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ABSTRACT

Training and fine-tuning large language models (LLMs) come with challenges re-
lated to memory and computational requirements due to the increasing size of the
model weights and the optimizer states. Various techniques have been developed
to tackle these challenges, such as low-rank adaptation (LoRA), which involves
introducing a parallel trainable low-rank matrix to the fixed pre-trained weights
at each layer. However, these methods often fall short compared to the full-rank
weight training approach, as they restrict the parameter search to a low-rank sub-
space. This limitation can disrupt training dynamics and require a full-rank warm
start to mitigate the impact. In this paper, we introduce a new method inspired
by a phenomenon we formally prove: as training progresses, the rank of the es-
timated layer gradients gradually decreases, and asymptotically approaches rank
one. Leveraging this, our approach involves adaptively reducing the rank of the
gradients during Adam optimization steps, using an efficient online-updating low-
rank projections rule. We further present a randomized SVD scheme for efficiently
finding the projection matrix. Our technique enables full-parameter fine-tuning
with adaptive low-rank gradient updates, significantly reducing overall memory
requirements during training compared to state-of-the-art methods while improv-
ing model performance in both pretraining and fine-tuning. Finally, we provide
a convergence analysis of our method and demonstrate its merits for training and
fine-tuning language and biological foundation models.

1 INTRODUCTION

Large language models (LLMs) have gained significant attention due to their impressive ability to
handle various tasks, such as dialogue-based systems and text completion. Both supervised fine-
tuning and additional pre-training can further enhance their performance across tasks and domains.
However, training these models presents significant computational and memory challenges. This
is because performing the gradient updates requires storing billions of LLM’s trainable parameters
along with the optimizer state (e.g., gradients and moments). In Adam, for example, the gradients
and the estimated first and second moments triple the size of the model itself (Xu et al., 2024; Brown
et al., 2022; Kim et al., 2023).

To tackle the challenges associated with LLM fine-tuning, researchers have developed various op-
timization techniques to reduce memory usage during model training. One key approach that has
emerged is Parameter-efficient fine-tuning (PEFT) (Han et al., 2024), which enables the adapta-
tion of pre-trained language models (PLMs) to different tasks without the need to fine-tune all
model parameters. A prominent method within PEFT is the Low-Rank Adaptation (LoRA) al-
gorithm, introduced by Hu et al. (2021). LoRA reparameterizes a weight matrix W ∈ Rm×n into
W = W0 + BA, where W0 is a frozen full-rank matrix, and B ∈ Rm×r and A ∈ Rr×n are
low-rank adaptors. Since r ≪ min(m,n), the low-rank adaptors A and B require fewer trainable
parameters, reducing memory usage. LoRA has been widely adopted for fine-tuning, with several
variants emerging, including LoRA+, which uses different learning rates for the two matrices (Chen
et al., 2023), Adaptive LoRA, which adapts the rank of the matrices during training (Wang et al.,
2023), and Sparse LoRA, which introduces sparsity to the matrices to further reduce computational
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cost (Xu et al., 2023). These methods have been demonstrated to enhance the efficiency and perfor-
mance of LLM fine-tuning for various tasks.

Despite its advantages, recent research has identified some limitations of low-rank reparameteri-
zation. For example, LoRA may not achieve the same performance levels as full-rank fine-tuning
(Meng et al., 2024) and might require initial full-rank model training as a warm-up before effec-
tively utilizing the low-rank subspace (Lialin et al., 2023b). These issues may stem from the fact
that optimal weight matrices are not inherently low-rank or from changes in gradient training dy-
namics introduced by the reparameterization. In addition, LoRA keeps the tuning layer shapes in
the base model static without dynamic adjustments. Another approach by He et al. (2022) dynam-
ically adjusts tuning parameters during training, and (Zhang et al., 2023) gradually reduces tuning
parameters.

Until recently, the pre-training of large language models (LLMs) has been primarily limited to cor-
porations and governments with substantial computational and memory resources. The significant
challenges posed by the enormous memory and computational requirements made it impractical for
the average home user. To illustrate this challenge, we take the following as an example. Training a
Mistral 7B model from scratch poses substantial memory challenges. Given its 7 billion parameters,
a single update step requires approximately 70 GB of memory: 14 GB for the model parameters, 42
GB for Adam optimizer states and gradients, and 14 GB for activations. Consequently, consumer-
level GPUs like the NVIDIA RTX 3090, which has 24 GB of VRAM, are inadequate for handling
such a large-scale training task.

To overcome this challenge, the study in (Zhao et al., 2024a) introduced a training strategy called
GaLore that enables full-parameter learning while being more memory-efficient than traditional
low-rank adaptation methods such as LoRA. The core idea behind GaLore is to exploit the slowly
changing low-rank structure of the gradient G ∈ Rn×m of the weight matrix W, rather than approx-
imating the weight matrix itself as low-rank. GaLore significantly improved memory efficiency, re-
ducing optimizer state memory usage by up to 65.5%. The following noticeable variant is Q-GaLore
(Dettmers et al., 2023), which combines low-rank gradient projection with INT4 quantization to fur-
ther reduce memory usage, and an additional parallel variant would be ReLoRA (Lialin et al., 2023b)
employed in pre-training-by periodically updating W0 using previously learned low-rank adaptors.
We found that Galore to be suboptimal since it arbitrarily requires pre-defining a fixed low-rank size
for the gradient projection/low-rank-approximation, while gradients rank gradually diminish during
training down to rank one. Additionally, GaLore uses a fixed window size for the number of itera-
tions between updates to the subspace onto which the gradients are projected, keeping this window
size constant. Finally, Galore does not transform (adjust) the first and second moments at any up-
date of projection subspace, which we empirically found degrading the potential performance. We
suggest an inner transformation scheme of the moments at any projection updates.

Our approach and theoretical results. In this paper, we introduce a new training method aimed
at optimizing memory efficiency in the training or fine-tuning of large language models (LLMs),
while also improving convergence rates and overall performance. Our method leverages two key
properties of LLMs. First, we present a novel theoretical finding that shows how the approximate
rank of the LLM gradient matrices decreases progressively throughout the training process (even
under basic SGD settings), asymptotically approaching rank one. Note that previous studies have
only demonstrated an implicit upper bound on the rank of the gradient, which is far from being tight.
For example, Zhao et al. (2024a) showed that the rank of the gradient satisfies rank (Gn×m) <
min{n,m}/2. Second, as highlighted in previous research (Gromov et al., 2024; Refael et al.,
2024; Jaiswal et al., 2024a), the depth of a layer (how far from input/output) and its architectural
design contribute differently to the model’s performance. Specifically, when perturbations from
the same distribution are applied across various layers, the impact on accuracy varies significantly.
This indicates that the optimization steps have less influence on the model’s performance for certain
layers, depending on their depth and architecture type. Noise in these layers has a smaller impact
on the overall task, meaning that the gradients in these layers carry less important information. This
results in naturally lower-rank update steps (gradients).

Building upon these two insights and to address the limitations of the LoRA variants, we
propose a method that enables full-parameter learning while dramatically reducing mem-
ory requirements and computational complexity through adaptive low-rank gradient projec-
tions during the Adam update step. For each gradient tensor Gj

t ∈ Rr×n at layer
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j ∈ [L] and iteration t, AdaRankGrad efficiently identifies a unique set of signifi-
cant projection directions (subspace) Pj

t ∈ Rrj×n along which the gradient Gj
t exhibits

Figure 1: The illustration shows how
AdaRankGard 3 is trained. First, the gra-
dients Gt are projected into a 3D space
(in this example), represented as Ĝ3×m

t =
P3×n

t Gn×m
t . As convergence occurs, the

gradient’s dimension decreases to a 2D
space and then to a 1D space. This dimen-
sionality reduction indicates convergence
while efficiently using memory.

the largest changes, where rjt is the lowest possible
rank to still maintain a predefined information frac-
tion (given threshold) relative to the original, non-
projected gradient. Practically, Pj

tG
j
t is the low-

projected-gradient and Pj
t

⊤
Pj

tG
j
t is the best low-

rank approximation the of the gradients Gj
t that em-

bodies the required fraction of its information. The
projections Pj

t are being adaptively updated through-
out training (based on the convergence criteria of the
gradients on the projected subspace), where their rank
rjt is dictated by preserving the given information
threshold. The method ensures: (1) The method de-
termines the optimal projection dimension for each
layer’s gradient tensor independently, adjusting dy-
namically throughout training. This rank adjustment
leverages property we prove that the effective dimen-
sionality of the full gradients gradually decreases over
time, allowing updates to be performed in a lower-
dimensional projection space, thereby reducing mem-
ory usage. (2) The projection matrix for each layer’s
gradients is updated based on a convergence criterion
within their respective subspace. This ensures up-
dates occur precisely when needed, avoiding premature or delayed transitions between subspaces,
resulting in faster overall convergence.

