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Abstract
We study online learning in constrained Markov
decision processes (CMDPs) with adversarial
losses and stochastic hard constraints, under ban-
dit feedback. We consider three scenarios. In the
first one, we address general CMDPs, where we
design an algorithm attaining sublinear regret and
cumulative positive constraints violation. In the
second scenario, under the mild assumption that a
policy strictly satisfying the constraints exists and
is known to the learner, we design an algorithm
that achieves sublinear regret while ensuring that
constraints are satisfied at every episode with high
probability. In the last scenario, we only assume
the existence of a strictly feasible policy, which
is not known to the learner, and we design an al-
gorithm attaining sublinear regret and constant
cumulative positive constraints violation. Finally,
we show that in the last two scenarios, a depen-
dence on the Slater’s parameter is unavoidable.
To the best of our knowledge, our work is the first
to study CMDPs involving both adversarial losses
and hard constraints. Thus, our algorithms can
deal with general non-stationary environments
subject to requirements much stricter than those
manageable with existing ones, enabling their
adoption in a much wider range of applications.

1. Introduction
Reinforcement learning (Sutton & Barto, 2018) studies prob-
lems where a learner sequentially takes actions in an envi-
ronment modeled as a Markov decision process (MDP) (Put-
erman, 2014). Most of the algorithms for such problems
focus on learning policies that prescribe the learner how to
take actions so as to minimize losses (equivalently, maxi-
mize rewards). However, in many real-world applications,
the learner must fulfill additional requirements. For instance,
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autonomous vehicles must avoid crashing (Wen et al., 2020;
Isele et al., 2018), bidding agents in ad auctions must not
deplete their budget (Wu et al., 2018; He et al., 2021), and
recommendation systems must not present offending items
to their users (Singh et al., 2020). A commonly-used model
that allows to capture such additional requirements is the
constrained MDP (CMDP) (Altman, 1999), where the goal
is to learn a loss-minimizing policy while at the same time
satisfying some constraints.

We study online learning problems in episodic CMDPs with
adversarial losses and stochastic hard constraints, under
bandit feedback. In such settings, the goal of the learner
is to minimize their regret—the difference between their
cumulative loss and what they would have obtained by al-
ways selecting a best-in-hindsight policy—, while at the
same time guaranteeing that the constraints are satisfied
during the learning process. We consider three scenarios
that differ in the way in which constraints are satisfied and
are all usually referred to as hard constraints settings in the
literature (Liu et al., 2021; Guo et al., 2022). In the first
scenario, the learner attains sublinear cumulative positive
constraints violation. In the second one, the learner satisfies
constraints at every episode, while, in the third one, they
achieve constant cumulative positive constraints violation.

To the best of our knowledge, our work is the first to study
CMDPs that involve both adversarial losses and hard con-
straints. Indeed, all the works on adversarial CMDPs (see,
e.g., (Wei et al., 2018; Qiu et al., 2020)) consider settings
with soft constraints. These are much weaker than hard con-
straints, as they are only concerned with the minimization
of the cumulative (both positive and negative) constraints
violation. As a result, they allow negative violations to
cancel out positive ones across different episodes. Such can-
cellations are unreasonable in real-world applications. For
instance, in autonomous driving, avoiding a collision clearly
does not “repair” a crash occurred previously. Furthermore,
the only few works addressing stochastic hard constraints
in CMDPs (Liu et al., 2021; Shi et al., 2023; Müller et al.,
2024; Stradi et al., 2025) are restricted to stochastic losses.
Thus, their techniques cannot be easily generalized to our
setting. Our CMDP settings capture many more applications
than theirs, since being able to deal with adversarial losses
allows to tackle general non-stationary environments, which
are ubiquitous in the real world.
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We refer to Appendix A for a complete discussion on related
works.

1.1. Original contributions

We start by addressing the first scenario, where we design
an algorithm—called Sublinear Violation Optimistic Pol-
icy Search (SV-OPS)—that guarantees both sublinear re-
gret and sublinear cumulative positive constraints viola-
tion. SV-OPS builds on top of state-of-the-art learning
algorithms in adversarial, unconstrained MDPs, by intro-
ducing the tools necessary to deal with constraints violation.
Specifically, SV-OPS works by selecting policies that opti-
mistically satisfy the constraints. SV-OPS updates the set
of such policies in an online fashion, guaranteeing that it
is always non-empty with high probability and that it col-
lapses to the (true) set of constraints-satisfying policies as
the number of episodes increases. This allows SV-OPS to
attain sublinear violation. Crucially, even though such an
“optimistic” set of policies changes during the execution of
the algorithm, it always contains the (true) set of constraints-
satisfying policies. This allows SV-OPS to attain sublinear
regret. SV-OPS also addresses a problem left open by Qiu
et al. (2020), i.e., learning with bandit feedback in CMDPs
with adversarial losses and stochastic constraints. Indeed,
SV-OPS goes even further, as Qiu et al. (2020) were only
concerned with soft constraints, while SV-OPS is capable
of managing positive constraints violation.

Next, we switch the attention to the second scenario, where
we design a safe algorithm, i.e., one that satisfies the con-
straints at every episode. To achieve this, we need to assume
that the learner has knowledge about a policy strictly sat-
isfying the constraints. Indeed, this is necessary even in
simple stochastic multi-armed bandit settings, as shown
in (Bernasconi et al., 2022). This scenario begets consider-
able additional challenges compared to the first one, since
assuring safety extremely limits exploration capabilities,
rendering techniques for adversarial, unconstrained MDPs
inapplicable. Nevertheless, we design an algorithm—called
Safe Optimistic Policy Search (S-OPS)—that attains sub-
linear regret while being safe with high probability. S-OPS
works by selecting, at each episode, a suitable randomiza-
tion between the policy that SV-OPS would choose and the
(known) policy strictly satisfying the constraints. Crucially,
the probability defining the randomization employed by the
algorithm is carefully chosen in order to pessimistically ac-
count for constraints satisfaction. This guarantees that a
sufficient amount of exploration is performed.

Then, in the third scenario, we design an algorithm that at-
tains constant cumulative positive constraints violation and
sublinear regret, by simply assuming that a policy strictly
satisfying the constraints exists, but it is not known to learner.
Our algorithm—called Constant Violation Optimistic Policy

Search (CV-OPS)— estimates such a policy and its associ-
ated constraints violation in a constant number of episodes.
This is done by employing two no-regret algorithms. The
first one with the objective of minimizing violation, and the
second one with the goal of selecting the most violated con-
straint. A stopping condition that depends on the guarantees
of both the no-regret algorithms enforces that the number
of episodes used to estimate the desired policy is sufficient,
while still being constant. After that, CV-OPS runs S-OPS
with the estimated policy, attaining the desired results.

Finally, we provide a lower bound showing that any algo-
rithm attaining o(

√
T ) violation cannot avoid a dependence

on the Slater’s parameter in the regret bound. We believe
that this result may be of independent interest, since it is not
only applicable to our second and third settings, but also to
other settings where a larger violation is allowed.

2. Preliminaries
2.1. Constrained Markov decision processes

We study episodic constrained MDPs (CMDPs) (Altman,
1999) with adversarial losses and stochastic constraints.
These are tuples M :=

(
X,A,P, {ℓt}Tt=1 , {Gt}Tt=1 , α

)
.

T is the number of episodes.1 X and A are finite state and
action spaces. P : X ×A×X → [0, 1] is a transition func-
tion, where P (x′|x, a) denotes the probability of moving
from state x ∈ X to x′ ∈ X by taking a ∈ A.2 {ℓt}Tt=1 is
the sequence of vectors of losses at each episode, namely
ℓt ∈ [0, 1]|X×A|. We refer to the loss for a state-action pair
(x, a) ∈ X × A as ℓt(x, a). Losses are adversarial, i.e.,
no statistical assumption on how they are selected is made.
{Gt}Tt=1 is the sequence of matrices that define the costs
characterizing the m constraints at each episode, namely
Gt ∈ [0, 1]|X×A|×m. For i ∈ [m], the i-th constraint cost
for (x, a) ∈ X × A is denoted by gt,i(x, a). Costs are
stochastic, i.e., the matrices Gt are i.i.d. random variables
distributed according to an (unknown) probability distribu-
tion G. Finally, α = [α1, . . . , αm] ∈ [0, L]m is the vector
of cost thresholds characterizing the m constraints, where
αi denotes the threshold for the i-th constraint.

The learner uses a policy π : X×A→ [0, 1], which defines
a probability distribution over actions at each state. We de-
note by π(·|x) the distribution at x ∈ X , with π(a|x) being

1We denote an episode by t ∈ [T ], where [a . . . b] is the set of
all integers from a to b and [b] := [1 . . . b].

2For ease of notation, we focus w.l.o.g. on loop-free CMDPs.
This means that X is partitioned into L + 1 layers X0, . . . , XL

with X0 = {x0} and XL = {xL}. Moreover, the loop-free
property requires that P (x′|x, a) > 0 only if x′ ∈ Xk+1 and
x ∈ Xk for some k ∈ [0 . . . L− 1]. Any (episodic) CMDP with
horizon H that is not loop-free can be cast into a loop-free one by
duplicating the state space H times. In loop-free CMDPs, we let
k(x) ∈ [0 . . . L] be the layer index in which state x ∈ X is.
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Algorithm 1 CMDP Interaction at episode t ∈ [T ]

1: ℓt, Gt chosen adversarially and stochastically, resp.
2: Learner chooses a policy πt : X ×A→ [0, 1]
3: Environment is initialized to state x0

4: for k = 0, . . . , L− 1 do
5: Learner takes action ak ∼ πt(·|xk)
6: Learner sees ℓt(xk, ak), gt,i(xk, ak)∀i ∈ [m]
7: Environment evolves to xk+1 ∼ P (·|xk, ak)
8: Learner observes the next state xk+1

9: end for

the probability of action a ∈ A. Algorithm 1 details the
learner-environment interaction at episode t ∈ [T ], where
the learner has bandit feedback. Specifically, the learner
observes the trajectory of state-action pairs (xk, ak), for
k ∈ [0 . . . L− 1], visited during the episode, their losses
ℓt(xk, ak), and costs gt,i(xk, ak) for i ∈ [m]. The learner
knows X and A, but they do not know anything about the
transition function P .

We introduce the notion of occupancy measure (Rosenberg
& Mansour, 2019a). Given a transition function P and a
policy π, the vector qP,π ∈ [0, 1]|X×A×X| is the occupancy
measure induced by P and π. For every x ∈ Xk, a ∈ A, and
x′ ∈ Xk+1 with k ∈ [0 . . . L− 1], it holds qP,π(x, a, x′) :=
P[xk = x, ak = a, xk+1 = x′|P, π]. Moreover, we also
let qP,π(x, a) :=

∑
x′∈Xk+1

qP,π(x, a, x′) and qP,π(x) :=∑
a∈A qP,π(x, a). Next, we define valid occupancies.

Lemma 2.1 (Rosenberg & Mansour (2019b)). A vector
q ∈ [0, 1]|X×A×X| is a valid occupancy measure of an
episodic loop-free MDP if and only if it holds:

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) = 1 ∀k ∈ [0 . . . L− 1]∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) =
∑

x′∈Xk−1

∑
a∈A

q(x′, a, x)

∀k ∈ [1 . . . L− 1],∀x ∈ Xk

P q = P,

where P is the transition function of the MDP and P q is the
one induced by q (see below).

Notice that any valid occupancy measure q induces a tran-
sition function P q and a policy πq, with P q(x′|x, a) =
q(x, a, x′)/q(x, a) and πq(a|x) = q(x, a)/q(x).

2.2. Online learning with hard constraints

Our baseline for evaluating the performances of the learner
is defined through a linear programming formulation of the
(offline) learning problem in constrained MDPs. Specifi-
cally, given a constrained MDP M := (X,A,P, ℓ,G, α)
characterized by a loss vector ℓ ∈ [0, 1]|X×A|, a cost matrix
G ∈ [0, 1]|X×A|×m, and a threshold vector α ∈ [0, L]m,
such a problem consists in finding a policy minimizing

the loss while ensuring that all the constraints are satisfied.
Thus, our baseline OPTℓ,G,α is defined as the optimal value
of a parametric linear program, which reads as follows:

OPTℓ,G,α :=

{
minq∈∆(M) ℓ⊤q s.t.

G⊤q ≤ α,
(1)

where q ∈ [0, 1]|X×A| is a vector encoding an occupancy
measure, while ∆(M) is the set of valid occupancy mea-
sures. Notice that, given the equivalence between policy and
occupancy, the (offline) learning problem can be formulated
as a linear program working in the space of the occupancy
measures q, since expected losses and costs are linear in q.

As customary in settings with adversarial losses, we mea-
sure the performance of an algorithm by comparing it with
the best-in-hindsight constraint-satisfying policy. The per-
formance of the learner is evaluated in terms of the (cumu-
lative) regret RT :=

∑T
t=1 ℓ

⊤
t q

P,πt − T ·OPTℓ,G,α, where

ℓ := 1
T

∑T
t=1 ℓt is the average of the adversarial losses over

the T episodes and G := EG∼G [G] is the expected value of
the stochastic cost matrices. We let q∗ be a best-in-hindsight
constraint-satisfying occupancy measure, i.e., one achieving
value OPTℓ,G,α, while we let π∗ be its corresponding policy.

Thus, the regret reduces to RT :=
∑T

t=1 ℓ
⊤
t (q

P,πt − q∗).
For the ease of notation, we refer to qP,πt by simply using
qt, thus omitting the dependency on P and πt. Our goal is
to design learning algorithms with RT = o(T ), while at the
same time satisfying constraints. We consider three different
settings, all falling under the umbrella of hard constraints
settings (Guo et al., 2022), introduced in the following.

