t)
, (18)

dui(t) =
∑
j ̸=i

dBij(t)

γi(t)− γj(t)
uj(t)−

1

2

∑
j ̸=i

dt

(γi(t)− γj(t))2
ui(t), ∀i ∈ [n]. (19)

Roughly speaking, this implies that only the interactions in (19) between eigenvectors with neighboring eigenvalues which
fall below O( 1

n10 ) are significant, while interactions between eigenvectors with larger eigenvalue gaps are negligible over
these short time intervals. Thus, one can analyze the evolution of the eigenvectors over these short time intervals as a
collection of separable two-body problems consisting of interactions between pair(s) of eigenvectors with a closed-form
transition kernel given by the invariant measure on SO(2). For a detailed sketch of how one can extend our proof to the case
of the special orthogonal group, see Appendix B.7.

B. Full proof of Theorem 2.2
In the following, we denote by ρ(x, y) the geodesic distance between x, y ∈ M, and by Γx→y(v) the parallel transport
of a vector v ∈ Tx from x to y. For convenience, we denote φi(·) := φ(·)[i]. Recall that we have assumed that ψ(M) is
contained in a ball of radius C = poly(d). We will prove our results under the more general assumption (Assumption
B.1(ψ, π, C)), which is satisfied whenever ψ(M) ≤ C.
Assumption B.1 (Bounded Support (ψ, π, C)). The pushforward of ψ(π) of π with respect to the map ψ : M → Rd has
support on a ball of radius C centered at 0.

B.1. Correctness of the training objective functions

Lemma B.2. f⋆ and g⋆ are solutions to the following optimization problems:

min
f∈C(Rd,Rd)

Et∼Unif([0,1])Eb∼π
[∥∥∥∥(∇φ(ZT−t))

⊤ZT−t − ψ(b)e−
1
2 (T−t)

e−(T−t) − 1

+
1

2
tr(∇2φ(ZT−t))− f(φ(ZT−t), t)

∥∥∥∥2∣∣∣∣Z0 = ψ(b)

]
,

min
g∈C(Rd,Rd×d)

Et∼Unif([0,1])Eb∼π
[∥∥(Jφ(ZT−t))

⊤Jφ(ZT−t)− (g(φ(ZT−t), t))
2
∥∥2
F

∣∣∣∣Z0 = ψ(b)

]
,

where Jφ denotes the Jacobian of φ.
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Proof. Step 1: Obtaining an expression for the reverse diffusion SDE in Rd. We cannot in general directly apply (1) to
obtain a tractable expression for the SDE of the reverse diffusion Yt in M, since we do not have a tractable formula for the
transition kernel pt of the forward diffusion Xt on M. Instead, we will first obtain an SDE for the reverse diffusion of Zt in
Rd, and then “project” this SDE onto M. Let Ht := ZT−t denote the time-reversed diffusion of Zt. Ht is a diffusion in Rd.
From (1), we have that the SDE for the reverse diffusion Ht on Rd is given by the following formula:

dHt =

(
1

2
Ht + 2∇ log qT−t(Ht)

)
dt+ dWt, (20)

where Wt is a standard Brownian motion on Rd. Equation (20) can be re-written as

dHt =

(
1

2
Ht + 2Eb∼q0|t(·|Ht)[∇ log qT−t|0(Ht|b)]

)
dt+ dWt. (21)

The r.h.s. of (21) is tractable since we have a tractable expression for the transition kernel qT−t|0 (it is just a time re-scaling
of a Gaussian kernel, the transition kernel of Brownian motion).

Step 2: Obtaining an expression for the reverse diffusion SDE in M. Note that there exists a coupling between Zt
and Ht such that Ht = ZT−t and that Yt = XT−t for all t ∈ [0, T ]. Thus, under this choice of coupling, we have that
Yt = XT−t = φ(ZT−t) = φ(Ht) for all t ∈ [0, T ]. In the special case when there is only one datapoint x0, the SDE for the
reverse diffusion Yt on M can be obtained by applying Itô’s lemma (Lemma 3.1) to Yt = φ(Ht):

dYt[i] = ∇φi(Ht)
⊤dHt +

1

2
(dHt)

⊤(∇2φi(Ht))dHt ∀i ∈ [d]. (22)

In the following, to simplify notation, we drop the “i” index from the notation φi and dYt[i]. Unfortunately, the r.h.s. of (22)
is not a (deterministic) function of Yt = φ(Ht), since φ is not an invertible map. To solve this problem, we can take the
conditional expectation of (22) with respect to Yt = φ(Ht):

dYt = E[dYt|Yt] = E[dYt|φ(Ht)] = E

[
∇φ(Ht)

⊤dHt +
1

2
(dHt)

⊤(∇2φ(Ht))dHt

∣∣∣∣φ(Ht)

]
. (23)

The drift term on the r.h.s. of (23) is a deterministic function of Yt. Denote this function by f⋆ : M× [0, T ] → T M for
any input x ∈ M and output in the tangent space TxM of M at x.

Moreover, by (1), the covariance term on the r.h.s. of (23) must be the same as the covariance term for the forward diffusion
Yt on M. This covariance term can be obtained from the covariance term dWt on Rd, via Itô’s lemma, implying that
the covariance term is E[∇φ(Ht)[i]

⊤dWt|φ(Ht)], i ∈ [d]. Using the notation for the Jacobian, this covariance term can
be written more concisely as E[Jφ(Ht)

⊤dWt|φ(Ht)]. Thus, the diffusion term is also a deterministic function g⋆ of
Yt = φ(Ht), where g⋆(Yt) is a symmetric d× d matrix,

E[Jφ(Ht)dWt|φ(Ht)] = g⋆(Yt, t)dW̃t, (24)

where W̃t is a standard Brownian motion on M.

Since dWt is the derivative of a standard Brownian motion in Rd, and dW̃t is the derivative of a standard Brownian motion
on the tangent space of M, we have that

E[Jφ(Ht)
⊤Jφ(Ht)|φ(Ht)] = (g⋆(Yt, t))

2. (25)

Thus, (23) can be expressed as:

dYt = E

[
∇φ(Ht)

⊤dHt +
1

2
(dHt)

⊤(∇2φ(Ht))dHt

∣∣∣∣φ(Ht)

]
= f⋆(Yt, t)dt+ g⋆(Yt, t)dW̃t. (26)

In the more general setting when there is more than one datapoint, (26) generalizes to:

dYt = Eb∼π
[
E

[
∇φ(Ht)

⊤dHt +
1

2
(dHt)

⊤(∇2φ(Ht))dHt

∣∣∣∣φ(Ht), HT = b

]]
(27)

= f⋆(Yt, t)dt+ g⋆(Yt, t)dW̃t. (28)
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Since Yt = φ(Ht), we can bring f⋆(Yt, t)dt and g⋆(Yt, t)dW̃t inside the conditional expectation:

Eb∼π
[
E

[
∇φ(Ht)

⊤dHt +
1

2
(dHt)

⊤(∇2φ(Ht))dHt − f⋆(Yt, t)dt

∣∣∣∣φ(Ht), HT = b

]]
= g⋆(Yt, t)dW̃t.

We can rewrite this as

Eb∼π
[
Eφ(Ht)

[
EHt|φ(Ht)

[
∇φ(Ht)

⊤dHt +
1

2
(dHt)

⊤(∇2φ(Ht))dHt − f⋆(Yt, t)dt

∣∣∣∣Ht, HT = b

]]]
= g⋆(Yt, t)dW̃t.

This simplifies to

Eb∼π
[
∇φ(Ht)

⊤dHt +
1

2
(dHt)

⊤(∇2φ(Ht))dHt − f⋆(Yt, t)dt

∣∣∣∣HT = b

]
= g⋆(Yt, t)dW̃t. (29)

where the expectation is taken over the outcomes of Ht. Plugging in (21) into (29), and separating the drift and the diffusion
terms on both sides of the equation (and noting that the higher-order differentials (dt)2 and dWtdt vanish), we get that the
drift terms satisfy

Eb∼π
[
(∇φ(Ht))

⊤ (
Ht + 2∇ log qT−t|0(Ht|b)

)
dt+

1

2
(dWt)

⊤(∇2φ(Ht))dWt − f⋆(Yt, t)dt

∣∣∣∣HT = b

]
= 0. (30)

Noting that (dWt[i])
2 = dt and dWt[i]dWt[j] = 0 for all i ̸= j, we get

Eb∼π
[
(∇φ(Ht))

⊤ (
Ht + 2∇ log qT−t|0(Ht|b)

)
dt+

1

2
tr(∇2φ(Ht))dt− f⋆(Yt, t)dt

∣∣∣∣HT = b

]
= 0. (31)

Dividing both sides by dt, we get an expression for the drift term f⋆

Eb∼π
[
(∇φ(Ht))

⊤ (
Ht + 2∇ log qT−t|0(Ht|b)

)
+

1

2
tr(∇2φ(Ht))− f⋆(Yt, t)

∣∣∣∣HT = b

]
= 0. (32)

Finally, from (25), we have that diffusion term g⋆ satisfies

Eb∼π
[
E

[
Jφ(Ht)

⊤Jφ(Ht)− (g⋆(Yt, t))
2

∣∣∣∣φ(Ht)

] ∣∣∣∣HT = b

]
= 0. (33)

Step 3: Training the drift term. From (32), we have that the function f⋆ is the solution to the following optimization
problem:

min
f

Et∼Unif([0,1])Eb∼π
[∥∥∥∥(∇φ(Ht))

⊤
(
1

2
Ht + 2∇ log qT−t|0(Ht|b)

)
+

1

2
tr(∇2φ(Ht))− f(Yt, t)

∥∥∥∥2∣∣∣∣HT = b

]
. (34)

where the inner expectation is taken over b ∼ π and over the outcomes of Ht at time t conditioned on HT = b (Note that
Yt = φ(Ht) is a deterministic function of Ht).

