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ABSTRACT

The goal of this paper is to localize action instances in a long untrimmed query
video using just meager trimmed support videos representing a common action
whose class information is not given. In this task, it is crucial not only to cor-
rectly align a temporal segment (proposal) of the query video and the support
videos, but also to increase the compatibility among the support videos. The latter
has been understudied, even though the context (e.g., background, camera angle)
varies across the support videos. To address both points, we design a dual cross-
attention coupled with a stabilizer (DCAPS). First, we develop an attention mech-
anism by cross-correlation, and apply it independently to each support video (with
the query videos) in order to manage the heterogeneity among the support videos.
Next, we devise an embedding stabilizer to increase the compatibility among the
support videos. Then, the cross-attention is used again here to make the stabilized
support videos attend and enhance the query proposals. Finally, we also develop
a relational classifier head based on the query and support video representations.
Hence, our contributions better utilize a few support videos for representing query
proposals and thus attain precise common action localization. We show the effec-
tiveness of our work with the state-of-the-art performance in benchmark datasets
(ActivityNet1.3 and THUMOS14), and analyze each component extensively.

1 INTRODUCTION
Temporal action localization Escorcia et al. (2016); Gao et al. (2017); Wang et al. (2017); Nguyen
et al. (2018); Singh & Lee (2017); Lee et al. (2021b); Luo et al. (2020) have been widely studied
in fully or weakly-supervised manner. However, they require collecting massive videos labeled by
action classes, and also only detect the action classes observed in training. Whereas, we aims to
temporally localize action instances in a long untrimmed query video based on the a few trimmed
support videos describing a common action class. As the testing action class is unseen in training
and no ground-truth class cue is given, the only cue is the commonality of the few support videos.

In the few-shot perspective, due to the scarcity of support videos, aligning the support videos to the
context of the query video is greatly crucial to truly exploit the action cues described in the support
videos. Feng et al. (2018) re-weighted the query and support features and summed them up. Then,
sequential representation is obtained by gating out time-steps where the query and support videos
are unrelated. Under a more practical setting for the query videos with multiple action instances and
more than one support video, Yang et al. (2020); Nag et al. (2021) manipulated the self-attention
mechanism (Vaswani et al., 2017). Yang et al. (2020) exploited a series of the attention modules for
iterative alignment of query and support features. Using a linear classifier fine-tuned for the given
support features as a prototype, Nag et al. (2021) transformed the prototype to the query’s context.

The iterative attention or fine-tuning the classifier for every set of supports is promising, but can
increase the computational cost. Also, as exemplified in Fig. 1, though the support videos represent a
common action class, their context (e.g background, camera angle) can be different. Hence, when all
the support videos are transformed to query context simultaneously, the support videos cluttered by
background are overly suppressed although they include useful information (Fig. 1(a)). In contrast,
as in Fig. 1(b), we can leverage the support videos through attending each support video individually.
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Figure 1: Attention represents the relationship between a moment of query and support videos. (a)
Vanilla: attention of a query proposal is obtained simultaneously for the segments of all the support
videos. (b) DCAPS (ours): the attention is computed for the segments of one support video, at
a time. While important segments of support video #2 cannot be attended by the related query
proposal in (a), they are appropriately transformed to the context of the query in (b).

Figure 2: Overall process of few-shot common action localization in our work.

Motivated by this, we propose a novel few-shot common action localization method. Overall process
is outlined in Fig. 2. First, the long untrimmed query video is split to query proposals, and they are
aligned with the support videos. Then, the proposals representing the common action class are
detected with temporal location refinement.

For the query-support alignment, we develop Dual Cross-Attention coupled with embedding Sta-
bilizer (DCAPS). In DCAPS, the cross-correlation with a learnable weight matrix is exploited for
an attentional transform of the support and query features. Instead of attending heterogeneous fea-
tures reciprocally with a single cross-attention weight matrix (Lee et al., 2021a; Lu et al., 2016),
two weight matrices are used for query-to-support and support-to-query attention, respectively. We
first transform support videos to query context by its cross-correlation with the query features. As
aforementioned, the support videos are individually attended to effectively emphasize the most in-
formative features in each support video. Then, for stable complementary use of all the individually
attended support video features in the following query attention, we design an embedding stabilizer
that makes the attended support video features aligned with each other in the latent space. With the
stabilized support video features, we attend the query video features by cross-correlation. Detailed
description is in Sec. 3.2.

For the commonality prediction and refinement, we design a relational classifier which consists of
an action classifier and an auxiliary relational module. (Sec. 3.3). To prevent overfitting and boost
performance, the latter matches the support and query video features using pseudo-label cues as we
avoid the use of class labels here. In testing, this module is not used.

Our major contributions: (i) We develop a cross-attention mechanism to enhance the representation
of queries by support videos and vice versa. (ii) We attend each support video via query video in-
dividually and design a stabilizer to make the attended support features more compatible. (iii) We
develop a relational classifier consisting of an action classifier and an auxiliary relational module.
The latter is only needed during training. (iv) Extensive experimental analysis is done for the com-
ponents of our method on two benchmark datasets, where we achieve state-of-the-art performance.

2 RELATED WORK

Temporal action localization The goal is to predict the temporal boundary and the label of action
instances in untrimmed videos. In the fully-supervised case where temporal annotations are given
during training, several works tried to obtain better temporal proposals (Heilbron et al., 2016; Gao
et al., 2017; Lin et al., 2018), while others improved temporal searching Yeung et al. (2016); Yu
& Yuan (2015) or classifiers (Shou et al., 2017). R-C3D (Xu et al., 2017) proposed an end-to-end
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trainable activity detector based on Faster-RCNN (Ren et al., 2015). GNNs (Zhao et al., 2021; Xu
et al., 2020b) are recently used to capture the temporal relationship among proposals/snippets. In
the weakly-supervised setting, as only video-level annotations are given, most methods have aimed
to obtain discriminative snippet-level activations and conduct post-processing to localize action in-
stances. A co-activity similarity loss to enforce the feature similarity for video pairs with a common
class was introduced in (Paul et al., 2018), and videos are segmented into interpretable fragments
in (Jain et al., 2020). Some works focused on distinguishing action and near-action/background
snippets exploiting variational auto-encoder (Shi et al., 2020), entropy maximization (Luo et al.,
2020), and an additional class-agnostic model (Ma et al., 2021). Also, to better localize difficult
snippets, multi-modal (audio-visual) fusion (Lee et al., 2021a) or a contrastive loss with easy fore-
ground/background snippets (Zhang et al., 2021) are devised. Although those fully- and weakly-
supervised methods attained large progress in this field, the learned models can only localize activity
categories observed in the training dataset.

