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Abstract
Molecular modeling, a central topic in quantum mechanics, aims to accurately
calculate the properties and simulate the behaviors of molecular systems. The
molecular model is governed by physical laws, which impose geometric constraints
such as invariance and equivariance to coordinate rotation and translation. While
numerous deep learning approaches have been developed to learn molecular
representations under these constraints, most of them are built upon heuristic and
costly modules. We argue that there is a strong need for a general and flexible
framework for learning both invariant and equivariant features. In this work, we
introduce a novel Transformer-based molecular model called GeoMFormer to
achieve this goal. Using the standard Transformer modules, two separate streams
are developed to maintain and learn invariant and equivariant representations.
Carefully designed cross-attention modules bridge the two streams, allowing
information fusion and enhancing geometric modeling in each stream. As a general
and flexible architecture, we show that many previous architectures can be viewed
as special instantiations of GeoMFormer. Extensive experiments are conducted
to demonstrate the power of GeoMFormer. All empirical results show that
GeoMFormer achieves strong performance on both invariant and equivariant tasks
of different types and scales. Code and models will be made publicly available.

1 Introduction
Deep learning approaches have emerged as a powerful tool for a wide range of tasks [21, 10, 5].
Recently, researchers have started investigating whether the power of neural networks could help
solve problems in physics and chemistry, such as predicting the property of molecules with 3D
coordinates and simulating how each atom moves in Euclidean space [51, 16, 48]. These molecular
modeling tasks require the learned model to satisfy general physical laws, such as the invariance and
equivariance conditions: The model’s prediction should react physically when the input coordinates
change according to the transformation of the coordinate system, such as rotation and translation.

A variety of methods have been proposed to design neural architectures that intrinsically satisfy the
invariance or equivariance conditions [56, 50, 3]. To satisfy the invariant condition, several approaches
incorporate invariant features, such as the relative distance between each atom pair, into classic neural
networks [51, 53]. However, this may hinder the model from effectively extracting the molecular
structural information. For example, computing dihedral angles from coordinates is straightforward
but requires much more nonlinear operations using relative distances. To satisfy the equivariant
condition, several works design neural networks with equivariant operation only, such as tensor
product between irreducible representations [56, 13, 3] and vector operations [48, 50, 55]. However,
the number of such operations is limited, and they are either costly to scale or lead to fairly complex
network architecture designs to guarantee sufficient expressive power. More importantly, many

∗Equal contributions.

NeurIPS 2023 AI for Science Workshop.



real-world applications require a model that can effectively perform both invariant and equivariant
prediction with strong performance at the same time. While some recent works study this direction [50,
55], most proposed networks are designed heuristically and lack general design principles.

We argue that developing a general and flexible architecture to effectively learn both invariant and
equivariant representations is essential. In this work, we introduce GeoMFormer to achieve this goal.
GeoMFormer uses a standard Transformer-based architecture [58] but with two streams. An invariant
stream learns invariant representations, and an equivariant stream learns equivariant representations.
Each stream consists of invariant/equivariant self-attention and feed-forward layers. The key design in
GeoMFormer is to use cross-attention mechanisms between the two streams, letting each stream incor-
porate the information from the other and enhance itself. In each layer of the invariant stream, we de-
velop an invariant-to-equivariant cross-attention module, where the invariant representations are used
to query key-value pairs in the equivariant stream. An equivariant-to-invariant cross-attention module
is similarly designed for the equivariant stream. We show that the design of all self-attention and
cross-attention modules is flexible and how to satisfy the invariant/equivariant conditions effectively.

Our proposed architecture has several advantages compared to previous works. GeoMFormer de-
composes the invariant/equivariant representation learning through self-attention and cross-attention
modules. By interacting the two streams using cross-attention modules, the invariant stream receives
more structural signals (from the equivariant stream), and the equivariant stream obtains more
non-linear transformation (from the invariant stream), which allows simultaneously and completely
modeling interatomic interactions within/across feature spaces in a unified manner. Furthermore,
we demonstrate that the proposed decomposition is general by showing that many existing methods
can be regarded as special cases in our framework. For example, PaiNN[50] and TorchMD-NET[55]
can be formulated as a special instantiation by following the design philosophy of GeoMFormer
and using proper instantiations of key building components. From this perspective, we believe our
architecture can offer many different options in different scenarios in real applications.

We evaluate our architecture on diverse datasets with both invariant and equivariant targets. On
the Open Catalyst 2020 (OC20) dataset [6], which contains large atomic systems composed of an
adsorbate and a catalyst, our architecture accurately predicts energy (invariant) and relaxed structure
(equivariant). Additionally, t achieves state-of-the-art performance in predicting the homo-lumo
energy gap (invariant) on PCQM4Mv2 [22] and Molecule3D [63] datasets, both comprising
molecules from chemical databases[41, 44]. Moreover, we conduct an N-body simulation experiment,
wherein our architecture precisely forecasts particle positions (equivariant) governed by physical
rules. All the empirical results highlight the generality and effectiveness of our approach.

2 Related Works
Invariant Representation Learning. Recently, invariance has been recognized as one of the key
principles guiding the development of molecular models. To describe the properties of a molecular
system, the model’s prediction should remain unchanged if we conduct any rotation or translation
actions on the coordinates of the whole system. Previous works typically used relative structural
information from coordinates to inherently maintain invariance. In SchNet [51], interatomic distances
were encoded via radial basis functions, serving as weights for the continuous-filter convolutional
layers. PhysNet [57] similarly incorporated both atomic features and interatomic distances in its
interaction blocks. Graphormer-3D [53] employs a Transformer-based model, encoding relative
distances as attention bias terms, which shows strong performance on large-scale datasets [6].
Beyond the interatomic distance, other works further incorporate high-order invariant signals. Based
on PhysNet, DimeNet [16] and DimeNet++ [15] additionally encode the bond angle information
using Fourier-Bessel basis functions. Moreover, GemNet [14] and GemNet-OC [17] carefully studied
the connections between spherical representations and directional information, which inspired to
leverage the dihedral angles, i.e., angles between planes formed by bonds. SphereNet [37] and
ComENet [59] consider the torsional information to augment the molecular models. During the
development in the literature, more complex features are incorporated due to the lossy structural
information when purely learning invariant representations, while largely increasing the costs.
Moreover, these invariant models are generally unable to directly perform equivariant prediction tasks.

Equivariant Representation Learning. Rather than focusing solely on invariant blocks, various
works aim to learn equivariant representations. In real-world applications, numerous molecular
tasks require equivariant predictions, such as predicting forces, positions, velocities, and other
tensorized properties in dynamic simulations. When rotating positions, these properties should rotate
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correspondingly . One classical approach [56, 13, 3, 43] to encoding the equivariant constraints is
using irreducible representations (irreps) via spherical harmonics [20]. Equivariant convolutions
based on tensor products between irreps enable models to preserve equivariance. However, these
models do not always significantly outperform invariant models on invariant tasks. Besides, their
operations are in general costly [50, 48, 12], hindering deployment in large-scale molecular systems.

On the other hand, several recent works maintain both invariant and equivariant representations.
EGNN [48] proposed a simple framework. Its invariant representations encode type information and
relative distance, and are further used in vector scaling functions to transform the equivariant rep-
resentations. PaiNN [50] extended EGNN’s framework to include the Hardamard product operation
to transform the equivariant representations. Based on the operations of PaiNN, TorchMD-Net [55]
further proposed a modified version of the self-attention modules to update invariant representations
and achieved better performance on invariant tasks. Allegro [43] used tensor product operations to up-
date equivariant features and interacted equivariant and invariant features by using weight-generation
modules. In contrast, our GeoMFormer is developed based on a general design philosophy to learn
both invariant and equivariant representations, enabling simultaneous and complete modeling of
interatomic interactions within/across feature spaces in a unified manner, as introduced in Section 4.1.

3 Preliminary
3.1 Notations & Geometric Constraints
We denote a molecular system as M, which consists of a collection of atoms held together by
attractive forces. Let X ∈ Rn×d denote the atoms with features, where n is the number of atoms,
and d is the feature dimension. Given atom i, we use ri ∈ R3 to denote its cartesian coordinate in
the three-dimensional Euclidean space. We define M = (X, R), where R = {r1, ..., rn}.

In nature, molecular systems are subject to physical laws that impose geometric constraints on their
properties and behaviors. For instance, if the position of each atom is translated by a constant vector in
Euclidean space, the system’s total energy remains unchanged. If a rotation is applied to each position,
the direction of the force on each atom will rotate correspondingly. Mathematically, these geometric
constraints are closely tied to the principles of invariance and equivariance in group theory. [9, 8, 52].