Table 1: Comparison between AdaRankGrad, GaLore, and LoRA. Assume W ∈ Rn×m(n ≥ m),
constant rank r, and adaptive-rank radap (with initial-rank rinit = r).

AdaRankGrad GaLore LoRA
Weights nm nm nm+ nr +mr
Optim States (radap < r) nradap + 2mradap nr + 2mr 2nr + 2mr
Multi-Subspace ✓ ✓ x
Adaptive-Subspace-Dimension ✓ x x
Adaptive-Subspace-Updates ✓ x x
Pre-Training ✓ ✓ x
Fine-Tuning ✓ ✓ ✓

2 RELATED WORK AND BACKGROUND

Memory efficient optimizers. Memory-efficient optimization has been a recent focus of research.
Multiple studies have aimed to reduce the memory requirements of gradient statistics in adaptive op-
timization algorithms (Shazeer & Stern, 2018; Anil et al., 2019). One common approach is quanti-
zation, which helps decrease the memory footprint of optimizer states (Li et al., 2024). Additionally,
recent advancements have suggested reducing the memory used by weight gradients by integrating
the backward operation with the optimizer update (Lv et al., 2023a;b). This characteristic has been
leveraged to reduce memory usage during training processes (Gooneratne et al., 2020; Huang et al.,
2023; Modoranu et al., 2023).

Low-rank gradient optimization. The phenomenon of low-rank gradients naturally arises during
the training of neural networks, a subject that has been extensively examined both theoretically and
practically, e.g., Zhao et al. (2022); Cosson et al. (2023); Yang et al. (2023). This characteristic
low-rank structure gradients has been leveraged to reduce memory usage during training processes
Gooneratne et al. (2020); Huang et al. (2023); Modoranu et al. (2023), and results in a reduced
computational complexity as compared to standard gradient descent methods.
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Adam optimization. Arguably, among the most popular optimization methods used for train-
ing large language models (LLMs) are the Adam optimizer (Kingma & Ba, 2017) and its vari-
ant, AdamW (Loshchilov & Hutter, 2019), which incorporates weight decay for regulariza-
tion. However, it is well-established that Adam optimization has higher memory complexity
compared to other optimization alternatives. To illustrate this, let us briefly review how the
Adam optimization algorithm operates. First, we need to establish some notation. Consider
a neural network denoted as Φ(·;θ), which consists of L layers and is parameterized by θ ≜[
Wd1×d0

1 , . . . ,W
dL−1×dL−2

L−1 ,W
dL×dL−1

0
L

]
. Here, Wi represents the weights tensor parameters as-

sociated with the i-th layer, for i ∈ [L]. In the following, let t ∈ N represent the t-th step of the
Adam optimization algorithm. Then, we recall that the single update step in Adam is given by,

Adam (single update step)

Gt = ∇Φ(θt−1) ,

Mt = β1Mt−1 + (1− β1)Gt,

Vt = β2Vt−1 + (1− β2)G
2
t ,

M̂t = Mt/
(
1− βt

1

)
,

V̂t = Vt/
(
1− βt

2

)
,

θt = θt−1 − αM̂t/

(√
V̂t + ϵ

)
.

Specifically, at time step t, Gt denotes the backpropagated
gradient matrix, i.e.,∇Φ (θt−1). The exponentially weighted
moving averages of the first and second moments are denoted
by Mt and Vt, respectively, with their bias-corrected coun-
terparts given by M̂t and V̂t. The AdamW optimizer up-
dates the model parameters at step t according to the rule,

θt = θt−1 − α

(
M̂t√
V̂t+ϵ

+ λθt−1

)
, where λ ≥ 0 is the weight

decay rate (for Adam λ = 0), and all operations are per-
formed element-wise. In this equation, β1 and β2 control the
decay rates for the moving averages of the moments, α is the
learning rate, and ϵ is a small constant to avoid division by zero. Notably, since Adam/W requires
storing both Mt and Vt at each time step, it incurs an additional memory footprint of 2mn.

While existing approaches (Zhao et al., 2024b; Vyas et al., 2024; Okewu et al., 2020) focus on
low-rank approximations of the first and second moments with the goal of reducing memory re-
quirements, we propose to approximate the gradients by a low-rank factorization. Consequently, in
our scheme the moments are integrally constrained onto this reduced dimension, and thus we gain
both benefits.

3 METHOD AND MAIN RESULTS

3.1 THEORETICAL MOTIVATION: GRADUALLY GRADIENT RANK VANISHING

Figure 2: The figure illustrates the exponen-
tial decay of eigenvalues in the MLP layer’s
gradient, at the first iteration of fine-tuning
RoBERTa-Base (Liu, 2019) model, on the
MRPC task, from GLUE (Wang et al., 2019).
Notably, the red line indicates that 50% of
the gradient information (in terms of squared
norm ratio) is captured by the first eigen-
value, while the green line shows that 90%
is contained within the first two eigenvalues.

As mentioned in the introduction, a few recent em-
pirical results (e.g., (Jaiswal et al., 2024b; Zhao
et al., 2024a; Lialin et al., 2023a)), demonstrate that
the gradients, when training or fine-tuning LLM’s,
are “approximately low-rank”. As an example, this
phenomenon can be observed in Figure 2, where it is
evident that the squared norm of the gradient’s sin-
gular values decay to zero exponentially fast.

As hinted above, this phenomenon is only true in the
approximate sense; roughly speaking, only very few
eigenvalues hold almost all the information captured
by the gradient. Accordingly, a low-rank matrix ap-
proximates the underlying gradient up to a negligi-
ble approximation error. The practical implication
is that while the weight matrices are not necessarily
low-rank, training certain high-rank layers with low-
rank based-gradient updates is possible. To make the
above discussion precise, consider the following def-
inition for approximate low-rank matrices.
Definition 1 (Approximate low-rank matrix). A matrix A ∈ Rn×m is called (η, ε)-approximately
rank-r, if there exist η ∈ [0, 1), ε > 0, and a matrix Aapp,r ∈ Rn×m with rank(Aapp,r) = r and
r < min{n,m}, such that,

∥A−Aapp,r∥F ≤ η · ∥A∥F + ε. (1)
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As it turns out, it can be shown (see, e.g., (Golub & Van Loan, 2013)) that the optimal Aapp,r

minimizing the approximation error in the left-hand-side of equation 1, can be obtained by applying
an SVD on A and then retaining only the top r singular values and their corresponding singular
vectors. Mathematically, we have Aapp,r =

∑r
i=1 σiuiv

⊤
i , where {σi}i are the singular values

of A, and {ui}i and {vi} are the corresponding left and right singular vectors, respectively. The
approximation error is in turn given by ∥A−Aapp,r∥2F =

∑min{m,n}
i=r+1 σ2

i . This construction gives
an (ηA, 0)-approximately rank-r matrix, with the minimal ηA possible.

Recently in (Zhao et al., 2024a), the structure of the gradient for a wide family of nonlinear networks
known as “reversible networks” (Tian et al., 2021) was studied,1 defined as follows.
Definition 2. (Reversibility (Tianet al., 2021)) Layer ℓ ∈ [L] is reversible if there is a Gℓ(x;θ) ∈
Rnℓ×nℓ−1 such that the gradient after nonlinearity satisfies g̃ℓ−1 = G⊤

ℓ (x;θ)P
⊤
ℓ (x;θ)g̃ℓ, for some

matrix Pℓ(x;θ) ∈ Rnℓ×nℓ . A network is reversible if all of its layers are reversible.