Few-shot temporal action localization Yang et al. (2018) pioneered few-shot action localization,
where a few (or only one) positive and several negative labeled videos steer the localization via an
end-to-end meta-learning strategy. Xu et al. (2020a) also temporally localized an action from a few
positive labeled and several negative labeled videos. They adopted a region proposal network Ren
et al. (2015) to produce proposals with flexible boundaries. Zhang et al. (2020) performed few-shot
action localization where video-level annotations are needed. They constructed a multi-scale feature
pyramid to directly produce temporal features at variable scales. Unlike those works, few-shot
common action localization is less tied up with the need for labels. It localizes the action instances
in a long untrimmed query video according to the commonality between the query and support
inputs. Assuming a query with only one common action instance, Feng et al. (2018) computed
the probabilities for starting, ending, inside, or outside of action instances at every time-step, and
decided the window with the highest joint probability as the action instance. Extending to the query
videos with multiple action instances of the same action class, Yang et al. (2020) generated action
proposals, and then classified the proposals and regressed their temporal locations. Nag et al. (2021)
set a linear classifier itself as a prototype, which needs fine-tuning by support videos for every target
action, then the prototype is cross-attended by query proposals using multiple self-attentions.

Cross-attention To leverage the relationship between two heterogeneous representations, diverse
cross-attention schemes have been devised. Inspired by self-attention (scaled dot-product of key,
query, and value), (Wei et al., 2020) applied the scaled dot-product operation for the concatenation
of image and text features for VQA. Also, Kim et al. (2021) attended student using key and value
of teacher for knowledge propagation. Several works exploited the cross-correlation between the
heterogeneous representation as the attention weights for image and sentence matching in visual
question answering (VQA) (Lee et al., 2018; Kim et al., 2017), query and prototype matching in
prototypical few-shot learning (Hou et al., 2019), and audio-visual fusion (Praveen et al., 2022).
Here, we exploit the cross-attention to improve the matching between query and support video clips
as well as to better utilize multiple support videos in the context of few-shot action localization.

3 METHOD

In this section, we describe the proposed method including DCAPS (Dual Cross-Attention couPled
with Stabilizer) and relational classifier for few-shot common action localization.

Problem statement Given an untrimmed query video VQ and L trimmed support videos
{V 1

S , V
2
S , . . . , V

L
S }, the goal is to train a network (which consists of backbone g, proposal-net h,

DCAPS and relational classifier f ) to temporally localize action instances in the testing query videos
based on the commonality of the testing support videos whose action classes are same and unseen
during training. Note that any ground-truth class cues are not given even during training.

In training, we resort to a meta-learning strategy. Here, the action classes in the training set (Ctrain)
and those of the testing set (Ctest) have no overlapping. Also, to simulate the few-shot configuration
of support and query videos that will be encountered at the testing phase, we exploit episode-based
training. Specifically, in a training iteration, we compose an episode as a tuple of a query and L
support videos {(VQ, V 1

S , V
2
S , . . . , V

L
S )} from a randomly selected class of Ctrain. In our work, we

set L to 1 or 5. Formally, the objective function is represented by

arg min
g,h,f

E(VQ,{V l
S}Ll=1)∼Ctrain

[L(Y, f(h(g(VQ)), g({V l
S}Ll=1)) ], (1)
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Figure 3: An overview of the proposed method. The segments of lth support video, X(l)
S , are

attended by query proposalsXQ, individually. Next, all the attended support segments are stabilized
and give attention to the query proposals. X̃Q is the resulting attended query proposals. Then, the
relational classifier predicts commonality scores of the proposals for the action of support videos,
and the localization head finalizes action localization removing redundant proposals.

Figure 4: Cross-attention. Left: attention of lth support segments by the query proposals. Right:
attention of the query proposals by all the attended support segments.

where Y denotes the set of temporal positions for the ground-truth action segments of the interest in
VQ. L is the loss function.

3.1 OVERALL FRAMEWORK

Fig. 3 depicts the overall framework of our method. To obtain the initial representations of the input
query and support videos, we follow the preprocessing of (Yang et al., 2020). The backbone network
g (Tran et al., 2015) generates video representations for each input. Then, for the query video, the
proposal subnet h (Xu et al., 2017) yields potential temporal action instances Q = {qi}

NQ

i=1, called
action proposals, with diverse temporal lengths (details are in Appendix D). NQ is the number of
the proposals, and qi denotes ith action proposal representation. For every lth support video, we
uniformly split each support video into NS temporal segments by S(l) = {s(l)i }

NS
i=1. Then, DCAPS

alignsQ and S(l)’s. Next, in the relational classifier, the action classifier detects the action proposals
with the target common action, and yields their temporal offsets to refine the start and end time
of the proposals. In training, learning an auxiliary relational module in parallel with the action
classifier is beneficial. In testing, the auxiliary relational module is discarded, and the localization
head suppresses redundant proposals which is explained in Sec. 4.1.

3.2 DCAPS

The blue box of Fig. 3 illustrates three stages of DCAPS (More details are in Appendix E): attending
support videos with the query video, stabilizing representation of support videos, and attending
the query video with the stabilized support videos. Here, as the query proposal q and the support
segment s have different temporal granularity, we use different cross-attention weights for query
to support and support to query, respectively. We first introduce the cross-attention mechanism to
individually attend support features. Next, we explain the (embedding) stabilizer devised to increase
the compatibility between the individually attended support features. Then, we present the way to
attend the features of query proposals via the cross-attention with all the stabilized support features.
These enhanced features serve as crucial inputs to the following relational classifier (Sec. 3.3).