Formally, let ϕ : X → Y denote a function mapping between vector spaces. Given a group G, let ρX
and ρY denote its group representations. A function ϕ : X → Y is said to be equivariant/invariant if
it satisfies the following conditions respectively:

Equivariance: ρY(g)[ϕ(x)] = ϕ
(
ρX (g)[x]

)
, for all g ∈ G, x ∈ X

Invariance: ϕ(x) = ϕ
(
ρX (g)[x]

)
, for all g ∈ G, x ∈ X

(1)

Intuitively, an equivariant function transforms the output predictably in response to input transfor-
mations, while an invariant function produces an unchanged output when transformations are applied
to the input. For additional background on group theory, please refer to the appendix of [56, 1, 13].

Molecular systems are naturally located in the three-dimensional Euclidean space, and the group
related to translations and rotations is known as SE(3). For each element g in the SE(3) group, its
representation on R3 can be parameterized by pairs of translation vectors t ∈ R3 and orthogonal
transformation matrices R ∈ R3×3,det(R) = 1, i.e., g = (t,R). Given a vector x ∈ R3, we have
ρR
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(g)[x] := Rx+ t. For molecular modeling, it is essential to learn molecular representations that
encode the rotation equivariance and translation invariance constraints. Formally, let VM denote the
space of molecular systems, for each atom i, we define equivariant representation ϕE and invariant rep-
resentation ϕI if ∀ g = (t,R) ∈ SE(3),M = (X, R) ∈ VM, the following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) = ϕE(X, {Rr1, ...,Rrn})
ϕE : VM → R3×d, ϕE(X, {r1, ..., rn}) = ϕE(X, {r1 + t, ..., rn + t})
ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t})

(2)

3.2 Attention module
The attention module lies at the core of the Transformer architecture [58], and it is formulated as
querying a dictionary with key-value pairs, e.g., Attention(Q,K, V ) = softmax(QKT

√
d
)V , where d is

the hidden dimension, and Q (Query), K (Key), V (Value) are specified as the hidden representations
of the previous layer. The multi-head variant of the attention module is widely used, as it allows the
model to jointly attend to information from different representation subspaces. It is defined as follows:
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Multi-head(Q,K, V ) = Concat(head1, · · · , headH)WO

headk = Attention(QWQ
k ,KW

K
k , V WV

k ), (3)

where WQ
k ∈ Rd×dH ,WK

k ∈ Rd×dH ,WV
k ∈ Rd×dH , and WO ∈ RHdH×d are learnable matrices,

H is the number of heads. dH is the dimension of each attention head.

Serving as a generic building block, the attention module can be used in various ways. On the one hand,
the self-attention module specifies Query, Key, and Value as the same hidden representation, thereby
extracting contextual information for the input. It has been one of the key components in Transformer-
based foundation models across various domains [10, 5, 11, 38, 64, 28]. On the other hand, the cross-
attention module specifies the hidden representation from one space as Query, and the representation
from the other space as Key-Value pairs, e.g. encoder-decoder attention for sequence-to-sequence
learning. As the cross-attention module bridges two representation spaces, it has been also widely
used beyond Transformer for information fusion and improving representations [33, 24, 27, 26].

4 GeoMFormer

In this section, we introduce GeoMFormer, a novel Transformer-based molecular model for learning
invariant and equivariant molecular representations. We begin by elaborating on the key designs of Ge-
oMFormer, which form a general framework to guide the development of geometric molecular models
(Section 4.1), Next we thoroughly discuss the implementation details of GeoMFormer (Section 4.2).

4.1 A General Design Philosophy

As previously mentioned, several existing works learned invariant representations using invariant
features, such as distance information, which may have difficulty in extracting other useful structural
signals. Some other works developed equivariant models via equivariant operations, which are
either heuristic or costly. Instead, we aim to develop a general design principle, which guides the
development of a model instance that addresses the disadvantages aforementioned in both invariant
and equivariant representation learning.

We call our model GeoMFormer, which is a two-stream Transformer model to encode invariant and
equivariant information. Each stream is built up using stacked Transformer blocks, each of which con-
sists of a self-attention module and a cross-attention module, followed by a feed-forward network. For
each atom k ∈ [n], we use zIk ∈ Rd and zEk ∈ R3×d to denote its invariant and equivariant representa-
tions respectively. Let ZI = [zI1

⊤
; ...; zIn

⊤
] ∈ Rn×d and ZE = [zE1 ; ...; z

E
n ] ∈ Rn×3×d, the invariant

(colored in red) and equivariant (colored in blue) representations are updated in the following manner:

Invariant Stream


Z′I,l = ZI,l + Inv-Self-Attn(QI,l,KI,l,VI,l)

Z′′I,l = Z′I,l + Inv-Cross-Attn(QI,l,KI_E,l,VI_E,l)

ZI,l+1 = Z′′I,l + Inv-FFN(Z′′I,l)

Equivariant Stream


Z′E,l

= ZE,l + Equ-Self-Attn(QE,l,KE,l,VE,l)

Z′′E,l
= Z′E,l

+ Equ-Cross-Attn(QE,l,KE_I,l,VE_I,l)

ZE,l+1 = Z′′E,l
+ Equ-FFN(Z′′E,l

)

(4)

where l denotes the layer index. In this framework, the self-attention modules and feed-forward
networks are used to iteratively update representations in each stream. The cross-attention modules
use representations from one stream to query Key-Value pairs from the other stream. By using
this mechanism, a bidirectional bridge is established between invariant and equivariant streams.
Besides the contextual information from the invariant stream itself, the invariant representations can
freely attend to more geometrical signals from the equivariant stream. Similarly, the equivariant
representations can benefit from using more non-linear transformations in the invariant representations.
With the cross-attention modules, the expressiveness of both invariant and equivariant representation
learning is largely improved, which allows simultaneously and completely modeling interatomic
interactions within/across feature spaces in a unified manner. In this regard, as highlighted by different
colors, the Query, Key, and Value in the self-attention modules (Inv-Self-Attn,Equ-Self-Attn) and
the cross-attention modules (Inv-Cross-Attn,Equ-Cross-Attn) are differently specified, which
should carefully encode the geometric constraints mentioned in Section 3.1, as introduced below.
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Desiderata for Invariant Self-Attention. Given the invariant representation ZI , the Query, Key
and Value in Inv-Self-Attn are calculated via a function mapping ψI : Rn×d → Rn×d, i.e., QI =
ψI
Q(Z

I),KI = ψI
K(ZI),VI = ψI

V (Z
I). Essentially, the attention module linearly transforms the

Value VI , with the weights being calculated from the dot product between the Query and Key (i.e., at-
tention scores). In this regard, if both VI and the attention scores preserve the invariance, then the out-
put satisfies the invariant constraint, i.e., ψI is required to be invariant. Under this condition, it is easy
to check the output representation of this module keeps the invariance, which is proved in the appendix.

Desiderata for Equivariant Self-Attention. Similarly, given the equivariant input ZE , the Query,
Key and Value in Equ-Self-Attn are calculated via a function mapping ψE : Rn×3×d → Rn×3×d,
i.e., QE = ψE

Q(Z
E),KE = ψE

K(ZE),VE = ψE
V (Z

E). Similarly, ψE is required to be equivariant.
However, this still cannot guarantee the module to be equivariant if standard attention is used. We mod-
ified αij =

∑d
k=1 Q

E
[i,:,k]K

E
[j,:,k]

⊤, where QE
[i,:,k] ∈ R3 denotes the k-th dimension of the atom

i’s Query. It is straightforward to check the equivariance is preserved, which is proved in the appendix.

Desiderata for Cross-attentions between the two Streams. In each stream, the cross-attention mod-
ule is used to leverage information from the other stream. We call the cross attention in the invariant
stream invariant-cross-equivariant attention, and call the cross attention in the equivariant stream
equivariant-cross-invariant attention, i.e., Inv-Cross-Attn and Equ-Cross-Attn. The difference
between the two cross attention lies in how the query, key, value are specified:

Invariant-cross-Equivariant QI_E = ψI
Q(Z

I),KI_E = ψI_E
K (ZI ,ZE),VI_E = ψI_E

V (ZI ,ZE)

Equivariant-cross-Invariant QE_I = ψE
Q(ZE),KE_I = ψE_I

K (ZE ,ZI),VE_I = ψE_I
V (ZE ,ZI)

(5)

First, for Query QI_E and QE_I , the requirement to ψI and ψE remains the same as previously stated.
Moreover, as distinguished by different colors, the Key-Value pairs and the Query are calculated in
different ways, for which the requirement should be separately considered. Note that both VI_E and
VE_I are still linearly transformed by the cross-attention modules. If VI_E preserves the invariance
and VE_I preserves the equivariance, then the remaining condition is to keep the invariance of the
attention score calculation. That is to say, for the Inv-Cross-Attn, both ψI and ψI_E are required
to be invariant. It is similar to the Equ-Cross-Attn that both ψE and ψE_I are required to be
equivariant. In this way, the outputs of both cross-attention modules are under the corresponding
geometric constraints, which is proved in the appendix.