Now, Ht|{HT = b} has the same probability distribution as ZT−t|{Z0 = b} (and that Yt|{HT = b} has the same
probability distribution as XT−t|{Z0 = b}). Thus, we can re-write (34) as

min
f

Et∼Unif([0,1])Eb∼π
[∥∥∥∥(∇φ(ZT−t))

⊤ (
ZT−t + 2∇ log qT−t|0(ZT−t|b)

)
+

1

2
tr(∇2φ(ZT−t))− f(XT−t, t)

∥∥∥∥2∣∣∣∣Z0 = b

]
, (35)
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Step 4: Training the diffusion term. From (33) we have that g⋆ is the solution to the following optimization problem:

min
g

Et∼Unif([0,1])Eb∼π
[∥∥Jφ(Ht)

⊤Jφ(Ht)− (g(Yt, t))
2
∥∥2
F

∣∣∣∣HT = b

]
,

where ∥ · ∥F is the Frobenius norm. Since Ht|{HT = b} has the same probability distribution as ZT−t|{Z0 = b} (and
Yt|{HT = b} has the same probability distribution as XT−t|{Z0 = b}), we can re-write (34) as

min
g

Et∼Unif([0,1])Eb∼π
[∥∥Jφ(ZT−t)

⊤Jφ(ZT−t)− (g(XT−t, t))
2
∥∥2
F

∣∣∣∣Z0 = b

]
.

B.2. Proof of Lemma B.3

In the proof of Theorem 2.2, we will use the following lemma.

Lemma B.3 (Gronwall-like inequality for SDEs on a manifold of non-negative curvature). Suppose that M is a
Riemannian manifold with non-negative curvature, and let ρ(x, y) denote the geodesic distance between any x, y ∈ M.
Suppose also that Xt and X̂t are two diffusions on M such that

dXt = b(Xt, t) + σ(Xt, t)dWt,

and
dX̂t = b̂(X̂t, t) + σ̂(Xt, t)dWt,

where b is C1(t)-Lipschitz and σ is C2(t)-Lipschitz at every time t ∈ [0, T ]. Moreover, assume that

∥b(x, t)− b̂(x, t)∥ ≤ ε

and
∥σ(x, t)− σ̂(x, t)∥2F ≤ ε

for all x ∈ M, t ∈ [0, T ]. Then there exists a coupling between Xt and X̂t such that, for all t ≥ 0,

E[ρ2(X̂t, Xt)] ≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,t]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
(2C1(s)+3C2(s)

2+2ds.

Proof of Lemma B.3. We first couple Xt and X̂t by setting their underlying Brownian motion terms dWt to be equal to
each other. Next, we compute the distance ρ2(X̂t, Xt) using Itô’s Lemma. Letting h(x, y) := ρ2(x, y), by Itô’s Lemma we
have that

dρ2(X̂t, Xt) = dh(X̂t, Xt)

= ∇h(X̂t, Xt)
⊤
(
b(Xt, t)

b̂(X̂t, t)

)
dt

+
1

2
Tr

[(
σ(Xt, t) 0
σ̂(Xt, t) 0

)⊤

[∇2h(X̂t, Xt)]

(
σ(Xt, t) 0
σ̂(Xt, t) 0

)]
dt

+∇h(X̂t, Xt)
⊤
(
σ(Xt, t) 0
σ̂(Xt, t) 0

)
d

(
Wt

Ŵt

)
.

Therefore,

dE[ρ2(X̂t, Xt)] = E
[
∇h(X̂t, Xt)

⊤
(
b(Xt, t)

b̂(X̂t, t)

)]
dt

+
1

2
E

[
Tr

[(
σ(Xt, t) 0
σ̂(Xt, t) 0

)⊤

[∇2h(X̂t, Xt)]

(
σ(Xt, t) 0
σ̂(Xt, t) 0

)]]
dt

+0. (36)
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Now, since M has non-negative curvature, by the Rauch comparison theorem we have∣∣∣∣∇h(X̂t, Xt)
⊤
(
b(Xt, t)

b̂(X̂t, t)

) ∣∣∣∣ ≤ 2ρ(X̂t, Xt)× ∥b̂(X̂t, t)− ΓXt→X̂t
(b(Xt, t))∥

≤ 2ρ(X̂t, Xt)×
(
∥b(X̂t, t)− ΓXt→X̂t

(b(Xt, t))∥+ ∥b(X̂t, t)− b̂(X̂t, t)∥
)

≤ 2ρ(X̂t, Xt)× (C1(t)ρ(X̂t, Xt) + ε). (37)

where the last inequality holds since b is C1(t)-Lipschitz. Moreover, since M has non-negative curvature, by the Rauch
comparison theorem, we also have that

1

2
Tr

[(
σ(Xt, t) 0
σ̂(Xt, t) 0

)⊤

[∇2h(X̂t, Xt)]

(
σ(Xt, t) 0
σ̂(Xt, t) 0

)]

≤
∥∥∥σ̂(X̂t, t)− ΓXt→X̂t

(σ(Xt, t))
∥∥∥2
F

≤
(∥∥∥σ(X̂t, t)− ΓXt→X̂t

(σ(Xt, t))
∥∥∥
F
+
∥∥∥σ̂(X̂t, t)− σ(X̂t, t)

∥∥∥
F

)2

≤ 3
∥∥∥σ(X̂t, t)− ΓXt→X̂t

(σ(Xt, t))
∥∥∥2
F
+ 3

∥∥∥σ̂(X̂t, t)− σ(X̂t, t)
∥∥∥2
F

≤ 3C2(t)
2ρ2(X̂t, Xt) + 3ε2. (38)

Plugging (37) and (38) into (36), we have

d

dt
E[ρ2(X̂t, Xt)] ≤ 2E[C1(t)ρ

2(X̂t, Xt) + ερ(X̂t, Xt)] + 3C2(t)
2E[ρ2(X̂t, Xt)] + 3ε2 ∀t ≥ 0. (39)

Hence,
d

dt
E[ρ2(X̂t, Xt)] ≤ 2E[C1(t)ρ

2(X̂t, Xt) + ρ2(X̂t, Xt)] + 3C2(t)
2E[ρ2(X̂t, Xt)] + 5ε2

= 2E[C1(t)ρ
2(X̂t, Xt) + ρ2(X̂t, Xt)] + 3C2(t)

2E[ρ2(X̂t, Xt)] + 5ε2

= (2C1(t) + 3C2(t)
2 + 2)E[ρ2(X̂t, Xt)] + 5ε2.

Let τ ∈ [0, T ] be some number, and define R(t) := E[ρ2(X̂t, Xt)] + infs∈[0,τ ]
5ε2

2C1(s)+3C2(s)2+2 for all t ∈ [0, τ ]. Then we
have,

d

dt
R(t) ≤ (2C1(t) + 3C2(t)

2 + 2)R(t), ∀t ≥ 0. (40)

Thus, plugging (40) into Gronwall’s lemma, we have, for all t ≥ 0,

R(t) ≤ R(0)e
∫ t
0
(2C1(s)+3C2(s)

2+2ds

=

(
E[ρ2(X̂0, X0)] + inf

s∈[0,τ ]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds.

Thus,

E[ρ2(X̂t, Xt)] + inf
s∈[0,τ ]

5ε2

2C1(s) + 3C2(s)2 + 2

≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,T ]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds.

Hence, for all t ≥ 0,

E[ρ2(X̂t, Xt)] ≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,τ ]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds.

Plugging in τ = t in the above equation, we have, for all t ≥ 0,

E[ρ2(X̂t, Xt)] ≤
(
E[ρ2(X̂0, X0)] + inf

s∈[0,t]

5ε2

2C1(s) + 3C2(s)2 + 2

)
e
∫ t
0
2C1(s)+3C2(s)

2+2ds.
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B.3. Proof that average-case Lipschitzness holds on symmetric manifolds of interest (Lemma B.4)

Lemma B.4 (Average-case Lipschitzness). For the unitary group, Assumption 2.1 holds with L1 = O(d1.5
√
Tα−1/3) and

L2 = O(d2Tα−2/3). For the sphere, it holds for L1 = L2 = O(α− 1
d ). For the torus, it holds for L1 = L2 = 1.

Proof. For the torus, the map φ(x) has ∇φ(x) = Id at every x ∈ Rd, which implies that Assumption 2.1 is satisfied for
L1 = L2 = 1.

Sphere. In the case of the sphere, which we embed via the map ψ as a unit sphere in Rd, one can easily observe that e.g.
∥∇φ(z)∥ ≤ O(1) for any z outside a ball of radius r ≥ Ω(1) centered at the origin. As the volume of a ball of radius
r = α is 1

rd
times the volume of the unit ball, one can use standard Gaussian concentration inequalities to show that the

Ornstein-Uhlenbeck process Zt, which is a Gaussian process, will remain outside this ball for time T with probability at
least 1− 4 1

rdT
.

Moreover, by standard Gaussian concentration inequalities (Rudelson & Vershynin, 2013), we have that ∥Zt∥ ≤
2
√
Td log( 1

α ) with probability at least 1 − 2α for all t ∈ [0, T ]. This motivates defining the set Ωt := {z ∈ Rd :

(4 1
αT )

1
d ≤ ∥z∥ ≤ 2

√
Td log( 1

α )}, as we then have

P(Zt ∈ Ωt ∀ t ∈ [0, T ]) ≥ 1− α.