2.2.1. GUARANTEEING SUBLINEAR VIOLATION

In this setting, we consider the (cumulative) positive con-
straints violation VT := maxi∈[m]

∑T
t=1

[
G

⊤
qt − α

]+
i

,
where [x]+ := max{0, x}. Our goal is to design algorithms
with VT = o(T ). To achieve such a goal, we only need to
assume that the problem is well posed, as follows:

Assumption 2.2. There is an occupancy measure q⋄, called
feasible solution, such that G

⊤
q⋄ ≤ α.

2.2.2. GUARANTEEING SAFETY

In this setting, our goal is to design algorithms ensuring that
the following safety property is met:

Definition 2.3 (Safe algorithm). An algorithm is safe if and
only if G

⊤
qt ≤ α for all t ∈ [T ].

As shown by Bernasconi et al. (2022), without further as-
sumptions, it is not possible to achieve RT = o(T ) while at
the same time guaranteeing that the safety property holds
with high probability, even in simple stochastic multi-armed
bandit instances. To design safe learning algorithms, we
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need the following two assumptions. The first one is about
the possibility of strictly satisfying constraints.

Assumption 2.4 (Slater’s condition). There is an occupancy
measure q⋄ : G

⊤
q⋄ < α. We call q⋄ strictly feasible solu-

tion, while a π⋄ induced by q⋄ is a strictly feasible policy.

The second assumption is related to learner’s knowledge
about a strictly feasible policy.

Assumption 2.5. Both the policy π⋄ and its costs β =

[β1, . . . , βm] := G
⊤
q⋄ are known to the learner.

Intuitively, Assumption 2.5 is needed to guarantee that
safety holds during the first episodes, when the leaner’s
uncertainty about the costs is high. Assumptions 2.4 and 2.5
are often employed in CMDPs (see, e.g., (Liu et al., 2021)),
as they are usually met in real-world applications of interest,
where it is common to have access to a “do-nothing” policy
resulting in no constraint being violated.

2.2.3. GUARANTEEING CONSTANT VIOLATION

In this setting, we relax Assumption 2.5, and we only as-
sume Slater’s condition (Assumption 2.4). We show that it
is possible to achieve constant violation, namely VT is upper
bounded by a constant independent of T , while attaining
similar regret guarantees compared to the second setting.
Our results depend on the Slater’s parameter ρ ∈ [0, L],
which is defined as ρ := maxq∈∆(M) mini∈[m]

[
αi − ḡ⊤i q

]
,

with q⋄ := argmaxq∈∆(M) mini∈[m]

[
αi − ḡ⊤i q

]
being

its associated occupancy. Given βi := ḡ⊤i q
⋄, we have

ρ = mini∈[m] [αi − βi]. By Assumption 2.4, it holds ρ > 0.

3. Concentration bounds
In this section, we provide concentration bounds for the
estimates of unknown stochastic parameter of the CMDP.
Let Nt(x, a) be the number of episodes up to t ∈ [T ] in
which the state-action pair (x, a) ∈ X ×A is visited. Then,

ĝt,i(x, a) :=
∑

τ∈[t] gτ,i(x,a)1τ{x,a}
max{1,Nt(x,a)} , with 1τ{x, a} = 1 if

and only if (x, a) is visited in episode τ , is an unbiased
estimator of the expected cost of constraint i ∈ [m] for
(x, a), which we denote by gi(x, a) := EG∼G [gt,i(x, a)].
Thus, by applying Hoeffding’s inequality, it holds, with
probability at least 1 − δ that |ĝt,i(x, a)− gi(x, a)| ≤
ξt(x, a), where we let the confidence bound ξt(x, a) :=
min{1,

√
4 ln(T |X||A|m/δ)/max{1, Nt(x, a)}} (refer to

Lemma B.2 for the formal result). For ease of notation,
we let Ĝt ∈ [0, 1]|X×A|×m be the matrix of the estimated
costs ĝt,i(x, a). Moreover, we denote by ξt ∈ [0, 1]|X×A|

the vector whose entries are the bounds ξt(x, a), and we let
Ξt ∈ [0, 1]|X×A|×m be a matrix built by in such a way that
the statement of Lemma B.2 becomes: |Ĝt−G| ⪯ Ξt holds
with probability at least 1− δ, where | · | and ⪯ are applied

component wise. In the following, given any δ ∈ (0, 1), we
refer to the event defined in Lemma B.2 as EG(δ).

Similarly, we define confidence sets for the transition
function of a CMDP, by exploiting suitable concentra-
tion bounds for estimated transition probabilities. By let-
ting Mt(x, a, x

′) be the total number of episodes up to
t ∈ [T ] in which (x, a) ∈ X × A is visited and the
environment transitions to x′ ∈ X , the estimated transi-
tion probability for (x, a, x′) is defined as P̂t (x

′ | x, a) :=
Mt(x,a,x

′)
max{1,Nt(x,a)} . Then, at episode t ∈ [T ], the confidence set

for the transitions is Pt :=
⋂

(x,a,x′)∈X×A×X P
x,a,x′

t , with

Px,a,x′

t :=
{
P : |P (x′|x, a)− P̂t(x

′|x, a)| ≤ ϵt(x, a, x
′)
}
,

where we let ϵt(x, a, x′) := 2
√

P̂t(x′|x,a) ln(T |X||A|/δ)
max{1,Nt(x,a)−1} +

14 ln(T |X||A|/δ)
3max{1,Nt(x,a)−1} for some confidence δ ∈ (0, 1). It is
well known that, with probability at least 1 − 4δ, it holds
that the transition function P belongs to Pt for all t ∈ [T ]
(see (Jin et al., 2020) and Lemma G.1 for the formal state-
ment). At each t ∈ [T ], given a confidence set Pt, it is
possible to efficiently build a set ∆(Pt) that comprises
all the occupancy measures that are valid with respect to
every transition function P ∈ Pt. For reasons of space,
we defer the formal definition of ∆(Pt) to Appendix G.
Lemma G.1 implies that, with high probability, the set
∆(M) of valid occupancy measures is included in all the
“estimated” sets ∆(Pt), for every t ∈ [T ]. In the follow-
ing, given any confidence δ ∈ (0, 1), we refer to the event
that ∆(M) ⊆

⋂
t∈[T ] ∆(Pt) as E∆(δ), which holds with

probability at least 1− 4δ thanks to Lemma G.1.

Finally, for ease of presentation, given δ ∈ (0, 1) we define
a clean event EG,∆(δ) under which all the concentration
bounds for costs and transitions correctly hold. Formally,
EG,∆(δ) := EG(δ) ∩ E∆(δ), which holds with probability
at least 1− 5δ by a union bound (and Lemmas B.2 and G.1).

4. Guaranteeing sublinear violation
We start by designing the SV-OPS algorithm, guaranteeing
that both the regret RT and the positive constraints violation
VT are sublinear in T . To get this result, we only need the
existence of a feasible solution (Assumption 2.2). Dealing
with adversarial losses while limiting positive constraints
violation begets considerable challenges, which go beyond
classical exploration-exploitation trade-offs faced in uncon-
strained settings. On the one hand, using state-of-the-art
algorithms for online learning in adversarial, unconstrained
MDPs would lead to sublinear regret, but violation would
grow linearly. On the other hand, a naı̈ve approach that
randomly explores to compute a set of policies satisfying
the constraints with high probability can lead to sublinear vi-
olation, at the cost of linear regret. Thus, a clever adaptation
of the techniques for unconstrained settings is needed.
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Algorithm 2 SV-OPS
Require: X , A, α, T , δ, η, γ
1: for k ∈ [0 . . . L− 1], (x, a, x′) ∈ Xk ×A×Xk+1 do
2: N0(x, a)← 0; M0(x, a, x

′)← 0
3: q̂1 (x, a, x

′)← 1/|Xk||A||Xk+1|
4: end for
5: π1 ← πq̂1

6: for t ∈ [T ] do
7: Choose πt in Algorithm 1 and receive feedback
8: Build upper occupancy bounds for k ∈ [0 . . . L− 1]:

ut(xk, ak)← max P∈Pt−1
qP,πt(xk, ak)

9: Build optimistic loss estimator for (x, a) ∈ X ×A:

ℓ̂t(x, a)←

{
ℓt(x,a)

ut(x,a)+γ
if 1t{x, a} = 1

0 otherwise

10: for k ∈ [0 . . . L− 1] do
11: Nt(xk, ak)← Nt−1(xk, ak) + 1
12: Mt(xk, ak, xk+1)←Mt−1(xk, ak, xk+1)+ 1
13: end for
14: Build Pt, Ĝt, and Ξt as in Section 3
15: Build unconstrained occupancy for all (x, a, x′):

q̃t+1(x, a, x
′)← q̂t(x, a, x

′)e−ηℓ̂t(x,a)

16: if PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
is feasible then

17: q̂t+1 ← PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
18: else
19: q̂t+1 ← any q ∈ ∆(Pt)
20: end if
21: πt+1 ← πq̂t+1

22: end for

Our algorithm—called Sublinear Violation Optimistic Pol-
icy Search (SV-OPS)—works by selecting policies derived
from a set of occupancy measures that optimistically sat-
isfy cost constraints. This ensures that the set is always
non-empty with high probability and that it collapses to the
(true) set of constraint-satisfying occupancy measures as the
number of episodes increases, enabling SV-OPS to attain
sublinear constraints violation. The fundamental property
preserved by SV-OPS is that, even though the “optimistic”
set changes during the execution of the algorithm, it always
subsumes the (true) set of constraint-satisfying occupancy
measures. This crucially allows SV-OPS to employ classi-
cal policy-selection methods for unconstrained MDPs.

Algorithm 2 provides the pseudocode of SV-OPS. At each
episode t ∈ [T ], SV-OPS plays policy πt and receives feed-
back as described in Algorithm 1 (Line 7). Then, SV-OPS
computes an upper occupancy bound ut(xk, ak) for every
state-action pair (xk, ak) visited during Algorithm 1, by us-
ing the confidence set for the transition function Pt−1 com-
puted in the previous episode, namely, it sets ut(xk, ak) :=

maxP∈Pt−1
qP,πt(x, a) for every k ∈ [0 . . . L−1] (Line 8).

Intuitively, ut(xk, ak) represents the maximum probability
with which (xk, ak) is visited when using policy πt, given
the confidence set for the transition function built so far. The
upper occupancy bounds are combined with the exploration
factor γ to compute an optimistic loss estimator ℓ̂t(x, a)
for every state-action pair (x, a) ∈ X × A (see Line 9).
After that, SV-OPS updates all the counters given the path
traversed in Algorithm 1 (Lines 11–12), it builds the new
confidence setPt, and it computes the matrices Ĝt and Ξt of
estimated costs and their bounds, respectively, by using the
feedback (Line 14). To choose a policy πt+1, SV-OPS first
computes an unconstrained occupancy measure q̃t+1 accord-
ing to an unconstrained OMD update (Orabona, 2019) (see
Line 15). Then, q̃t+1 is projected onto a suitably-defined set
of occupancy measures that optimistically satisfy the con-
straints. Next, we formally define the projection (Line 16).

PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
:=

argmin
q∈∆(Pt)

D(q||q̃t+1)

s.t.
(
Ĝt−Ξt

)⊤
q ≤ α,

(2)

where D(q||q̃t+1) is the unnormalized KL-divergence be-
tween q and q̃t+1. Problem (2) is a linearly-constrained
convex mathematical program, and, thus, it can be solved ef-
ficiently, that is, in polynomial time, for an arbitrarily-good
approximate solution.3 Intuitively, Problem (2) performs
a projection onto the set of q ∈ ∆(Pt) that additionally
satisfy

(
Ĝt − Ξt

)⊤
q ≤ α, where lower confidence bounds

Ĝt − Ξt for the costs are used in order to take an optimistic
approach with respect to constraints satisfaction. Finally, if
Problem (2) is feasible, then at the next episode SV-OPS
selects the πq̂t+1 induced by a solution q̂t+1 to Problem (2)
(Line 17), otherwise it chooses a policy induced by any
q ∈ ∆(Pt) (Line 19).

The optimistic approach adopted in Problem (2) crucially
allows to prove the following lemma.

Lemma 4.1. Given confidence δ ∈ (0, 1), Algorithm 2
ensures that PROJ(q̃t+1, Ĝt,Ξt,Pt) is feasible at every
episode t ∈ [T ] with probability at least 1− 5δ.

Lemma 4.1 holds since, under the event EG,∆(δ), projection
is performed on a set subsuming the (true) set of constraints-
satisfying occupancies. Lemma 4.1 is fundamental, as it
allows to show that SV-OPS attains sublinear VT and RT .

4.1. Cumulative positive constraints violation

To prove that the positive constraints violation achieved by
SV-OPS is sublinear, we exploit the fact that the concen-
tration bounds for costs and transitions shrink at a rate of
O(1/

√
T ). This allows us to show the following result.

3As customary in adversarial MDPs, we assume that an optimal
solution to Problem (2) can be computed efficiently. Otherwise,
we can still derive all of our results up to small approximations.
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Theorem 4.2. Given δ ∈ (0, 1), Algorithm 2 attains VT ≤
O
(
L|X|

√
|A|T ln (T |X||A|m/δ)

)
with prob. at least 1−8δ.