Discussion. The carefully designed blocks outlined above provide a general design philosophy for
encoding the geometric constraints and bridging the invariant and equivariant molecular represen-
tations, which lie at the core of our framework. Note that the translation invariance can be easily
preserved by encoding relative structure signals of the input. It is also worth pointing out that we do
not restrict the specific instantiation of each component, and various design choices can be adopted
as long as they meet the requirements mentioned above. Moreover, we prove that our framework can
include many previous models as an instantiation, e.g., PaiNN [50] and TorchMD-Net [55], can be
extended to encode additional geometric constraints [8], which are presented in the appendix. In this
work, we present a simple yet effective model instance that implements this design philosophy, which
we will thoroughly introduce in the next subsection.

4.2 Implementation Details of GeoMFormer

Following the design guidance in Section 4.1, we propose Geometric Molecular Transformer (GeoM-
Former). The overall architecture of GeoMFormer is shown in Figure 1, which is composed of stacked
GeoMFormer blocks (Eqn.(5)). We introduce the instantiations of the self-attention, cross-attention
and FFN modules below and prove the properties they satisfy in the appendix. We also incorporate
widely used modules like Layer Normalization [2] and Structural Encodings [53] for better empirical
performance. Due to the space limits, we refer readers to the appendix for further details.

Instantiation of Self-Attention. In GeoMFormer, the linear function is used to implement both
ψI : Rn×d → Rn×d and ψE : Rn×3×d → Rn×3×d:

QI = ψI
Q(Z

I) = ZIW I
Q, KI = ψI

K(ZI) = ZIW I
K , VI = ψI

V (Z
I) = ZIW I

V

QE = ψE
Q(Z

E) = ZEWE
Q , KE = ψE

K(ZE) = ZEWE
K , VE = ψE

V (Z
E) = ZEWE

V
(6)

where W I
Q,W

I
K ,W

I
V ,W

E
Q ,W

E
K ,W

E
V ∈ Rd×dH are learnable parameters.

Instantiation of Cross-Attention. As previously stated, both ψI_E and ψE_I in the cross-attention
modules fuse representations from different spaces (invariant & equivariant) into target spaces. In the
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Figure 1: An illustration of our GeoMFormer model architecture.

Invariant-cross-Equivariant attention module (Inv-Cross-Attn), to obtain the Key-Value pairs, the
equivariant representations are mapped to the invariant space. For the sake of simplicity, we use the
dot-product operation < ·, · > to instantiate ψI_E . Given X,Y ∈ Rn×3×d, Z =< X,Y >∈ Rn×d,
where Z[i,k] = X[i,:,k]

⊤Y[i,:,k]. Then the Key-Value pairs in Inv-Cross-Attn are calculated as:

KI_E = ψI_E
K (ZI ,ZE) =< ZEW I_E

K,1 ,Z
EW I_E

K,2 >, VI_E = ψI_E
V (ZI ,ZE) =< ZEW I_E

V,1 ,Z
EW I_E

V,2 >
(7)

where W I_E
K,1 ,W

I_E
K,2 ,W

I_E
V,1 ,W

I_E
V,2 ∈ Rd×dH for Key and Value are learnable parameters. On the

other hand, the invariant representations are mapped to the equivariant space in the Equivariant-
cross-Invariant attention module (Equ-Cross-Attn). To achieve this goal, we use the scalar product
⊙ to instantiate ψE_I . Given X ∈ Rn×3×d, Y ∈ Rn×d, Z = X ⊙ Y ∈ Rn×3×d, where Z[i,j,k] =
X[i,j,k] · Y[i,k]. Using this operation, the Key-Value pairs in Equ-Cross-Attn are calculated as:

KE_I = ψE_I
K (ZE ,ZI) = ZEWE_I

K,1 ⊙ ZIWE_I
K,2 , VE_I = ψE_I

V (ZE ,ZI) = ZEWE_I
V,1 ⊙ ZIWE_I

V,2

(8)
where WE_I

K,1 ,W
E_I
K,2 ,W

E_I
V,1 ,W

E_I
V,2 ∈ Rd×dH are learnable parameters.

Instantiation of Feed-Forward Networks. Feed-forward networks (FFN) also play impor-
tant roles in refining contextual representations. In the invariant stream, the FFN is kept
unchanged from the standard Transformer model, i.e., Inv-FFN(Z′′I) = GELU(Z′′IW I

1 )W
I
2 ,

where W I
1 ∈ Rd×r,W I

2 ∈ Rr×d and r denotes the hidden dimension of the FFN layer.
In the equivariant stream, it is worth noting that commonly used non-linear activation
functions break the equivariant constraints. In our GeoMFormer, we use the invariant rep-
resentations as a gating function to non-linearly activate the equivariant representations, i.e.,
Equ-FFN(Z′′E) = (Z′′EWE

1 ⊙GELU(Z′′IW I
2 ))W

E
3 , where WE

1 ,W
I
1 ∈ Rd×r,WE

2 ∈ Rr×d.

Input Layer. Given a molecular system M = (X, R), we set the invariant representation at the
input as ZI,0 = X, where Xi ∈ Rd is a learnable embedding vector indexed by the atom i’s type.
For the equivariant representation, we set ZE,0

i = r̂′ig(||r′i||)
⊤ ∈ R3×d, where we consider both

the direction r̂′i ∈ R3 and the scale g(||r′i||) ∈ Rd of the each atom’s mean-centered position r′i.
g : R → Rd is instantiated by the Gaussian Basis Kernel, i.e., g(||r′i||) = ψiW , ψi = [ψ1

i ; ...;ψ
d
i ]

⊤,

ψk
i = − 1√

2π|σk| exp

(
− 1

2

(
γi∥r′i∥+βi−µk

|σk|

)2)
, k = 1, ..., d, where W ∈ Rd×d is learnable, γi, βi
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are learnable scalars indexed by the atom type, and µk, σk are learnable kernel center and scaling
factor of the k-th Kernel. Note that our GeoMFormer is not restricted to these choices, which can
encode additional features if the constraints are satisfied, as discussed in the appendix.

5 Experiments
We empirically evaluate our GeoMFormer on extensive tasks, covering different types (invariant &
equivariant), data (simple molecules & adsorbate-catalyst complexes & particle systems), and scales,
as shown in Table 1. Due to space limits, we present more results and ablation studies in Appendix D.

Table 1: Summarization of empirical evaluation setup.
Dataset Task Description Task Type Data Type Training set size
OC20, IS2RE [6] Equilibrium Energy Prediction (Sec 5.1.1) Invariant Adsorbate-Catalyst complex 460,328
OC20, IS2RS [6] Equilibrium Structure Prediction (Sec 5.1.2) Equivariant Adsorbate-Catalyst complex 460,328
PCQM4Mv2 [22] HOMO-LUMO Gap Prediction (Sec 5.2) Invariant Simple molecule 3,378,606
N-Body Simulation [48] Position Prediction (Sec 5.3) Equivariant Particle System 3,000
Molecule3D [59] HOMO-LUMO Gap Prediction (Sec D.1) Invariant Simple molecule 2,339,788
MD17 [7] Force Field Modeling (Sec D.2) Inv/Equ Simple molecule 950

5.1 OC20 Performance (Invariant & Equivariant)
The Open Catalyst 2020 (OC20) dataset [6] was created for catalyst discovery. Each data is in
the form of adsorbate-catalyst complex. We focus on the tasks Initial Structure to Relaxed Energy
(IS2RE) and Initial Structure to Relaxed Structure (IS2RS), which require a model to directly
predict the relaxed energy and structure given the initial structure as input respectively. we use
direct prediction setting instead of iterative relaxation setting, which is efficient yet more challenging.
The validation sets consider the in-distribution (ID) and out-of-distribution settings that uses unseen
adsorbates (OOD-Ads), catalysts (OOD-Cat) or both (OOD-Both).