Since ∥z∥ ≥ (4 1
αT )

1
d for any z ∈ Ωt and any t ∈ [0, T ], we must have that

∥∇φ(z(U,Λ))∥2→2 ≤ 3

(
4

1

αT

) 2
d

= L1,∥∥∥∥ d

dU
∇φ(z(U,Λ))

∥∥∥∥
2→2

≤ 3

(
4

1

αT

) 2
d

= L1,

∥∇2φ(z(U,Λ))∥2→2 ≤ 3

(
4

1

αT

) 3
d

= L2,∥∥∥∥ d

dU
∇φ(z(U,Λ))

∥∥∥∥
2→2

≤ 3

(
4

1

αT

) 3
d

= L2,∥∥∥∥ d

dU
(z(U,Λ))

∥∥∥∥
2→2

≤ ∥x∥,

Unitary group. We next show that the Lipschitz property holds for the unitary group U(n). Similar techniques can be used
for the case of the special orthogonal group, and we omit those details. We first recall results from random matrix theory,
which allow us to bound the eigenvalue gaps of a matrix with Gaussian entries. Specifically, these results say that, roughly
speaking, if Z0 ∈ Cn×n is any matrix and Zt = Z0 + B(t), where B(t) is a matrix with (complex) iid N(0, t) entries
undergoing Brownian motion, one has that the eigenvalues γ1(t) ≥ · · · ≥ γn(t) of Zt + Z∗

t satisfy (see e.g. (Anderson
et al., 2010; Mangoubi & Vishnoi, 2023; 2025))

P
(

inf
s∈[t0,T ]

(γi+1(t)− γi(t)) ≤ s
1

poly(d)
√
t

)
≤ O(s

1
2 ) ∀s ≥ 0. (41)

Thus, if we define Ωt to be the set of outcomes of Zt such that γi+1(t) − γi(t) ≤ α2 1
poly(n)

√
t
, we have that P(Zt ∈

Ωt ∀t ∈ [t0, T ]) ≥ 1− α.

From the matrix calculus formulas for ∇φ(U⊤ΛU), d
dU∇φ(U

⊤ΛU), ∇φ(U⊤ΛU), and d
dU∇

2φ(U⊤ΛU), we have that,
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for all z(U,Λ) = UΛU⊤ ∈ Ωt,

∥∇φ(z(U,Λ))∥2→2 ≤
d∑
i=1

1

λi+1 − λi
≤ d1.5

√
tα− 1

3 = L1,

∥∥∥∥ d

dU
∇φ(z(U,Λ))

∥∥∥∥
2→2

≤ ∥Λ∥2→2

d∑
i=1

1

λi+1 − λi

≤
(
C +

√
Td log

(
1

α

))
×

d∑
i=1

1

λi+1 − λi
≤ d1.5

√
tα− 1

3 = L1,

∥∥∇2φ(z(U,Λ))
∥∥
2→2

≤
d∑
i=1

1

(λi+1 − λi)2
≤ d2tα− 2

3 = L2,

∥∥∥∥ d

dU
∇φ(z(U,Λ))

∥∥∥∥
2→2

≤ ∥Λ∥2→2

d∑
i=1

1

(λi+1 − λi)2

≤
(
C +

√
Td log

(
1

α

))
×

d∑
i=1

1

(λi+1 − λi)2
≤ d2tα− 2

3 = L2,

∥∥∥∥ d

dU
(z(U,Λ))

∥∥∥∥
2→2

≤ ∥Λ∥2→2

since λi+1 − λi ≤ α
1
3

1√
d
√
t

for all i ∈ [d] and ∥Λ∥2→2 ≤ 2
√
Td log( 1

α ) whenever z(U,Λ) ∈ Ωt

B.4. Proof of Lipschitzness of f⋆ and g⋆ on all of M (Lemma B.6)

Recall that we denote by qt|τ (y|x) the transition kernel of the Ornstein-Uhlenbeck process Zt at any x, y ∈ Rd, and by
qt(x) =

∫
M qt|0(x|z)π(z)dz the distribution of Zt at any time t ≥ 0. We will use the following Proposition of (Chen et al.,

2023b):
Proposition B.5 (Proposition 20 of (Chen et al., 2023b)). Suppose that ψ(π) has support on a ball of radius C > 0. For
any α > 0, define the “early stopping time” t0 := min( αC ,

α2

d ). Then the drift term ∇ log qt(·) of the reverse diffusion SDE
in Euclidean space is O( 1

α2 dC
2(min(C,

√
d)2))-Lipschitz at every time t > t0. Moreover, W2(qt0 , π) ≤ α.

Recall that we denote by Γx→y(v) the parallel transport of a vector v from x to y.
Lemma B.6. Suppose that Assumption 2.1(φ,L1, L2, α) and Assumption B.1(ψ, π, C) both hold. Then for every t ∈ [t0, T ],

∥f⋆(x, t)− Γx→y(f
⋆(x, t))∥ ≤ C × ρ(x, y), ∀x, y ∈ M (42)

and
∥g⋆(y, t)− Γx→y(g

⋆(x, t))∥F ≤ C × ρ(x, y) ∀x, y ∈ M (43)

where C := (C +
√
Td log( 1

α ))
4 × L2

3 × L1 + (C +
√
Td log( 1

α ))
2 × L3 × L2 and t0 := min( αC ,

α2

d ), and L3 =

O( 1
α2 dC

2(min(C,
√
d)2)).

Proof. Recall that (when, e.g., M is one of the aforementioned symmetric manifolds) we may decompose any z ∈ Rd as
z ≡ z(U,Λ) where U ∈ M.

We have the following expression for f⋆(U, t)

f⋆(U, t) = cU

∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t|0(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ,
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where cU =
(∫

Λ∈A qT−t(z(U,Λ))1Ω(Λ)dΛ
)−1

is a normalizing constant. Then

d

dU
f⋆(U, t) = cU × d

dU

∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ

+

(
d

dU
cU

)
×
∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ. (44)

For the first term on the r.h.s. of (44) we have,

cU × d

dU

∫
Λ∈A

[
(∇Uφ(z(U,Λ)))

⊤∇ log qT−t(z(U,Λ)) +
1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ

= cU ×
∫
Λ∈A

(
d

dU

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

])
× qT−t(z(U,Λ))1Ω(Λ)dΛ

+ cU ×
∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× d

dU
qT−t(z(U,Λ))1Ω(Λ)dΛ

= cU ×
∫
Λ∈A

(
d

dU

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

])
× qT−t(z(U,Λ))1Ω(Λ)dΛ

+ cU ×
∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
×∇U log qT−t(z(U,Λ))× qT−t(z(U,Λ))1Ω(Λ)dΛ

= Ez(U,Λ)∼qT−t

[
d

dU

(
(∇φ(z(U,Λ)))⊤∇U log qT−t|0(z(U,Λ))

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]
+ Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇U log qT−t(z(UΛ)) +

1

2
tr(∇2φ(z(U,Λ)))

)
×∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣∣∣V = U

]
.

For the second term on the r.h.s. of (44) we have,

d

dU
cU = c2U

∫
Λ∈A

d

dU
(qT−t(z(U,Λ)))1Ω(Λ)dΛ

= c2U

∫
Λ∈A

d

dU
(elog qT−t(z(U,Λ)))1Ω(Λ)dΛ

= c2U

∫
Λ∈A

∇U log qT−t(z(U,Λ))(e
log qT−t(z(U,Λ)))1Ω(Λ)dΛ

= c2U

∫
Λ∈A

∇U log qT−t(z(U,Λ))× qT−t(z(U,Λ))1Ω(Λ)dΛ

= cU × Ez(U,Λ)∼qT−t

[
∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣V = U
]
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and hence,

(
d

dU
cU )×

∫
Λ∈A

[
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

]
× qT−t(z(U,Λ))1Ω(Λ)dΛ

= Ez(U,Λ)∼qT−t

[
∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣V = U
]

× Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ))

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]
.

Thus

d

dU
f⋆(U, t) = Ez(U,Λ)∼qT−t

[
d

dU

(
(∇φ(z(U,Λ)))⊤∇U log qT−t|0(z(U,Λ))

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]
,

+ Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇U log qT−t(z(U,Λ)) +

1

2
tr(∇2φ(z(U,Λ)))

)
×∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣∣∣V = U

]
+ Ez(U,Λ)∼qT−t

[
∇U log qT−t(z(U,Λ))1Ω(Λ)

∣∣V = U
]

× Ez(U,Λ)∼qT−t

[(
(∇φ(z(U,Λ)))⊤∇ log qT−t(z(U,Λ)) (45)

+
1

2
tr(∇2φ(z(U,Λ)))

)
1Ω(Λ)

∣∣∣∣V = U

]
. (46)

Moreover, by standard Gaussian concentration inequalities and Assumption B.1, without loss of generality we have that
∥z(U,Λ)∥F ≤ C +

√
Td log( 1

α ) for all z(U,Λ) ∈ Ωt. From Proposition B.5 we have that ∇ log pT−t|0(z(U,Λ)) is
L3-Lipschitz where L3 := O( 1

α2 dC
2(min(C,

√
d)2)) and hence that

∥∇U log pT−t|0(z(U,Λ))∥2→2 ≤ ∥ d

dU
(z(U,Λ))∥2→2 × ∥∇ log pT−t|0(z(U,Λ))∥2→2

≤ ∥ d

dU
(z(U,Λ))∥2→2 × L3 × ∥z(U,Λ)∥F

≤ L3 × ∥z(U,Λ)∥2F

≤ L3 ×
(
C +

√
Td log(

1

α
)

)2

, (47)

where the third inequality holds by Assumption 2.1, and the last inequality holds since ∥z(U,Λ)∥F ≤ C +
√
Td log( 1

α ) for
all z(U,Λ) ∈ Ωt. Thus, plugging Assumption 2.1 and (47) into (45), we have that∥∥∥∥ d

dU
f⋆(U, t)

∥∥∥∥
2→2

≤ (C +
√
Td log(

1

α
))4 × L2

3 × L1 + (C +
√
Td log(

1

α
))2 × L3 × L2. (48)

Replacing f⋆ with g⋆ in the above calculation, we also get that∥∥∥∥ d

dU
g⋆(U, t)

∥∥∥∥
2→2

≤ (C +
√
Td log(

1

α
))4 × L2

3 × L1 + (C +
√
Td log(

1

α
))2 × L3 × L2. (49)
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Thus, (48) and (49) imply that

∥f⋆(y, t)− Γx→y(f
⋆(x, t))∥ ≤ C × ρ(x, y), ∀x, y ∈ M (50)

and
∥g⋆(y, t)− Γx→y(g

⋆(x, t))∥F ≤ C × ρ(y, x) ∀x ∈ M, (51)

where C := (C +
√
Td log( 1

α ))
4 × L2

3 × L1 + (C +
√
Td log( 1

α ))
2 × L3 × L2.