Cross-attention for support videos: We first enhance the support features in consideration of the
context of the query video. To this end, we develop a cross-attention mechanism. When we suppose
a vanilla approach such as Fig 1(a), the attention weight is obtained at once based on the relationship
between the query proposals and all the support videos. In this case, a support video, which is
relatively less relevant to the query video than the other support videos, gets tiny attention weights
and cannot represent its action information in the context of the query video. As depicted in Fig. 4
(left), to utilize the query’s context faithfully, we individually attend the support videos.
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Table 1: Pairwise cosine dist. between two support seg-
ment features from different support videos (L = 5).

Features {X̃(l)
S } {Ỹ (l)

S }
(before stabilizer) (after stabilizer)

Avg cosine dist. 0.018 0.005

Table 2: Pairwise cosine dist. between pos-
itive and negative query proposal features
in the same video.

Features w/o stabilizer w/ stabilizer

Avg cosine dist. 0.091 0.104

In specific, for lth support video, we first encode the backbone features of the query proposals Q to
XQ ∈ Rd×NQ and the support segments S(l) to X(l)

S ∈ Rd×NS , with a fully-connected (fc) layer.
The columns of XQ and X(l)

S represent the encoded d-dimensional features of the query proposal
and support segment, respectively. After that, we compute the cross-correlation of XQ and X(l)

S
to measure their relevance. To reduce the gap of the heterogeneity between the query and support
videos, we use a learnable weight matrix WQ→S ∈ Rd×d and compute the cross-correlation as

Λ
(l)
S = XT

QWQ→SX
(l)
S (2)

where Λ
(l)
S ∈ RNQ×NS . Note that each column of XQ and X(l)

S are l2-normalized before the cross-
correlation computation, and the learnable weight WQ→S and the fc layer are shared across all l’s
i.e. all the support videos.

In the cross-correlation matrix, a high correlation coefficient means that the corresponding proposal
and segment features are highly relevant. Accordingly, ith row of Λ

(l)
S corresponds to the relevance

of ith query proposal to the NS support segments. Then, from row-wise soft-max of Λ
(l)
S , we

can obtain cross-attention weights A(l)
S where each row represents the relative relevance of a query

proposal to the support segments.

The attention-weighted proposal features are summed to the corresponding support segment feature.
This is to ensure that the meaningful action information of the support video is well-preserved while
applying the cross-attention. Formally, the attended support segment features X̃(l)

S are obtained by

X̃
(l)
S = XQA

(l)
S +X

(l)
S . (3)

Note that, through the attention weights, the query proposal injects its context to the support seg-
ments proportionally to their relevance i.e. more to the highly relevant support segments. With this,
the support segment features are enhanced to better guide the information about the target action to
the query proposals in the later stage of attending queries of Fig. 4 (right). We provide the detailed
structure of the cross-attention in the supplementary materials.

Stabilizer: As the support videos represent a common action, the support segment features should
be closely located in a latent feature space. However, the support videos may be inherently het-
erogeneous due to the difference of background, camera angle, etc. Moreover, the cross-attention
can also cause heterogeneity among support segments. If a support segment is the only informative
(but not much) segment in a support video, the cross-attention overly highlights it. Otherwise, when
most support segments are moderately important in another support video, they are evenly attended.
These heterogeneities can degenerate the effect of attention on query videos.

Therefore, before attending the query proposals with the support segments from different support
videos in the next stage, we re-calibrate the attended support segment features. To this end, we pass
all the attended support segments through a common multi-layer perceptron (MLP) with bottleneck-
structured two fc layers, t1 and t2, with ReLU activation.

ỹ(l)S,i = t1(ReLU(t2(x̃(l)
S,i))) (4)

where x̃(l)S,i and ỹ(l)S,i are the features of ith temporal segment of lth support video before and after
passing through the stabilizer, respectively.

Table 1 shows the averaged pairwise cosine distance between support segment features in different
support videos when L = 5. After passing through the MLP, the features get closer together in the
latent feature space (see the reduced distances), and this promotes the compatibility of the attended
support segment features from different support videos. Hence, we call this MLP a stabilizer. Also,
in Table 2, the attended query proposal features are more discriminative when the attended support
segment features are stabilized. More analyses are in Sec. 4.3 and Appendix C.3& C.4.
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Figure 5: Relational classifier consists of auxiliary relational module and action classifier.

Cross-attention for query: In this stage, we attend query videos with the support videos, using
the cross-attention again. This is shown in Fig. 4 (right). To mine the richer information for target
action from all the support videos, we attend query proposal features using the entire stabilized
support segment features ỸS = {Ỹ (1)

S , Ỹ
(2)
S , . . . , Ỹ

(L)
S } ∈ Rd×LNS . Similar to attending support

features, we exploit the cross-attention to obtain the attended query proposals X̃Q with a learnable
weight matrix WS→Q ∈ Rd×d by

X̃Q = ỸSAQ +XQ (5)

where AQ is attention weight computed by row-wise soft-max of cross-correlation, ΛQ =

Ỹ T
S WS→QXQ. From this cross-attention, the query proposals, which have high relevance to crucial

support segments, better delineate the target action. The cross-attention presented here may resem-
ble the one proposed in (Lee et al., 2021a). But dissimilar with our dual cross-attention, to fuse
the different modalities, (Lee et al., 2021a) attended them reciprocally with a single learned weight
matrix. Whereas, our cross-attention between the support videos and the query video is applied at
different stages, learning two weight matrices (query-to-support and vice versa).

3.3 RELATIONAL CLASSIFIER

Up to this point, we described how DCAPS generates better representations of query proposals and
support segments. Here, we explain the way to obtain the final decision from the attended rep-
resentations. Fig. 5 depicts our relational classifier including an action classifier and an auxiliary
relational module. The auxiliary module facilitates learning how to understand the relationship be-
tween query proposals and a target action with pseudo action class cues. As this auxiliary relational
module is discarded in the deployed network, no action class label is required during testing.