For simplicity of notation, we use Gℓ
t to denote [Gℓ(x;θ)]t, where t ∈ N is the iteration index in the

optimization process. Furthermore, when it is clear from the context, we omit the layer index ℓ from
our notations. Assuming reversibility and SGD weight update (i.e., Wt = Wt−1 + αGt−1), it is
shown in Zhao et al. (2024a) that for both ℓ2 and cross entropy losses, the gradient is of the structure
form G = 1

N

∑N
i=1 (Ai −BiWCi), where N is the batch size, {Ai}Ni=1 are input-dependent

matrices, and {Bi,Ci}Ni=1 are certain positive semi-definite (PSD) matrices. Furthermore, it was
proven that if the gradient Gt, has the above structure for all t ≥ t0, for some t0 ∈ N, then, the
stable rank sr (Gt) ≜

∥Gt∥F

∥Gt∥2
satisfies,

sr (Gt) ≤ sr
(
G

∥
t0

)
+

(
1− ηλ2

1− ηλ1

)2(t−t0) ∥∥∥Gt0 −G
∥
t0

∥∥∥2
F

/∥∥∥G∥
t0

∥∥∥2
2
,

where S ≜ 1
N

∑N
i=1 Ci ⊗ Bi, λ1 < λ2 denote its two smallest distinct eigenvalues, and G

∥
t0

is the projection of Gt0 onto the minimal eigenspace V1 of S that corresponds to λ1. Accord-
ingly, as t → ∞, we get that the final stable rank is upper bounded by sr(G

∥
t0). Under the

same gradient structure assumption and for the vanilla settings of the SGD weights update, we
were able to prove the following stronger result. We prove that the approximated stable rank
of the gradients approach one as the training process progresses. To state this result, we need
to make a few notations. Let Gt = UtΣtV

⊤
t be the SVD decomposition of Gt, and let

Pt(ℓ, r) = U[:, ℓ : r]tU[:, ℓ : r]⊤t be the corresponding projection matrix. When clear for the
context, we omit the index ℓ and use Pt(r) ≡ Pt(ℓ = 1, r). We have the following result.

Figure 3: The figure presents the effective rank
(see Section 4) measured after every 100 update
steps on the RTE dataset, from GLUE (Wang
et al., 2019).

Lemma 1 (Asymptotically rank-one). Given a
reversible neural network and using the vanilla
setting of SGD for weight update. Then,

κ(t) ≜
∥Gt −Pt(1)Gt∥2F

∥Gt∥2F
≤ O(C−t),

for some constant C > 1.

The above result implies that Gt approaches
its rank-one approximation Pt(1)Gt, as the it-
eration number increases, namely, Gt becomes
rank-one. The proof of Lemma 1 is relegated to
Section B.

Finally, in Fig. 3 and Fig. 4, we demonstrate that for a large language model (RoBERTa-base Liu
(2019)), which contains also non reversible layers, the rank decay evolves as a function of the
number of update steps, in a fine-tuning task.

3.2 ADAPTIVE-LOW-RANK SUBSPACE SELECTION

As aforesaid, our training strategy is self-adapting by updating the low-rank projection subspace
for the gradient of each layer, leveraging the phenomena raised by Lemma 1. The most natural

1It can be shown that this family includes many different kinds of layers, such as, linear layers (MLP and
Conv.), and (leaky) ReLU non-linearity.
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but computationally expensive way to search for the subspace on which a gradient has the highest
variance is by applying the truncated SVD (Eckart & Young, 1936), with a truncated rank that
preserves the predefined fraction of information. In this section, we first utilize an efficient method to
approximate the gradient, which is more practical than the expansive truncated SVD approximation.
We then use this method to propose an algorithm that identifies the most suitable projection subspace
with the smallest possible span/rank that maintains the given information threshold.

3.2.1 IDENTIFYING PROJECTING SUBSPACE BY POWER ITERATION

Consider a matrix A ∈ Rn×m. Finding its “best” low-rank approximation can be framed as the
following optimization problem minQ,U

∥∥A−QU⊤
∥∥2
F

, where Q ∈ Rn×r and U ∈ Rm×r. As
discussed above, the matrix Aapp,r = QU⊤ represents the (η, ε) rank-r approximation of A. Com-
puting full SVD for large matrices is computationally intensive and memory-demanding. To address
these challenges, we detail Algorithm 1 (Halko et al., 2010), an efficient technique for producing a
“good” proxy for the optimal low-rank approximation of A.

Algorithm 1 is designed to solve the optimization
problem argminQ∈Rn×r

∥∥∥A−QQ⊤A
∥∥∥
F
, and ap-

proximates the matrix A as Aapp,r ≈ QQ⊤A.The
computational complexity of the SSRF algorithm is
dominated by two main operations: the matrix mul-
tiplication AΩ, whose computational complexity is
O(mnr), and the QR decomposition of the resulting
matrix Y, requiring O(mr2). Therefore, the total
complexity is O(mnr +mr2).

Algorithm 1 Subspace selection via random-
ized range finder (SSRF)

Inputs: Matrix A ∈ Rn×m, target rank
r ≤ min{n,m}.
Initialization: Ω ∈ Rm×r ∼ N(0, 1)
Y ← AΩ
Construct Q ∈ Rr×m using the QR de-
composition of Y
Return: Q

In scenarios where r ≪ m,n, this complexity simplifies to O(mnr), which is significantly more
efficient than using SVD whose complexity is O(min(mn2,m2n)). This low-complexity makes the
SSRF preferable for extracting leading singular vectors in large-scale data settings.

3.2.2 FAST ADAPTIVE LOW-RANK APPROXIMATION

It is clear from Definition 1 that
a larger value of the rank r in-
creases the computational opera-
tions and induces a higher mem-
ory footprint, while a smaller
value of r will result in a non-
negligible approximation error.
To mitigate this, we suggest Al-
gorithm 2, an adaptive procedure
for rank selection that adjusts the
value of r to preserve at least a
certain fraction of the information
in A. Specifically, at start we set
r0 = rmin, and then find the best
Aapp,r ≈ QQ⊤A using SSRF.
At each time step t, given the cur-
rent rank rt, we compute the ap-
proximation error as,

Algorithm 2 Information-based adaptive subspace selection
(IASS)

Inputs: Matrix A ∈ Rn×m, minimum rank rmin ≥ 1, maximum
threshold rank rmax ≪ min{n,m}, and information threshold ηth ∈
(0, 1).
Initializations: t← 0, r0 ← rmin, η0 ← ηth + 1.
Q← SSRF(A, rmax) {Call Algorithm 1}
while r ≥ 1 and rmax − rt ≥ 1 do

Aapp,rt ← Q[:, : rt]Q[:, : rt]
⊤A.

ηt ← ∥A−Aapp,rt∥F /∥A∥F {≈
∑min{n,m}

i=rt+1 σi(Gt)
2∑n

i=1 σi(Gt)2
}

if ηt > ηth then
rmax ← ⌈ rmax−rt

2
⌉

else if ηt ≤ ηth then
rt ← ⌊ rmax−rt

2
⌋

end if
end while
Return: Q[:, : rt], rt.