B.5. Wasserstein to TV conversion on the manifold (Lemma B.7)

Lemma B.7 (Wasserstein to TV conversion on the manifold). There is a number c ≤ poly(d) such that for every
t ∈ [t0, T ] and any τ ≤ 1

c we have

∥LYt+τ+∆̂
− Lŷt+τ+∆̂

∥TV − ∥LYt − Lŷt∥TV

≤
√
DKL(ν1 ∥ pt+τ+∆̂|t+τ ( · |Yt+τ )) +

√
DKL(ν1∥Lŷt+τ+∆̂|ŷt) ≤ O(εc). (52)

Proof of Lemma B.7. Now that we have shown that f⋆ and g⋆ are poly(d)-Lipschitz (by Lemmas B.4 and B.6), we can apply
Lemma B.3 to bound the Wasserstein distance: W2(Ŷt+τ , Yt+τ ) ≤ (ρ2(Ŷt, Yt) + ε)ecτ ∀τ ≥ 0, where c ≤ poly(d).

Moreover, with slight abuse of notation, we may define ŷt+τ to be a continuous-time interpolation of the discrete process ŷ.
Applying (13) to this process, we get that, roughly, W2(Ŷt+τ , ŷt+τ ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ for τ ≥ 0. Thus, we get a
bound on the Wasserstein error,

W2(Yt+τ , ŷt+τ ) ≤W2(Ŷt+τ , Yt+τ ) +W2(Ŷt+τ , ŷt+τ ) ≤ (ρ2(ŷt, Yt) + ε+∆)ecτ τ ≥ 0 (53)

Unfortunately, after times τ > 1
c = 1

poly(d) , this bound grows exponentially with the dimension d.

To overcome this challenge, we define a new coupling between Yt and Ŷt which we “reset” after time intervals of length
τ = 1

c by converting our Wasserstein bound into a total variation bound after each time interval. Towards this end, we use
the fact that if at any time t the total variation distance satisfies ∥LYt

− Lŷt∥TV ≤ α, then there exists a coupling such
that Yt = Ŷt with probability at least 1− α. In other words, w.p. ≥ 1− α, we have ρ(ŷt+τ , Yt+τ ) = 0, and we can apply
inequality (53) over the next time interval of τ without incurring an exponential growth in time. Repeating this process T

τ

times, we get that ∥LYT
− LŷT ∥ ≤ α× T

τ , where the TV error grows only linearly with T .

Converting Wasserstein bounds on the manifold to TV bounds. To complete the proof, we still need to show how
to convert the Wasserstein bound into a TV bound. Towards this end, we begin by showing that the transition kernel
p̃t+τ+∆̂|t+τ ( · |Ht+τ ) of the reverse diffusion Ht in Rd is close to a Gaussian in KL distance over short time steps ∆̂:

DKL(N(Ht+τ + ∆̂∇p̃T−t−τ (Ht+τ ), ∆̂Id) ∥ p̃t+τ+∆̂|t+τ ( · |Ht+τ )) ≤
ατ

T
.

One can do this using Girsanov’s theorem, since, unlike the diffusion Yt on the manifold, the reverse diffusion in Euclidean
space Ht does have a constant diffusion term (see e.g. Theorem 9 of (Chen et al., 2023b)).

Next, we use the fact that with probability at least 1− α τ
T the map φ in a ball of radius 1

poly(d) about the point Ht+τ has
c-Lipschitz Jacobian where c = poly(d), and that the inverse of the exponential map exp(·) has O(1)-Lipschitz Jacobian, to
show that the transition kernel pt of Yt = φ(Ht) satisfies

DKL(ν1 ∥ pt+τ+∆̂|t+τ ( · |Yt+τ )) ≤ (1 + ∆̂c)d
ατ

T
≤ 2

ατ

T
,

if we choose ∆̂ ≤ O( 1
cd ), where ν1 := expYt+τ

(N(Yt+τ + ∆̂f⋆(Yt+τ , t+ τ), ∆̂g⋆2(Yt+τ , t+ τ)Id)).

Next, we plug in our Wasserstein bound W (Yt+τ , ŷt+τ ) ≤ O(ε) into the formula for the KL divergence between two
Gaussians to bound ∥LYt+τ+∆̂

− Lŷt+τ+∆̂
∥TV. Specifically, noting that Lŷt+τ+∆̂|ŷt = expŷt+τ

(N(ŷt+τ + ∆̂f(ŷt+τ , t +
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τ), ∆̂g2(ŷt+τ , t+ τ)Id)), we have that

DKL(ν1,Lŷt+τ+∆̂|ŷt+τ
) = Tr

(
(g⋆2(Yt+τ , t+ τ))−1g2(ŷt+τ , t+ τ)

)
− d+ log

det g⋆2(Yt+τ , t+ τ)

det g2(ŷt+τ , t+ τ)
+ w⊤(∆̂g⋆2(Yt+τ , t))

−1w,

where w := Yt+τ − ŷt+τ + ∆̂(f⋆(Yt+τ , t+ τ)− f(ŷt+τ , t+ τ)). Since with probability ≥ 1− α τ
T we have g⋆(Yt+τ ) ⪰

poly(d), plugging in the error bounds ∥f⋆(Yt+τ , t) − f(Yt+τ , t)∥ ≤ ε and ∥g⋆(Yt+τ , t) − g(Yt+τ , t)∥F ≤ ε and the c-
Lipschitz bounds on f⋆ and g⋆ due to Lemmas B.4 and B.6, where c = poly(d), we get that DKL(ν1,Lŷt+τ+∆̂

) ≤ O(ε2c2).
Thus, by Pinsker’s inequality, we have

∥LYt+τ+∆̂
− Lŷt+τ+∆̂

∥TV − ∥LYt
− Lŷt∥TV

≤
√
DKL(ν1 ∥ pt+τ+∆̂|t+τ ( · |Yt+τ )) +

√
DKL(ν1∥Lŷt+τ+∆̂|ŷt) ≤ O(εc). (54)

B.6. Completing the proof of Theorem 2.2

Bounding the accuracy. Recall that qt is the distribution of the forward diffusion Zt in Euclidean space after time t,
which is an Ornstein-Uhlenbeck process. Standard mixing bounds for Ornstein-Uhlenbeck process imply that

∥qt −N(0, Id)∥TV ≤ O(Ce−t)

for all t > 0 (see e.g. (Bakry et al., 2014)). Thus, it is sufficient to choose T = log( 1
Cε ) to ensure that

∥LYT
− π∥TV = ∥qT −N(0, Id)∥TV ≤ O(ε).

As Lemma B.7 holds for all t ∈ [t0, T ], the distribution ν = LŷT of our sampling algorithm’s output satisfies

∥π − ν∥TV = ∥LYT
− π∥TV + ∥LYT

− ν∥TV ≤ O(ε) +O(εc× T
τ ) = O(ε× poly(d)).

Bounding the runtime of the sampling algorithm. Since our accuracy bound requires T = log( d
εC ), and requires a

time-step size of ∆ ≤ 1
poly(d) , the number of iterations is bounded by

T

∆
≤ O

(
poly(d)× log

(
d

εC

))
.

B.7. Proof sketch for extension of sampling guarantees to special orthogonal group

Similar techniques to those used in the case of the complex unitary group can be used to bound the accuracy and runtime of
our sampling algorithm in the case of the real special orthogonal group. However, in the case of the special orthogonal group
we encounter the additional challenge that, due to weaker “electrical repulsion” between eigenvalues of real-valued random
matrices, with high probability Ω(1) the gaps between neighboring eigenvalues γi+1(t)− γi(t) may become exponentially
small in d, over very short time intervals of length O( 1

ed
). To overcome this challenge, we first note that one can show

that the gaps between non-neighboring eigenvalues do satisfy a polynomial lower bound at every time t w.h.p. (see e.g.
(Anderson et al., 2010; Mangoubi & Vishnoi, 2023; 2025)):

P

 ⋂
t∈[t0,T ]

{
γi+2(t)− γi(t) ≤ s

1
√
n
√
t

} ≤ O
(
s1.5

)
. (55)

Moreover, one can also show that, except over at most O(n1.5) “bad” time intervals [τj , τj +∆j ], each of length e.g. O( 1
n5 ),

the gaps between all neighboring eigenvalues are at least 1
n10 .
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From the matrix calculus formula for φ one can show that the SDE for the eigenvectors of the forward diffusion satisfy
(these evolution equations, discovered by Dyson, are referred to as Dyson Brownian motion (Dyson, 1962))

dγi(t) = dBii(t) +
∑
j ̸=i

dt

γi(t)− γj(t)
, (56)

dui(t) =
∑
j ̸=i

dBij(t)

γi(t)− γj(t)
uj(t)−

1

2

∑
j ̸=i

dt

(γi(t)− γj(t))2
ui(t) ∀i ∈ [n]. (57)

From (55), one can see that over the “bad” time intervals [ai, bi], each eigenvalue γi(t) has at most one neighboring
eigenvalue, say γi+1(t), with small gap γi(t) − γi+1(t) ≤ O( 1√

d
) w.h.p. Roughly speaking, this implies that only the

interactions in (57) between eigenvectors with neighboring eigenvalues that fall below O( 1
n10 ) are significant, while

interactions between eigenvectors with larger eigenvalue gaps are negligible over these short time intervals. Thus, one can
analyze the evolution of the eigenvectors (41) over these short time intervals as a collection of separable two-body problems
consisting of interactions between pair(s) of eigenvectors.