Auxiliary relational module: In episodic few-shot learning, an auxiliary classifier can be co-trained
to categorize an input into one of the ground-truth classes rather than the target classes of an episode.
This is beneficial for feature extractors to prevent overfitting, stabilize the training, and boost the
performance (Oreshkin et al., 2018; Kang et al., 2021).

However, since the ground-truth action classes are not available in our task, we utilize pseudo action
classes. As in Fig. 5, we develop the auxiliary relational module which takes as an input the con-
catenation of the attended query proposal (green), support prototype (purple), and a pseudo-class
identifier (white). The support prototype is the average of all the attended support segments. The
pseudo-class identifier is a multi-hot vector with 1 for the pseudo action classes present in the support
videos and 0 otherwise. As action class annotations are unavailable, the pseudo action classes are
simply obtained by k-means clustering of the pre-trained backbone features extracted from all the
ground-truth positive action instances in the training set. Then, these pseudo action classes can pro-
vide the cue to capture the commonality of the support videos with the same action across episodes
(its effect is addressed in Appendix C.1). Hence, joint training with the auxiliary module assists the
action classifier to learn to more correctly find the common actions in the query video without get-
ting distracted by the non-target actions. The auxiliary relational module predicts whether the query
proposal and the prototype are similar or not. Note that this module is only needed for training and
discarded in the testing phase as the training and testing classes are mutually exclusive.

Action classifier: The action classifier consists of two parallel fc layers. Taking only the query
proposal features X̃Q as inputs, the action classifier computes two outputs. The first is soft-max
activated and decides if a query proposal contains target action or not. The second regresses the
temporal offsets from the corresponding ground-truth. In addition, following (Yang et al., 2020),
each attended query proposal is weighted by the distances between the non-attended query proposal
and support video features (video-wise average of original support segment features).
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3.4 LOSS FUNCTIONS

To optimize the entire network (backbone + DCAPS + relational classifier), as in (Yang et al., 2020),
we use loss terms for both support-agnostic and -conditioned parts. In the support-agnostic part, the
binary cross-entropy loss Lag

cls predicts if the proposal contains any activity or not, and the smooth
l1 regression loss Lag

reg optimizes the relative displacement between proposals and ground-truths.

In the auxiliary relational module of the support-conditioned part, we simply use the binary cross-
entropy loss Laux to predict if the proposal and support videos are similar or not. In the action
classifier of the support-conditioned part, similar to the support-agnostic part, the classification loss
Lco
cls predicts if the proposal includes the same common action of support videos, and the regression

loss Lco
reg optimizes the relative displacement between the proposals and the ground-truths. Also,

we design a pairwise ranking loss to add constraints to the action classifier. Considering a pair of
proposals qi and qj , where at least one of them is a positive query proposal, we let the proposal with
the larger IoU (intersection over union) for the ground-truth action instance have a higher soft-max
score for the action class. Formally, the pairwise ranking loss Lrank is represented by

Lrank =
1

Npair

∑
(i,j)

(∆IoUij −∆pactionij )2 (6)

whereNpair is the number of considered proposal pairs. ∆IoUij is the difference between IoUs of qi
and qj with their corresponding ground-truths, and ∆pactionij is the difference of soft-max predictions
for the proposals on the action class from the action classifier. Note that to relax the relationship
between IoU and soft-max prediction, we give temperature to the soft-max predictions in Lrank.
Finally, total loss L = Lag

cls + Lag
reg + Lco

cls + Lco
reg + Laux + λLrank (more details in Appendix A).

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

To evaluate few-shot common action localization, we use the revised versions (Feng et al., 2018;
Yang et al., 2020) of ActivityNet1.3 (Caba Heilbron et al., 2015) and THUMOS14 (Idrees et al.,
2017). In the revised, there are two cases depending on queries: single-instance and multi-instance.
We address 1- or 5-shot settings in both cases. For meta-learning strategy, the entire action classes
of each dataset are split to 80% for training, 10% for validation, and 10% for testing. For a fair
comparison, we follow the data configuration of (Yang et al., 2020), which will be described in the
following paragraphs. Further details are in Appendix D.

Common single-instance: For both datasets, videos with multiple actions are divided into inde-
pendent videos where each video contains just one action instance and background. Then, videos
longer than 768 frames are discarded. If a video is selected as a support video, its foreground action
instance is only used as the support input. For ActivityNet1.3, there are 10,035 and 2,483 videos for
training and validation+testing, each. The average video length is 89.0s. For THUMOS14, there are
3,580 and 775 training and validation+testing videos, respectively. The average length is 11.4s.

Common multi-instance: In real-world scenarios, the lengths of query videos are usually not con-
strained, and the query videos may contain multiple action instances. Hence, we exploit the original
videos of ActivityNet1.3 and THUMOS14 without any processing for query videos. Support videos
are still trimmed ones. For ActivityNet1.3, the numbers of videos are 6,747 and 1,545 for training
and validation+testing, respectively. The average video length is 148.2s. For THUMOS14, there are
1,664 training videos and 323 validation+testing videos. Average video length is 230.6s.

Inference: In testing, the backbone-generated query proposals are refined by non-maximum sup-
pression (NMS) with a threshold 0.7. Also, following (Yang et al., 2020), if the query video is longer
than 768 frames, we generate the multi-scale segments (Shou et al., 2016). We slide windows with
sizes of 512 and 768 frames along the temporal axis with 75% overlap. The generated proposals
of the windows go through the NMS to remove redundant proposals. Then, the selected proposals
are fed into our DCAPS and relational classifier. Finally, we perform NMS (threshold 0.3) for the
regressed proposals based on the outputs of the relational classifier to remove redundant ones.

Evaluation: We measure the temporal action localization performance with mean Average Precision
(mAP). A prediction is correct when it has the correct foreground/background classification and has
IoU with its ground-truth larger than a threshold. The threshold is set to 0.5 unless specified.
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Table 3: Comparison with state-of-the-arts in terms of mAP@0.5.