5.1.1 IS2RE Performance (Invariant)
This task evaluates the model’s proficiency in learning invariant representations. We follow the exper-
imental setup of Graphormer-3D [53]. The metric is the Mean Absolute Error (MAE) and the percent-
age of data instances where the predicted energy is within a 0.02 eV threshold (EwT). Due to space lim-
its, the detailed description of training settings and baselines is presented in the appendix. The results
are shown in Table 2. Our GeoMFormer outperforms the compared baselines significantly, achieving
6.1% relative MAE reduction and 42.2% relative EwT improvement than previous best model. The
results indeed demonstrate the effectiveness of our GeoMFormer on learning invariant representations.
Table 2: Results on IS2RE validation set. We report official results of baselines from original paper.

Energy MAE (eV) ↓ EwT (%) ↑
Model ID OOD Ads. OOD Cat. OOD Both Average ID OOD Ads. OOD Cat. OOD Both Average
CGCNN [60] 0.6203 0.7426 0.6001 0.6708 0.6585 3.36 2.11 3.53 2.29 2.82
SchNet [51] 0.6465 0.7074 0.6475 0.6626 0.6660 2.96 2.22 3.03 2.38 2.65
DimeNet++ [15] 0.5636 0.7127 0.5612 0.6492 0.6217 4.25 2.48 4.4 2.56 3.42
GemNet-T [14] 0.5561 0.7342 0.5659 0.6964 0.6382 4.51 2.24 4.37 2.38 3.38
SphereNet [37] 0.5632 0.6682 0.5590 0.6190 0.6024 4.56 2.70 4.59 2.70 3.64
Graphormer-3D [53] 0.4329 0.5850 0.4441 0.5299 0.4980 - - - - -
GNS [46] 0.47 0.51 0.48 0.46 0.4800 - - - - -
Equiformer [35] 0.4156 0.4976 0.4165 0.4344 0.4410 7.47 4.64 7.19 4.84 6.04
GeoMFormer (ours) 0.3883 0.4562 0.4037 0.4083 0.4141 11.26 6.70 9.97 6.42 8.59

5.1.2 IS2RS Performance (Equivariant)
Table 3: Results on IS2RS validation set. All models
follow the direct prediction setting.

ADwT (%) ↑
Model ID OOD Ads OOD Cat OOD Both Average
PaiNN [50] 3.29 2.37 3.10 2.33 2.77
TorchMD-Net [55] 3.32 3.35 2.94 2.89 3.13
Spinconv [54] 5.81 4.88 5.63 4.84 5.29
GemNet-dT [14] 6.87 7.10 6.03 7.08 6.77
GemNet-OC [17] 11.31 12.20 4.40 5.55 8.36
GeoMFormer (ours) 11.45 10.52 9.94 10.78 10.67

We evaluate the model’s ability to perform
equivariant prediction by IS2RS task. The
metric is Average Distance within Threshold
(ADwT) across different thresholds. The
Distance within Threshold is computed as the
percentage of structures with atom position
MAE below the threshold. We re-implement
several competitive baselines under direct
prediction setting. Please refer to the appendix
for detailed settings. From Table 3, we can
see that the IS2RS task under direct prediction
setting is very difficult. The compared baselines consistently achieve low ADwT. Our GeoMFormer
achieves the best, which indeed verifies its superior ability to perform equivariant molecular tasks.
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5.2 PCQM4Mv2 Performance (Invariant)
Table 4: Results on PCQM4Mv2. The evaluation
metric is the Mean Absolute Error (MAE). We
report the official results of baselines. ∗ indicates
the best performance achieved by models with the
same complexity (n denotes the number of atoms).

Model Complexity # param. Valid MAE ↓
MLP-Fingerprint [22]

O(n)

16.1M 0.1735
GINE-VN [4, 18] 13.2M 0.1167
GCN-VN [30, 18] 4.9M 0.1153
GIN-VN [62, 18] 6.7M 0.1083
DeeperGCN-VN [34, 18] 25.5M 0.1021*
TokenGT [29]

O(n2)

48.5M 0.0910
EGT [25] 89.3M 0.0869
GRPE [45] 46.2M 0.0867
Graphormer [64, 53] 47.1M 0.0864
GraphGPS [47] 19.4M 0.0858
GPS++ [42] 44.3M 0.0778
Transformer-M [40] 47.1M 0.0787
GEM-2 [36] O(n3)

32.1M 0.0793
Uni-Mol+ [39] 52.4M 0.0708*
GeoMFormer (ours) O(n2) 54.5M 0.0734*

PCQM4Mv2 is one of the largest quantum
chemical property datasets from the OGB
Large-Scale Challenge ([22]). The task involves
predicting the HOMO-LUMO energy gap of a
molecule’s equilibrium structure, evaluating the
model’s capacity for invariant prediction. This
property holds significance in real applications
such as reactivity. Ground-truth labels are de-
rived from DFT calculations. The total number
of training samples is around 3.37 million.

In a practical setting, the DFT-calculated
equilibrium geometric structure of each training
sample is provided, but only initial structure
is available for each validation sample. In this
regard, we adopt one recent approach (Uni-
Mol+ [39]) to handle this task. During training,
the model receives efficient but inaccurate
RDKit-generated[32] structures as input, and
predicts both the HOMO-LUMO energy gap
and the equilibrium structure by using both
invariant and equivariant representations. After training, the model can be used to predict the HOMO-
LUMO gap target by only using the initial structure, which meets the requirement of the settings.
We compare to various baselines in the leaderboard. More details are presented in the appendix.

From Table 4, our GeoMFormer achieves the lowest MAE among the quadratic models, specifically,
6.7% relative MAE reduction compared to the previous best model. Besides, compared to the
best model Uni-Mol+ [39], our GeoMFormer achieves competitive performance while keeping the
efficiency (O(n2) complexity), which can be more applicable to large molecular systems. Overall,
the results further verify the effectiveness of GeoMFormer on invariant representation learning.

5.3 N-Body Simulation Performance (Equivariant)
Table 5: Results on N-body Sim-
ulation experiment. We report
the official results of baselines.

Model MSE ↓
SE(3) Transformer [13] 0.0244
Tensor Field Network [56] 0.0155
Graph Neural Network [18] 0.0107
Radial Field [31] 0.0104
EGNN [48] 0.0071
GeoMFormer (ours) 0.0047

Simulating dynamical systems consisting of a set of geometric
objects interacting under physical laws is crucial in many appli-
cations, e.g. molecular dynamic simulation. Following [13, 48],
we use a synthetic n-body system simulation task as an extension
of molecular modeling tasks. It requires the model to predict posi-
tions of a set of particles and evaluates the model’s ability for equiv-
ariant predictions. The simulated system consists of 5 particles,
and each carries a positive or negative charge and has an initial po-
sition and velocity. The system adheres to physical rules involving
attractive and repulsive forces. The dataset contains 3000 trajec-
tories for training, and 2000 trajectories for validation and testing respectively. We compare several
competitive baselines following [48]. Detailed descriptions of data generation, training settings, and
baselines can be found in the appendix. The results are shown in Table 5. Our GeoMFormer achieves
the best performance compared to all baselines. In particular, the significant 33.8% MSE reduction
indeed demonstrates the GeoMFormer’s superior ability on learning equivariant representations.

6 Conclusion
In this paper, we propose a general and flexible architecture, called GeoMFormer, for learning
geometric molecular representations. Using the standard Transformer backbone, two streams are
developed for learning invariant and equivariant representations respectively. In particular, the cross-
attention mechanism is used to bridge these two streams, letting each stream leverage contextual
information from the other stream and enhance its representations. This simple yet effective design
significantly boosts both invariant and equivariant modeling. Within the newly proposed framework,
many existing methods can be regarded as special instances, showing the generality of our method.
We conduct extensive experiments covering diverse tasks, data and scales. All the empirical results
show that our GeoMFormer can achieve strong performance in different scenarios. The potential of
our GeoMFormer can be further explored in a broad range of applications in molecular modeling.
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A Implementation Details of GeoMFormer

Layer Normalizations. Being a Transformer-based model, GeoMFormer also adopts the layer
normalization (LN) [2] module for training stability. In the invariant stream, the LN module re-
mains unchanged from the standard design [2, 61]. In particular, we specialized the LN module
as Equ-LN in the equivariant stream to satisfy the geometric constraints. Formally, given the
equivariant representation zEi ∈ R3×d of the atom i, Equ-LN(zEi ) = U(zEi − µ1⊤) ⊙ γ, where
µ = 1

d

∑d
k=1 Z

E
[i,:,k] ∈ R3, γ ∈ Rd is a learnable vector, and U ∈ R3×3 denotes the inverse square

root of the covariance matrix, i.e., U−2 =
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d .