4.2. Cumulative regret

The crucial observation that allows us to prove that the re-
gret attained by SV-OPS grows sublinearly is that the set
on which the algorithm perform its projection step (Prob-
lem (2)) always contains the (true) set of occupancy mea-
sures that satisfy the constraints, and, thus, it also always
contains the best-in-hindsight constraint-satisfying occu-
pancy measure q∗. As a result, even though cost estimates
may be arbitrarily bad, SV-OPS is still guaranteed to select
policies resulting in losses that are smaller than or equal to
those incurred by q∗. This allows us to show the following:

Theorem 4.3. Given δ ∈ (0, 1), by setting η =
γ =

√
L ln(L|X||A|/δ)/T |X||A|, Algorithm 2 attains RT ≤

O
(
L|X|

√
|A|T ln (T |X||A|/δ)

)
with prob. at least 1− 10δ.

5. Guaranteeing safety
We design another algorithm, called S-OPS, attaining sub-
linear regret and enjoying the safety property with high prob-
ability. To do this, we work under Assumptions 2.4 and 2.5.
Designing safe algorithms raises many additional challenges
compared to the case studied in Section 4. Indeed, adapting
techniques for adversarial, unconstrained MDPs does not
work anymore, and, thus, ad hoc approaches are needed.
This is because safety extremely limits exploration.

Our algorithm—Safe Optimistic Policy Search (S-OPS)—
builds on top of the SV-OPS algorithm developed in Sec-
tion 4. Selecting policies derived from the “optimistic” set of
occupancy measures, as done by SV-OPS, is not sufficient
anymore, as it would clearly result in the safety property be-
ing unsatisfied during the first episodes. Our new algorithm
circumvents such an issue by employing, at each episode,
a suitable randomization between the policy derived from
the “optimistic” set (the one SV-OPS would select) and
the strictly feasible policy π⋄. Crucially, as we show next,
such a randomization accounts for constraints satisfaction
by taking a pessimistic approach, namely, by considering
upper confidence bounds on the costs characterizing the
constraints. This is needed in order to guarantee the safety
property. Moreover, having access to the strictly feasible
policy π⋄ and its expected costs β (Assumption 2.5) allows
S-OPS to always place a sufficiently large probability on
the policy derived from the “optimistic” set, so that a suffi-
cient amount of exploration is guaranteed, and, in its turn,
sublinear regret is attained. Notice that S-OPS effectively
selects non-Markovian policies, as it employs a randomiza-
tion between two Markovian policies at each episode.

Algorithm 3 provides the pseudocode of S-OPS. Differently

Algorithm 3 S-OPS
Require: X , A, α, T , δ, η, γ, π⋄, β
1: for k ∈ [0 . . . L− 1], (x, a, x′) ∈ Xk ×A×Xk+1 do
2: N0(x, a)← 0; M0(x, a, x

′)← 0
3: q̂1 (x, a, x

′)← 1

|Xk∥A||Xk+1|
4: end for

5: π1 ←

{
π⋄ w. probability λ0 := maxi∈[m]

{
L−αi
L−βi

}
πq̂1 w. probability 1− λ0

6: for t ∈ [T ] do
7: Select πt in Algorithm 1 and receive feedback
8: Build upper occupancy bounds for k ∈ [0 . . . L− 1]:

ut(xk, ak)← max P∈Pt−1
qP,πt(xk, ak)

9: Build optimistic loss estimator for (x, a) ∈ X ×A:

ℓ̂t(x, a)←

{
ℓt(x,a)

ut(x,a)+γ
if 1t{x, a} = 1

0 otherwise

10: for k ∈ [0 . . . L− 1] do
11: Nt(xk, ak)← Nt−1(xk, ak) + 1
12: Mt(xk, ak, xk+1)←Mt−1(xk, ak, xk+1) + 1
13: end for
14: Build Pt, Ĝt, and Ξt as in Section 3
15: Build unconstrained occupancy for all (x, a, x′):

q̃t+1(x, a, x
′)← q̂t(x, a, x

′)e−ηℓ̂t(x,a)

16: if PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
is feasible then

17: q̂t+1 ← PROJ
(
q̃t+1, Ĝt,Ξt,Pt

)
18: π̂t+1 ← πq̂t+1

19: Build ût+1 ∈ [0, 1]|X×A| so that for all (x, a):

ût+1(x, a)← max P∈Pt
qP,π̂t+1(x, a)

20: σ ← maxi∈[m]

{
min{(ĝt,i+ξt)

⊤ût+1,L}−αi

min{(ĝt,i+ξt)⊤ût+1,L}−βi

}
21: λt ←

{
σ if ∃i ∈ [m] : (ĝt,i + ξt)

⊤ût+1 > αi

0 if ∀i ∈ [m] : (ĝt,i + ξt)
⊤ût+1 ≤ αi

22: else
23: q̂t+1 ← take any q ∈ ∆(Pt); λt ← 1
24: end if

25: πt+1 ←

{
π⋄ with probability λt

πq̂t+1 with probability 1− λt

26: end for

from SV-OPS, the policy selected at the first episode is ob-
tained by randomizing a uniform occupancy measure with
π⋄ (Line 5). The probability λ0 of selecting π⋄ is chosen
pessimistically. Intuitively, in the first episode, being pes-
simistic means that λ0 must guarantee that the constraints
are satisfied for any possible choice of costs and transitions,
and, thus, λ0 := maxi∈[m] {L−αi/L−βi}. Thanks to As-
sumptions 2.4 and 2.5, it is always the case that λ0 < 1.
Thus, π1 ̸= π⋄ with positive probability and some explo-
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ration is performed even in the first episode. Analogously
to SV-OPS, at each t ∈ [T ], S-OPS selects a policy πt and
receives feedback as described in Algorithm 1, it computes
optimistic loss estimators, it updates the confidence set for
the transitions, and it computes the matrices of estimated
costs and their bounds. Then, as in SV-OPS, an update step
of unconstrained OMD is performed. Although identical to
the update done in SV-OPS, the one in S-OPS uses loss
estimators computed when using a randomization between
the policy obtained by solving Problem (2) and the strictly
feasible policy π⋄. Thus, there is a mismatch between the
occupancy measure used to estimate losses and the one com-
puted by the projection step. The projection step performed
by S-OPS (Line 16) is the same as the one in SV-OPS.
Specifically, the algorithm projects the unconstrained oc-
cupancy measure q̃t+1 onto an “optimistic” set by solving
Problem (2), which, if the problem is feasible, results in oc-
cupancy measure q̂t+1. However, differently from SV-OPS,
when the problem is feasible, S-OPS does not select the
policy πq̂t+1 derived from q̂t+1, but it rather uses a random-
ization between such a policy and the strictly feasible policy
π⋄ (Line 25). The probability λt of selecting π⋄ is chosen
pessimistically with respect to constraints satisfaction, by
using upper confidence bounds for the costs and upper oc-
cupancy bounds given policy πq̂t+1 (Lines 19 and 21). Such
a pessimistic approach ensures that the constraints are satis-
fied with high probability, thus making the algorithm safe
with high probability. If Problem (2) is not feasible, then
any occupancy measure in ∆(Pt) can be selected (Line 23).

5.1. Safety property

We show that S-OPS is safe with high probability.

Theorem 5.1. Given a confidence δ ∈ (0, 1), Algorithm 3
is safe with probability at least 1− 5δ.

Intuitively, Theorem 5.1 follows from the way in which the
randomization probability λt is defined. Indeed, λt relies
on two crucial components: (i) a pessimistic estimate of the
costs for state-action pairs, namely, the upper confidence
bounds ĝt,i + ξt, and (ii) a pessimistic choice of transition
probabilities, encoded by the upper occupancy bounds de-
fined by the vector ût. Notice that the maxi∈[m] operator
allows to be conservative with respect to all the constraints.

5.2. Cumulative regret

Proving that S-OPS attains sublinear regret begets chal-
lenges that, to the best of our knowledge, have never been
addressed before. Specifically, analyzing the estimates of
the adversarial losses requires non-standard techniques in
our setting, since the policy πt used by the algorithm and
determining the feedback is not the one resulting from an
OMD-like update, as it is obtained via a non-standard ran-
domization. Nevertheless, the particular shape of the prob-

Algorithm 4 CV-OPS
Require: Anytime adversarial MDPs regret minimizer AP , on-

line linear optimizer AD

1: for t ∈ [T ] do
2: Select πt ← AP

3: Select ϕt ← AD

4: Play πt and observe feedback as prescribed in Algorithm 1
5: Feed {xk, ak,

∑
i∈[m]ϕt,i(gt,i(xk, ak)− αi

L
)}L−1

k=1 toAP

6: Feed {−
∑L−1

k=1 (gt,i(xk, ak)− αi
L
)}i∈[m] to AD

7: if −maxi∈[m]

∑
τ∈[t]

∑L−1
k=1 (gt,i(xk, ak) − αi

L
) ≥

2CP
A
√

t ln(t) + 8L
√

2t ln 1
δ
+ 2CD

A
√
t then

8: Go to Line 11
9: end if

10: end for

11: ρ̂← −1

t
max
i∈[m]

∑
τ∈[t]

( L−1∑
k=1

gt,i(xk, ak)−αi

)
−2L

t

√
2t ln 1/δ

12: π̂⋄ ← πτ with probability 1/t, for τ ∈ [t]
13: Run S-OPS with βi = αi − ρ̂ for all i ∈ [m] and π⋄ = π̂⋄

ability λt can be exploited to overcome such a challenge.
Indeed, we show that each λt can be upper bounded by the
initial λ0, and, thus, a loss estimator from feedback received
by using a policy computed by an OMD-like update is avail-
able with probability at least 1 − λ0. This observation is
crucial in order ot prove the following result:

Theorem 5.2. Given δ ∈ (0, 1), by setting η =
γ =

√
L ln(L|X||A|/δ)/T |X||A|, Algorithm 3 attains RT ≤

O
(
ΨL3|X|

√
|A|T ln (T |X||A|m/δ)

)
with prob. at least

1− 11δ, where Ψ := maxi∈[m]{1/min{(αi−βi),(αi−βi)
2}}.

The regret bound in Theorem 5.2 is in line with the one
of SV-OPS in the bounded violation setting, with an addi-
tional ΨL2 factor. Such a factor comes from the mismatch
between loss estimators and the occupancy measure chosen
by the OMD-like update. Notice that Ψ depends on the vio-
lation gap mini∈[m]{αi − βi}, which represents how much
the strictly feasible solution satisfies the constraints. Such a
dependence is expected, since the better the strictly feasible
solution (in terms of constraints satisfaction), the larger the
exploration performed during the first episodes.

6. Guaranteeing constant violation
In this section, we provide an algorithm that attains con-
stant cumulative positive violation. To achieve this goal,
we only need that a strictly feasible policy exists (Assump-
tion 2.4). Algorithm 4 provides the pseudocode of Con-
stant Violation Optimistic Policy Search (CV-OPS). The
key idea of CV-OPS is to estimate, in a constant num-
ber of episodes, a strictly feasible policy and its associ-
ated violation, and then run S-OPS with such estimates.
Algorithm 4 needs access to two anytime no-regret algo-
rithms, one for adversarial MDPs with bandit feedback
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that learns an estimated strictly feasible policy and one
for the full-feedback setting on the simplex, which learns
the most violated constraint. Specifically, CV-OPS employs
an anytime regret minimizer for adversarial MDPs—called
the primal algorithm AP —that attains, with probability
at least 1 − Cδ

P δ, for all τ ∈ [T ], q ∈ ∆(M), and for
any sequence of loss functions the following regret bound∑τ

t=1 ℓ
⊤
t (qt − q) ≤ CP

A
√
τ ln(τ),where CP

A encompass
constant terms. This kind of guarantees are attained by
state-of-the-arts algorithms for adversarial MDPs (e.g., (Jin
et al., 2020)) after applying a standard doubling trick (Lat-
timore & Szepesvári, 2020). Algorithm 4 also employs
an anytime online linear optimizer—called the dual algo-
rithm AD)—that attains for all τ ∈ [T ], ϕ ∈ ∆m, and for
any sequence of loss functions the following regret bound∑τ

t=1 ℓ
⊤
t (ϕt − ϕ) ≤ CD

A
√
τ , where CD

A encompasses con-
stant terms. This bound can be easily obtained by an online
gradient descent algorithm (Orabona, 2019).

At each episode t ∈ [T ], Algorithm 4 requests a policy
and a distribution over the m constraints to AP and AD,
respectively (Lines 2-3). Thus, the algorithm plays the pol-
icy received by AP and observes the usual bandit feedback
for CMDPs (Line 4). Next, the loss functions for both the
primal and the dual algorithm are built. Specifically, AP

receives the violation attained by the policy πt where any
constraint is weighted given ϕt (Line 5), while AD receives
the negative of the violation attained for all i ∈ [m] (Line 6).
The estimation phase stops when the violation attained by
the algorithm exceeds twice the regret bounds attained by
both the primal and the dual algorithm plus the uncertainty
on the estimation (Line 7). This condition is suitably cho-
sen to ensure that the number of episodes are sufficient to
estimate an approximation of π⋄, while still being constant.
After the estimation, Algorithm 4 computes pessimistically
the estimated Slater’s parameter ρ̂ as the average violation
attained during the estimation phase minus a quantity as-
sociated with the uncertainty of the estimation (Line 11).
Finally, CV-OPS computes the strictly feasible solution as
the uniform policy with respect to all the policies played
in the estimation phase (Line 12) and runs S-OPS with
βi = αi− ρ̂, for all i ∈ [m] and π⋄ = π̂⋄ in input (Line 13).

6.1. Cumulative positive constraints violation

First, we show that the stopping condition at Line 7 allows
to run the estimation phase for no more than a constant
number of episodes. This is done in the following lemma.