ActivityNet1.3 THUMOS14

Method Single-instance Multi-instance Single-instance Multi-instance

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

(Feng et al., 2018) 43.5 n/a 31.4 n/a 34.1 n/a 4.3 n/a
(Hu et al., 2019) 41.0 45.4 29.6 38.9 - 42.2 - 6.8
(Yang et al., 2020) 53.1 56.5 42.1 43.9 48.7 51.9 7.5 8.6
(Yang et al., 2021) 57.5 60.6 47.8 48.7 - - - -
(Nag et al., 2021) 55.1 63.0 44.1 48.2 49.2 54.3 7.3 10.4

Ours 61.3± 1.1 65.1± 1.2 47.2± 1.0 52.2± 0.8 53.3± 1.3 57.9± 1.0 9.2± 0.3 14.0± 0.4

Table 4: Computational cost of query-support fusion modules.
(Yang et al., 2020) (Nag et al., 2021) DCAPS (Ours)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

#Param / MACs 5.25M / 0.36G 5.25M / 0.47G 0.53M / 0.66G 0.53M / 3.28G 1.05M / 0.10G 1.31M / 0.27G

4.2 COMPARATIVE ASSESSMENT

We report the performance of compared methods from the literature. Due to the variance of k-means
clustering of the pseudo label generation, we report the average of three runs for our method.

For AcitivityNet1.3, the left of Table 3 demonstrates the comparative results on both common single-
and multi-instance cases when L = 1 or 5. (Feng et al., 2018; Yang et al., 2020; Nag et al., 2021)
were developed for the common temporal action localization (our task) in videos, and (Hu et al.,
2019) was for the common object detection in images. Compared to them, our method shows no-
tably higher performance for all the settings ((Feng et al., 2018) was designed to use one support
video). Specifically, in the single-instance case, we outperform those methods by at least 6.2%
and 2.1% in the 1- and 5-shot settings, respectively. In the multi-instance, the margins are at least
3.1% and 4.0% for 1- and 5-shot, each. Note that (Yang et al., 2021) was developed for object-
level common temporal action localization. Although object-level localization is more challenging,
it requires further information to learn their model such as the coordinates of foreground object
bounding boxes. Hence, they have advantages in the frame-level localization task. Even so, our
method yields better results than (Yang et al., 2021) in most of the settings. From the results of the
1-shot setting, we show the effectiveness of our cross-attention and the relational classifier. Also,
in the 5-shot setting, the score margins to the existing works are larger than those of 1-shot in both
single- and multi-instance. This means that the individual attention of support videos with stabilizer
is helpful to mine the knowledge for a common action from multiple support videos. Unlike Ac-
tivityNet1.3, THUMOS14 includes shorter action instances which make correct localization more
difficult. Nevertheless, we outperform the compared methods over all the settings.

4.3 COMPONENT ANALYSIS

We analyze our method on ActivitNet1.3. More studies are in Appendix C and F.

Efficiency of DCAPS: We analyze the efficiency of our DCAPS comparing with (Yang et al., 2020;
Nag et al., 2021). In Table 4, for query-support fusion modules, we compute the number of param-
eters and MACs per a single query and 1 or 5 support videos. Compared to (Yang et al., 2020),
the proposed DCAPS requires significantly lower computation costs in both 1- and 5-shot settings.
Though Nag et al. (2021) uses a small number of parameters, their iterative back-propagation to fine-
tune prototype for given query and support videos drastically increases MACs. Whereas, DCAPS is
highly efficient in both parameters and MACs. Hence, DCAPS effectively and efficiently utilizes a
few support videos for common action localization.

Impact of cross-attention: We first evaluate the efficacy of our cross-attention. To this end, we
compare our DCAPS (D-0 in Table 5) to the progressive cross-attention (Yang et al., 2020) and the
multi-head cross-attention with fine-tuned (50-100 iterations) prototype Nag et al. (2021). For a fair
comparison, the pairwise ranking loss and auxiliary relational module are not used (the stabilizer is
also not used in the 1-shot setting) in D-0. DCAPS yields mAP gain of at least +3.6% and +0.5% in
1-shot (55.1% vs 58.7%) and 5-shot (63.0% vs 63.5%), respectively. Hence, we conclude our dual
cross-attention more effectively enhances the query and support videos in this task.

Cross-attention individual vs aggregated: To study the effectiveness of the individual cross-
attention on multiple support videos, we compare our individual cross-attention approach with the
aggregated cross-attention. In the aggregated one, we concatenate all the support segments of the

8
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Table 5: Analysis on the relational classifier.

Method Lrank
Auxiliary

rel. module
mAP (%)

1-shot 5-shot

D-0 58.7 63.5

D-1 X 60.2 64.1

D-2 X 59.7 63.8

D-3 X X 61.3 65.1

Table 6: Analysis on the stage-1 individual cross-
attention comparing with the aggregated cross-
attention on the 5-shot setting.

Cross-att (support) Single-inst. Multi-inst.

w/o Stabilizer Aggregated 57.2 44.5
Individual 60.9 49.4

w/ Stabilizer Aggregated 57.4 43.4
Individual 65.1 52.2

Table 7: Analysis on the stabilizer for average pairwise cosine distance of segment features from
different support videos (L = 5). {X̃(l)

S } and {Ỹ (l)
S } are features before and after the stabilizer.

Baseline l1-norm l2-norm Instance norm Batch norm Stabilizer (Ours)

1fc 2fc

{X̃(l)
S } 0.038 0.201 0.041 0.104 0.117 0.021 0.018

{Ỹ (l)
S } n/a 0.201 0.041 0.103 0.058 0.011 0.005

mAP (%) 56.7 39.9 54.1 52.8 55.7 63.5 65.1

entire support videos, and simultaneously attend them via query proposals. Also, for more exten-
sive analysis, we compare the individual and aggregated cross-attentions under with or without the
stabilizer. As in Table 6, regardless of the use of the stabilizer, the aggregated attention degrades the
localization performance, and the stabilizer has no effect on the aggregated attention in the single-
instance case. Whereas the individual cross-attention shows better performance than the aggregated
one improving mAP by 3.7% when the stabilizer is not used (w/o stabilizer), this gap is further
increased to 7.7% when the stabilizer is used. A similar tendency is observed in the multi-instance
case as well. Therefore, we conclude that independent of the stabilizer, the dual cross-attention itself
is useful to thoroughly mine the action information from each support video.