More precisely, using (56), one can show that over the bad time intervals [τj , τj + ∆j ], any eigenvalue gap which falls
below 1

n10 , also remains below 1
n8 over a time sub-interval of length at least Ω( 1

(n8)2 ) w.h.p. This is because eigenvalues
γi(t) and γi+1(t) in (56) repel with an “electrical force” proportional to 1

γi(t)−γi+1(t)
, which implies that the eigenvalues

gaps expand at a rate proportional to
√
t (the stochastic term dBii(t) also leads to the same

√
t expansion rate). Thus, using

the evolution equations (57), one can show that, over the short bad intervals, the distribution of [ui(τj +∆j), ui+1(τj +
∆j)]|U(τj) is 1

poly(d) -close in Wasserstein distance to the invariant (Haar) measure with respect to the action of SO(2)

on [ui(τj), ui+1(τj)]. This is because (by the Itô isometry) the time-averaged variance in ui(t) over this time interval is

proportional to 1
∆j

∫ τj+∆j

τj
1

(γi(t)−γj(t))2 dt ≈
∫ n8

n10
1

(
√
t)2

dt = log( 1
n8 ) − log( 1

n10 ) = (10 − 8) log(n) = Ω(log(n)). But
the diameter of the 2-dimensional manifold (which is isomorphic to SO(2)) on which ui(t) and ui+1(t) (approximately) lie
is O(1). Thus, after the time interval [τj , τj +∆j ], the two neighboring eigenvectors [ui(τj +∆j), ui+1(τj +∆j)]|U(τj)
are (approximately) distributed according to the Haar measure with respect to the action of SO(2) on [ui(τj), ui+1(τj)].
Thus, one can show that as long as one uses a numerical step size ∆ ≤ O( 1

poly(d) ), the transition kernel of both the
continuous-time reverse diffusion Yt and the numerical simulation ŷt over the time interval [τj , τj +∆j ] will be very close
(within Wasserstein distance ∆

poly(d) ) to the Haar measure on the action of SO(2) on [ui(τj), ui+1(τj)]. As the Lipschitz
property does hold outside the bad intervals [τj , τj +∆j ], the remainder of the proof follows in the same way as for the case
of U(n).

C. Additional simulation details
C.1. Datasets

Given a d-dimensional Riemannian manifold M, a number of mixture components k ∈ N, points m1, . . . ,mk ∈ M and
covariance matrices C1, . . . , Ck ∈ Rd×d, we say that a random variable is distributed according to a wrapped Gaussian
distribution with means m1, · · · ,mk and covariances C1, · · · , Ck (with equal weights on each component) if its distribution
is equal to that of a random variable X sampled as follows:

1. Sample an index i at random from {1, . . . , k}.

2. Sample Z ∼ N(0, Ci)

3. Set X = expmi
(Z),

where expx(·) denotes the exponential map at any point x ∈ M.

Datasets on the Torus Td. The synthetic dataset is sampled from a single-wrapped Gaussian distribution, with mean at the
origin, (0, . . . , 0)⊤ and covariance matrix 0.2Id. A total of 30,000 points were sampled as the training dataset, and 10,000
were sampled as a test dataset to compute the log-likelihood of the generative model outputs.

Datasets on the special orthogonal group SO(n). The dataset is constructed by first picking 2 random means m1,m2 ∈
SO(n) sampled from the uniform measure on the orthogonal group SO(n) (i.e., the invariant measure with respect to actions
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by the orthogonal group). We then sample 40,000 matrices from the wrapped Gaussian mixture distribution on SO(n) with
means m1,m2 and covariance 0.2Id. 30,000 of these matrices are used for training, and the remaining 10,000 matrices
comprise the test dataset used to evaluate the C2ST score of the generative model outputs.

Datasets on the unitary group U(n). We use a dataset on U(n) of unitary matrices representing time-evolution operators
eitH of a quantum oscillator. Here t is time, H = ℏ

2m∆ − V is a Hamiltonian, and ∆ is the Laplacian. V is a random
potential V (x) = ω2

2 ∥x− x0∥2 with angular momentum ω sampled uniformly on [2, 3] and x0 ∼ N (0, 1). As ∆, V are
infinite-dimensional operators, matrices in U(n) are obtained by retaining the (discretized) top-n eigenvectors of ∆, V .

C.2. Neural Network architecture, Training Hyperparameters, and hardware

Torus. In the case of the torus, the neural network architecture consists of a 4-layer MLP with a hidden dimension of k,
with a sin activation function. We set k = 512 for d < 1000 and k = 2048 for d = 1000.

The models were trained with a batch size of 512, with an appropriate variance scheduler. For each model, we trained the
neural networks for 50K iterations when d < 1000, and for 100K iterations when d = 1000.

Special Orthogonal Group. In the case of the special orthogonal group, the neural network architecture consists of a
4-layer MLP with a hidden dimension k = 512, with a sin activation function.

For each model, the neural networks were trained for 100K iterations, with a batch size of 512, and an appropriate variance
scheduler.

Unitary Group. Following TDM (Zhu et al., 2025), when training each model on the unitary group, we use a more
complicated neural network than on the torus and special orthogonal group, to accommodate the more complicated quantum
evolution operator datasets used in our simulations on the unitary group. For both the drift and diffusion terms, let (Xi, ti)
be inputs into the neural network, where Xi ∈ U(n) and ti ∈ [0, T ] is time. The output of the neural network is then given
by

X̂i = MLP(NG(MLPS(Xi),Embsin(ti)))

where MLP is a 2-layer multi-layer perceptron of dimension D, MLPS is k skip-connected MLP layers of dimension D,
Embsin is a sinusoid embedding of dimension D, and NG denotes group normalization. In our simulations, we set k = 8
and D = 512. For the drift term f̂(·, ·) in each of the models, the final output is given by Xdrift = projTXi

U(n)(X̂), where
projTXi

U(n) is the projection onto the tangent space at Xi. For the diffusion term ĝ(·, ·) in our model, the neural network
outputs a vector of dimension d.

For each model, the neural networks were trained for 80K iterations, with a batch size of 512, and an appropriate variance
scheduler.

Hardware. Simulations evaluating sample quality on the Torus were run on an Apple M1 chip with 10 cores. Simulations
on the special orthogonal group and unitary group were run on a single RTX 3070. All simulations evaluating per-iteration
training runtime were run on a single RTX 3070 as well.

C.3. Evaluation metrics

In this section, we define the metrics used in our simulations.

Log-likelihood metric. Let D = {x1, x2, . . . , xn} be a synthetic dataset arising from a target distribution with density
function g. We train the generative model A on the dataset D. Next, we generate points yA1 , . . . , y

A
n which are outputs

of the trained model A. Since the points yA1 , . . . , y
A
n are generated independently, the likelihood of generating the points

yA1 , . . . , y
A
n given the target distribution g is given by

n∏
i=1

g(yAi ) (58)

The (average) log-likelihood of the generated points yA1 , . . . , y
A
n with respect to the target density g is therefore

1

n

n∑
i=1

log g(yAi ) (59)
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C2ST metric. Suppose we have two distributions P,Q and sampled points SP , SQ where SP ∼ P, SQ ∼ Q. We denote
the number of sampled points by m := |SP | = |SQ|. One motivation behind the Classifier Two-Sample Test (C2ST) metric
(Lopez-Paz & Oquab, 2017) is to perform a hypothesis test, where one wishes to decide whether to reject or accept the null
hypothesis P = Q. By reporting the test statistic from this hypothesis test, the C2ST metric can also be used to evaluate the
quality of samples generated by a generative model, we do in our simulations.

To compute the C2ST metric, construct a dataset D where

D = {(xi, 0)}mi=1 ∪ {(yi, 1)}mi=1 := {(zi, li)}2mi=1 .

and where xi ∈ SP and yi ∈ SQ. Partition D randomly into training and test datasets Dtr and Dte where mte := |Dte|
denotes the number of points in the test dataset. Suppose f : D → [0, 1] is a binary classifier trained on Dtr where
f(zi) = P (li = 1|zi), then the value for the C2ST metric is computed as

t̂ =
1

mte

∑
(zi,li)∈Dte

1

[
1

(
f(zi) >

1

2

)
= li

]
(60)

where 1 is the indicator function. The null distribution is approximately N
(

1
2 ,

1
4mte

)
. Then if P = Q we would have

t̂→ 0.5. Whether to reject the null hypothesis can be done by performing a p-value analysis using 60 and the null hypothesis.
For the sake of comparison between model performance, we report the value of t̂ instead.

More specifically, as the statistic t̂ can take values greater than or smaller than 0.5, we report the value∣∣∣∣t̂− 1

2

∣∣∣∣+ 1

2
(61)

where t̂ is computed using 60.

C.4. Additional results

In this section, we provide additional empirical results.

Visual results on the torus Td. In 2 we show points generated on the torus by the Euclidean diffusion model, the RSGM,
and our model when trained on a dataset sampled from a wrapped Gaussian distribution. For the 2D torus, we plot the
result as a 2D scatter plot. For higher-dimensional tori, for any sampled point x ∈ Td, the plot shows the first two angle
coordinates (x0, x1) of each generated point on the torus. We observe that, for dimensions d ≥ 100, our model appears to
generate points that visually resemble those of the target distribution more closely than the points generated by the Euclidean
diffusion model or the RSGM model.