Structural Encodings. We follow [53] to incorporate the 3D structural encoding, which serves
as the bias term in the softmax attention module. In particular, we consider the Euclidean distance
||ri − rj || between atom i and j. The Gaussian Basis Kernel function [49] is used to encode

the interatomic distance, i.e., bk(i,j) = − 1√
2π|σk| exp(−

1
2 (

γ(i,j)||ri−rj ||+β(i,j)−µk

|σk| )2), k = 1, ...,K,
where K is the number of Gaussian Basis kernels. The 3D structural encoding is obtained by
Bij = GELU(b(i,j)W

1
D)W 2

D, where b(i,j) = [b1(i,j); ...; b
K
(i,j)]

⊤, W 1
D ∈ RK×K ,W 2

D ∈ RK×1 are
learnable parameters. γ(i,j), β(i,j) are learnable scalars indexed by the pair of atom types, and µk, σk

are learnable kernel center and learnable scaling factor of the k-th Gaussian Basis Kernel. Denote B
as the matrix form of the 3D distance encoding, whose shape is n× n. Then the attention probability
is calculated by softmax(QK⊤

√
d

+B), where Q and K are the query and key introduced in Section 3.

B Proof of Geometric Constraints

In this section, we provide thorough proof of the aforementioned conditions in Section 4 that satisfy
the geometric constraints. For the sake of convenience, we restate the notations and geometric
constraints here. Formally, let VM denote the space of molecular systems, for each atom i, we
define equivariant representation ϕE and invariant representation ϕI if ∀ g = (t,R) ∈ SE(3),M =
(X, R) ∈ VM, the following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) = ϕE(X, {Rr1, ...,Rrn}) (9a)

ϕE : VM → R3×d, ϕE(X, {r1, ..., rn}) = ϕE(X, {r1 + t, ..., rn + t}) (9b)

ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t}) (9c)

where t ∈ R3,R ∈ R3×3,det(R) = 1 and X ∈ Rn×d denotes the atoms with features, R =
{r1, ..., rn}, ri ∈ R3 denotes the cartesian coordinate of atom i. We present the proof of the General
Design Philosophy (Section B.1) and our GeoMFormer model (Section B.2) respectively.

B.1 Proof of the General Design Philosophy.

Given invariant and equivariant representations ZI,0 ∈ Rn×d,ZE,0 ∈ Rn×3×d at the in-
put, we prove that the update rules shown in Eqn.(4) satisfy the above constraints in proper
conditions. In particular, we first separately study each component of the block, i.e.,
Inv-Self-Attn, Equ-Self-Attn, Inv-Cross-Attn, Equ-Cross-Attn, and then check the properties
of the whole framework.

Invariant Self-Attention. Given invariant representation ZI,l ∈ Rn×d, QI,l = ψI,l
Q (ZI,l),KI,l =

ψI,l
K (ZI,l),VI,l = ψI,l

V (ZI,l), as stated in Section 4.1, where ψI,l : Rn×d → Rn×d is invari-
ant. In this regard, ∀g = (t,R) ∈ SE(3), QI,l,KI,l,VI,l remain unchanged, which means that
Inv-Self-Attn(QI,l,KI,l,VI,l) also remains unchanged. Then the invariance of the output repre-
sentations is preserved.

Equivariant Self-Attention. Given equivariant representation ZE,l ∈ Rn×3×d, QE,l =

ψE,l
Q (ZE,l),KE,l = ψE,l

K (ZE,l),VE,l = ψE,l
V (ZE,l), as stated in Section 4.1, where

13



ψE,l : Rn×3×d → Rn×3×d is equivariant. Besides, the attention score is
modified as αij =

∑d
k=1 Q

E
[i,:,k]K

E
[j,:,k]

⊤, where QE
[i,:,k] ∈ R3 denotes the

k-th dimension of the atom i’s Query. First, we check the rotation equivari-
ance of the Equ-Self-Attn. Given any orthogonal transformation matrix R ∈
R3×3,det(R) = 1, we have

∑d
k=1 Q

E
[i,:,k]R(KE

[j,:,k]R)⊤ =
∑d

k=1 Q
E
[i,:,k]RR⊤KE

[j,:,k]
⊤
=∑d

k=1 Q
E
[i,:,k]K

E
[j,:,k]

⊤
= αij , which preserves the invariance. As ψE,l is equivariant, we

have ψE,l([RZE,l
1 ; , ..., ;RZE,l

n ]) = [RψE,l(ZE,l)1; , ..., ;Rψ
E,l(ZE,l)n]. Since the output equiv-

ariant representation of atom i preserves the equivariance, i.e.,
∑n

j=1
exp(αij)∑n

j′=1
exp(αij′ )

RVE,l
j =

R(
∑n

j=1
exp(αij)∑n

j′=1
exp(αij′ )

VE,l
j ), the rotation equivariance is satisfied. Moreover, since the equiv-

ariant representation ZE,l preserves the translation invariance (Eqn.(9b)), the output equivariant
representation of Equ-Self-Attn naturally satisfies this constraint.

Cross-Attention modules. As stated in Section 4.1, the Query, Key, and Value of
Inv-Cross-Attn are specified as QI_E,l = ψI,l

Q (ZI,l),KI_E,l = ψI_E,l
K (ZI,l,ZE,l),VI_E,l =

ψI_E,l
V (ZI,l,ZE,l), where ψI,l, ψI_E,l are invariant. That is to say, ∀g = (t,R) ∈

SE(3), QI_E,l,KI_E,l,VI_E,l remain unchanged. Then the invariance of its out-
put representations is preserved as in Inv-Self-Attn. On the other hand, the Query,
Key, and Value of Equ-Cross-Attn are specified as QE_I,l = ψE,l

Q (ZE,l),KE_I,l =

ψE_I,l
K (ZE,l,ZI,l),VE_I,l = ψE_I,l

V (ZE,l,ZI,l), where ψE,l, ψE_I,l are equivariant, i.e.,
ψE_I,l([RZE,l

1 ; , ..., ;RZE,l
n ],ZI,l) = [RψE_I,l(ZE,l,ZI,l)1; , ..., ;Rψ

E,l(ZE,l,ZI,l)n] and
ψE,l([RZE,l

1 ; , ..., ;RZE,l
n ]) = [RψE,l(ZE,l)1; , ..., ;Rψ

E,l(ZE,l)n]. As stated in Equ-Self-Attn,
the output equivariant representations of Equ-Cross-Attn preserve the rotation equivariance. Simi-
larly, the translation invariance property is also naturally satisfied.

Feed-Forward Networks. As Inv-FFN and Equ-FFN satisfy the invariance and equivariance
constraints respectively, we can directly obtain that ∀g = (t,R) ∈ SE(3), the output of
Inv-FFN remains unchanged, and the output of Equ-FFN preserves the rotation equivariance,
i.e., Equ-FFN([RZE,l

1 ; , ..., ;RZE,l
n ]) = [REqu-FFN(ZE,l)1; , ..., ;REqu-FFN(ZE,l)n]. The

translation invariance is also naturally preserved by Equ-FFN.

With the above analysis, the update rules stated in Eqn.(4) satisfy the geometric constraints (Eqn.(9a),
Eqn.(9b) and Eqn.(9c)). As our model is composed of stacked blocks, the invariant and equivariant
output representations of the whole model also preserve the constraints.

B.2 Proof of the GeoMFormer

Next, we provide proof of the instantiation of our GeoMFormer in Section 4.2 that satisfies the
geometric constraints. Similarly, we separately check the properties of each component as our
GeoMFormer is composed of stacked GeoMFormer blocks. Once the constraints are satisfied by each
component, the output invariant and equivariant representations of the whole model naturally satisfy
the geometric constraints (Eqn.(9a), Eqn.(9b) and Eqn.(9c)).