Stabilizer: Based on the performance boost (60.9% to 65.1%) by the stabilizer in Table 6, we can
infer that the stabilizer helps to improve the compatibility of support segment features from differ-
ent support videos. To identify this, we measure the pairwise cosine distances between two support
segment features from different support videos, before and after passing through the stabilizer. The
average of these distances is reported in Table 7. In terms of the averaged cosine distance, we verify
our stabilizer by replacing it with w/o any processing on the attended support features (baseline)
and several normalization schemes: simple l1-, l2-normalization, and normalization with learnable
parameters (batch normalization (Ioffe & Szegedy, 2015) or instance normalization (Ulyanov et al.,
2016)). The l1- or l2-normalization does not affect the cosine distance but removes the support-
specific useful information (resulting in low performance). Though the batch and instance normal-
ization techniques reduce the averaged cosine distance, the performance gain is marginal. Whereas,
with quite low averaged cosine distances, 1 or 2 fc stabilizers outperform all the compared methods.

Relational classifier: Here, we verify the auxiliary relational module and the pairwise ranking loss
by ablating each. To show their effect, we compare each ablated version to the baseline D-0 without
any of them in Table 5. The pairwise ranking loss gives performance improvement by 1.5% and
0.6% for 1- and 5-shot, respectively (D-1). Hence, this loss lets the proposals with larger IoUs
to ground-truths get higher action scores. From the result of D-2, we also see that learning the
auxiliary module in parallel to the action classifier is useful to boost performance in both settings.
And, combining both works the best (D-3).

5 CONCLUSIONS

We proposed the dual cross-attention coupled with stabilizer (DCAPS) and the relational classifier
for few-shot common action Localization. DCAPS increases the effect of the cross-attention by in-
dividually attending each support video, coupling the individually attended ones using the stabilizer,
and then attending the query video via all the stabilized support videos. In the relational classifier,
we designed the pairwise ranking loss which makes more precise action localization of the action
classifier. Learned in parallel with the action classifier, the auxiliary relational module with the
pseudo-class labels prevents the network from overfitting to each training episode. This module is
discarded in testing. Each component of our method is analyzed and validated through extensive
experiments. Finally, we achieved the state-of-the-art on ActivityNet1.3 and THUMOS14.
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A DETAILS OF THE LOSS FUNCTIONS

To facilitate the follow-up works, we provide more detailed description for the loss functions.

As the support-agnostic part, the proposal subnet yields two intermediate outputs for each query pro-
posal. First, softmax probability vector (pag, rag) where pag and rag are the probabilities that a query
proposal belongs to the activity and non-activity classes, respectively. Second, the offset vector
(∆tag

1 ,∆t
ag
2 ) is the temporal offset of start and end times to the corresponding ground-truth. Then,

with the ground-truth binary vector (p̄ag, r̄ag) and the ground-truth regression offeset (∆t̄ag
1 ,∆t̄

ag
2 ),

we compute two losses:

Lag
cls =

1

Nag

∑
n

−p̄agn log(pagn )− r̄agn log(ragn ) (7)

Lag
reg =

1

Nag

∑
n

η(∆tag1,n −∆t̄ag1,n) + η(∆tag2,n −∆t̄ag2,n) (8)

whereNag is the number of the query proposals before NMS, and η is the smooth l1 function defined
by

η(x) =

{
0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(9)

Similar to the support-agnostic, the support-conditioned losses are computed for the two outputs of
the action classifiers (pco, rco) and (∆tco1 ,∆t

co
2 ):

Lco
cls =

1

N co

∑
n

−p̄con log(pcon )− r̄con log(rcon ) (10)

Lco
reg =

1

N co

∑
n

η(∆tco1,n −∆t̄co1,n) + η(∆tco2,n −∆t̄co2,n) (11)

where Nco is the number of the query proposals after NMS, and (p̄co, r̄co) and (∆t̄co1 ,∆t̄
co
2 ) denote

ground-truths.

Finally, with the pairwise ranking loss Lrank of eq. (4) and the binary cross-entropy loss Laux for
the auxiliary relational module, the total loss L is represented by

L = Lag
cls + Lag

reg + Lco
cls + Lco

reg + Laux + λLrank (12)

where λ, the loss weight of Lrank, is experimentally set to 0.3 for all experiments.

B PERFORMANCE AT VARIOUS IOU THRESHOLDS

We show more quantitative results of the proposed method and (Yang et al., 2020; Nag et al., 2021)
in terms of mAP scores by varying the IoU threshold from 0.5 to 0.9 in Tables 8 and 9 for Activi-
tyNet1.3 and THUMOS14, respectively.
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Table 8: The mAPs (%) at different IoU thresholds and Avg mAP across the IoU thresholds on
ActivityNet1.3.

mAP@IoU

0.5 0.6 0.7 0.8 0.9 Avg

Single-inst.

1-shot
(Yang et al., 2020) 53.1 40.9 29.8 18.2 8.4 29.5
(Nag et al., 2021) 55.1 45.2 35.5 25.3 13.2 32.5

Ours 61.3 55.6 33.8 22.9 8.0 35.8

5-shot
(Yang et al., 2020) 56.5 47.0 37.4 21.5 11.9 34.9
(Nag et al., 2021) 63.0 54.5 44.2 30.9 15.8 38.4

Ours 65.1 55.6 40.7 26.2 13.6 40.3

Multi-inst.