C2ST score and visual results on the special orthogonal group SO(n). We train our model, a Euclidean diffusion
model, RSGM, and TDM on a dataset sampled from a mixture of two wrapped Gaussian distributions on SO(n) for
n ∈ {3, 5, 9, 12, 15}. For n ≥ 9, our model achieves the lowest C2ST score; a lower C2ST score indicates higher-quality
sample generation (Table 4).

The visual results for our model, the Euclidean model, the RSGM, and TDM are shown in 3. Here we plot the first and
second entries of the first row of each generated matrix in SO(n) Note that the target distribution is bimodal, yet the two
modes appear visually as a single mode as we are only plotting two of the matrix coordinates.

Additional visual results on the unitary group U(n). Visual sample generation results on U(n) were shown in Figure 1 of
Section 4 for n = 15. In Figure 4, we give visual results for additional values of n.

Runtime on the torus Td. 5 gives the per-iteration runtime of the Euclidean model, our model, TDM, and RSGM on the
torus, for dimensions d ∈ {2, 10, 50, 100, 1000}. We observe that for each of these dimensions, our method has similar
runtime to the Euclidean model, whereas RSGM is roughly 9 times slower than the Euclidean model.

Runtime on the special orthogonal group SO(n). 6 shows the per-iteration runtime of the Euclidean model, our model,
RSGM and TDM, on the special orthogonal group SO(n), for n ∈ {3, 5, 10, 30, 50}. We observe that our model’s per-
iteration training runtime remains within a factor of 1.3 of the Euclidean model for all n. However, the per-iteration training
runtimes of TDM and RSGM increase more rapidly with dimension and are, respectively, 51 and 66 times greater than the
Euclidean model for n = 50.
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Figure 2: Points generated by different models when training on a dataset sampled from a wrapped Gaussian target
distribution on the torus of different dimensions d ∈ {2, 10, 50, 100, 1000}.

Table 4: C2ST scores when training on a wrapped Gaussian mixture dataset on SO(n). Lower scores indicate better-quality
sample generation (range is [0.5, 1], and 0.5 is optimal). For n ≥ 9, our model achieves the best C2ST scores.

Method n = 3 n = 5 n = 9 n = 12 n = 15
Euclidean .51.±.01 .51.±.01 .62.±.02 .64.±.02 .72.±.02
RSGM .51.±.01 .57.±.02 .74.±.01 .81.±.02 .90.±.02
TDM .52.±.01 .53.±.01 .69.±.03 .73.±.02 .79.±.03
Ours .55.±.01 .56.±.02 .60.±.03 .61.±.02 .67.±.03
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Figure 3: Points generated by different models trained on a Gaussian mixture dataset on SO(n) for different values of n.

Figure 4: Points generated on U(n) for different values of n, when training on datasets comprising time-evolution operators
of quantum harmonic oscillators with random potentials. For n = 9 and n = 15, we observe that our model generates
samples resembling the data distribution, while the Euclidean, RSGM, and TDM models generate lower-quality samples.
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Table 5: Per-iteration training runtime in seconds on the Torus. The manifold-constrained diffusion model with the fastest
runtime is in bold; the Euclidean model is in gray for comparison. For each dimension d, our model achieves a similar
runtime to the Euclidean model, whereas RSGM is roughly 9 times slower.

Method d = 2 d = 10 d = 50 d = 100 d = 1000
Euclidean 0.16±.00 0.17±.00 016±.00 0.17±.00 0.18±.01
RSGM 1.36±.09 1.35±.11 1.39±.07 1.36±.06 1.42±.08
Ours 0.15±.01 0.15±.01 0.16±.01 0.15±.01 0.16±.01

Table 6: Per-iteration training runtime in seconds on SO(n). The manifold-constrained diffusion model with the fastest
runtime is in bold; the Euclidean model is in gray for comparison. Our model’s runtime remains within a factor of 1.3 of the
Euclidean model for all n. Runtimes of TDM and RSGM increase more rapidly with dimension and are 51 and 66 times
greater than the Euclidean model for n = 50.

Method n = 3 n = 5 n = 10 n = 30 n = 50
Euclidean 0.13±.01 0.12±.01 0.13±.00 0.12±.01 0.15±.00
RSGM 0.73±.01 0.96±.08 1.18±.01 2.99±.12 9.89±.09
TDM 0.62±.02 0.78±.05 1.67±.04 2.85±.09 7.63±.12
Ours 0.13±.01 0.13±.01 0.14±.00 0.14±.01 0.20±.01

D. Challenges encountered when applying Euclidean diffusion for generating points constrained
to non-Euclidean symmetric manifolds

The following examples illustrate why using Euclidean diffusion models to enforce symmetric manifold constraints may be
insufficient.

Example 1. Consider the problem of generating points from a distribution µ on the d-dimensional torus Td = S1×· · ·×S1,
given a dataset D sampled from µ. A naive approach is to map the dataset D from the torus to Euclidean space via the map
ψ, which maps each point on the torus to its angles in [0, 2π)d ⊆ Rd. One can then train a Euclidean diffusion model on the
dataset ψ(D).

However, the map ψ can greatly distort the geometry of µ. To see why, let µ be a unimodal distribution on Td with mode
cenetered near (0, . . . , 0). The pushforward of µ under ψ consists of a distribution with 2d modes, each near the 2d corners
of the d-cube [0, 2π)d (see Figure 5). Thus, a Euclidean diffusion model needs to learn a multimodal distribution, which
may be much harder than learning a unimodal distribution.

Example 2. Another example is the problem of generating samples from a distribution on the manifold SO(3) of
rotation matrices. There is a natural map ψ from SO(3) to R3 which maps any M ∈ SO(3) to its three Euler angles
(a, b, c) ∈ [−π, π]× [−π

2 ,
π
2 ]× [−π, π] ⊆ R3. However, ψ has a singularity at b = π

2 , which may make it harder to learn
distributions with a region of high probability density passing through this singularity, as ψ may separate this region into
multiple disconnected regions.

Additionally, it has been observed empirically that applying Euclidean diffusion models to generate Euler angles in R3 leads
to samples of lower quality than those generated by diffusion models on the manifold SO(3); see e.g. (Leach et al., 2022),
and (Watson et al., 2023).

E. Illustration of our framework for Euclidean space, torus, special orthogonal group, and
unitary group

1. Euclidean space Rd. In the Euclidean case, our algorithm (with the above choice of φ,ψ) recovers the algorithms
of diffusion models on Rd from prior works (e.g., (Ho et al., 2020; Rombach et al., 2022)). The forward diffusion
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Figure 5: A probability density µ with one mode (blue) on the torus. The map ψ, which maps points in the d-dimensional
torus Td to Euclidean space Rd, may break up the single mode on the torus into up to 2d separated modes in Rd. This can
make the task of learning the pushforward of the target distribution on Rd much more challenging than the task of learning
the original target distribution on the torus, as the distribution in Rd may have exponentially-in-d more modes.

is the Ornstein-Uhlenbeck process with SDE dZt = − 1
2Ztdt + dBt initialized at the target distribution π, where

Bt is the standard Brownian motion. The training objective for the drift term f(z, t) of the reverse diffusion is

given by ∥(ẑ⊤ ẑ−be−
1
2
(T−t)

e−(T−t)−1
− f(ẑ, t)∥2 where b is a point sampled from the dataset and ẑ is a point sampled from

ZT−t|{Z0 = b} which is Gaussian distributed as N(be−
1
2 (T−t),

√
1− e−(T−t)Id) (see Section 3.1). The number

of arithmetic operations to compute the training objective is therefore the same as for previous diffusion models in
Euclidean space.

2. Torus Td. For the torus, the forward and reverse diffusion of our model are the same as the models used in previous
diffusion models on the torus (De Bortoli et al., 2022) (Lou et al., 2024). The Forward diffusion is given by the SDE
dXt = − 1

2Xtdt+ dBt on the torus, initialized at the target distribution π.

The only difference is in the training objective function. To obtain our objective function, we observe that Xt is the
projection Xt = φ(Zt) of the Ornstein-Uhlenbeck diffusion on Rd via our choice of projection map φ for the torus.

The drift term f for the reverse diffusion can be trained by minimizing the objective function ∥ẑ⊤ ẑ−ψ(b)e−
1
2
(T−t)

e−(T−t)−1
−

f(φ(ẑ), t)∥2, where ẑ ∼ N(be−
1
2 (T−t),

√
1− e−(T−t)Id). Our objective function can be computed inO(d) arithmetic

operations, improving by an exponential factor on the per-iteration training runtime of (De Bortoli et al., 2022) which
relies on an inefficient expansion of the heat kernel which requires an exponential-in-d number of arithmetic operations
to compute, and matching the per-iteration training runtime of (Lou et al., 2024) who derive a more efficient expansion
for the heat kernel in the special case of the torus.

3. Sphere Sd−1.
Forward diffusion. We first choose the projection map φ : Rd → Sd−1 to be φ(x) = x

∥x∥ for x ∈ Sd−1, and
ψ : Sd−1 → Rd to be the usual embedding of the unit sphere into Rd. We define our forward diffusion to be the
projection Xt = φ(Zt) of the Euclidean-space Ornstein-Uhlenbeck diffusion Zt onto the manifold M, where Zt is
initialized at the pushforward ψ(π) of the target distribution π onto Rd. Since the Ornstein-Uhlenbeck distribution Zt
is a Gaussian process, each sample from our forward diffusion can be computed by drawing a single sample from a
Gaussian distribution and computing the projection map φ once.

The forward and reverse diffusion of our model on the sphere are different than those of prior diffusion mod-
els on the sphere. The evolution of our forward diffusion Xt on the sphere is governed by the SDE dXt =
α(Xt, t)(− 1

2Xtdt + dBt) initialized at the target distribution π, where the coefficient α(t) is given by the con-

ditional expectation α(Xt, t) := E
[

1
∥Zt∥

∣∣φ(Zt) = Xt

]
. Our forward (and reverse) diffusion has a (time-varying and)

spatially-varying covariance term α(Xt, t)dBt not present in prior models (De Bortoli et al., 2022) (Lou et al., 2024).
This covariance term, which accounts for the curvature of the sphere, allows our forward diffusion to be computed as a
projection of Euclidean Brownian motion onto the sphere despite the sphere’s non-zero curvature.