ηt =
∥A−Aapp,rt∥

2
F

∥A∥2F
=

∑min{n,m}
i=rt+1 σi(A)2∑n

i=1 σi(A)2
. (2)

We then apply binary search until we find the maximum r for which the corresponding condition
still holds: η < ηth. It is important to note that, from the outset, we know a priori that the rank of the
approximated gradients is inherently low. Consequently, the initial value of rmax ≪ min{m,n} is
small, and the number of iterations required for the search is correspondingly minimal, specifically
O(log(rmax − rmin)), obviously (rmax − rmin)≪ min{m,n}.
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Algorithm 3 Adaptive low-rank and moments gradient (AdaRankGrad)

Input: A Layer W ∈ Rn×m from θ , dataset D, loss function L, information thershold 0 < ηth < 1, initial
rank rinit, maximal rank rmax, learning rate α, and small numbers ς1, ς2 > 0.
Initialization: t = 0.
Sample batch B ←− {xi, yi}|B|

i=1∼ D
Compute batch gradient Gt ←

∑|B|
i=1

∂
∂W
L (Φ(xi,θ), yi) {For unsupervised L (Φ(xi,θ))}

while ∥Gt∥F > ς1 do

Block 1: Adaptive subspace selection
Qt, rt ← IASS(Gt, rinit, rmax, ηth) {Approximated rt-dimension subspace: Qrt×n

t projected matrix}

Block 2: Moments subspaces transformation
R

rt×rt−1
t ← Q⊤

t Qt−1 if t ≥ 1, else 0rt×rt−1

Mrt×m
t ← RtMt−1, if t ≥ 1, else 0rt×m {1st-order moment}

Vrt×m
t ← RtVt−1, if t ≥ 1, else 0rt×m {2st-order moment}

Block 3: Low-rank optimization
Ĝt ← Q⊤

t Gt {Projected gradient on the approximated rt-dimension subspace}
while ∥Ĝt∥F > ς2 do

Block 4: Adam update step
Mt ←− β1Mt + (1− β1) Ĝt

Vt ←− β2Vt + (1− β2) Ĝ
2
t

M̂t ←−Mt/
(
1− βt

1

)
V̂t ←− Vt/

(
1− βt

2

)
Wt ←−Wt − αQtM̂t/

(√
V̂t + ϵ

)
t← t+ 1
Sample batch B ←− {xi, yi}|B|

i=1∼ D
Compute batch gradient Gt ←

∑|B|
i=1

∂
∂W
L (Φ(xi,θ), yi)

Ĝt ← Q⊤
t Gt

end while

end while {Exit by convergence criteria could alternatively be defined by the number of epochs}
Return Wt

3.3 ADAPTIVE LOW-RANK AND MOMENTS GRADIENT OPTIMIZATION

We can now present our main algorithm for adaptive low-rank and moments gradient optimization
in Algorithm 3. The mathematical formulation of the weights update rule proposed in this paper
is detailed in Appendix A. comprises four main blocks, all contained within an outer loop that
terminates once we reach convergence. The role of each block is as follows.

• Block 1: We select the (approximated) subspace along the directions of the r largest eigenvectors,
using Algorithm 2. The number of orthogonal directions r is determined by the information
threshold required to preserve the gradient information, according to equation 2.

• Block 2: We transform the first and second gradient moments evaluated during the Adam update
steps between the previous and the updated subspace. The main reason for this transformation is
because, as will be seen below, in the fourth block, the first and second moments of the gradients
are aligned with the previous projected subspace, and thus, a transformation is needed to convert
them from the previous subspace to the current one.

• Block 3: We tune the parameters during the low-rank update step. The stopping condition trig-
gering the update of the orthogonal projection matrix is based on the convergence of the projected
gradient onto the subspace.

• Block 4: The actual pre-trained model parameters are updated, using the low-dimensional and
memory-efficient projected gradients on the selected subspace.
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Theorem 2 (Convergence of Algorithm 3). For a loss function L, and given architecture Φ, suppose
that the compositions of f ≡ L (Φ(·)) is β-smooth non-convex function that are bounded by some
M ∈ R+. Let Gj

t denote the gradient matrix w.r.t. the jth reversible layer at time t ∈ N. Assume
that ∥Gj

t∥F ≤ D, for all j ∈ [L] and t ∈ N, where D ∈ R+. Then, for any ε > 0, there exists

C ∈ R+ such that for all TN > C
ε2 , it holds that 1

TNL

∑L
j=1

∑N−1
i=0

∑Ti+1−1
t=Ti

∥∥∥Gj
t

∥∥∥2
F
≤ ε. In

particular, Algorithm 3, with vanilla SGD weight update2, ς2 ≜ ς2,i =
√
1− ηth ·

∥∥GTi−1

∥∥2
F

, where
i is the Block 3 entry counter, and learning rate α < 2/λmax, achieves an ε-critical point,3 i.e.,∥∥∥Gj

t

∥∥∥2
F
≤ ε, for some t ∈ N, and any j ∈ [L].

Note that, for clarity, we can assume, without loss of generality, that m ≤ n. In the opposite case,
the projection matrix would multiply the gradient from the right side.

The proof of Theorem 2 can be found in Section B. A few important comments are in order. First, to
reduce memory usage, we apply in Algorithm 3 a per-layer weight update during backpropagation,
as proposed by recent works, see, e.g., Lv et al. (2024). This is in contrast to common optimizers
which usually update all weights after backpropagation by storing the full gradients in memory,
which could be highly inefficient. Second, note that the Adam update step block in Algorithm 3 can
be replaced by any quantized Adam variant, e.g., Li et al. (2017); Chen et al. (2021); Seok & Kim
(2021), and as so allows to obtain tasked fine-tuned quantized model or quantized adaptor; this is
discussed in more detail below. Finally, we would like to mention here that one can easily apply
4-bit projected gradient updates, as introduced in Q-GaLore (Zhang et al., 2024).

If, after fine-tuning, one wishes to create an adapter (i.e., a parallel low-dimensional LoRA
type model) alongside the original model, this can be done efficiently as follows. First, we
calculate the training weights gap ∆ ≜ WFine-Tuned − WPretrained, where WFine-Tuned is the
model weight at the end of the process, and WPretrained is the original model weight. Then,
we find the rAdaptor ≜ rank(∆), using some matrix ranking algorithm, and finally, we solve
minA∈Rn×rAdaptor ,B∈RrAdaptor×m ∥∆−AB∥2F , using any optimization algorithm (e.g., gradient de-
scent). Note that any solution to this optimization problem is a global optimum (Kawaguchi, 2016).

4 EXPERIMENTS

In this section, we test the performance of our algorithm on real-world datasets. Before discussing
the setup we rely on in our experiments, we define four measures for memory usage reduction in
the rank-adaptive projection matrices. Specifically, for the jth layer, we define the effective layer-

gradient-rank, by, Rj
adap ≜

∑T−1
t=0 Rj

t

T , where Rj
t is the rank of the jth layer projection matrix at

time 0 ≤ t ≤ T − 1, for some T ∈ N, and accordingly the total weighted-average effective

rank is defined as Radap ≜
∑L

j=1

∑T−1
t=0 Rj

t(dj+dj+1)

T·
∑L

j=0(dj ·dj+1)
. Following that, we define the average per-layer

reduction in memory footprint, when compared to the non-adaptive low-rank fine-tuning, byMj
red ≜

(R̄j −Rj
adap) · (dj +dj+1), where R̄j is the time-independent non-adaptive rank (such as in Galore).

Finally, we define the total memory reduction byMred ≜
∑L

j=1(R̄
j −Rj

adap) · (dj + dj+1).

Fine-tuning on GLUE benchmark. We evaluate our model on the GLUE benchmark (Wang
et al., 2019) by fine-tuning the pre-trained Roberta-base model Liu (2019) on 8 tasks. We compare
the results against full fine-tuning, LoRA, and GaLore methods and present them in Table 2. We
report the overall (matched and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA,
Pearson correlation for STS-B, F1-score for MRPC, and accuracy for other tasks. As can be seen,
our method improves the accuracy of fine-tuning while consuming less training memory on average.
Fig. 4 shows the average memory reduction measured at the end of each epoch (blue) and the corre-
sponding effective rank (green). Empirical analysis of the hyperparameters appears in Appendix D.

2We focus on SGD for the simplicity (as is standard practice in related literature, e.g., (Zhao et al., 2024a)).
3Also known as ε-stationary, see, e.g., (Cosson et al., 2023).
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Table 2: Evaluating AdaRankGrad comparing to state-of-the-art memory-efficient fine-tuning meth-
ods on GLUE benchmark using pre-trained RoBERTa-Base. For AdaRankGrad, we present accu-
racy results with average effective rank.