1-shot
(Yang et al., 2020) 42.1 36.0 18.5 11.1 7.0 22.9
(Nag et al., 2021) 44.1 37.8 29.5 21.4 11.5 25.8

Ours 47.2 45.3 27.8 9.5 5.0 26.9

5-shot
(Yang et al., 2020) 43.9 37.4 20.2 13.4 7.7 24.5
(Nag et al., 2021) 48.2 39.1 29.7 22.5 12.8 28.2

Ours 52.2 46.8 26.1 17.8 12.2 31.0

Table 9: The mAPs (%) at diverse IoU thresholds and Avg mAP across the IoU thresholds on
THUMOS14.

mAP@IoU

0.5 0.6 0.7 0.8 0.9 Avg

Single-inst.

1-shot
(Yang et al., 2020) 48.7 36.7 19.8 8.3 3.7 23.7
(Nag et al., 2021) 49.2 36.9 24.3 16.5 10.1 27.2

Ours 53.3 45.6 27.7 8.2 2.8 27.5

5-shot
(Yang et al., 2020) 51.9 42.7 24.4 17.7 10.1 29.3
(Nag et al., 2021) 54.3 43.6 35.8 24.5 12.2 31.6

Ours 57.9 49.9 29.3 16.3 6.2 31.9

Multi-inst.

1-shot
(Yang et al., 2020) 7.1 3.2 2.8 1.9 0.7 3.1
(Nag et al., 2021) 7.3 4.2 3.1 2.0 1.5 3.7

Ours 9.2 6.7 4.6 2.5 0.6 4.7

5-shot
(Yang et al., 2020) 8.6 5.6 3.8 2.5 1.7 4.4
(Nag et al., 2021) 10.4 7.1 5.7 4.8 2.9 5.4

Ours 14.0 11.1 8.6 5.7 2.3 8.3

C MORE ANALYSIS

C.1 ADEQUACY TO THE NUMBER OF PSEUDO ACTION LABELS

In the auxiliary relational module, we generate the multi-hot indicator based on pseudo action labels
and concatenate it to the features of a query proposal and a support prototype. To see the multi-hot
indicator effectiveness, in Table 10, we report the mAP scores by varying the number of pseudo
action classes (k) and w/o the indicator as well. In 1-shot setting, the auxiliary relational module
without the multi-hot indicator (‘w/o indicator’) works decently, compared to D-1 of Table 5 (60.2%
and 64.1% for 1- and 5-shot, respectively). When k is 80, because of too few pseudo-classes,
performance is slightly lower than the ‘w/o indicator’ for the single-instance case. This performance
drop is larger in the multi-instance case. However, for all other settings, as k gets larger, the multi-hot
indicator yields larger performance gains overall. Though the support videos represent a common
action, there is diversity from background or action details. Hence, it is beneficial to distinguish the
support videos with more pseudo labels. This is more crucial to the multi-instance case. Considering
computation cost, we set k to 160 in other experiments. Similarly, we set it to 16 for the THUMOS14
dataset, which makes sense as this dataset has 10 times fewer action classes than the ActivityNet 1.3
dataset.
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Table 10: Effect of the multi-hot pseudo action indicator by varying the number of pseudo action
classes or removing it.

w/o
Indicator

k

80 160 240 320

Single Inst. 1-shot 60.2 59.2 61.3 62.1 61.5
5-shot 64.7 63.8 65.1 65.4 65.7

Multiple Inst. 1-shot 45.1 42.5 47.2 47.0 47.4
5-shot 49.2 47.1 52.2 52.8 53.2

Table 11: Robustness to the number of support videos in testing for the single-instance case.

No. testing supports

Shots 5 4 3 2 1

(Yang et al., 2020) 1 48.1 48.5 48.9 53.3 53.1
5 56.5 54.8 51.7 47.9 48.1

Ours 1 57.7 57.8 58.1 57.8 61.3
5 65.1 64.7 64.8 63.1 60.5

C.2 ROBUSTNESS TO NUMBER OF TESTING SUPPORT VIDEOS

Now we evaluate the robustness to the number of testing support videos. Specifically, in Table 11,
we verify the 1- or 5-shot trained models by varying the numbers of support videos from 1 to 5.
Both 1-shot models of our method and (Yang et al., 2020) are fit to one support video, and hence
their performance is degraded for more than one testing support video. Note that, here our 1-shot
model does not include the stabilizer, so the dual cross-attention is applied without the stabilizer in
this setting. Nevertheless, our method shows less performance drop compared to (Yang et al., 2020).
The drop for five testing support videos is 3.6% in ours and is 5.0% in (Yang et al., 2020). For the
5-shot setting, as the numbers of the testing support videos are reduced, the performance largely
drops in (Yang et al., 2020). Contrarily, our 5-shot model robustly performs even for two testing
support videos. However, as the 1-shot model is better tuned for one support video, it shows a better
result than the 5-shot model for testing of one support video. Hence, we deduce that our DCAPS
and relational classifier are also robust to diverse numbers of testing support videos.

C.3 COMPLETE OUR METHOD vs VARIANTS W/O STABILIZER FOR PAIRWISE COSINE
DISTANCE IN SUPPORT VIDEOS

To analyze the effect of the stabilizer further, we compare our complete method and two variants
without the stabilizer: i) ‘seperate cross-att. w/o stab.’: different attention weights for query-to-
support and support-to-query attentions. ii) ‘shared cross-att. w/o stab.’: reciprocally shared atten-
tion weight for query-to-support and support-to-query attentions. In both, the support videos are
individually attended. Table 12 compares our method with the two variants in terms of the average
of the pairwise cosine distance where the each support segment pair is sampled from different sup-
port videos as in Table 1. Compared with ours (0.005 after stabilizer), 0.024 and 0.038 is further
large (in degree, 5.73 vs 12.57 and 15.84).

Also, even the support segment features before the stabilizer of our complete method shows the
lower pairwise cosine distances (0.018) than the two variants. Since the model is end-to-end learned,
adding the stabilizer affects the distribution of the support segment features before passing the sta-
bilizer as well. After passing through the stabilizer, the support segment features are further densely
located in latent space. Therefore, the MLP stabilizer helps our individual cross-attention (stage 1)
be learned stably, and it results in the attended support segment features densely distributed in latent
space.
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Table 12: Pairwise cosine dist. between two support segment features from different support videos
(L = 5).