Lemma 6.1. Given any δ ∈ (0, 1), the episodes that Al-
gorithm 4 uses to compute ρ̂ and π̂⋄ are t̄ ≤ 1/ρ4(3CP

A +
10L ln 1

δ + 3CD
A + L)4, with prob. at least 1− (Cδ

P + 2)δ.

The bound could be reduced to t̄ ≤ 1/ρ2(3CP
A + 10L ln 1

δ +
3CD

A + L)2, with access to a no-regret algorithm without
the logarithmic dependence on T in the bound. Next, we

show that Algorithm 4 estimates a strictly feasible policy
whose constraints margin is in [ρ̂, ρ], as follows.

Lemma 6.2. Given any δ ∈ (0, 1), Algorithm 4 guarantees
ρ̂ ≤ mini∈[m](αi−g⊤i q

P,π̂⋄
) ≤ ρ with prob. at least 1−2δ.

Finally, we provide the result in term of cumulative positive
constraints violation attained by our algorithm.

Theorem 6.3. Given δ ∈ (0, 1), Algorithm 4 attains VT ≤
O(L/ρ4(CP

A + L
√

ln 1
δ + CD

A + L)4) with probability at

least 1− (Cδ
P + 7)δ.

Theorem 6.3 is proved by employing Lemma 6.1 to bound
the episodes in the estimation phase and Lemma 6.2 to state
that S-OPS with ρ̂, π̂⋄ is safe with high probability.

6.2. Cumulative regret

We provide the theoretical guarantees attained by Algo-
rithm 4 in terms of cumulative regret. To do so, we show
that ρ̂ is not too small. This is done in the following lemma.

Lemma 6.4. Given any δ ∈ (0, 1), Algorithm 4 guarantees
ρ̂ ≥ ρ/2 with probability at least 1− (Cδ

P + 2)δ.

Finally, we state the regret attained by CV-OPS.

Theorem 6.5. Given any δ ∈ (0, 1), with η = γ =√
L ln(L|X||A|/δ)/T |X||A|, Algorithm 4 attains regret RT ≤

O(ΘL3|X|
√
|A|T ln (T |X||A|m/δ) + L/ρ4(CP

A + L ln 1/δ +
CD

A +L)4) with probability at least 1− (Cδ
P +13)δ, where

we let Θ := 1/min{ρ,ρ2}.

As Theorem 6.3, Theorem 6.5 is proved by employing
Lemma 6.1 to bound the episodes in the estimation phase.
Then, the result follows from the regret guarantees of
S-OPS and Lemma 6.4 for 1/ρ̂ ≤ 2/ρ. Differently from
S-OPS, the bound of CV-OPS scales as the inverse of the
Slater’s parameter ρ, not as the (possibly smaller) margin of
a generic strictly feasible policy. Thus, the bound of Algo-
rithm 4 is asymptotically smaller than the one of S-OPS.

6.3. Lower bound on the regret

We conclude by showing that a dependency on the feasi-
bility of the strictly feasible solution in the regret bound is
unavoidable to guarantee violation of order o(

√
T ), which

is the case of both the second and third setting.

This is done by means of the following lower bound.

Theorem 6.6. There exist two instances of CMDPs (with
a single state and one constraint) such that, if in the first
instance an algorithm suffers from a violation VT = o(

√
T )

probability at least 1 − nδ for any δ ∈ (0, 1) and n > 0,
then, in the second instance, it must suffer from a regret
RT = Ω( 1ρ

√
T ) with probability 3/4− nδ.
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Notice that this lower bound holds for any algorithm at-
taining a violation bound that is o(

√
T ), thus, it is still

applicable to settings where the violations are allowed to
be much larger than the ones attained by Algorithm 3 and
Algorithm 4.
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Appendix
The appendix is organized as follows:

• In Appendix A, we provide the complete discussion on related works.

• In Appendix B, we provide the omitted proofs related to the analysis of the clean event.

• In Appendix C, we provide the omitted proofs related to the performances attained by Algorithm 2, namely, the one
which guarantees sublinear violation.

• In Appendix D, we provide the omitted proofs related to the performances attained by Algorithm 3, namely, the one
which guarantees the safety property.

• In Appendix E, we provide the omitted proofs related to the performances attained by Algorithm 4, namely, the one
which guarantees constant violation.

• In Appendix F, we provide the lower bound associated to both the second and the third setting.

• In Appendix G, we provide useful lemmas from existing works.

A. Related Works
Online learning (Cesa-Bianchi & Lugosi, 2006; Orabona, 2019) in MDPs has received growing attention over the last years
(see, e.g., (Auer et al., 2008; Even-Dar et al., 2009; Neu et al., 2010)). Two types of feedback are usually investigated: full
feedback, with the entire loss function being observed by the leaner, and bandit feedback, where the learner only observes
losses of chosen actions. Azar et al. (2017) study learning in episodic MDPs with unknown transitions and stochastic
losses under bandit feedback, achieving Õ(

√
T ) regret, matching the lower bound for these MDPs. Rosenberg & Mansour

(2019b) study learning under full feedback in episodic MDPs with adversarial losses and unknown transitions, achieving
Õ(
√
T ) regret. The same setting is studied by Rosenberg & Mansour (2019a) under bandit feedback, obtaining a suboptimal

Õ(T 3/4) regret. Jin et al. (2020) provide an algorithm with an optimal Õ(
√
T ) regret, in the same setting.

Online learning in CMDPs has generally been studied with stochastic losses and constraints. Zheng & Ratliff (2020) deal
with fully-stochastic episodic CMDPs, assuming known transitions and bandit feedback. The regret of their algorithm is
Õ(T 3/4), while its cumulative constraints violation is guaranteed to be below a threshold with a given probability. Bai et al.
(2023) provide the first algorithm that achieves sublinear regret with unknown transitions, assuming that the rewards are
deterministic and the constraints are stochastic with a particular structure. Efroni et al. (2020) propose two approaches to deal
with the exploration-exploitation trade-off in episodic CMDPs. The first one resorts to a linear programming formulation of
CMDPs and obtains sublinear regret and cumulative positive constraints violation. The second one relies on a primal-dual
formulation of the problem and guarantees sublinear regret and cumulative (positive/negative) constraints violation, when
transitions, losses, and constraints are unknown and stochastic, under bandit feedback. Liu et al. (2021); Müller et al. (2024);
Stradi et al. (2025) study stochastic hard constraints; however, the authors only focus on stochastic losses. Bura et al.
(2022) focus on our second scenario and develop a pessimist algorithm for the stochastic setting only. In this work, the
strictly safe policy is played for a certain amount of time, after which a good estimate on constraints costs and transitions is
available. This allows the pessimistic set to be large enough to to be used. We underline that, optimizing over the pessimistic
decision space cannot be done in our setting, since adversarial no-regret algorithms do not work in increasing decision
spaces. Recently, Shi et al. (2023) study stochastic hard constraints on both states and actions. As concerns adversarial
settings, Wei et al. (2018); Qiu et al. (2020); Stradi et al. (2024a) address CMDPs with adversarial losses, but they only
provide guarantees in terms of soft constraints. Moreover, Wei et al. (2023); Ding & Lavaei (2023); Stradi et al. (2024b)
consider non-stationary losses/constraints with bounded variation. Their results do not apply to general adversarial losses.

Hard constraints have also been studied in online convex optimization (Guo et al., 2022), and in stochastic settings with
simpler structure (Chen et al., 2018; Pacchiano et al., 2021; Bernasconi et al., 2022). Our results are much more general
than those, as we jointly consider adversarial losses, bandit feedback, and an MDP structure.

B. Omitted proofs for the clean event
In this section, we report the omitted proof related to the clean event. We start stating the following preliminary result.
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Lemma B.1. Given any δ ∈ (0, 1), fix i ∈ [m], t ∈ [T ] and (x, a) ∈ X ×A, it holds, with probability at least 1− δ:∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a),

where ζt(x, a) :=
√

ln(2/δ)
2Nt(x,a)

and gt,i(x, a) is the true mean value of the distribution.

Proof. Focus on specifics i ∈ [m], t ∈ [T ] and (x, a) ∈ X × A. By Hoeffding’s inequality and noticing that constraints
values are bounded in [0, 1], it holds that:

P

[∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≥ c

Nt(x, a)

]
≤ 2 exp

(
− 2c2

Nt(x, a)

)

Setting δ = 2 exp
(
− 2c2

Nt(x,a)

)
and solving to find a proper value of c concludes the proof.

Now we generalize the previous result in order to hold for every i ∈ [m], t ∈ [T ] and (x, a) ∈ X ×A at the same time.

Lemma B.2. Given a confidence δ ∈ (0, 1), with probability at least 1 − δ, for every i ∈ [m], episode t ∈ [T ],
and pair (x, a) ∈ X × A, it holds |ĝt,i(x, a)− gi(x, a)| ≤ ξt(x, a), where we let the confidence bound ξt(x, a) :=

min{1,
√

4 ln(T |X||A|m/δ)/max{1, Nt(x, a)}}.

Proof. From Lemma G.1, given δ′ ∈ (0, 1), we have for any i ∈ [m], t ∈ [T ] and (x, a) ∈ X ×A:

P

[∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

]
≥ 1− δ′.

Now, we are interested in the intersection of all the events, namely,

P

[ ⋂
x,a,m,t

{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}]
.

Thus, we have:

P

[ ⋂
x,a,m,t

{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}]

= 1− P

[ ⋃
x,a,m,t

{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}c
]

≥ 1−
∑

x,a,m,t

P

[{∣∣∣ĝt,i(x, a)− gi(x, a)
∣∣∣ ≤ ζt(x, a)

}c
]

(3)

≥ 1− |X||A|mTδ′,

where Inequality (3) holds by Union Bound. Noticing that gt,i(x, a) ≤ 1, substituting δ′ with δ := δ′/|X||A|mT in ζt(x, a)
with an additional Union Bound over the possible values of Nt(x, a), and thus obtaining ξt(x, a), concludes the proof.

C. Omitted proofs for sublinear violation
In this section we report the omitted proofs of the theoretical results for Algorithm 2.
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C.1. Feasibility

We start by showing that Program (2) admits a feasible solution with arbitrarily large probability.

Lemma 4.1. Given confidence δ ∈ (0, 1), Algorithm 2 ensures that PROJ(q̃t+1, Ĝt,Ξt,Pt) is feasible at every episode
t ∈ [T ] with probability at least 1− 5δ.

Proof. To prove the lemma we show that under the event EG,∆(δ), which holds the probability at least 1− 5δ, Program (2)
admits a feasible solution. Precisely, under the event E∆(δ), the true transition function P belongs to Pt at each episode.
Moreover, under the event EG(δ), we have, for any feasible solution q□ of the offline optimization problem, for any t ∈ [T ],(

Ĝt − Ξt

)⊤
q□ ⪯ G

⊤
t q

□ ⪯ α,

where the first inequality holds by the definition of the event. The previous inequality shows that if q□ satisfies the constraints
with respect to the true mean constraint matrix, it satisfies also the optimistic constraints. Thus, the feasible solutions to the
offline problem are all available at every episode. Noticing that the clean event is defined as the intersection between EG(δ)
and E∆(δ) concludes the proof.

C.2. Violations

We proceed bounding the cumulative positive violation as follows.

Theorem 4.2. Given δ ∈ (0, 1), Algorithm 2 attains VT ≤ O
(
L|X|

√
|A|T ln (T |X||A|m/δ)

)
with prob. at least 1− 8δ.

Proof. The key point of the problem is to relate the constraints satisfaction with the convergence rate of both the confidence
bound on the constraints and the transitions.

First, we notice that under the clean event EG,∆(δ), all the following reasoning hold for every constraint i ∈ [m]. Thus, we
focus on the bound of a single constraint violation problem defined as follows:

VT :=

T∑
t=1

[
g⊤qt − α

]+
By Lemma 4.1, under the clean event the EG,∆(δ), the convex program is feasible and it holds:

g − 2ξt ⪯ ĝt − ξt

Thus, multiplying for the estimated occupancy measure and by construction of the convex program we obtain:

(g − 2ξt−1)
⊤
q̂t ≤ (ĝt−1 − ξt−1)

⊤
q̂t ≤ α.

Rearranging the equation, it holds:
g⊤q̂t ≤ α+ 2ξ⊤t−1q̂t.

Now, in order to obtain the instantaneous violation definition we proceed as follows,

g⊤q̂t + g⊤qt − g⊤qt ≤ α+ 2ξ⊤t−1q̂t,

from which we obtain:

g⊤qt − α ≤ g⊤(qt − q̂t) + 2ξ⊤t−1q̂t

≤ ∥g∥∞∥qt − q̂t∥1 + 2ξ⊤t−1q̂t,

where the last step holds by the Hölder inequality. Notice that, since the RHS of the previous inequality is greater than zero,
it holds,

[g⊤qt − α]+ ≤ ∥qt − q̂t∥1 + 2ξ⊤t−1q̂t.

which leads to VT ≤
∑T

t=1 ∥qt − q̂t∥1 + 2
∑T

t=1 ξ
⊤
t−1q̂t, where the first part of the equation refers to the estimate of the

transitions while the second one to the estimate of the constraints. We will bound the two terms separately.
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Bound on
∑T

t=1 ∥q̂t − qt∥1. The term of interest encodes the distance between the estimated occupancy measure and the
real one chosen by the algorithm. Thus, it depends on the estimation of the true transition functions. To bound the quantity
of interest, we proceed as follows:

T∑
t=1

∥q̂t − qt∥1 =

T∑
t=1

∑
x,a

|q̂t(x, a)− qt(x, a)|

≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (4)

where Inequality (4) holds since, by Lemma G.2, under the clean event, with probability at least 1 − 2δ, we have∑T
t=1

∑
x,a |q̂t(x, a)− qt(x, a))| ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, when q̂t ∈ ∆(Pt). Please notice that the condition

q̂t ∈ ∆(Pt) is verified since the constrained space defined by Program (2) is contained in ∆(Pt).