Model Memory CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP
Full Fine-Tuning 747M 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28
LoRA (rank=4) 257M 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29
GaLore (rank=4) 253M 60.35 90.73 92.25 79.42 94.0 87.0 92.24 91.06
AdaRankGrad (Initial rank=4) 202M 61.4(3.71) 90.97(3.79) 92.6(3.72) 81.23(3.65) 94.8(3.91) 86.6(3.69) 92.5(3.9) 90.4(3.67)
LoRA (rank=8) 264M 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22
GaLore (rank=8) 257M 60.06 90.82 92.0 79.78 94.38 87.17 92.2 91.11
AdaRankGrad (Initial rank=8) 237M 62.0(6.41) 90.89(7.77) 93.2(5.33) 81.23(6.64) 94.80(5.69) 86.5(6.00) 92.6(6.54) 89.7(6.00)

Figure 4: We present the effective rank measured for non-attention layers and corresponding mem-
ory reduction for AdaRankGrad trained on MRPC (left panel) and RTE (right panel) datasets from
the GLUE benchmark.

Fine-tuning Geneformer on Biological Omics Tabular Data High-throughput omics technolo-
gies, such as next-generation sequencing Reis-Filho (2009), allow for the simultaneous measure-
ment of thousands to millions of biological molecules, capturing biological processes at the tissue
or single-cell level. Recent studies have aimed to construct foundation models for omics data Cui
et al. (2024); Theodoris et al. (2023). Unfortunately, the complexity of omics data makes the use of
low-rank optimization methods such as LoRa sub-optimal for foundation omics models, and there-
fore, training is often based on relatively high ranks (Chen et al., 2024). In this experiment, we
demonstrate that the proposed approach can alleviate this problem due to the adaptive low-rank
projection of gradients. We conducted a fine-tuning experiment for cell classification, specifically
focusing on the Classification of Cardiomyopathy Disease States. We used the Geneformer gf-12L-
30M-i2048 4 as our pre-trained base model, which is based on the BERT model and pre-trained on
30 million single-cell transcriptomes (Theodoris et al., 2023; Devlin, 2018). Following the setup
proposed in (Chen et al., 2024), we fine-tuned our method with a maximal rank of 16 on approxi-
mately 93,600 samples for three epochs, with a batch size of 16. We evaluated the model on a test
set of size 17,228. Figure 5 presents the Macro-F1 score and Accuracy measured for each epoch.
As shown, our method converges faster with a stable improvement over LoRA.

Figure 5: We evaluate AdaRankGrad in the Geneformer fine-tuning task and present Accuracy (left
panel) and Macro-1 (right panel) measurements. The adaptive low-rank projections improve the
model converges compared to LoRA and Galore methods.

4A transformer-based model trained on 30 million single-cell transcriptomes for gene classification and in
silico perturbation analysis. It has 12 layers with an input size of 2048 genes per cell, designed to understand
gene network dynamics. Huggingface: https://huggingface.co/ctheodoris/Geneformer
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Pre-training LLAMA on C4 Dataset Here, we repeated the comparison presented in Zhao et al.
(2024a) [Table 2] to evaluate AdaRankGrad performance to the state-of-the-art method, in terms of
perplexity and memory usage. We evaluate AdaRankGrad by training large LLaMA-based models
on the C4 dataset, a cleaned and massive version of Common Crawl’s web corpus (Raffel et al.,
2020). This dataset is primarily used for pre-training language models and learning word repre-
sentations. To closely mimic practical pre-training scenarios, we train on a large dataset without
repeating data, scaling model sizes up to 350 million. The results are presented in Table 4.

Table 3: The LLaMA 7B model was pre-trained on the C4 dataset for 120K steps. Validation
perplexity and memory usage estimates reported.

Steps/Tokens 8-bit GaLore 8-bit Adam 8-bit AdaRankGrad
40K / 5.2B 17.94 18.09 17.86
80K /10.5B 15.39 15.47 15.27
120K /15.7B 14.95 14.83 14.87
Mem 18G 26G 16.4G

Table 4: A comparison of low-rank state-of-the-art algorithms for pre-training LLaMA models of
varying sizes on the C4 dataset. We use initial rank rinit = r for AdaRankGrad, w.r.t the r presented
in the last table raw. The information threshold ηth = 0.48 for the three model training. The valida-
tion perplexity is presented, along with an estimate of the memory required for the total number of
parameters and optimizer states in BF16 format. We used NVIDIA A100 for the three experiments.

60M 130M 350M 1B
Full-Rank 34.06(0.36G) 25.08(0.76G) 18.80(2.06G) 15.56(7.80G)
GaLore 34.88(0.24G) 25.36(0.52G) 18.95(1.22G) 15.64(4.38G)
Low-Rank 78.18(0.26G) 45.51(0.54G) 37.41(1.08G) 142.53(3.57G)
LoRA 34.99(0.36G) 33.92(0.80G) 25.58(1.76G) 19.21(6.17G)
ReLoRA 37.04(0.36G) 29.37(0.80G) 29.08(1.76G) 18.33(6.17G)
AdaRankGrad 34.24(0.206G) 25.22(0.497G) 18.91(1.106G) 14.71(3.62G)
Training Tokens 1.1 B 2.2 B 6.4 B 13.1B
r/dmodel 128/256 256/768 256/1024 512/2048

5 DISCUSSION

In this paper, we present AdaRankGrad, a full-parameters efficient optimization scheme that applies
adaptive low-rank updates without relying on a parallel low-rank adapter (LoRA), thus preserv-
ing the natural training dynamics. Unlike methods such as LoRA, which rely on parallel adapters,
AdaRankGrad enables full parameter fine-tuning while maintaining low memory costs through ef-
ficient low-rank optimization updates. Moreover, unlike GaLore, AdaRankGrad leverages the nat-
ural phenomenon where the dimensionality of the approximated gradient decreases as training pro-
gresses. This allows adaptive updates of the projection subspace only when the gradients have
converged to a lower-dimensional space, ensuring that optimization resources are fully utilized—no
unnecessary updates occur before or after convergence. As demonstrated in Section 4, this approach
results in superior prediction performance. AdaRankGrad offers a unique trade-off between memory
efficiency and model performance. While it may slightly increase training time due to the need to
determine an optimal rank for projecting subspace updates, these updates are infrequent. The search
for the best subspace rank is conducted within a very narrow range, reducing the overall computa-
tional cost. To further mitigate this, we proposed an efficient subspace-update technique that sig-
nificantly reduces the SVD-based subspace calculations by an order of magnitude. In practice, this
optimization compensates for the additional time spent in subspace search, making AdaRankGrad
a competitive choice compared to methods like GaLore. For future research, we suggest exploring
other update steps besides Adam, such as AdaFactor, and studying different efficient algorithms for
computing the subspace over which gradients are projected. Another promising avenue would be
to investigate algorithms that search for the optimal subspace rank, which preserves a similar frac-
tion of information as the full gradient. These directions could further enhance the efficiency and
performance of optimization schemes like AdaRankGrad.
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A UPDATE STEP RULE FORMULATION

To describe AdaRankGrad update step rule, we need to establish a few important notations first. For
t ∈ N, let ρt : Rm×n → Rm×n be an entry-wise gradient update rule (e.g., Adam, AdamW, AdaFac-
tor, etc.). For t ∈ N and layer j ∈ [L], recall the SVD of the gradient Gj

t = Uj
tΣ

j
t (V

j
t )

⊤, and further
define the projection matrices Pj

t (r
j
t ) = SSRF(Uj

t [:, : r
j
t ]

⊤),Rj
t (r

j
t ) = SSRF

(
Vj

t [:, : r
j
t ]
)

, where

for a given threshold 0 < ηth ≤ 1, we let rjt ≜ sup{r ∈ N : ηth · ∥Gj
t∥2F −||G

j
t −Pj

t (r)G
j
t ||2F ≥ 0},

computed using Algorithm 2. Next, for j ∈ [L], and some ς > 0, we let {Tj
ℓ}ℓ≥0, with Tj