Method Ours i) Seperate cross-att. w/o stab. ii) Shared cross-att. w/o stab.

Features {X̃(l)
S } {Ỹ (l)

S } {X̃(l)
S } {X̃(l)

S }
(before stabilizer) (after stabilizer)

Avg cosine dist. 0.018 0.005 0.024 0.038
mAP (%) 65.1 60.9 56.7

Table 13: Pairwise l2 dist. between two support seg-
ment features from different support videos (L = 5).

Features {X̃(l)
S } {Ỹ (l)

S }
(before stabilizer) (after stabilizer)

Avg l2 dist. 15.12 6.91

Table 14: Pairwise l2 dist. between positive
and negative query proposal features in the
same video.

Features w/o stabilizer Ours

Avg l2 dist. 24.21 29.34

C.4 PAIRWISE l2 DISTANCE ANALYSIS ON THE STABILIZER

To more convince the effect of stabilizer, we analyze the stabilizer in different distance metric, l2. In
specific, we first perform pairwise l2 distance analysis for support video and query proposal features,
respectively. 1) we provide the l2 distance version of Tables 1 and 2. Similar to Table 1, we show the
average pairwise (two paired support segments are in different support videos) distances before or
after passing through the stabilizer in Table 13. 2) Also, akin to Table 2, Table 14 shows the pairwise
average l2 distances where pairs are positive and negative query proposals. In both Tables, we can
see the similar tendency to the cosine distance analysis.

Then, we compare the proposed method and ‘w/o stabilizer individual’ according to the l2 distance
of the attended support video (not segment-level) features to the attended positive query proposal.
An attended support video feature is obtained by averaging the attended support segment features
in the support video. As demonstrated in Table 15, compared to the ‘w/o stabilizer individual,’
the average pairwise l2 distance is smaller to positive queries and larger to negative queries in our
complete method. Therefore, the stabilizer induces to obtain more discriminative attended query
proposal features which helps to learn the following relation classifier more robustly.

C.5 ABLATION STUDY ON RELATIONAL CLASSIFIER

We provide the ablation study of Table 5 for a more simple baseline where the proposed DCAPS
is replaced with ‘AggAtt w/o stb.’ In AggAtt w/o stb, the aggregated cross-attention is applied on
support videos w/o the stabilizer, and then query proposals are enhanced by the attended support
videos. Hence, AggAtt w/o stb is a naive two-stage cross-attention without our key contributions
(individual cross-attention in support videos and stabilizer) for query-support alignment. The Ta-
ble 16 shows the result. Like Table 5, we can see that the proposed Lrank and auxiliary relational
module (Laux) are effective themselves to common action localization.

D EXPERIMENTAL DETAILS

We implemented our method based on the official PyTorch source code of (Yang et al., 2020). Also,
following the experimental setting of (Yang et al., 2020), train our network using Adam optimizer
with an initial learning rate of 1e-5, decayed by 0.1 every 25k iterations. The batch size is set as 1.
For a fair comparison, we use the same backbone network and proposal subnet with those of (Yang
et al., 2020). In specific, we employ the C3D network (Tran et al., 2015) as the backbone which is
pre-trained on Sport-1M (Karpathy et al., 2014) dataset. For query proposal generation, we adopt

Table 15: Pairwise l2 dist. from video-level support features to positive or negative query proposal
features.

Features w/o stabilizer Ours

Query proposals Positive Negative Positive Negative

Avg l2 dist. 16.67 26.20 10.14 31.86
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Table 16: Analysis on the relational classifier.

Method Lrank
Auxiliary

rel. module
mAP (%)

1-shot 5-shot

AggAtt w/o stb-0 52.7 55.1

AggAtt w/o stb-1 X 53.6 56.4

AggAtt w/o stb-2 X 54.0 56.9

AggAtt w/o stb-3 X X 54.3 57.2

the proposal subnet of R-C3D (Xu et al., 2017) to obtain class-agnostic action proposals. Also, for
the DCAPS and relational classifier, we used the Xavier (Glorot & Bengio, 2010) initializer. As
in (Yang et al., 2020), the proposal score threshold is set as 0.7, and the number of proposals after
NMS is 128 in training and 300 in validation and testing. On top of the backbone, we construct the
DCAPS and relational classifier.

In the auxiliary relational module, the k-means clustering for the pseudo action label generation
is implemented by scikit-learn library of version 1.0.1 in the default hyperparameter setting.
In consideration of the randomness of the k-means clustering, we run three times for the reported
scores for our method and its variants in all the Tables.

E DETAILED STRUCTURE OF DCAPS

The figure above describes the detailed structure of 3-stage attention mechanism of the proposed
DCAPS. First, the backbone features of the query proposal and support segments are embedded by
different linear layers, and the query proposal features individually attend the segment features of
each support video at the first stage. Then, when the number of support videos are larger than 1,
the stabilizer of the second stage increases the compatibility of the individually attended features of
the support videos. Lastly, at the third stage, all the attended support video features simultaneously
attend the query proposal features via the second cross-attention matrix. The final attended query
proposal features are fed into the following relational classifier.

F QUALITATIVE RESULTS
We visualize predicted action instances in Fig. 6. (ii) shows better results than (i). Hence, the
individual cross-attention is effective to attend multiple support videos. And, the stabilizer increases
the compatibility of different support videos, yielding the most accurate results as exemplified in
(iii). We also provide the average of the cosine distances between the support segment features
(after the support attention in (i) and (ii), after the stabilizer in (iii)). In both examples, (iii) shows
the smallest average cosine distance.
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(a) Walking the dog

(b) BMX
Figure 6: Qualitative results. (i) aggregated cross-attention w/o stabilizer, (ii) individual cross-
attention w/o stabilizer and (iii) individual cross-attention w/ stabilizer (DCAPS, our final attention
module). Each of the ground-truths and predicted action instances is colorized with the frame indices
of start and end times. Average of the cosine distances between the support segment features (after
the support attention in (i) and (ii), after the stabilizer in (iii)) is provided, as well.
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