Bound on
∑T

t=1 ξ
⊤
t−1q̂t. This term encodes the estimation of the constraints functions obtained following the estimated

occupancy measure. Nevertheless, since the confidence bounds converge only for the paths traversed by the learner, it is
necessary to relate ξt to the real occupancy measure chosen by the algorithm. To do so, we notice that by Hölder inequality
and since ξt(x, a) ≤ 1, it holds:

T∑
t=1

ξ⊤t−1q̂t ≤
T∑

t=1

ξ⊤t−1qt +

T∑
t=1

ξ⊤t−1(q̂t − qt)

≤
T∑

t=1

ξ⊤t−1qt +

T∑
t=1

∥ξt−1∥∞∥q̂t − qt∥1

≤
T∑

t=1

ξ⊤t−1qt +

T∑
t=1

∥q̂t − qt∥1.

The second term of the inequality is bounded by the previous analysis, while for the first term we proceed as follows:

T∑
t=1

ξ⊤t−1qt =

T∑
t=1

∑
x,a

ξt−1(x, a)qt(x, a)

≤
T∑

t=1

∑
x,a

ξt−1(x, a)1t{x, a}+ L

√
2T ln

1

δ
(5)

=

√
4 ln

(
T |X||A|m

δ

) T∑
t=1

∑
x,a

√
1

max{1, Nt−1(x, a)}
1t{x, a}+ L

√
2T ln

1

δ

≤ 3

√
4 ln

(
T |X||A|m

δ

)∑
x,a

√
NT (x, a) + L

√
2T ln

1

δ
(6)

≤ 6

√
L|X||A|T ln

(
T |X||A|m

δ

)
+ L

√
2T ln

1

δ
, (7)

where Inequality (5) follows from Azuma inequality and noticing that
∑

x,a ξt−1(x, a)qt(x, a) ≤ L (with probability at

least 1− δ), Inequality (6) holds since 1 +
∑T

t=1
1√
t
≤ 2
√
T + 1 ≤ 3

√
T and Inequality (7) follows from Cauchy-Schwarz

inequality and noticing that
√∑

x,a NT (x, a) ≤
√
LT .

We combine the previous bounds as follows:

VT ≤
T∑

t=1

∥qt − q̂t∥1 + 2

T∑
t=1

ξ⊤t−1q̂t
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≤ O

(
L|X|

√
|A|T ln

(
T |X||A|m

δ

))
.

The results holds with probability at least at least 1 − 8δ by union bound over the clean event, Lemma G.2 and the
Azuma-Hoeffding inequality. This concludes the proof.

C.3. Regret

In this section, we prove the regret bound of Algorithm 2. Precisely, the bound follows from noticing that, under the clean
event, the optimal safe solution is included in the decision space for every episode t ∈ [T ].

Theorem 4.3. Given δ ∈ (0, 1), by setting η = γ =
√

L ln(L|X||A|/δ)/T |X||A|, Algorithm 2 attains RT ≤
O
(
L|X|

√
|A|T ln (T |X||A|/δ)

)
with prob. at least 1− 10δ.

Proof. We first rewrite the regret definition as follows:

RT =

T∑
t=1

ℓ⊤t qt −
T∑

t=1

ℓ⊤t q
∗

=

T∑
t=1

ℓ⊤t (qt − q̂t)︸ ︷︷ ︸
1

+

T∑
t=1

ℓ̂ ⊤
t (q̂t − q∗)︸ ︷︷ ︸

2

+

T∑
t=1

(ℓt − ℓ̂t)
⊤q̂t︸ ︷︷ ︸

3

+

T∑
t=1

(ℓ̂t − ℓt)
⊤q∗.︸ ︷︷ ︸

4

Precisely, the first term encompasses the distance between the true transitions and the estimated ones, the second concerns
the optimization performed by online mirror descent and the last ones encompass the bias of the estimators.

Bound on 1 . We start bounding the first term, namely, the cumulative distance between the estimated occupancy measure
and the real one, as follows:

1 =

T∑
t=1

ℓ⊤t (qt − q̂t)

=

T∑
t=1

∑
x,a

ℓt(x, a)(qt(x, a)− q̂t(x, a))

≤
T∑

t=1

∑
x,a

|(qt(x, a)− q̂t(x, a)|, (8)

where the Inequality (8) holds by Hölder inequality noticing that ∥ℓt∥∞ ≤ 1 for all t ∈ [T ]. Then, noticing that the
projection of Algorithm 2 is performed over a subset of ∆(Pt) and employing Lemma G.2, we obtain:

1 ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (9)

with probability at least 1− 2δ, under the clean event.

Bound on 2 . To bound the second term, we underline that, under the clean event EG,∆(δ), the estimated safe occupancy
q̂t belongs to ∆(Pt) and the optimal safe solution q∗ is included in the constrained decision space for each t ∈ [T ]. Moreover
we notice that, for each t ∈ [T ], the constrained space is convex and linear, by construction of Program (2). Thus, following
the standard analysis of online mirror descent (Orabona, 2019) and from Lemma G.6, we have, under the clean event:

2 ≤
L ln

(
|X|2|A|

)
η

+ η
∑
t,x,a

q̂t(x, a)ℓ̂t(x, a)
2.
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Thus, to bound the biased estimator, we notice that q̂t(x, a)ℓ̂t(x, a)2 ≤ q̂t(x,a)
ut(x,a)+γ ℓ̂t(x, a) ≤ ℓ̂t(x, a). We then apply

Lemma G.3 with αt(x, a) = 2γ and obtain
∑

t,x,a q̂t(x, a)ℓ̂t(x, a)
2 ≤

∑
t,x,a

qt(x,a)
ut(x,a)

ℓt(x, a) +
L ln L

δ

2γ . Finally, we notice
that, under the clean event, qt(x, a) ≤ ut(x, a), obtaining, with probability at least 1− δ:

2 ≤
L ln

(
|X|2|A|

)
η

+ η|X||A|T +
ηL ln(L/δ)

2γ
.

Setting η = γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain:

2 ≤ O

(
L

√
|X||A|T ln

(
|X||A|

δ

))
, (10)

with probability at least 1− δ, under the clean event.

Bound on 3 . The third term follows from Lemma G.5, from which, under the clean event, with probability at least 1− 3δ

and setting γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain:

3 ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
. (11)

Bound on 4 . We bound the fourth term employing Corollary G.4 and obtaining,

T∑
t=1

(
ℓ̂t − ℓt

)⊤
q∗ =

∑
t,x,a

q∗(x, a)
(
ℓ̂t(x, a)− ℓt(x, a)

)
≤
∑
t,x,a

q∗(x, a)ℓt(x, a)

(
qt(x, a)

ut(x, a)
− 1

)
+
∑
x,a

q∗(x, a) ln |X||A|
δ

2γ

=
∑
t,x,a

q∗(x, a)ℓt(x, a)

(
qt(x, a)

ut(x, a)
− 1

)
+

L ln |X||A|
δ

2γ
.

Noticing that, under the clean event, qt(x, a) ≤ ut(x, a) and setting γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain, with probability at

least 1− δ:

4 ≤ O

(
L

√
|X||A|T ln

(
T |X||A|

δ

))
. (12)

Final result. Finally, combining Equation (9), Equation (10), Equation (11) and Equation (12) and applying a union
bound, we obtain, with probability at least 1− 10δ,

RT ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

D. Omitted proofs when Condition 2.5 holds
In this section we report the omitted proofs of the theoretical results for Algorithm 3.

D.1. Safety

We start by showing that Algorithm 3 is safe with high probability.
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Theorem 5.1. Given a confidence δ ∈ (0, 1), Algorithm 3 is safe with probability at least 1− 5δ.

Proof. We show that, under event EG,∆(δ), the non-Markovian policy defined by the probability λt satisfies the constraints.
Intuitively, the result follows from the construction of the convex combination parameter λt. Indeed, λt is built using a
pessimist estimated of the constraints cost, namely, ĝt,i+ ξt. Moreover, the upper occupancy bound ût introduces pessimism
in the choice of the transition function. Finally, the maxi∈[m] operator allows to be conservative for all the m constraints.

We split the analysis in the two possible cases defined by λt, namely, λt = 0 and λt ∈ (0, 1). Please notice that λt < 1, by
construction.

Analysis when λt = 0. When λt = 0, it holds, by construction, that ∀i ∈ [m] : (ĝt−1,i + ξt−1)
⊤ût ≤ αi. Thus, under

the event EG,∆(δ), it holds, ∀i ∈ [m]:

αi ≥ (ĝt−1,i + ξt−1)
⊤ût

≥ (ĝt−1,i + ξt−1)
⊤q̂t (13)

= (ĝt−1,i + ξt−1)
⊤qt

≥ g⊤i qt, (14)

where Inequality (13) holds by definition of ût and Inequality (14) by the pessimistic definition of the constraints.

Analysis when λt ∈ (0, 1). We focus on a single constraint i ∈ [m], then we generalize the analysis for the entire set of
constraints. First we notice that the constraints cost, for a single constraint i ∈ [m], attained by the non-Markovian policy
πt, is equal to λt−1g

⊤
i q

⋄ + (1− λt−1)g
⊤
i q

P,π̂t . Thus, it holds by definition of the known strictly feasible π⋄,

λt−1g
⊤
i q

⋄ + (1− λt−1)g
⊤
i q

P,π̂t = λt−1βi + (1− λt−1)g
⊤
i q

P,π̂t . (15)

Then, we consider both the cases when L < (ĝt−1,i + ξt−1)
⊤
ût (first case) and L > (ĝt−1,i + ξt−1)

⊤
ût (second case). If

the two quantities are equivalent, the proof still holds breaking the ties arbitrarily.

First case. It holds that:

λt−1βi + (1− λt−1)g
⊤
i q

π̂t,P ≤ λt−1βi + (1− λt−1)L (16)

=
L− αi

L− βi
(βi − L) + L

=
αi − L

βi − L
(βi − L) + L

= αi,

where Inequality (16) holds by definition of the constraints.

Second case. It holds that:

λt−1βi+(1− λt−1)g
⊤
i q

P,π̂t

≤ λt−1βi + (1− λt−1) (ĝt−1,i + ξt−1)
⊤
qP,π̂t (17)

≤ λt−1βi + (1− λt−1) (ĝt−1,i + ξt−1)
⊤
ût (18)

= λt−1βi − λt−1 (ĝt−1,i + ξt−1)
⊤
ût + (ĝt−1,i + ξt−1)

⊤
ût

= λt−1(βi − (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

≤ (ĝt−1,i + ξt−1)
⊤
ût − αi

(ĝt−1,i + ξt−1)
⊤
ût − βi

(βi − (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

=
αi − (ĝt−1,i + ξt−1)

⊤
ût

βi − (ĝt−1,i + ξt−1)
⊤
ût

(βi − (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

= αi − (ĝt−1,i + ξt−1)
⊤
ût + (ĝt−1,i + ξt−1)

⊤
ût
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= αi,

where Inequality (17) holds by the definition of the event and Inequality (18) holds by the definition of ût.

To conclude the proof, we underline that λt is chosen taking the maximum over the constraints, which implies that the
more conservative λt (the one which takes the combination nearer to the strictly feasible solution) is chosen. Thus, all the
constraints are satisfied.

D.2. Regret

We start by the statement of the following Lemma, which is a generalization of the results from (Jin et al., 2020). Intuitively,
the following result states that the distance between the estimated non-safe occupancy measure q̂t and the real one reduces
as the number of episodes increases, paying a 1− λt factor. This is reasonable since, from the update of the non-Markovian
policy πt (see Algorithm 3), policy π̂t ← q̂t is played with probability 1− λt−1.

Lemma D.1. Under the clean event, with probability at least 1− 2δ, for any collection of transition functions {P x
t }x∈X

such that P x
t ∈ Pt, and for any collection of {λt}T−1

t=0 used to select policy πt+1, we have, for all x,

T∑
t=1

(1− λt−1)
∑

x∈X,a∈A

∣∣∣qPx
t ,π̂t(x, a)− qP,π̂t(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.

Proof. We will refer as qxt to qP
x
t ,πt and as q̂ x

t to qP
x
t ,π̂t . Moreover, we define:

ϵ∗t (x
′|x, a) =

√√√√P (x′|x, a) ln
(

T |X||A|
δ

)
max {1, Nt(x, a)}

+
ln
(

T |X||A|
δ

)
max {1, Nt(x, a)}

.

Now following standard analysis by Lemma G.2 from (Jin et al., 2020), we have that,

T∑
t=1

(1− λt−1)
∑

x∈X,a∈A

∣∣∣qPx
t ,π̂t(x, a)− qP,π̂t(x, a)

∣∣∣ ≤
∑

0≤m<k<L

∑
t,wm

(1− λt−1)ϵ
∗
t (xm+1|xm, am)qP,π̂t(xm, am) + |X|

∑
0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)·

· ϵ∗it (xm+1 | xm, am) qP,π̂t (xm, am) ϵ∗t
(
x′
h+1 | x′

h, a
′
h

)
qP,π̂t (x′

h, a
′
h | xm+1) ,

where wm = (xm, am, xm+1).