0 = 0,
denote the monotone sequence of integers, for which ∥(Pj

Ti
)⊤(rj

Tj
i

)Gj

Tj
i

Rj

Tj
i

(rj
Tj

i

)∥F ≤ ς; under
certain conditions that we list below, it is shown in Cosson et al. (2023)[Thm. 3.4] (as well as in
Zhao et al. (2024a)[Theorem 3.8], for reversible layers) that Ti’s are finite. Then, for i ∈ N, and
t ∈ [Ti + 1,Ti+1], the AdaRankGrad weight update is given by,

Wj
t = Wj

Ti
+

t∑
ℓ=Ti+1

ηtP
j
Ti
(rjTi

)ρℓ

(
(Pj

Ti
(rTi

))⊤Gj
ℓR

j

Tj
i

(rj
Tj

i

)
)
(Rj

Ti
(rj

Tj
i

))⊤,

for j ∈ [L], where ηt is the learning rate at time t adapted by ρt, and WT0
= W0 is a pre-trained

model, in a case of fine-tuning task, or a given weights initialization, in case of pre-training task. In
the sequel, we let η ≜ η0 denote the initial learning rate, and for simplicity of notation, when clear
from the context, we drop the dependency of the various notations on the layer index j.

B PROOFS

B.1 PROOF OF LEMMA 1

In this section, we prove Lemma 1. Consider the SVD decomposition of the gradient Gt =
UtΣtV

⊤
t , at iteration t. For any natural number r < n, we denote Hn×r

t (r) = U[:, 1 : r]. For
simplicity of notation, let us denote Pt(r) = Ht(r)H

⊤
t (r), where Pt(r) is an orthogonal projection
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matrix, i.e., P⊤
t (r)Pt(r) = Pt(r), and Pt(r) = P⊤

t (r). Without the loss of generality, we assume
that at t = 0, the rank of G0 is such that rank (G0) > r. For reversible networks, it was shown in
(Zhao et al., 2024a)[Theorem 3.2] that the gradients have the form Gt =

1
N

∑N
i=1 (Ai −BiWtCi),

with constant matrices {Ai}i, and PSD matrices {Bi,Ci}i, for t ≥ t0, where t0 ∈ N. Recall that
in the vanilla SGD weight update, we have Wt = Wt−1 + ηGt−1. Let S ≜ 1

N

∑N
i=1 Ci ⊗ Bi,

and λ1 < λ2 be its two smallest distinct eigenvalues. In order to prove our result we rely on several
results and arguments in the proof of Lemma 3.3 in (Zhao et al., 2024a). Specifically, let G∥

t0 be
the projection of Gt0 onto the minimal eigenspace V1 of S corresponding to λ1. By assumption, we
know that the rank of G∥

t0 is L, and its SVD is G
∥
t0 =

∑L
l=1 clzly

⊤
l , where {zl}Ll=1 and {yl}Ll=1

are the orthonormal unit vectors, and {cl}Ll=1 are the corresponding singular values. Thus, it was in
(Zhao et al., 2024a) that,

g
∥
0 = vec

(
G

∥
t0

)
=

L∑
l=1

cl (yl ⊗ zl) ≜
L∑

l=1

clvl,

with unit vector vl ≜ yl ⊗ zl ∈ V1. It is clear that

v⊤
l vl′ =

(
y⊤
l ⊗ z⊤

l

)
(yl′ ⊗ zl′)

=
(
y⊤
l yl′

) (
z⊤
l zl′

)
= I (l = l′) ,

where I is the indicator function. Using this, it was finally shown in (Zhao et al., 2024a) that,

∥Gt∥2 = max
∥y′∥2=1,∥z′∥2=1

z′⊤Gty
′

≥ max
l

z⊤
l Gtyl = max

l
(yl ⊗ zl)

⊤
gt = max

l
v⊤
l (1− ηS)tg0 = (1− ηλ1)

t
max

l
v⊤
l g0.

Using the above results from (Zhao et al., 2024a), we can now see that,

∥Gt∥2 = max
∥y∥2=1,∥z∥2=1

z′⊤Gty

= max
∥y∥2=1,∥z∥2=1

(y ⊗ z)
⊤
gt

= max
∥y∥2=1,∥z∥2=1

(y ⊗ z)
⊤
(1− ηS)tg0

=
(
U0[:, 1]

⊤ ⊗V0[:, 1]
)⊤

(1− ηS)tg0

= ṽ⊤(1− ηS)tg0

= (1− ηλ1)
t
ṽ⊤g0.

Thus, we have
(1− ηλ1)

t
ṽ⊤g0 ≥ (1− ηλ1)

t
max

l
v⊤
l g0,

or equivalently
(1− ηλ1)

t
ṽ⊤g0 ≥ (1− ηλ1)

t
∥∥∥g∥0∥∥∥

2
. (3)

Now,

κ(t) ≜
∥Gt −Pt(1)Gt∥2F

∥Gt∥2F

=
∥Gt∥2F − ∥Gt∥22
∥Gt∥2F

≤
∥Gt∥2F − ∥Gt∥22

∥Gt∥22
=
∥Gt∥2F
∥Gt∥22

− 1

≤
(1− ηλ1)

2t
∥∥∥g∥0∥∥∥2

2

∥Gt∥22
+

(1− ηλ2)
2t ∥∥g⊥0 ∥∥22

∥Gt∥22
− 1
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≤
(1− ηλ1)

2t
∥∥∥g∥0∥∥∥2

2

(1− ηλ1)
2t
ṽ⊤g0︸ ︷︷ ︸

≤1

+
(1− ηλ2)

2t ∥∥g⊥0 ∥∥22
(1− ηλ1)

2t
ṽ⊤g0

− 1

≤
(1− ηλ2)

2t ∥∥g⊥0 ∥∥22
(1− ηλ1)

2t
ṽ⊤g0

=
(1− ηλ2)

2t ∥∥g⊥0 ∥∥22
(1− ηλ1)

2t
ṽ⊤g0

,

where the first inequality follows from the fact that ∥Gt∥2F > ∥Gt∥22 , the second inequality is by
using Zhao et al. (2024a)[Lemma 3.3], i.e.,

∥Gt∥2F ≤ (1− ηλ2)
2t ∥∥g⊥0 ∥∥22 + (1− ηλ1)

2t
∥∥∥g∥0∥∥∥2

2
,

and the third inequality is due to Eq. equation 3. Finally, by defining the constants c1 ≜ (1−ηλ2)
(1−ηλ1)

and c2 ≜
∥g⊥

0 ∥22
ṽ⊤g0

< 1, we get that κ(t) < c2t1 · c2, which concludes the proof.

B.2 PROOF OF THEOREM 2

In this section, we prove Theorem 2. We upper bound Frobenius norm of Gj
t , for any layer j ∈

[L]; in the following, for simplicity of notation, we ignore the index j an use Gt instead. By
Lemma 3, the low-rank optimization block 3 in Algorithm 3 is guaranteed to converge; we denote
by Tℓ ∈ N the time index t at which we exit block 3 for the ℓth time (i.e., ∥ĜTℓ

∥ ≤ ς2), for
ℓ ∈ N. Furthermore, we recall that Gj

t ≜ ∇Wjf (θt); when clear from the context, we omit
j from Wj , and use instead ∇Wjf (θt) = ∇f (Wt). Consider the SVD decomposition of the
gradient ∇Wjf (θTi

) = UTi
ΣTi

V⊤
Ti

. For t ∈ [Ti,Ti+1 − 1], we define the projected gradient as
Ĝt ≜ PTi

(rTi
)Gt, where PTi

= UTi
[:, : rTi

]
⊤
, for a given threshold 0 < ηth ≤ 1, where

rTi
≜ sup

{
r ∈ N : ηth · ∥GTi

∥2F − ∥GTi
−PTi

(r)GTi
∥2F ≥ 0

}
, (4)

obtained by the search presented in IASS Algorithm 2, using exact truncated-SVD calculation. Note
that since ∥Gt −PTi(r)Gt∥2F ≤ ∥Gt∥2F always, it must be the case that 0 < ηth ≤ 1. Also, because
PTi