Input layer. As stated in Section 4.2, the invariant representation at the input is set as ZI,0 = X,
where Xi ∈ Rd is a learnable embedding vector indexed by the atom i’s type. Since ZI,0 does
not contain any information from R = {r1, ..., rn}, it naturally satisifies the invariance constraint
(Eqn.(9c)). The equivariant representation at the input is set as ZE,0

i = r̂′ig(||r′i||)
⊤ ∈ R3×d, where

r′i denotes the mean-centered position of atom i, i.e., r′i = ri − 1
n

∑n
k=1 rk, r̂′i =

r′i
||r′i||

, and

g : R → Rd is instantiated by the Gaussian Basis Kernel function. First, the translation invariance
constraint (Eqn.(9b)) is satisfied. Given any translation vector t ∈ R3, ri + t− 1

n

∑n
k=1(rk + t) =

ri − 1
n

∑n
k=1 rk, and ZE,0

i remains unchanged. Second, the rotation equivariance (Eqn.(9a)) is
also preserved. Given any orthogonal transformation matrix R ∈ R3×3,det(R) = 1, we have
||Rr′i|| = ||r′i||. With Rri as the input, we have Rri − 1

n

∑n
k=1 Rrk = R(ri − 1

n

∑n
k=1 rk) = Rr′i

and g(||Rr′i||) = g(||r′i||), which means that the rotation equivariance constraint is satisfied.
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Self-Attention modules. For Inv-Self-Attn and Equ-Self-Attn, we use the linear function to
implement both ψI and ψE , i.e., QI = ψI

Q(Z
I) = ZIW I

Q,K
I = ψI

K(ZI) = ZIW I
K ,V

I =

ψI
V (Z

I) = ZIW I
V and QE = ψE

Q(Z
E) = ZEWE

Q ,K
E = ψE

K(ZE) = ZEWE
K ,V

E = ψE
V (Z

E) =

ZEWE
V . It is straightforward that the conditions mentioned in Section B.1 are satisfied. The linear

function keeps the invariance of ZI (Eqn.(9c)) and the rotation equivariance of ZE (Eqn.(9a)), e.g.,
∀R ∈ R3×3,det(R) = 1, (RZE

i )W
E
Q = R(ZE

i W
E
Q ) = RZE

i . Note that the translation invariance
of ZE (Eqn.(9b)) is not changed by the linear function.

Cross-Attention modules. For Inv-Cross-Attn, we use the linear function to implement
ψI
Q, which satisfies the constraints as previously stated. Besides, we instantiate KI_E and

VI_E as KI_E = ψI_E
K (ZI ,ZE) =< ZEW I_E

K,1 ,Z
EW I_E

K,2 >,VI_E = ψI_E
V (ZI ,ZE) =<

ZEW I_E
V,1 ,Z

EW I_E
V,2 >. Here we prove that such instantiation preserve the invariance.

First, given any orthogonal transformation matrix R ∈ R3×3,det(R) = 1, we have
< ([RZE

1 ; ...;RZE
n ])W

I_E
K,1 , ([RZE

1 ; ...;RZE
n ])W

I_E
K,2 >=< ZEW I_E

K,1 ,Z
EW I_E

K,2 >. The
reason is that given X,Y ∈ Rn×3×d, Z =< X,Y >∈ Rn×d, where Z[i,k] = X[i,:,k]

⊤Y[i,:,k] =

X[i,:,k]
⊤R⊤RY[i,:,k] = (RX[i,:,k])

⊤(RY[i,:,k]). The translation invariance of ZE is also preserved.

For Equ-Cross-Attn, we also use the linear function to implement ψE
Q , which satisfies the con-

straints as previously stated. Besides, we instantiate KE_I and VE_I as KE_I = ψE_I
K (ZE ,ZI) =

ZEWE_I
K,1 ⊙ ZIWE_I

K,2 ,V
E_I = ψE_I

V (ZE ,ZI) = ZEWE_I
V,1 ⊙ ZIWE_I

V,2 . First, given any or-
thogonal transformation matrix R ∈ R3×3, we have ([RZE

1 ; ...;RZE
n ])W

E_I
K,1 ⊙ ZIWE_I

K,2 =

[R(ZEWE_I
K,1 ⊙ ZIWE_I

K,2 )1; ...;R(ZEWE_I
K,1 ⊙ ZIWE_I

K,2 )n], which preserves the rotation equiv-
ariance. The reason lies in that given X ∈ Rn×3×d, Y ∈ Rn×d, Zi = RXi ⊙ Yi ∈ R3×d, where
Z[i,:,k] = (RX[i,:,k]) · Y[i,k] = R(X[i,:,k] · Y[i,k]). Additionally, the translation invariance of both
KE_I and VE_I is preserved because of the translation invariance of ZE and ZI . In this way, the
instantiations of cross-attention modules satisfy the geometric constraints.

Feed-Forward Networks. For Inv-FFN(Z′′I) = GELU(Z′′IW I
1 )W

I
2 , the invariance constraint

(Eqn. 9c) is naturally preserved. For Equ-FFN(Z′′E) = (Z′′EWE
1 ⊙ GELU(Z′′IW I

2 ))W
E
3 , the

rotation equivariance constraint is also similarly preserved as in Equ-Cross-Attn. Besides, the
translation invariance of Equ-FFN(Z′′E) is also preserved with the property of Z′′E and Z′′I .

Layer Normalizations. As introduced in Section A, we use the layer normalization modules for
both invariant and equivariant streams. For the invariant stream, the layer normalization remains
unchanged, and the invariance constraint is naturally preserved. For the equivariant stream, given the
equivariant representation zEi ∈ R3×d of the atom i, Equ-LN(zEi ) = U(zEi −µ1⊤)⊙ γ, where µ =
1
d

∑d
k=1 Z

E
[i,:,k] ∈ R3, γ ∈ Rd is a learnable vector, and U ∈ R3×3 denotes the inverse square root of

the covariance matrix, i.e., U−2 =
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d . First, given any orthogonal transformation

matrix R ∈ R3×3,det(R) = 1, (RzE
i −Rµ1⊤)(RzE

i −Rµ1⊤)⊤

d =
(RzE

i −Rµ1⊤)(RzE
i −Rµ1⊤)⊤

d =

R
(zE

i −µ1⊤)(zE
i −µ1⊤)⊤

d R⊤ = RU−2R⊤ = RU−1R⊤RU−1R⊤ = (RUR⊤)−2, then we have
Equ-LN(RzEi ) = RUR⊤(RzEi −Rµ1⊤) ⊙ γ = R(U(zEi − µ1⊤)) = REqu-LN(zEi ), which
preserves the rotation equivariance (Eqn.(9a)). The translation invariance of ZE is also preserved.

Structural Encodings. As introduced in Section A, the structural encodings serve as the bias term
in the softmax attention module. Since only the relative distance ||ri − rj ||,∀i, j ∈ [n] is used, the
invariance constraint is preserved, i.e., given ∀g = (t,R) ∈ SE(3), ||Rri+t−Rrj+t|| = ||ri−rj ||.

C Discussions

C.1 Connections to previous approaches

In this section, we present a detailed discussion of how previous models (PaiNN [50] and TorchMD-
Net [55]) can be viewed as special instantiations by extending the design philosophy described
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in Section 4.1. Without loss of generality, we omit the cutoff conditions used in these works for
readability, which can be naturally included in our framework.

PaiNN [50]. Both invariant representations ZI = [zI1
⊤
; ...; zIn

⊤
] ∈ Rn×d and equivariant represen-

tations ZE = [zE1 ; ...; z
E
n ] ∈ Rn×3×d are maintained in PaiNN, where zIi ∈ Rd and zEi ∈ R3×d are

the invariant and equivariant representations for atom i, respectively. In each layer, the representations
are updated as follows:

Z′I,l = ZI,l +Message-Block-Inv(ZI,l)

Z′E,l
= ZE,l +Message-Block-Equ(ZI,l,ZE,l)

ZI,l+1 = Z′I,l +Update-Block-Inv(Z′I,l,Z′E,l
)

ZE,l+1 = Z′E,l
+Update-Block-Equ(Z′I,l,Z′E,l

)

(10)

In the message block, the invariant and equivariant representations are updated in the following
manner. For brevity, we omit the layer index l.

Message-Block-Inv(zIi ) =
∑
j

ϕs(z
I
j ) ◦Ws(||ri − rj ||)

Message-Block-Equ(zIi , z
E
i ) =

∑
j

zEj ⊙
(
ϕvv(z

I
j ) ◦Wvv(||ri − rj ||)

)
+

ri − rj
||ri − rj ||

(
ϕvs(z

I
j ) ◦W

′
vs(||ri − rj ||)

)⊤
(11)

The scalar product ⊙ is defined the same way as in Section 4.2, i.e., given x ∈ R3×d, y ∈ Rd, z =
x⊙y ∈ R3×d, where z[i,j] = x[i,k]·y[k]. ◦ denotes the element-wise product, ϕs, ϕvv, ϕvs : Rd → Rd

are all 2-layer MLP with the SiLU activation, Ws,Wvv,W ′
vs : R → Rd are instantiated by learnable

radial basis functions. ri−rj
||ri−rj || ∈ R3 denotes the relative direction between atom i’s and j’s positions.

In the update block, the invariant and equivariant representations are updated in the following manner:

Update-Block-Inv(zIi , z
E
i ) = ass(z

I
i , ||zEi V||) + asv(z

I
i , ||zEi V||) ◦ < zEi U, z

E
i V >

Update-Block-Equ(zIi , z
E
i ) = avv(z

I
i , ||zEi V||)⊙ (zEi U)

V,U ∈ Rd×d are learnable parameters. < ·, · > is defined the same way as in Section 4.2, i.e., given
x, y ∈ R3×d, z =< x, y >∈ Rd, where z[k] = x[:,k]

⊤y[:,k]. Norm || · || : R3×d → Rd is calculated
along the spatial dimension, i.e., || · || =< ·, · >. ◦ denotes the element-wise product. ⊙ is also
defined the same as in Section 4.2. a(·, ·) : Rd × Rd → Rd first concatenates the two inputs along
the feature dimension and then apply a 2-layer MLP with SiLU activation.