Bound on the first term. To bound the first term we notice that, by definition of qP,π̂t it holds:∑
0≤m<k<L

∑
t,wm

(1− λt−1)ϵ
∗
t (xm+1|xm, am)qP,π̂t(xm, am)

=
∑

0≤m<k<L

∑
t,wm

ϵ∗t (xm+1|xm, am)
(
qP,πt(xm, am)− λt−1q

P,π⋄
(xm, am)

)
≤

∑
0≤m<k<L

∑
t,wm

ϵ∗t (xm+1|xm, am)qP,πt(xm, am)

≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
,

where the last step holds following Lemma G.2 from (Jin et al., 2020).
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Bound on the second term. Following Lemma G.2 from (Jin et al., 2020), the second term is bounded by (ignoring
constants),

∑
0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)

√√√√P (xm+1 | xm, am) ln
(

T |X||A|
δ

)
max {1, Nt (xm, am)}

·

· qP,π̂t (xm, am)

√√√√P
(
x′
h+1 | x′

h, a
′
h

)
ln
(

T |X||A|
δ

)
max {1, Nt (x′

h, a
′
h)}

qP,π̂t (x′
h, a

′
h | xm+1)

+
∑

0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)
qP,π̂t (xm, am) ln

(
T |X||A|

δ

)
max {1, Nt (xm, am)}

+

+
∑

0≤m<h<L

∑
t,wm,w′

h

(1− λt−1)
qP,π̂t (x′

h, a
′
h) ln

(
T |X||A|

δ

)
max {1, Nt (x′

h, a
′
h)}

.

The last two terms are bounded logarithmically in T , employing the definition of qP,π̂t and following Lemma G.2 from (Jin
et al., 2020), while, similarly, the first term is bounded by:

∑
0≤m<h<L

√√√√|Xm+1|
∑

t,xm,am

(1− λt−1)qP,π̂t (xm, am)

max {1, Nt (xm, am)}

√√√√|Xh+1|
∑

t,x′
h,a

′
h

(1− λt−1)qP,π̂t (x′
h, a

′
h)

max {1, Nt (x′
h, a

′
h)}

,

which is upper bounded by:

∑
0≤m<h<L

√√√√|Xm+1|
∑

t,xm,am

qt (xm, am)

max {1, Nt (xm, am)}

√√√√|Xh+1|
∑

t,x′
h,a

′
h

qt (x′
h, a

′
h)

max {1, Nt (x′
h, a

′
h)}

.

Employing the same argument as Lemma G.2 from (Jin et al., 2020) shows that the previous term is bounded logarithmically
in T and concludes the proof.

We are now ready to prove the regret bound attained by Algorithm 3.

Theorem 5.2. Given δ ∈ (0, 1), by setting η = γ =
√

L ln(L|X||A|/δ)/T |X||A|, Algorithm 3 attains RT ≤
O
(
ΨL3|X|

√
|A|T ln (T |X||A|m/δ)

)
with prob. at least 1− 11δ, where Ψ := maxi∈[m]{1/min{(αi−βi),(αi−βi)

2}}.

Proof. We start decomposing the RT :=
∑T

t=1 ℓ
⊤
t (qt − q∗) definition as:

T∑
t=1

ℓ⊤t
(
qt − qPt,πt

)
︸ ︷︷ ︸

1

+

T∑
t=1

ℓ̂ ⊤
t

(
qPt,π̂t − q∗

)
︸ ︷︷ ︸

2

+

T∑
t=1

ℓ⊤t

(
qPt,πt − qPt,π̂t

)
︸ ︷︷ ︸

3

+

+

T∑
t=1

(
ℓt − ℓ̂t

)⊤
qPt,π̂t

︸ ︷︷ ︸
4

+

T∑
t=1

(
ℓ̂t − ℓt

)⊤
q∗︸ ︷︷ ︸

5

,

where Pt is the transition chosen by the algorithm at episode t. Precisely, the first term encompasses the estimation of the
transition functions, the second term concerns the optimization performed by the algorithm, the third term encompasses
the regret accumulated by performing the convex combination of policies and the last two terms concern the bias of the
optimistic estimators.

We proceed bounding the five terms separately.
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Bound on 1 We bound the first term as follows:

1 =

T∑
t=1

ℓ⊤t
(
qt − qPt,πt

)
=

T∑
t=1

∑
x,a

ℓt(x, a)
(
qt(x, a)− qPt,πt(x, a)

)
≤

T∑
t=1

∑
x,a

∣∣qt(x, a)− qPt,πt(x, a)
∣∣ ,

where the last inequality holds by Hölder inequality noticing that ∥ℓt∥∞ ≤ 1 for all t ∈ [T ]. Then we can employ
Lemmas G.2, since πt is the policy that guides the exploration and Pt ∈ Pt, obtaining:

1 ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
, (19)

with probability at least 1− 2δ, under the clean event.

Bound on 2 The second term is bounded similarly to the second part of Theorem 4.3. Precisely, we notice that under the
clean event EG,∆(δ), the optimal safe solution q∗ is included in the constrained decision space for each t ∈ [T ]. Moreover
we notice that, for each t ∈ [T ], the constrained space is convex and linear, by construction of the convex program. Thus,
following the standard analysis of online mirror descent (Orabona, 2019) and from Lemma G.6, we have, under the clean
event:

2 ≤
L ln

(
|X|2|A|

)
η

+ η
∑
t,x,a

qPt,π̂t(x, a)ℓ̂t(x, a)
2.

Guaranteeing the safety property makes bounding the biased estimator more complex with respect to Theorem 4.3. Thus,
noticing that λt ≤ maxi∈[m]

{
L−αi

L−βi

}
and by definition of πt, we proceed as follows:

η
∑
t,x,a

qPt,π̂t(x, a)ℓ̂t(x, a)
2 ≤ max

i∈[m]

{
L

αi − βi

}
η
∑
t,x,a

(1− λt−1)q
Pt,π̂t(x, a)ℓ̂t(x, a)

2

≤ max
i∈[m]

{
L

αi − βi

}
η
∑
t,x,a

(
qPt,πt(x, a)− λtq

Pt,π
⋄
(x, a)

)
ℓ̂t(x, a)

2

≤ max
i∈[m]

{
L

αi − βi

}
η
∑
t,x,a

qPt,πt(x, a)ℓ̂t(x, a)
2

The previous result is intuitive. Paying an additional maxi∈[m]

{
L

αi−βi

}
factor allows to relate the loss estimator ℓ̂t with the

policy that guides the exploration, namely, πt. Thus, following the same steps as Theorem 4.3 we obtain, with probability
1− δ, under the clean event:

2 ≤
L ln

(
|X|2|A|

)
η

+ max
i∈[m]

{
L

αi − βi

}
η|X||A|T + max

i∈[m]

{
L

αi − βi

}
ηL ln(L/δ)

2γ
.

Setting η = γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain:

2 ≤ O

(
max
i∈[m]

{
1

αi − βi

}
L

√
L|X||A|T ln

(
|X|2|A|

δ

))
, (20)

with probability at least 1− δ, under the clean event.
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Bound on 3 In the following, we show how to rewrite the third term so that the dependence on the convex combination
parameter is explicit. Intuitively, the third term is the regret payed to guarantee the safety property. Thus, we rewrite the
third term as follows:

T∑
t=1

ℓ⊤t

(
qPt,πt − qPt,π̂t

)
=

T∑
t=1

ℓ⊤t

(
λt−1q

Pt,π
⋄
+ (1− λt−1)q

Pt,π̂t − qPt,π̂t

)
≤

T∑
t=1

λt−1ℓ
⊤
t q

Pt,π
⋄

≤ L

T∑
t=1

λt−1

where we used that ℓ⊤t q
Pt,π

⋄ ≤ L for any t ∈ [T ]. Thus, we proceed bounding
∑T

t=1 λt−1.

We focus on a single episode t ∈ [T ], in which we assume without loss of generality that the i-th constraint is the hardest to
satisfy.

Precisely,

λt =
min

{
(ĝt,i + ξt)

⊤ût+1, L
}
− αi

min {(ĝt,i + ξt)⊤ût+1, L} − βi

≤ (ĝt,i + ξt)
⊤ût+1 − αi

(ĝt,i + ξt)⊤ût+1 − βi

≤ (ĝt,i + ξt)
⊤ût+1 − αi

αi − βi
(21)

=
(ĝt,i − ξt)

⊤ût+1 + 2ξ⊤t ût+1 − αi

αi − βi

=
(ĝt,i − ξt)

⊤q̂t+1 + (ĝt,i − ξt)
⊤(ût+1 − q̂t+1) + 2ξ⊤t ût+1 − αi

αi − βi

≤
(ĝt,i − ξt)

⊤q̂t+1 + ĝ⊤t,i(ût+1 − q̂t+1) + 2ξ⊤t ût+1 − αi

αi − βi

≤
ĝ⊤t,i(ût+1 − q̂t+1) + 2ξ⊤t ût+1

αi − βi
(22)

=
ĝ⊤t,i(ût+1 − qP,π̂t+1) + ĝ⊤t,i(q

P,π̂t+1 − qPt+1,π̂t+1) + 2ξ⊤t ût+1

αi − βi

≤ ∥ĝt,i∥∞||ût+1 − qP,π̂t+1 ||1 + ∥ĝt,i∥∞∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2ξ⊤t ût+1

αi − βi

≤ ||ût+1 − qP,π̂t+1 ||1 + ∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2ξ⊤t ût+1

αi − βi

≤ L(1− λt)∥ût+1 − qP,π̂t+1∥1 + L(1− λt)∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2L(1− λt)ξ
⊤
t ût+1

min {(αi − βi), (αi − βi)2}
(23)

where Inequality (21) holds since, for the hardest constraint, when λt ̸= 0, (ĝt,i + ξt)
⊤ût+1 > αi, Inequality (22) holds

since, under the clean event, (ĝt,i − ξt)
⊤q̂t+1 ≤ αi and Inequality (23) holds since λt ≤ L−αi

L−βi
. Intuitively, Inequality (23)

shows that, to guarantee the safety property, Algorithm 3 has to pay a factor proportional to the pessimism introduced on
the transition and cost functions, plus the constraints satisfaction gap of the strictly feasible solution given as input to the
algorithm.

We need to generalize the result summing over t, taking into account that the hardest constraints may vary. Thus, we bound
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the summation as follows,

T∑
t=1

λt−1 ≤ max
i∈[m]

{
2L

min {(αi − βi), (αi − βi)2}

}
·

·
T∑

t=1

(
(1− λt−1)

(
∥ût − qP,π̂t∥1 + ∥qP,π̂t − qPt,π̂t∥1 + ξ⊤t−1ût

))
The first two terms of the equation are bounded applying Lemma D.1, which holds with probability at least 1− 2δ, under
the clean event, while, to bound

∑T
t=1(1− λt−1)ξ

⊤
t−1ût, we proceed as follows:

T∑
t=1

(1− λt−1)ξ
⊤
t−1ût =

T∑
t=1

(1− λt−1)ξ
⊤
t−1q

P,π̂t +

T∑
t=1

(1− λt−1)ξ
⊤
t−1(ût − qP,π̂t),

where the second term is bounded employing Hölder inequality and Lemma D.1. Next, we focus on the first term, proceeding
as follows,

T∑
t=1

(1−λt−1)ξ
⊤
t−1q

P,π̂t

≤
T∑

t=1

ξ⊤t−1qt (24)

≤
T∑

t=1

∑
x,a

ξt−1(x, a)1t(x, a) + L

√
2T ln

1

δ
(25)

=

√
4 ln

(
T |X||A|m

δ

) T∑
t=1

∑
x,a

√
1

max{1, Nt−1(x, a)}
1t(x, a) + L

√
2T ln

1

δ

≤ 6

√
ln

(
T |X||A|m

δ

)√
|X||A|

∑
x,a

NT (x, a) + L

√
2T ln

1

δ
(26)

≤ 6

√
L|X||A|T ln

(
T |X||A|m

δ

)
+ L

√
2T ln

1

δ
,

where Inequality (24) follows from the definition of πt, Inequality (25) follows from Azuma-Hoeffding inequality and
Inequality (26) holds since 1 +

∑T
t=1

1√
t
≤ 2
√
T + 1 ≤ 3

√
T and Cauchy-Schwarz inequality.

Thus, we obtain,

3 ≤ O

(
max
i∈[m]

{
1

min {(αi − βi), (αi − βi)2}

}
L3|X|

√
|A|T ln

(
T |X||A|m

δ

))
, (27)

with probability at least 1− 3δ, under the clean event.