(n)Gt = Gt, rTi
in equation 4 is well-defined. Next, let ht ≜ f(Wt) − f(WTi+1

), and αt

denote the learning rate. Then,

ht+1 = f (Wt+1)− f
(
WTi+1

)
= f

(
Wt − αt

(
Ĝt

))
− f

(
WTi+1

)
≤
(1)

f (Wt)− f
(
WTi+1

)
− αtvec

(
Ĝt

)⊤
vec (∇f (Wt)) + α2

t

β

2

∥∥∥Ĝt

∥∥∥2
F

= f (Wt)− f
(
WTi+1

)
− αtvec

(
Ĝt

)⊤
vec (Gt) + α2

t

β

2

∥∥∥Ĝt

∥∥∥2
F

≤
(2)

f (Wt)− f
(
WTi+1

)
− αt tr

(
(PTi

(rTi
)Gt)

⊤
Gt

)
+ α2

t

β

2
∥Gt∥2F

≤
(3)

f (Wt)− f
(
WTi+1

)
− αt tr

((
G⊤

t PTi
(rTi

)
)
Gt

)
+ α2

t

β

2
∥Gt∥2F

= f (Wt)− f
(
WTi+1

)
− αt ∥PTi(rTi)Gt∥2F + α2

t

β

2
∥Gt∥2F

= f (Wt)− f
(
WTi+1

)
− αt

∥∥∥Ĝt

∥∥∥2
F
+ α2

t

β

2
∥Gt∥2F

≤
(4)

f (Wt)− f
(
WTi+1

)
− αt

∥∥∥Ĝt

∥∥∥2
F
+

β(Dαt)
2

2

= ht − αt

∥∥∥Ĝt

∥∥∥2
F
+

β(Dαt)
2

2
, (5)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where (1) follows by the assumption that f is β-smooth function and the decent lemma (see, e.g.
Beck (2017)[Definition 5.1], (2) follows from the identity vec (AB)

⊤ vec (B) = tr((AB)⊤B), in
(3) we use the fact that since Pt is an orthogonal projection matrix, we have Pt = P⊤

t , and finally,
(4) follows from the assumption that the norms of the gradients are bounded by D. Rearranging
equation 5, and choosing αt = α, for all t ≥ 0, we readily obtain that,

Ti+1−1∑
t=Ti

∥∥∥Ĝt

∥∥∥2
F
≤

hTi
− hTi+1

α
+

(Ti+1 − Ti)βD
2α

2
. (6)

Thus, for N ∈ N,

1

TN

N−1∑
i=0

Ti+1−1∑
t=Ti

∥∥∥Ĝt

∥∥∥2
F
≤ 1

TN

N−1∑
i=0

[
hTi
− hTi+1

α
+

(Ti+1 − Ti)βD
2α

2

]
(7)

=
hT0 − hTN

αTN
+

(TN − T0)βD
2α

2TN
(8)

=
R√
TN

, (9)

where R ≜
√
4MβD2, and in the second equality we choose α =

√
4M

TNβD2 .5 Now recall that by
the definition of rTi in equation 4, we have,

∥GTi
−PTi

(rTi
)GTi

∥2F ≤ ηth ∥GTi
∥2F . (10)

Moreover, the following clearly holds for any t ∈ N,

∥Gt∥2F = ∥PTi
(rTi

)Gt∥2F +
∥∥P⊥

Ti
(rTi

)Gt

∥∥2
F

(11)

= ∥PTi(rTi)Gt∥2F + ∥Gt −PTi(rTi)Gt∥2F , (12)

and thus by plugging equation 10 into equation 12, at t = Ti, for any i ∈ N, we get,

(1− ηth)∥GTi
∥2F ≤ ∥PTi

(rTi
)GTi

∥2F . (13)

Accordingly, ∥∥P⊥
Ti
(rTi

)GTi

∥∥2
F
≤ ηth

1− ηth
∥PTi

(rTi
)GTi

∥2F , (14)

Recall from Subsection 3.1 that for the reversible layer,

∥Gt∥2F = ∥(I − αS)Gt−1∥2F (15)

≤ ∥(I − αS)∥22 ∥Gt−1∥2F (16)

= max
i
|1− αλi|2 ∥Gt−1∥2F , (17)

where {λi}i are the eigenvalue of S. Thus, using the fact that S is positive semi-definite matrix, if
the learning rate α is such that α ≤ 2

λmax
, where λmax is the maximal eigenvalue of S, then we get

that maxi |1 − αλi|2 ≤ 1, and accordingly, ∥Gt∥2F ≤ ∥Gt−1∥2F . This means that the Frobenius
norm of the gradient is monotonically decreasing as a function of t.

Now, recall that ς2,i is any positive number such that ς2,i <
√
1− ηth · ∥GTi−1

∥F . In light of
equation 13, this necessarily implies that in each block i, we will execute (at least once) the low-
rank optimization block (indeed, the condition ∥ĜTi

∥F > ς2,i is satisfied). This, conjugated with
the monotonicity property that ∥Gt∥2F ≤ ∥GTi

∥2F , for any t ∈ [Ti,Ti+1 − 1] and i ∈ [N ], imply
that

1

TN

N−1∑
i=0

Ti+1−1∑
t=Ti

∥Gt∥2F ≤
1

TN

N−1∑
i=0

Ti+1−1∑
t=Ti

∥GTi∥
2
F (18)

5Note, that this choice of α implies the guarantees of Lemma 3, because α =
√

4M
TNβD2 ≤√

4M
(Ti+1−Ti)βD2 ≜ α′

i, and α′
i is the optimized learning rate for the ith block, that was chosen in the proof of

Lemma 3.
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≤ 1

(1− ηth)TN

N−1∑
i=1

Ti+1−1∑
t=Ti

∥PTi
(rTi

)Gt∥2F (19)

≤ R

(1− ηth)
√
TN

. (20)

Accordingly, for any ε ≥ 0, and TN > R2

(1−ηth)2ε2
,

min
0≤t≤TN

∥Gt∥2F ≤
1

TN

N−1∑
i=0

Ti+1−1∑
t=Ti

∥Gt∥2F ≤ ε, (21)

and thus, there exists an iteration index t ∈ [0,TN ] for which,

∥Gt∥2F ≤ ε, (22)

which, by definition, implies that Algorithm 3 achieves an ε-critical point.

Lemma 3 (Convergence of low-rank optimization block). Consider the same setting and assump-
tions as in Theorem 2. Then, the time t = Tℓ ∈ N at which Algorithm 3 exits block 3 for the ℓth time
is finite, for any ℓ ∈ N.

Proof of Lemma 3. We follow the same notations as in the proof of Theorem 2. Recall from equa-
tion 5 that the following holds true,

f (Wt+1) ≤ f (Wt)− αt

∥∥∥Ĝt

∥∥∥2
F
+

β(Dαt)
2

2
, (23)

for any t ≥ 0. Now, we enter for the first time the low-rank optimization block of Algorithm 3 at
time T0 = t = 0, and we next show that this block converges. Fix T ∈ N. Using equation 23, and
following the same arguments as in equation 6–equation 9, we have,

1

T

T−1∑
t=0

∥∥∥Ĝt

∥∥∥2
F
≤ f (W0)− f (WT)

Tα
+

βD2α

2
(24)

≤ R√
T
, (25)

where R ≜
√
4MβD2, and in the second equality we choose some α ≤

√
4M

TβD2 . Accordingly, for

any ς ≥ 0, and T > R2

ς2 , we clearly have,

min
t∈[0,T−1]

∥∥∥Ĝt

∥∥∥2
F
≤

T−1∑
t=0

∥∥∥Ĝt

∥∥∥2
F
≤ ς, (26)

namely, there exists T1 ∈ [0,T− 1] such that
∥∥∥ĜT1

∥∥∥2
F
≤ ς; note that T1 is the time index at which

we exist the low-rank block for the first time, and the above guarantees that T1 finite. The same
arguments above apply for any block exit time Tℓ, ℓ ≥ 2, which concludes the proof. □

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C ABLATION STUDY

IMPORTANCE OF THE ADAPTIVE SUBSPACE DIMENSION

First, we note that comparing to AdaRankGrad reduces memory usage by over 25%-50% on
average compared to GaLore (and LoRA), as shown in Figure 4, with respect to the layers in
which the methods are applied and compared on, in fine-tuning tasks, and with 20% reduction
in memory/storage per the whole final fine-tuned model, as reported in Table 4.
We emphasize that this significant benefit in reducing the memory needed in training is an
exclusive consequence of the adaptivity of the (gradients) subspace dimension during training
(exploiting the natural phenomenon of the decrease of the dimension in the gradients—while
preserving the information ratio of any given predefined threshold).
To evaluate the contribution of adaptive subspace dimension solely to the model performance,
we conduct the following experiment, in Table 5, where we fix the subspace update interval
to 200 steps and study the adaptivity of the subspace dimension.