Training the model. The SDE for the reverse diffusion of our model has both a drift and a covariance term. To train a
model f for the drift term, we first sample a point b from the dataset D at a random time t ∈ [0, T ], and point ẑ from
the Ornstein-Uhlenbeck diffusion Zt initialized at ψ(b), which is Gaussian distributed. Next, we project this sample
ẑ to obtain a sample φ(ẑ) from our forward diffusion Xt on the manifold. Finally, we plug in the point φ(ẑ), and
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the datapoint b into the training objective function for the drift term f , which is given by the closed-form expression∥∥∥∥ 1
∥ẑ∥ (I −

1
∥ẑ∥2 ẑẑ

⊤) ẑ−ψ(b)e
− 1

2
(T−t)

e−(T−t)−1
− f(φ(ẑ), t)

∥∥∥∥2. The model for the drift term f is trained by minimizing the

expectation of this objective function over random samples of b ∼ D and ẑ ∼ Zt. To learn the SDE of the reverse
diffusion, we must also train a model for the spatially-varying covariance term, which is given by a d× d covariance
matrix. Learning a dense matrix model for this covariance term would require at least d2 arithmetic operations.
However, as a result of the symmetries of the sphere, the covariance matrix has additional structure: it is a multiple
α(Xt, t) of the d × d identity matrix. Thus, to learn this covariance term, it is sufficient to train a model α̂(Xt, t)
for α(Xt, t). This can be accomplished by minimizing the objective function (α̂(φ(ẑ), t) − 1

∥ẑ∥ )
2. Evaluating our

objective functions for the drift term and covariance terms can thus be accomplished via a single evaluation of the
projection map φ(x) = x

∥x∥ , which requires O(d log 1
δ ) arithmetic operations to compute within accuracy δ > 0 when

generating the input to our training objective function, which is sublinear in the dimension d2 of the covariance term.

In contrast, the forward diffusion used in prior diffusion models on the sphere (De Bortoli et al., 2022) (Lou et al., 2024)
cannot be computed as the projection of a Euclidean Brownian motion and must instead be computed by solving an
SDE (or probability flow ODE) on the sphere. This requires a number of arithmetic operations, which is a higher-order
polynomial in the dimension d and in the desired accuracy 1

δ (the order of the polynomial depends on the specific SDE
or ODE solver used). As their training objective function requires samples from the forward diffusion as input, the cost
of computing their objective function is therefore at least a higher-order polynomial in d and 1

δ (for (De Bortoli et al.,
2022) it is exponential in d, since their training objective relies on an inefficient expansion for the heat kernel which
takes 2d arithmetic operations to compute).

Sample generation. Once the models f(x, t) and g(x, t) for the drift and covariance terms of our reverse diffusion are
trained, we use these models to generate samples. First, we sample a point z from the stationary distribution of the
Ornstein-Uhlenbeck process Zt on Rd, which is Gaussian distributed. Next, we project this point z onto the manifold
to obtain a point y = φ(z), and solve the SDE dYt = f(Yt, t)dt + g(Yt, t)dBt given by our trained model for the
reverse diffusion’s drift and covariance over the time interval [0, T ], starting at the initial point y. To simulate this SDE
we can use any off-the-shelf numerical SDE solver. The point yT computed by the numerical solver at time T is the
output of our sample generation algorithm.

4. Special orthogonal group SO(n) and unitary group U(n).
For the special orthogonal group SO(n) and unitary group U(n), the forward and reverse diffusion of our model are
also different from those of previous works, as our model’s diffusions have a spatially-varying covariance term to
account for the non-zero curvature of these manifolds. As a result of this covariance term, our forward diffusion can be
computed as a projection φ of the Ornstein-Uhlenbeck process in Rd ≡ Rn×n (or Cn×n) onto the manifold SO(n)
(U(n)). This projection can be computed via a single evaluation of the singular value decomposition of a n× n matrix,
which requires at most O(nω) = O(d

ω
2 ) arithmetic operations, where ω ≈ 2.37 is the matrix multiplication exponent

and d = n2 is the manifold dimension.

The forward diffusion U(t) ∈ SO(n) (or U(t) ∈ U(n)) of our model is given by the system of stochastic differential
equations

dui(t) =
∑

j∈[n],j ̸=i

αij(t)dBijuj(t)−
1

2

∑
j∈[n],j ̸=i

βij(t)ui(t)dt, (62)

where αij(t) := E
[

1
λi−λj

|φ(Zt) = U(t)
]

and βij(t) := E
[

1
(λi−λj)2

|φ(Zt) = U(t)
]

for every i, j ∈ [n].

A model for the drift term f for the reverse diffusion can be trained by minimizing the objective function ∥R −
1
2DU − f(φ(ẑ), t)∥2F where R is the matrix with i’th column Ri = e−

1
2
(T−t)

e−(T−t)−1
U(λiI − Λ)+U∗ψ(b)ui for each

i ∈ [n], and D is the diagonal matrix with i’th diagonal entry Dii =
∑
j∈[n],j ̸=i

1
λi−λj

for each i ∈ [n]. Here,

ẑ = be−
1
2 (T−t)+

√
1− e−(T−t)G whereG is a Gaussian random matrix with i.i.d. N(0, 1) entries and UΛU∗ denotes

the spectral decomposition of ẑ + ẑ∗.

To learn the SDE of the reverse diffusion, we must also train a model for the covariance term, which is given by a
d× d = n2 × n2 covariance matrix. To train a model for this covariance term with runtime sublinear in the number of
matrix entries n4, we observe that as a result of the symmetries of the orthogonal (or unitary) group, the covariance
term in (6) is fully determined by the n2 scalar terms αij(t) for i, j ∈ [n] and the n× n matrix U . Thus, to learn the
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covariance term, it is sufficient to train a model A(U, t) ∈ Rn×n for these n2 terms, which can be done by minimizing
the objective function ∥A(U, t)− A∥2F , where A is the n× n matrix with (i, j)’th entry Aij = 1

λi−λj
for i, j ∈ [n],

and λi denotes the i’th diagonal entry of Λ.

The training objective function for both the drift and covariance term can thus be computed via a singular value
decomposition of an n×nmatrix (and matrix multiplications of n×nmatrices), which requires at mostO(nω) = O(d

ω
2 )

arithmetic operations, where ω ≈ 2.37 is the matrix multiplication exponent and d = n2 is the manifold dimension.

In contrast, the training objectives in prior works, including (De Bortoli et al., 2022) (Lou et al., 2024), require an
exponential in dimension number of arithmetic operations to compute, as they rely on the heat kernel of the manifold,
which lacks an efficient closed-form expression. Instead, their training algorithm requires computing an expansion for
the heat kernel of these manifolds, which is given as a sum of terms over the d-dimensional lattice, and one requires
computing roughly 2d of these terms to compute the heat kernel within an accuracy of O(1).

F. Generalization to non-symmetric manifolds
While our theoretical framework and guarantees are developed for symmetric Riemannian manifolds, it is natural to ask
whether the approach can extend to more general geometries. In this section, we outline the minimal set of geometric and
analytic conditions required for our guarantees—on runtime, simulation accuracy, and Lipschitz continuity—to continue
holding on non-symmetric manifolds. We also illustrate, via a concrete example, how two of these conditions can be
satisfied even on non-smooth, non-Riemannian domains, and discuss the challenges that arise in the absence of continuous
symmetries.

Our guarantees rely on the following three key properties:

1. Exponential map oracle. An oracle for computing the exponential map on the manifold M.

2. Projection map oracle. A projection map φ : Rd → M, where d = O(dim(M)), along with efficient computation of
its Jacobian Jφ(x) and the trace of its Hessian tr(∇2φ(x)), both of which appear in our training objective.

3. Lipschitz SDE on M. The projection Yt = φ(Ht) of the time-reversed Euclidean Brownian motion Ht must satisfy a
stochastic differential equation on M whose drift and diffusion coefficients are L-Lipschitz everywhere on M, with L
growing at most polynomially in d. This is essential for the reverse diffusion process to be simulated accurately and
efficiently.

Conditions (1) and (2) may hold even when M lacks the high degree of symmetry assumed in our main results. For example,
suppose M is the boundary of a compact convex polytope K ⊆ Rd, which contains a ball of radius r > 0 centered at a point
p. Although such a polytope is not a smooth manifold due to singularities at vertices and edges, its boundary is composed
of piecewise flat (d − 1)-dimensional faces. Geodesics restricted to a single face are linear and computable efficiently,
satisfying the spirit of property (1).

For property (2), one can define a projection φ : Rd → M that maps any x ∈ Rd to the point where the ray emanating from
p and passing through x intersects the boundary M. This projection can be computed efficiently, e.g., via binary search or
ray-casting techniques.

However, property (3) is significantly harder to satisfy in such domains. The drift of the reverse SDE projected onto M
exhibits discontinuities at the vertices and lower-dimensional faces of the polytope. In our analysis, we crucially rely on the
continuous symmetries of the manifold to “smooth out” such irregularities and to prove average-case Lipschitz continuity
(see the discussion on “average-case” Lipschitzness on page 6).

Even among smooth Riemannian manifolds, generalizing beyond symmetric spaces remains nontrivial. Examples include
surfaces of revolution with varying curvature (e.g., tori with non-uniform cross-sections) or higher-genus manifolds such as
a double torus. These lack the homogeneous structure exploited in our proofs and pose new challenges for both analysis and
algorithm design. Extending our framework to such settings represents a promising direction for future research.