We prove that both the invariant and equivariant message blocks can be viewed as special instances
by extending the invariant self-attention module and the equivariant cross-attention module of our
framework respectively. In particular, we extend ψI

V , ψ
E_I
V introduced in the Section 4.1 to be query-

dependent, i.e., ψI,i
V , ψE_I,i

V that depends on the atom i’s representations. Concretely, in the invariant
self-attention module, we set ψI, i

V (zIj ) = ϕs(z
I
j )⊙Ws(||ri−rj ||). Similarly, in the equivariant cross-

attention module, we set ψE_I, i
V (zIj , z

E
j ) = zEj ⊙ϕvv(zIj ) ·Wvv(||ri−rj ||)+ϕvs(zIj ) ·W

′

vs
ri−rj

||ri−rj || .
In such way, the invariant self-attention module and the equivariant cross-attention module can express
the invariant and equivariant message blocks respectively, e.g., the parameters to transform Query
and Key are trained/initialized to zero, and the number of atoms can be equipped by initialization,
which is necessary to express the sum operator by using the attention as shown in [64].

Moreover, we prove that the update blocks can also be viewed as special instances by extend-
ing the FFN blocks in our framework. In particular, we set Inv-FFN(zIi ) = ass(z

I
i , ||zEi V||) +

asv(z
I
i , ||zEi V||) < zEi U, z

E
i V > and Equ-FFN(zEi ) = avv(z

I
i , ||zEi V||)

(
zEi U

)
, then both

Inv-FFN and Equ-FFN can express the update blocks. Note that the parameters of the remaining
blocks (Inv-Cross-Attn,Equ-Self-Attn) can be trained/initialized to be zero. In such way, the
PaiNN model can be instantiated through our design philosophy introduced in Section 4.1.

TorchMD-Net [55]. Similarly to PaiNN, both invariant representations ZI = [zI1
⊤
; ...; zIn

⊤
] ∈

Rn×d and equivariant representations ZE = [zE1 ; ...; z
E
n ] ∈ Rn×3×d are maintained in TorchMD-
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Net, where zIi ∈ Rd and zEi ∈ R3×d are the invariant and equivariant representations for atom i,
respectively. In each layer, the representations are updated as follows:

Z′I,l = ZI,l +TorchMD-Inv-Block-1(ZI,l)

ZI,l+1 = Z′I,l +TorchMD-Inv-Block-2(Z′I,l,ZE,l)

ZE,l+1 = ZE,l +TorchMD-Equ-Block(ZI,l,ZE,l)

(12)

The invariant representations in TorchMD-Inv-Block-1 and TorchMD-Inv-Block-2 are updated as
follows. For brevity, we omit the layer index l.

Qi =WQzIi ,Kj =WKzIj ,V
(1)
j =WV (1)zIj

αij = SiLU
(
Q⊤

i

(
Kj ◦DK

ij

))
TorchMD-Inv-Block-1(zIi ) = O1

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)

TorchMD-Inv-Block-2(zIi , z
E
i ) = O2

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)
◦ < zEi U1, z

E
i U2 >

(13)

WQ,WK ,WV (1),U1,U2 ∈ Rd×d are learnable parameters. ◦ denotes the element-wise product.
DK

ij ,D
V (1)
ij : R → Rd takes ||ri − rj || as input and uses radial basis functions followed by a

non-linear activation to transform it. O1, O2 : Rd → Rd are learnable linear transformations. < ·, · >
is defined the same way as in Section 4.2, i.e., given x, y ∈ R3×d, z =< x, y >∈ Rd, where
z[k] = x[:,k]

⊤y[:,k]. On the other hand, the equivariant representations are updated as follows:

V
(2)
j = WV (2)zIj ,V

(3)
j = WV (3)zIj

TorchMD-Equ-Block(zIi , z
E
i ) =

∑
j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri − rj

||ri − rj ||
(V

(3)
j ◦DV (3)

ij )⊤
)

+O3

(∑
j

αij ·V(1)
j ◦DV (1)

ij

)
⊙ zEi U3

(14)

WV (2),WV (3),U3 ∈ Rd×d are learnable parameters. ◦ denotes the element-wise product. ⊙ is
defined the same way as in Section 4.2, i.e., given x ∈ R3×d, y ∈ Rd, z = x ⊙ y ∈ R3×d, where
z[i,j] = x[i,k] · y[k]. DV (2)

ij ,DV (3)

ij : R → Rd takes ||ri − rj || as input and use radial basis functions
followed by a non-linear activation to transform it. O3 : Rd → Rd is a learnable linear transformation.
ri−rj

||ri−rj || ∈ R3 denotes the relative direction between atom i’s and j’s positions.

We prove that the TorchMD-Inv-Block-1 and TorchMD-Inv-Block-2 can be viewed as special
instances by extending the invariant self-attention module and invariant cross-attention module of
our framework respectively. Concretely, in the invariant self-attention module, we set ψI

Q(z
I
i ) =

WQzIi , ψ
I, i
K (zIj ) = WKzIj ◦ DK

ij , ψ
I, i
V (zIj ) = O1

(
WV (1)

zIj ◦DV (1)

ij

)
and use SiLU instead of

Softmax for calculating attention probability. By rewriting TorchMD-Inv-Block-1 in the equivalent
form TorchMD-Inv-Block-1(zIi ) =

∑
j αij ·O1

(
V

(1)
j ◦DV (1)

ij

)
, the invariant self-attention module

can express it by equipping the number of atoms for expressing the sum operation using the attention.

In the invariant cross-attention module, we set ψI
Q(z

I
i ) = WQzIi , ψ

I_E, i
K (zIj , z

E
j ) = WKzIj ◦

DK
ij , ψ

I_E, i
V (zIj , z

E
j ) = O2

(
WV (1)

zIj ◦DV (1)

ij

)
◦ < U1z

E
i , U2z

E
i >, and use SiLU instead of

Softmax for calculating attention probability. By rewriting TorchMD-Inv-Block-2 in the equivalent
form TorchMD-Inv-Block-2(zIi , z

E
i ) =

∑
j αij · O2

(
V

(1)
j ◦DV (1)

ij

)
◦ < U1z

E
i , U2z

E
i >, the

invariant cross-attention module can express it by equipping the number of atoms.

Moreover, we prove that the TorchMD-Equ-Block can be viewed as a special instance by extending
the equivariant cross-attention module of our framework. In particular, we set ψE_I, i

V (zIj , z
E
j ) =

(WV (2)

zIj ◦DV (2)

ij )⊙ zEj +
ri−rj

||ri−rj || (W
V (3)

zIj ◦DV (3)

ij )⊤ + αij ·O3

(
WV (1)

zIj ◦DV (1)

ij

)
⊙ U3z

E
i .
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By rewriting TorchMD-Equ-Block in the equivalent form TorchMD-Equ-Block(zIi , z
E
i ) =∑

j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri−rj

||ri−rj || (V
(3)
j ◦DV (3)

ij )⊤
)
+
∑

j αij ·O3

(
V

(1)
j ◦DV (1)

ij

)
⊙U3z

E
i =∑

j

(
(V

(2)
j ◦DV (2)

ij )⊙ zEj +
ri−rj

||ri−rj || (V
(3)
j ◦DV (3)

ij )⊤ + αij ·O3

(
V

(1)
j ◦DV (1)

ij

)
⊙ U3z

E
i

)
, it is

straightforward that the equivariant cross-attention module can express the TorchMD-Equ-Block,
e.g., the parameters to transform Query and Key are trained/initialized to zero, and the number
of atoms can be equipped by initialization. Note that the parameters of the remaining blocks
(Equ-Self-Attn, Inv-FFN,Equ-FFN) can be trained/initialized to be zero. In such ways, the
TorchMD-Net model can be instantiated through our design philosophy introduced in Section 4.1.