Bound on 4 We first notice that 4 presents an additional challenge with respect to the bounded violation case. Indeed,
since π̂t is not the policy that drives the exploration, ℓ̂t cannot be directly bounded employing results from the unconstrained
adversarial MDPs literature. First, we rewrite the fourth term as follows,

T∑
t=1

(
ℓt − ℓ̂t

)⊤
qPt,π̂t ≤

T∑
t=1

(
Et[ℓ̂t]− ℓ̂t

)⊤
qPt,π̂t +

T∑
t=1

(
ℓt − Et[ℓ̂t]

)⊤
qPt,π̂t ,

where Et[·] is the expectation given the filtration up to time t. To bound the first term we employ the Azuma-Hoeffding
inequality noticing that, the martingale difference sequence is bounded by:

ℓ̂ ⊤
t qPt,π̂t ≤ max

i∈[m]

{
L

αi − βi

}
ℓ̂ ⊤
t (1− λt)q

Pt,π̂t
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= max
i∈[m]

{
L

αi − βi

}
ℓ̂ ⊤
t

(
qPt,πt − λtq

Pt,π
⋄
)

≤ max
i∈[m]

{
L

αi − βi

}
ℓ̂ ⊤
t qPt,πt

≤ max
i∈[m]

{
L

αi − βi

}
L,

where the first inequality holds since λt ≤ λ0. Thus, the first term is bounded by maxi∈[m]

{
L

αi−βi

}
L
√

2T ln 1
δ . To bound

the second term, we employ the definition of πt and the upper-bound to λt, proceeding as follows:

T∑
t=1

(
ℓt − Et[ℓ̂t]

)⊤
qPt,π̂t

=
∑
t,x,a

qPt,π̂t(x, a)ℓt(x, a)

(
1− Et [1t(x, a)]

ut(x, a) + γ

)
=
∑
t,x,a

qPt,π̂t(x, a)ℓt(x, a)

(
1− qt(x, a)

ut(x, a) + γ

)
≤ max

i∈[m]

{
L

αi − βi

}∑
t,x,a

(1− λt)q
Pt,π̂t(x, a)ℓt(x, a)

(
1− qt(x, a)

ut(x, a) + γ

)
≤ max

i∈[m]

{
L

αi − βi

}∑
t,x,a

qPt,πt(x, a)ℓt(x, a)

(
1− qt(x, a)

ut(x, a) + γ

)

= max
i∈[m]

{
L

αi − βi

}∑
t,x,a

qPt,πt(x, a)

ut(x, a) + γ
(ut(x, a)− qt(x, a) + γ)

≤ O

(
max
i∈[m]

{
L

αi − βi

}
L|X|

√
|A|T ln

(
T |X||A|

δ

))
+ max

i∈[m]

{
L

αi − βi

}
γ|X||A|T,

where the last steps holds by Lemma G.2. Thus, combining the previous equations, we have, with probability at least 1− 3δ,
under the clean event:

4 ≤ O

(
max
i∈[m]

{
1

αi − βi

}
L2|X|

√
|A|T ln

(
T |X||A|

δ

))
(28)

Bound on 5 The last term is bounded as in Theorem 4.3. Thus, setting γ =
√

L ln(L|X||A|/δ)
T |X||A| , we obtain, with probability

at least 1− δ, under the clean event:

5 ≤ O

(
L

√
|X||A|T ln

(
T |X||A|

δ

))
. (29)

Final result Finally, we combine the bounds on 1 , 2 , 3 , 4 and 5 . Applying a union bound, we obtain, with probability
at least 1− 11δ,

RT ≤ O

(
max
i∈[m]

{
1

min {(αi − βi), (αi − βi)2}

}
L3|X|

√
|A|T ln

(
T |X||A|m

δ

))
,

which concludes the proof.

E. Omitted proofs for constant violation
In this section, we show how it is possible to relax Condition 2.5 and still achieving constant cumulative positive violation.
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E.1. Slater’s parameter estimation

We start by showing that the number of episodes necessary to Algorithm 4 to estimate the Slater’s parameter are upper
bounded by a constant term. This is done by means of the following lemma.

Lemma 6.1. Given any δ ∈ (0, 1), the episodes that Algorithm 4 uses to compute ρ̂ and π̂⋄ are t̄ ≤ 1/ρ4(3CP
A + 10L ln 1

δ +
3CD

A + L)4, with prob. at least 1− (Cδ
P + 2)δ.

Proof. By the no-regret property of Algorithm AP , it holds:

t̄∑
t=1

∑
i∈[m]

ϕt,i

(
g⊤t,i(qt − q⋄)− αi

)
≤ CP

A
√
t̄ ln(t̄),

with probability at least 1− Cδ
P δ.

Thus, applying the Azuma inequality, we get:

t̄∑
t=1

∑
i∈[m]

ϕt,i(gt,i − αi/L)⊤qt ≤ CP
A
√

t̄ ln(t̄) + L

√
2t̄ ln

1

δ
+

t̄∑
t=1

∑
i∈[m]

ϕt,i(gi − αi/L)⊤q⋄

= CP
A
√
t̄ ln(t̄) + L

√
2t̄ ln

1

δ
−

t̄∑
t=1

∑
i∈[m]

ϕt,i(αi − βi)

≤ CP
A
√
t̄ ln(t̄) + L

√
2t̄ ln

1

δ
− t̄ min

i∈[m]
(αi − βi)

= CP
A
√
t̄ ln(t̄) + L

√
2t̄ ln

1

δ
− t̄ρ,

with probability 1− (Cδ
P + 1)δ, by Union Bound. Similarly, applying the Azuma inequality, it holds:

t̄i∑
t=1

∑
i∈[m]

ϕt,i

L−1∑
k=1

(gt,i(xk, ak)− αi/L) ≤ CP
A
√
t̄ ln(t̄) + 2L

√
2t̄ ln

1

δ
− t̄ρ,

with probability at least 1− (Cδ
P + 2)δ.

By the no-regret property of Algorithm AD, it holds:

−
t̄∑

t=1

∑
i∈[m]

ϕt,i

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
−

t̄∑
t=1

−

(
L−1∑
k=1

gt,i∗(xk, ak)− αi∗

)
≤ CD

A
√
t̄,

where i∗ = argmaxi∈[m]

∑t̄
t=1

∑L−1
k=1 (gt,i(xk, ak)−αi/L), from which we obtain, with probability at least 1− (Cδ

P +2)δ:

max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
≤ CP

A
√

t̄ ln(t̄) + 2L

√
2t̄ ln

1

δ
+ CD

A
√
t̄− t̄ρ.

By the stopping condition of Algorithm 4, it holds −maxi∈[m]

∑t̄
t=1

∑L−1
k=1 (gt,i(xk, ak) − αi/L) ≥ 2CP

A
√
t̄ ln(t̄) +

8L
√
2t̄ ln 1

δ + 2CD
A
√
t̄, which implies:

−max
i∈[m]

t̄−1∑
t=1

L−1∑
k=1

(gt,i(xk, ak)− αi/L) ≤ 2CP
A
√
t̄− 1 ln(t̄− 1) + 8L

√
2t̄− 1 ln

1

δ
+ 2CD

A

√
t̄− 1

≤ 2CP
A
√
t̄ ln(t̄) + 8L

√
2t̄ ln

1

δ
+ 2CD

A
√
t̄,
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and

max
i∈[m]

t̄−1∑
t=1

L−1∑
k=1

(gt,i(xk, ak)− αi/L) ≥ −2CP
A
√
t̄ ln(t̄)− 8L

√
2t̄ ln

1

δ
− 2CD

A
√
t̄.

Thus, we get the following inequality:

−2CP
A
√

t̄ ln(t̄)− 8L

√
2t̄ ln

1

δ
− 2CD

A
√
t̄− L ≤ CP

A
√
t̄ ln(t̄) + 2L

√
2t̄ ln

1

δ
+ CD

A
√
t̄− t̄ρ.

Hence,

t̄ρ ≤ 3CP
A
√
t̄ ln(t̄) + 10L

√
2t̄ ln

1

δ
+ 3CD

A
√
t̄+ L

≤ 3CP
A t̄3/4 + 10L

√
2 ln

1

δ
t̄3/4 + 3CD

A t̄3/4 + Lt̄3/4,

which implies:

t̄ ≤

(
3CP

A + 10L
√

2 ln 1
δ + 3CD

A + L
)4

ρ4
.

This concludes the proof.

Thus, we show that the estimation of the Slater’s parameter ρ̂ is upper bounded by the true one. A similar reasoning holds
for the estimated strictly feasible solution. The result is provided in the following lemma.

Lemma 6.2. Given any δ ∈ (0, 1), Algorithm 4 guarantees ρ̂ ≤ mini∈[m](αi − g⊤i q
P,π̂⋄

) ≤ ρ with prob. at least 1− 2δ.

Proof. It holds:

ρ̂ = −1

t̄

(
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi/L

)
+ 2L

√
2t̄ ln

1

δ

)

= min
i∈[m]

(
αi −

1

t̄

(
t̄∑

t=1

L−1∑
k=1

gt,i(xk, ak) + 2L

√
2t̄ ln

1

δ

))

≤ min
i∈[m]

(
αi −

1

t̄

(
t̄∑

t=1

L−1∑
k=1

gi(xk, ak)− L

√
2t̄ ln

1

δ
+ 2L

√
2t̄ ln

1

δ

))

≤ min
i∈[m]

(
αi −

1

t̄

(
t̄∑

t=1

g⊤i qt − 2L

√
2t̄ ln

1

δ
+ 2L

√
2t̄ ln

1

δ

))

= min
i∈[m]

(
αi +

1

t̄

(
t̄∑

t=1

−g⊤i qt + 2L

√
2t̄ ln

1

δ
− 2L

√
2t̄ ln

1

δ

))
≤ min

i∈[m]
(αi − βi)

= ρ,

where the first steps hold with probability at least 1− 2δ by Azuma inequality and a Union Bound and the last inequality
holds by definition of q⋄.

To prove the second result we first notice that, by definition of q⋄:

min
i∈[m]

(αi − g⊤i q
P,π̂⋄

) ≤ min
i∈[m]

(αi − g⊤i q
⋄) = min

i∈[m]
(αi − βi) = ρ.
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Furthermore, by definition of π̂⋄, it holds:

qP,π̂⋄
=

1

t̄

t̄∑
t=1

qP,πt .

Hence,

min
i∈[m]

(αi − g⊤i q
P,π̂⋄

) = min
i∈[m]

(
αi −

1

t̄

(
t̄∑

t=1

g⊤i q
P,πt

))

≥ min
i∈[m]

(
αi −

1

t̄

(
t̄∑

t=1

L−1∑
k=1

gt,i(xk, ak) + 2L

√
2t̄ ln

1

δ

))
= ρ̂,

where the first inequality holds with probability at least 1− 2δ employing the Azuma inequality and a union bound. This
concludes the proof.

Finally, we show that ρ̂ is not to small, namely, it is lower bounded by ρ/2. The result is provided in the following lemma.

Lemma 6.4. Given any δ ∈ (0, 1), Algorithm 4 guarantees ρ̂ ≥ ρ/2 with probability at least 1− (Cδ
P + 2)δ.

Proof. Similarly to Lemma 6.1, we get, with probability at least 1− (Cδ
P + 2)δ

−max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
≥ −CP

A
√
t̄ ln(t̄)− 2L

√
2t̄ ln

1

δ
− CD

A
√
t̄+ t̄ρ.

Thus, notice that, by the stopping condition of Algorithm 4, it holds:

−max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
− CP

A
√
t̄ ln(t̄)− 4L

√
2t̄ ln

1

δ
− CD

A
√
t̄

= −1

2
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
− 1

2
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
− CP

A
√
t̄ ln(t̄)− 4L

√
2t̄ ln

1

δ
− CD

A
√
t̄

≥ −1

2
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
+ CP

A
√
t̄ ln(t̄)− CP

A
√
t̄ ln(t̄) + 4L

√
2t̄ ln

1

δ
− 4L

√
2t̄ ln

1

δ
+ CD

A
√
t̄− CD

A
√
t̄

≥ −1

2
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
.

Hence,

ρ̂ = −1

t̄

(
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi/L

)
+ 2L

√
2t̄ ln

1

δ

)

= −1

t̄

(
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi/L

)
± CP

A
√
t̄ ln(t̄)± 4L

√
2t̄ ln

1

δ
± CD

A
√
t̄+ 2L

√
2t̄ ln

1

δ

)

≥ 1

t̄

(
−1

2
max
i∈[m]

t̄∑
t=1

(
L−1∑
k=1

gt,i(xk, ak)− αi

)
+ CP

A
√
t̄ ln(t̄) + 4L

√
2t̄ ln

1

δ
+ CD

A
√
t̄− 2L

√
2t̄ ln

1

δ

)
≥ ρ

2
.

This concludes the proof.
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E.2. Violations

In this section, we provide the theoretical guarantees attained by Algorithm 4 in terms of cumulative positive violation. This
is done by means of the following theorem.

Theorem 6.3. Given δ ∈ (0, 1), Algorithm 4 attains VT ≤ O(L/ρ4(CP
A + L

√
ln 1

δ + CD
A + L)4) with probability at least

1− (Cδ
P + 7)δ.

Proof. We split the violations between the two phases of Algorithm 4 as:

VT ≤ max
i∈[m]

t̄∑
t=1

[
g⊤i qt − αi

]+
+ max

i∈[m]

T∑
t=t̄+1

[
g⊤i qt − αi

]+
≤ Lt̄+ max

i∈[m]

T∑
t=t̄

[
g⊤i qt − αi

]+

≤ O

L
(
CP

A + L
√

ln 1
δ + CD

A + L
)4

ρ4

+ max
i∈[m]

T∑
t=t̄+1

[
g⊤i qt − αi

]+
,

where the last step holds with probability at least 1− (Cδ
P + 2)δ by Lemma 6.1.

In the following we show that, after t̄ episodes, Algorithm 4 is safe with high probability. Similarly to Theorem 5.1 there
are two possible scenarios defined by λt, namely, λt = 0 and λt ∈ (0, 1). When λt = 0, applying the same reasoning of
Theorem 5.1 gives the result.

In the following analysis we consider a generic constraints i ∈ [m]. Thus, we notice that the constraints cost attained by the
non-Markovian policy πt, is equal to λt−1g

⊤
i q

P,π̂⋄
+ (1− λt−1)g

⊤
i q

P,π̂t .

Then, we consider both the cases when L < (ĝt−1,i + ξt−1)
⊤
ût (first case) and L > (ĝt−1,i + ξt−1)

⊤
ût (second case). If

the two quantities are equivalent, the proof still holds breaking the ties arbitrarily.

First case. It holds that:

λt−1g
⊤
i q

P,π̂⋄
+ (1− λt−1)g

⊤
i q

π̂t,P =
L− αi

L− αi + ρ̂
(g⊤i q

P,π̂⋄
− L) + L

≤ αi − L

αi − ρ̂− L
(αi − ρ̂− L) + L (30)

= αi,

where Inequality (30) holds with probability at least 1− 2δ thanks to Lemma 6.2.