IMPORTANCE OF THE ADAPTIVE SUBSPACE UPDATE

To assess the impact of the adaptive subspace update on model performance, we conducted
the following experiment, as shown in Table 6, where we fix the rank to a constant value of
rank=4 and examine the adaptivity of the subspace updates.

Table 5: The table presents the results of an ablation experiment in which the subspace update is
fixed to intervals of 200 optimization steps, while adaptivity in the subspace dimension remains
enabled.

Model CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP
GaLore (rank=4) 60.35 90.73 92.25 79.42 94.0 87.0 92.24 91.06
AdaRankGrad (Initial rank=4) 61.4 90.97 92.6 81.23 94.8 86.6 92.5 90.4
Constant subspace time-update
AdaRankGrad (Initial rank=4) 61.2 90.89 92.58 81.18 94.63 86.91 92.37 90.39

Table 6: The table presents the results of an ablation experiment in which the selected subspaces
dimensions is fixed to r = 4, the adaptivity in the subspace updating (times) remains enabled.

Model CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP
GaLore (rank=4) 60.35 90.73 92.25 79.42 94.0 87.0 92.24 91.06
AdaRankGrad (Initial rank=4) 61.4 90.97 92.6 81.23 94.8 86.6 92.5 90.4
Constant rank
AdaRankGrad (Constant rank=4) 61.12 90.81 92.17 80.13 94.0 87.12 92.41 91.29

D EFFECTIVE RANK VS ηth ANALYSIS

Figure 6: The left graph presents the effective rank measured for different values of ηth while
training AdaRankGrad on MRPC dataset. The right graph present the effective rank measured for
different values of ηth while training AdaRankGrad on MRPC dataset.
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Algorithm 4 AdaRankGrad with AdaFactor step

Input: A Layer W ∈ Rn×m from θ , dataset D, loss function L, information thershold 0 < ηth < 1, initial
rank rinit, maximal rank rmax, and small numbers ς1, ς2 > 0, relative step sizes {ρt}Tt=1, second moment

decay
{
β̂2t

}T

t=1
such that β̂21 = 0, regularization constants ϵ1 and ϵ2, clipping threshold d.

Initialization: t = 0.
Sample batch B ←− {xi, yi}|B|

i=1∼ D
Compute batch gradient Gt ←

∑|B|
i=1

∂
∂W
L (Φ(xi,θ), yi) {For unsupervised L (Φ(xi,θ))}

while ∥Gt∥F > ς1 do

Block 1: Adaptive subspace selection
Qt, rt ← IASS(Gt, rinit, rmax, ηth) {Approximated rt-dimension subspace: Qrt×n

t projected matrix}

Block 2: Low-rank optimization
Ĝt ← Q⊤

t Gt {Projected gradient on the approximated rt-dimension subspace}
while ∥Ĝt∥F > ς2 do

Block 3: AdaFactor update step
αt = max (ϵ2,RMS (Wt−1)) ρt

Rt = β̂2tRt−1 +
(
1− β̂2t

)(
Ĝ2

t + ϵ11rt1
⊤
m

)
1m

Ct = β̂2tCt−1 +
(
1− β̂2t

)
1⊤rt

(
Ĝ2

t + ϵ11rt1
⊤
m

)
V̂t = RtCt/1

⊤
rtRt

Ut = Ĝt/
√

V̂t

Ût = Ut/max (1,RMS (Ut) /d)

Wt = Wt−1 − αtQtÛt

t← t+ 1
Sample batch B ←− {xi, yi}|B|

i=1∼ D
Compute batch gradient Gt ←

∑|B|
i=1

∂
∂W
L (Φ(xi,θ), yi)

Ĝt ← Q⊤
t Gt

end while

end while {Exit by convergence criteria could alternatively be defined by the number of epochs}
Return Wt

E GENERALIZATION TO OTHER OPTIMIZERS

It is important to clarify that AdaRankGrad is an adaptable framework applicable to any
optimization method. For illustration, AdaRankGrad’s application with AdaFactor is pre-
sented in Algorithm 4 and AdaRankGrad’s with Proximal SGD is presented in Algorithm 5.
AdaRankGrad identifies a dominant low-dimensional subspace of the gradient, preserving
relative information for each update. This allows any gradient-based optimization step to run
within this subspace and, before updating weights, projects the gradient-based step back into
the full space. This adaptability across optimizers is a core advantage of our approach.
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Algorithm 5 AdaRankGrad with Proximal SGD step (ProxGen Yun et al. (2021))

Input: A Layer W ∈ Rn×m from θ , dataset D, loss function L, information thershold 0 < ηth < 1, initial
rank rinit, maximal rank rmax, and small numbers ς1, ς2 > 0, decay {ρt}Tt=1 regularization constants ϵ1 and
ϵ2.
Initialization: t = 0.
Sample batch B ←− {xi, yi}|B|

i=1∼ D
Compute batch gradient Gt ←

∑|B|
i=1

∂
∂W
L (Φ(xi,θ), yi) {For unsupervised L (Φ(xi,θ))}

while ∥Gt∥F > ς1 do

Block 1: Adaptive subspace selection
Qt, rt ← IASS(Gt, rinit, rmax, ηth) {Approximated rt-dimension subspace: Qrt×n

t projected matrix}

Block 2: Moments subspaces transformation
R

rt×rt−1
t ← Q⊤

t Qt−1 if t ≥ 1, else 0rt×rt−1

Mrt×m
t ← RtMt−1, if t ≥ 1, else 0rt×m {1st-order moment}

Block 3: Low-rank optimization
Ĝt ← Q⊤

t Gt {Projected gradient on the approximated rt-dimension subspace}
while ∥Ĝt∥F > ς2 do

Block 4: Proximal SGD update step
Mt ←− ρtMt−1 + (1− ρt) Ĝt

θt+1 ←− proxαtλh
(θt − αtQtMt)

end while

end while {Exit by convergence criteria could alternatively be defined by the number of epochs}
Return Wt

F MEMORY SAVINGS UTILIZATION

Optimize system efficiency. Techniques such as PARIS and ELSA Kim et al. (2022) enable
resource reallocation to concurrent tasks, enhancing GPU utilization in shared environments.
Approaches such as FaaSwap Yu et al. (2024) support memory sharing, facilitating smaller-
scale jobs alongside training, while frameworks like ZeRO Rajbhandari et al. (2019) leverage
savings for parallel model validation or fine-tuning tasks. Additionally, the resource manage-
ment techniques proposed in SuperNeurons Wang et al. (2018) explore how dynamic GPU
memory partitioning and job scheduling can improve utilization across multiple jobs by re-
distributing memory savings to other pending or low-priority tasks. This allows for efficient
balancing of training and inference workloads in heterogeneous environments. Similarly, the
DELTA framework Tang et al. (2022) provides a dynamic combination of tensor swapping
and recomputation, enabling more efficient use of memory savings during training by sup-
porting overlapping workloads and improving overall system throughput. Integration with
schedulers like Kubernetes https://kubernetes.io/ allows real-time task prioritiza-
tion and efficient resource distribution, maximizing throughput. These strategies demonstrate
how training efficiency can translate into broader system-level gains.
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