G. Notation
1. Tangent space TxM. Given a smooth manifold M and a point x ∈ M, the tangent space at x is denoted by TxM.
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2. Riemannian manifold. A Riemannian manifold is a smooth manifold M equipped with a Riemannian metric g, which
assigns to each point x ∈ M a positive definite inner product gx : TxM×TxM → R.

3. Exponential map exp(x, v). Given x ∈ M and v ∈ TxM, there exists a unique geodesic γ such that γ(0) = x and
γ′(0) = v. The exponential map is defined as exp(x, v) := γ(1), i.e., the point reached by traveling along the geodesic
for unit time.

4. Parallel transport Γx→y(v). For x, y ∈ M and v ∈ TxM, Γx→y(v) denotes the parallel transport of v along the
(unique) distance-minimizing geodesic from x to y. This transport yields a vector in TyM.

5. Geodesic distance ρ. The geodesic distance ρ(x, y) between points x, y ∈ M is the length of the shortest path
(geodesic) connecting them on the manifold.

6. Jacobian Jφ. Let φ : M → N be a differentiable map between Riemannian manifolds. The Jacobian (or differential)
at x ∈ M is the linear map Jφ : TxM → Tφ(x)N , defined by the directional derivative of φ at x. In coordinates,
Jφ(∂xi)j = ∂xiφj , where ∂xi denotes the ith basis vector of TxM. In the special case M = Rm and N = Rn, Jφ is
the matrix whose (i, j)th entry is ∂φi/∂xj .

7. Indicator function 1A(x). Given a set A ⊆ X , the indicator function 1A : X → {0, 1} is defined by:

1A(x) =

{
1 if x ∈ A,

0 otherwise.

8. Total variation distance. Given two probability measures µ and ν on a measurable space X , the total variation distance
between them is defined as

∥µ− ν∥TV := sup
A⊆X

|µ(A)− ν(A)|,

where the supremum is taken over all measurable subsets A ⊆ X .

9. KL divergence. For probability measures µ and ν on a measurable space X , with µ ≪ ν (i.e., µ is absolutely
continuous with respect to ν), the Kullback–Leibler (KL) divergence from ν to µ is defined as

DKL(µ ∥ ν) :=
∫
X
log

(
dµ

dν
(x)

)
dµ(x),

where dµ
dν denotes the Radon–Nikodym derivative of µ with respect to ν.

10. Pinsker’s inequality. For any two probability measures µ and ν,

∥µ− ν∥TV ≤
√

2DKL(µ ∥ ν).

This inequality provides an upper bound on the total variation distance in terms of the KL divergence.

11. Wasserstein distance Wk(µ, ν). Let µ and ν be probability measures on a metric space (M, ρ), and let k ∈ N. The
k-Wasserstein distance is defined as:

Wk(µ, ν) := inf
π∈Φ(µ,ν)

(
E(X,Y )∼π[ρ

k(X,Y )]
)1/k

,

where Φ(µ, ν) denotes the set of all couplings of µ and ν.

12. Operator norm ∥A∥2→2. Given a multilinear map A : V1 × · · · × Vk → W between normed vector spaces, the
operator norm is:

∥A∥2→2 := sup
v1∈V1\{0},...,vk∈Vk\{0}

∥A(v1, . . . , vk)∥2
∥v1∥2 · · · ∥vk∥2

.

13. Partial derivative d
dU . In parameterizations of the form x = x(U,Λ), we write d

dU x(U,Λ) for the derivative with
respect to U ∈ M. For example, if M = SO(n) and x(U,Λ) = UΛU⊤, then this derivative corresponds to projecting
UΛ + ΛU⊤ onto the tangent space of SO(n).
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H. Primer on Riemannian geometry and diffusions on manifolds
Let M be a topological space equipped with an open cover {Uα}α∈A and a corresponding collection of homeomorphisms
ϕα : Uα → Rd. Each pair (Uα, ϕα) is called a chart, and the collection {(Uα, ϕα)}α∈A is referred to as an atlas for the
manifold. For an optimization-oriented overview of smooth manifolds, geodesics, and differentiability, see (Vishnoi, 2018).

We say that M is a smooth manifold if the transition maps ϕβ ◦ ϕ−1
α are C∞-smooth functions on their domain for all

overlapping chart pairs α, β ∈ A.

A real-valued function f : M → R is differentiable at a point x ∈ M if it is differentiable in some chart (Uα, ϕα) containing
x. Similarly, a curve γ : [0, 1] → M is differentiable if ϕα(γ(t)) is a differentiable curve in Rd for all t such that γ(t) ∈ Uα.

The derivative of a differentiable curve passing through x ∈ M defines a tangent vector at x. The collection of all tangent
vectors at x is the tangent space TxM, which is isomorphic to Rd.

A Riemannian manifold is a pair (M, g) consisting of a smooth manifold M and a smooth function g, called the Riemannian
metric, which assigns to each point x ∈ M a positive-definite inner product gx : TxM×TxM → R.

By the fundamental theorem of Riemannian geometry (see, e.g., Theorem 2.2.2 in (Petersen, 2006)), there exists a unique
torsion-free affine connection ▼ on (M, g), known as the Levi-Civita connection, which enables isometric parallel transport
between tangent spaces.

The Riemannian metric g induces a length on any differentiable curve γ via:

length(γ) =

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt.

The distance between two points x, y ∈ M is defined as the infimum of the lengths of all curves joining them:

ρ(x, y) := inf
γ(0)=x,γ(1)=y

length(γ).

A geodesic is a curve γ(t) such that parallel transport of the initial velocity γ′(0) along γ yields the velocity vector γ′(t) at
all times. Given any initial velocity v ∈ TxM, there exists a unique geodesic γ with γ(0) = x and γ′(0) = v. The endpoint
at unit time defines the exponential map:

exp(x, v) := γ(1).

Given a smooth map φ : M → N between Riemannian manifolds, the Jacobian (or differential) at x ∈ M is a linear map
Jφ : TxM → Tφ(x)N defined as the directional derivative of φ at x. In local coordinates, we may write:

Jφ(∂xi
)j = ∂xi

φj ,

where ∂xi
is the ith coordinate basis vector in TxM and φj is the jth component function of φ. In the special case M = Rm

and N = Rn, the Jacobian becomes the matrix whose (i, j)th entry is ∂φi

∂xj
.

Riemannian manifolds possess a notion of curvature that is intrinsic to the manifold and independent of any ambient
embedding. This curvature is described by the Riemannian curvature tensor, a multilinear map that encodes how the
manifold bends locally.

At any point x ∈ M, the Riemannian curvature tensor is a multilinear map

Rx : TxM×TxM×TxM → TxM,

which assigns to each pair of tangent vectors u, v ∈ TxM a linear operator

R(u, v) : TxM → TxM.

This operator acts on a third tangent vector w ∈ TxM according to the formula:

R(u, v)w = ▼u▼vw − ▼v▼uw − ▼[u,v]w,
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where ▼ is the aformentioned Levi-Civita connection and [u, v] is the Lie bracket of vector fields u and v. Intuitively, this
expression measures the failure of second covariant derivatives to commute, and hence captures the intrinsic curvature of the
manifold.

Let M be a Riemannian manifold and let x ∈ M be a point. For any two linearly independent tangent vectors u, v ∈ TxM,
the sectional curvature K(u, v) is defined as the Gaussian curvature of the 2-dimensional surface in M obtained by
exponentiating the plane spanned by u and v at x. Formally, the sectional curvature of the plane Π = span{u, v} ⊆ TxM
is given by:

K(u, v) :=
⟨R(u, v)v, u⟩

∥u∥2∥v∥2 − ⟨u, v⟩2
,

where R is the Riemann curvature tensor, and ⟨·, ·⟩ is the Riemannian metric on TxM and ∥ · ∥ its associated 2-norm.

A vector field J(t) along a geodesic γ(t) on a Riemannian manifold M is called a Jacobi field if it satisfies the second-order
differential equation:

D2J

dt2
+R(J(t), γ′(t))γ′(t) = 0,

where D
dt denotes the covariant derivative along γ, and R is the Riemann curvature tensor. Jacobi fields describe the

infinitesimal variation of geodesics and are used to analyze how nearby geodesics converge or diverge. The behavior of
Jacobi fields encodes information about the curvature of the manifold.

A fundamental result relating curvature to the behavior of geodesics is the Rauch comparison theorem. It states that the rate
at which geodesics deviate from one another depends on the sectional curvature of the manifold. Formally, let M1 and
M2 be two Riemannian manifolds of the same dimension, and suppose that along corresponding geodesics the sectional
curvatures satisfy K1 ≤ K2. Then, for Jacobi fields J1(t), J2(t) orthogonal to the geodesics with the same initial length
and vanishing initial derivative, we have:

∥J1(t)∥ ≥ ∥J2(t)∥ for all t > 0.

Intuitively, this means that geodesics spread apart more quickly in spaces with lower curvature. In particular, manifolds with
non-negative sectional curvature constrain the divergence of nearby geodesics, a fact that we use in our analysis of diffusion
processes on symmetric manifolds.

Given two probability measures µ, ν on M and an integer k ∈ N, the k-Wasserstein distance between µ and ν is:

Wk(µ, ν) := inf
π∈Φ(µ,ν)

(
E(X,Y )∼π

[
ρk(X,Y )

])1/k
,

where Φ(µ, ν) is the set of all couplings (joint distributions) with marginals µ and ν.

Diffusions on manifolds can be defined analogously to Euclidean settings, by interpreting dBt as infinitesimal Brownian
motion in the tangent space (see (Hsu, 2002)). In particular, Itô’s Lemma extends to maps ψ : M → N between Riemannian
manifolds via the Nash embedding theorem (Nash, 1956), which ensures that any d-dimensional Riemannian manifold can
be isometrically embedded in R2d+1.
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