Second case. Similarly to the first case, it holds that, under the clean event:

λt−1g
⊤
i q

P,π̂⋄
+(1− λt−1)g

⊤
i q

P,π̂t

≤ λt−1g
⊤
i q

P,π̂⋄
+ (1− λt−1) (ĝt−1,i + ξt−1)

⊤
qP,π̂t (31)

≤ λt−1g
⊤
i q

P,π̂⋄
+ (1− λt−1) (ĝt−1,i + ξt−1)

⊤
ût (32)

= λt−1g
⊤
i q

P,π̂⋄
− λt−1 (ĝt−1,i + ξt−1)

⊤
ût + (ĝt−1,i + ξt−1)

⊤
ût

= λt−1(g
⊤
i q

P,π̂⋄
− (ĝt−1,i + ξt−1)

⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

≤ (ĝt−1,i + ξt−1)
⊤
ût − αi

(ĝt−1,i + ξt−1)
⊤
ût − αi + ρ̂

(αi − ρ̂− (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

=
αi − (ĝt−1,i + ξt−1)

⊤
ût

αi − ρ̂− (ĝt−1,i + ξt−1)
⊤
ût

(αi − ρ̂− (ĝt−1,i + ξt−1)
⊤
ût) + (ĝt−1,i + ξt−1)

⊤
ût

= αi − (ĝt−1,i + ξt−1)
⊤
ût + (ĝt−1,i + ξt−1)

⊤
ût
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= αi,

where Inequality (31) holds by the definition of the event and Inequality (32) holds by the definition of ût.

To conclude the proof, we underline that λt is chosen taking the maximum over the constraints, which implies that the
more conservative λt (the one which takes the combination nearer to the strictly feasible solution) is chosen. Thus, all the
constraints are satisfied and a final union bound concludes the proof.

E.3. Regret

In this section, we provide the theoretical guarantees attained by Algorithm 4 in terms of cumulative regret. This is done by
means of the following theorem.

Theorem 6.5. Given any δ ∈ (0, 1), with η = γ =
√

L ln(L|X||A|/δ)/T |X||A|, Algorithm 4 attains regret RT ≤
O(ΘL3|X|

√
|A|T ln (T |X||A|m/δ) + L/ρ4(CP

A +L ln 1/δ+CD
A +L)4) with probability at least 1− (Cδ

P +13)δ, where we
let Θ := 1/min{ρ,ρ2}.

Proof. We split the regret between the two phases of Algorithm 4 as:

RT ≤
t̄∑

t=1

ℓ⊤t (q
P,πt − q∗) +

T∑
t=t̄+1

ℓ⊤t (q
P,πt − q∗)

≤ Lt̄+

T∑
t=t̄+1

ℓ⊤t (q
P,πt − q∗)

≤ O

L
(
CP

A + L
√
ln 1

δ + CD
A + L

)4
ρ4

+

T∑
t=t̄+1

ℓ⊤t (q
P,πt − q∗),

where the last step holds with probability at least 1− (Cδ
P + 2)δ by Lemma 6.1.

To bound the second terms we follow the steps of Theorem 5.2 after noticing that, for all t ∈ [T ]:

λt ≤ max
i∈[m]

{
L− αi

L− αi + ρ̂

}
< 1,

and that:

λt =
min

{
(ĝt,i + ξt)

⊤ût+1, L
}
− αi

min {(ĝt,i + ξt)⊤ût+1, L} − αi + ρ̂

≤ (ĝt,i + ξt)
⊤ût+1 − αi

(ĝt,i + ξt)⊤ût+1 − αi + ρ̂

≤ (ĝt,i + ξt)
⊤ût+1 − αi

ρ̂
(33)

=
(ĝt,i − ξt)

⊤ût+1 + 2ξ⊤t ût+1 − αi

ρ̂

=
(ĝt,i − ξt)

⊤q̂t+1 + (ĝt,i − ξt)
⊤(ût+1 − q̂t+1) + 2ξ⊤t ût+1 − αi

ρ̂

≤
(ĝt,i − ξt)

⊤q̂t+1 + ĝ⊤t,i(ût+1 − q̂t+1) + 2ξ⊤t ût+1 − αi

ρ̂

≤
ĝ⊤t,i(ût+1 − q̂t+1) + 2ξ⊤t ût+1

ρ̂
(34)

=
ĝ⊤t,i(ût+1 − qP,π̂t+1) + ĝ⊤t,i(q

P,π̂t+1 − qPt+1,π̂t+1) + 2ξ⊤t ût+1

ρ̂
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≤ ∥ĝt,i∥∞||ût+1 − qP,π̂t+1 ||1 + ∥ĝt,i∥∞∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2ξ⊤t ût+1

ρ̂

≤ ||ût+1 − qP,π̂t+1 ||1 + ∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2ξ⊤t ût+1

ρ̂

≤ L(1− λt)∥ût+1 − qP,π̂t+1∥1 + L(1− λt)∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 2L(1− λt)ξ
⊤
t ût+1

min {ρ̂, ρ̂ 2}
(35)

≤ 4L(1− λt)∥ût+1 − qP,π̂t+1∥1 + 4L(1− λt)∥qP,π̂t+1 − qPt+1,π̂t+1∥1 + 8L(1− λt)ξ
⊤
t ût+1

min {ρ, ρ2}
(36)

where Inequality (33) holds since, for the hardest constraint, when λt ̸= 0, (ĝt,i + ξt)
⊤ût+1 > αi, Inequality (34) holds

since, under the clean event, (ĝt,i − ξt)
⊤q̂t+1 ≤ αi, Inequality (35) holds since λt ≤ L−αi

L−αi+ρ̂ and Inequality (36) holds
with probability at least 1− (Cδ

P + 2)δ by Lemma 6.4. A final union bound concludes the proof.

F. Omitted proof of the lower bound
In this section, we provide the lower bound which holds both in the second setting, that is, when the objective is to guarantee
the safety property for each episode and when the objective is to attain constant violation.
Theorem 6.6. There exist two instances of CMDPs (with a single state and one constraint) such that, if in the first instance
an algorithm suffers from a violation VT = o(

√
T ) probability at least 1− nδ for any δ ∈ (0, 1) and n > 0, then, in the

second instance, it must suffer from a regret RT = Ω( 1ρ
√
T ) with probability 3/4− nδ.

Proof. We consider two instances defined as follows. Both of them are characterized by a CMDP with one state (which is
omitted for simplicity), two actions a1, a2, one constraint and α = 1/2. For the sake of simplicity we consider CMDP with
rewards in place of losses. Notice that this is without loss of generality since any losses can be converted to an associated
reward. We assume that the rewards are deterministic while the constraints are Bernoulli distributions with means defined in
the following. Specifically, instance i1 and instance i2 are defined as:

i1 :=

{
r(a1) =

1
2 , g(a1) =

1
2 + ϵ

r(a2) = 0, g(a2) =
1
2 − ρ

,

i2 :=

{
r(a1) =

1
2 , g(a1) =

1
2

r(a2) = 0, g(a2) =
1
2 − ρ

,

where ϵ is a parameter to be defined later. Thus, since the algorithm must suffer o(
√
T ) violation, for any constant c > 0, it

holds:

P1

{
qt(a2) ≥

ϵ

ϵ+ ρ
− c

1√
T
, ∀t ∈ [T ]

}
≥ 1− n · δ,

where q(a2) is the occupancy measure associated to action a2 and P1 is the probability measure of instance i1 which
encompasses the randomness of both environment and algorithm. Thus we can rewrite the inequality above as:

P1

{
T∑

t=1

qt(a2) ≥ T
ϵ

ϵ+ ρ
− c
√
T

}
≥ 1− n · δ.

By means of the Pinsker’s inequality we can relate the probability measures P1 and P2 as follows:

P2

{
T∑

t=1

qt(a2) ≥ T
ϵ

ϵ+ ρ
− c
√
T

}
≥ P1

{
T∑

t=1

qt(a2) ≥ T
ϵ

ϵ+ ρ
− c
√
T

}
−
√

1

2
KL(i1, i2),

where KL(i1, i2) is the the KL-divergence between the probability measures of instance i1 and i2.

Noticing that by standard KL-decomposition argument, KL(i1, i2) ≤ ϵ2T , we have:

P2

{
T∑

t=1

qt(a2) ≥ T
ϵ

ϵ+ ρ
− c
√
T

}
≥ 1− n · δ − ϵ

√
T

2
.
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We then notice that, since the rewards are deterministic, the regret of the second instance R2
T is bounded as:

R2
T =

1

2

T∑
t=1

qt(a2)

≥ 1

2
T

ϵ

ϵ+ ρ
− c

2

√
T

≥ 1

4ρ
Tϵ− c

√
T

=
1

16ρ

√
2T − c

√
T

≥ 1

32ρ

√
2T ,

with probability 3
4 − n · δ, taking ϵ = 1

4

√
2
T , ρ ≥ ϵ and c ≤

√
2

32 . This concludes the proof.

G. Auxiliary lemmas from existing works
G.1. Auxiliary lemmas for the transitions estimation

First, we provide the formal result on the transitions confidence set.
Lemma G.1 (Jin et al. (2020)). Given a confidence δ ∈ (0, 1), with probability at least 1− 4δ, it holds that the transition
function P belongs to Pt for all t ∈ [T ].

Similarly to (Jin et al., 2020), the estimated occupancy measure space ∆(Pt) is characterized as follows:

∆(Pt) :=



∀k,
∑

x∈Xk,a∈A,x′∈Xk+1

q (x, a, x′) = 1

∀k,∀x,
∑

a∈A,x′∈Xk+1

q (x, a, x′) =
∑

x′∈Xk−1,a∈A

q (x′, a, x)

∀k,∀ (x, a, x′) , q (x, a, x′) ≤
[
P̂t (x

′ | x, a) + ϵt (x
′ | x, a)

] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥
[
P̂t (x

′ | x, a)− ϵt (x
′ | x, a)

] ∑
y∈Xk+1

q(x, a, y)

q (x, a, x′) ≥ 0

.

Given the estimation of the occupancy measure space, it is possible to derive the following lemma.
Lemma G.2. (Jin et al., 2020) With probability at least 1− 6δ, for any collection of transition functions {P x

t }x∈X such
that P x

t ∈ Pt, we have, for all x,

T∑
t=1

∑
x∈X,a∈A

∣∣∣qPx
t ,πt(x, a)− qt(x, a)

∣∣∣ ≤ O(L|X|√|A|T ln

(
T |X||A|

δ

))
.

We underline that the constrained space defined by Program (2) is a subset of ∆(Pt). This implies that, in Algorithm 2, it
holds q̂t ∈ ∆(Pt) and Lemma G.2 is valid.

G.2. Auxiliary lemmas for the optimistic loss estimator

We will make use of the optimistic biased estimator with implicit exploration factor (see, (Neu, 2015)). Precisely, we define
the loss estimator as follows, for all t ∈ [T ]:

ℓ̂t(x, a) :=
ℓt(x, a)

ut(x, a) + γ
1t{x, a}, ∀(x, a) ∈ X ×A,

where ut(x, a) := maxP∈Pt
qP,πt(x, a). Thus, the following lemmas hold.

31



Learning Adversarial MDPs with Stochastic Hard Constraints

Lemma G.3. (Jin et al., 2020) For any sequence of functions α1, . . . , αT such that αt ∈ [0, 2γ]X×A is Ft-measurable for
all t, we have with probability at least 1− δ,

T∑
t=1

∑
x,a

αt(x, a)

(
ℓ̂t(x, a)−

qt(x, a)

ut(x, a)
ℓt(x, a)

)
≤ L ln

L

δ
.

Following the analysis of Lemma G.3, with αt(x, a) = 2γ1t(x, a) and union bound, the following corollary holds.

Corollary G.4. (Jin et al., 2020) With probability at least 1− δ:

T∑
t=1

(
ℓ̂t(x, a)−

qt(x, a)

ut(x, a)
ℓt(x, a)

)
≤ 1

2γ
ln

(
|X||A|

δ

)
.

Furthermore, when πt ← q̂t, the following lemma holds.

Lemma G.5. (Jin et al., 2020) With probability at least 1− 7δ,

T∑
t=1

(
ℓt − ℓ̂t

)⊤
q̂t ≤ O

(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ γ|X||A|T

)
.

We notice that πt ← q̂t holds only for Algorithm 2, since in Algorithm 3, πt ← q̂t with probability 1− λt−1.

G.3. Auxiliary lemmas for online mirror descent

We will employ the following results for OMD (see, Orabona (2019)) with uniform initialization over the estimated
occupancy measure space.

Lemma G.6. (Jin et al., 2020) The OMD update with q̂1 (x, a, x
′) = 1

|Xk||A||Xk+1| for all k < L and (x, a, x′) ∈
Xk ×A×Xk+1, and

q̂t+1 = arg min
q∈∆(Pt)

ℓ̂ ⊤
t q +

1

η
D (q∥q̂t) ,

where D (q∥q′) =
∑

x,a,x′ q (x, a, x′) ln
q(x,a,x′)
q′(x,a,x′) −

∑
x,a,x′ (q (x, a, x′)− q′ (x, a, x′)) ensures

T∑
t=1

ℓ̂ ⊤
t (q̂t − q) ≤

L ln
(
|X|2|A|

)
η

+ η
∑
t,x,a

q̂t(x, a)ℓ̂t(x, a)
2,

for any q ∈ ∩t∆(Pt), as long as ℓ̂t(x, a) ≥ 0 for all t, x, a.
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