C.2 Extension to other geometric constraints

In this subsection, we showcase how to extend our framework to encode other geometric constraints.
In particular, we consider the E(3) group, which comprises translation, rotation and reflection.
Formally, let VM denote the space of molecular systems, for each atom i, we define equivariant
representation ϕE and invariant representation ϕI if ∀ g = (t,R) ∈ E(3),M = (X, R) ∈ VM, the
following conditions are satisfied:

ϕE : VM → R3×d, RϕE(X, {r1, ..., rn}) + t1⊤ = ϕE(X, {Rr1 + t, ...,Rrn + t}) (15a)

ϕI : VM → Rd, ϕI(X, {r1, ..., rn}) = ϕI(X, {Rr1 + t, ...,Rrn + t}) (15b)

where t ∈ R3 is a translation vector, R ∈ R3×3,det(R) = ±1 is an orthogonal transformation
matrix and X ∈ Rn×d denotes the atoms with features, R = {r1, ..., rn}, ri ∈ R3 denotes the
cartesian coordinate of atom i. In particular, the additional requirement is to encode the translation
and reflection equivariance of the equivariant representations, which can be achieved by modifying
the conditions of our framework (Eqn.(4)).

With the invariant representation ZI and the equivariant representation ZE that satisfy the
constraints (Eqn.(15a) and Eqn.(15b)), we separately redefine the conditions of each com-
ponent. It is worth noting that the reflection invariance is directly satisfied (RR⊤ =
R⊤R = I) from the analysis in Section B.1 and Section B.2, which is required in (1)
the calculation of attention probability in Equ-Self-Attn,Equ-Cross-Attn; (2) the calcula-
tion of KI_E and VI_E . Thus, we only need to encode the translation equivariance con-
straint. Given the update rules (Eqn.(4)), it can be achieved by simply setting each compo-
nent (Inv-Self-Attn, Inv-Cross-Attn,Equ-Self-Attn,Equ-Cross-Attn, Inv-FFN,Equ-FFN) to
be translation-invariant. In this way, the output equivariant representation can preserve the equivari-
ance to the E(3) group. We extend our framework to achieve this goal, which is introduced below:

Self-Attention modules. For Inv-Self-Attn, the condition remains unchanged. For Equ-Self-Attn,
the additional condition is that ψE should keep the translation invariance. Here we give a simple
instantiation: QE = ψE

Q(Z
E) = (ZE − µZE )WE

Q ,K
E = ψE

K(ZE) = (ZE − µZE )WE
K ,V

E =

ψE
V (Z

E) = (ZE − µZE )WE
V , where µZE ,i =

1
d

∑n
k=1 Z

E
[i,:,k]1

⊤.

Cross-Attention modules. For Inv-Cross-Attn, the condition for ψI remains unchanged, while
ψI_E should keep the translation invariance. For Equ-Cross-Attn, both ψE and ψE_I are required
to be translation-invariant. Here we give an instantiation: QE = ψE

Q(Z
E) = (ZE − µZE )WE

Q , and

KI_E =< (ZE − µZE )W I_E
K,1 , (Z

E − µZE )W I_E
K,2 >, VI_E =< (ZE − µZE )W I_E

V,1 , (Z
E − µZE )W I_E

V,2 >

KE_I = (ZE − µZE )WE_I
K,1 ⊙ ZIWE_I

K,2 , VE_I = (ZE − µZE )WE_I
V,1 ⊙ ZIWE_I

V,2

(16)

Feed-Forward Networks. Similarly, the condition for Inv-FFN remains unchanged.
For Equ-FFN, it also should keep the translation invariance, e.g., Equ-FFN(Z′′E) =

((Z′′E − µZE )WE
1 ⊙GELU(Z′′IW I

2 ))W
E
3 .

Remark. With the above additional conditions, our framework can additionally be extended to
encode geometric constraints towards E(3) group. Note that the design of the input layer should also
encode the constraints (Eqn.(15a) and Eqn.(15b)). For example, the invariant representation remains
unchanged as ZI,0 = X. while the equivariant representation can be directly set as ZE,0

i = ri. In
this way, the geometric constraints are well satisfied.
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Table 6: Results on Molecule3D for both random and scaffold splits. Bold values indicate the best.
MAE ↓

Model Random Scaffold
GIN-Virtual [22] 0.1036 0.2371
SchNet [51] 0.0428 0.1511
DimeNet++ [15] 0.0306 0.1214
SphereNet [37] 0.0301 0.1182
ComENet [59] 0.0326 0.1273
PaiNN [50] 0.0311 0.1208
TorchMD-Net [55] 0.0303 0.1196
GeoMFormer (ours) 0.0252 0.1045

D More Experiments

D.1 Molecule3D (Invariant)

Molecule3D [63] is a newly proposed large-scale dataset curated from the PubChemQC project [41,
44]. Each molecule has the DFT-calculated equilibrium geometric structure. The task is to predict
the HOMO-LUMO energy gap, which is the same as PCQM4Mv2. The dataset contains 3,899,647
molecules in total and is split into training, validation, and test sets with the splitting ratio 6 : 2 : 2.
In particular, both random and scaffold splitting methods are adopted to thoroughly evaluate the
in-distribution and out-of-distribution performance of geometric molecular models. Following [59],
we compare our GeoMFormer with several competitive baselines. Detailed descriptions of the
training settings and baselines are presented in the appendix. It can be easily seen from Table 6 that
our GeoMFormer consistently outperforms all baselines on both random and scaffold split settings,
e.g., 16.3% and 11.6% relative MAE reduction compared to the previous best model respectively.

We follow [59] to use several competitive baselines for comparison including GIN-Virtual [22],
SchNet [51], DimeNet++ [15], SphereNet [37] which have already been introduced in previous sec-
tions. ComENet [59] proposed a message-passing layer that operates within the 1-hop neighborhood
of atoms and encoded the rotation angles to fulfill global completeness. We also implement both
PaiNN [50] and TorchMD-Net [55] for comparisons.

Following [59], we evaluate our GeoMFormer model on both random and scaffold splits. Our
GeoMFormer model consists of 12 layers. The dimension of hidden layers and feed-forward layers
is set to 768. The number of attention heads is set to 48. The number of Gaussian Basis kernels is
set to 128. We use AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8 and (β1, β2) to
(0.9,0.999). The gradient clip norm is set to 5.0. The peak learning rate is set to 3e-4. The batch
size is set to 1024. The dropout ratios for the input embeddings, attention matrices, and hidden
representations are set to 0.0, 0.1, and 0.1 respectively. The weight decay is set to 0.0. The model is
trained for 1 million steps with a 60k-step warm-up stage. After the warm-up stage, the learning rate
decays linearly to zero. The model is trained on 16 NVIDIA V100 GPUs.

D.2 MD17 (Invariant + Equivariant)

MD17 [63] consists of molecular dynamics trajectories of several small organic molecules. Each
molecule has its geometric structure along with the corresponding energy and force. The task is
to predict both the energy and force of the molecule’s geometric structure in the current state. To
evaluate the performance of models in a limited data setting, all models are trained on only 1,000
samples from which 50 are used for validation. The remaining data is used for evaluation. For
each molecule, we train a separate model on data samples of this molecule only. We set the model
parameter budget the same as (author?) [55]. Following [55], we compare our GeoMFormer with
several competitive baselines: (1) SchNet [51]; (2) PhysNet [57]; (3) DimeNet [16]; (4) PaiNN [50];
(5) NequIP [3]; (6) TorchMD-Net [55]. The results are presented in Table 7. It can be easily seen that
our GeoMFormer achieves competitive performance on the energy prediction task (5 best and 1 tie
out of 8 molecules) and consistently outperforms the best baselines by a significantly large margin on
the force prediction task, i.e., 30.6% relative force MAE reduction in average.
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Table 7: Results on MD trajectories from the MD17 dataset. Scores are given by the MAE of energy
predictions (kcal/mol) and forces (kcal/mol/Å). NequIP does not provide errors on energy, for PaiNN
we include the results with lower force error out of training only on forces versus on forces and
energy. Benzene corresponds to the dataset originally released in (author?) [7], which is sometimes
left out from the literature. Our results are averaged over three random splits.

Molecule SchNet PhysNet DimeNet PaiNN NequIP TorchMD-Net GeoMFormer

Aspirin energy 0.37 0.230 0.204 0.167 - 0.123 0.118
forces 1.35 0.605 0.499 0.338 0.348 0.253 0.171

Benzene energy 0.08 - 0.078 - - 0.058 0.052
forces 0.31 - 0.187 - 0.187 0.196 0.146

Ethanol energy 0.08 0.059 0.064 0.064 - 0.052 0.047
forces 0.39 0.160 0.230 0.224 0.208 0.109 0.062

Malondialdehyde energy 0.13 0.094 0.104 0.091 - 0.077 0.071
forces 0.66 0.319 0.383 0.319 0.337 0.169 0.133

Naphthalene energy 0.16 0.142 0.122 0.116 - 0.085 0.081
forces 0.58 0.310 0.215 0.077 0.097 0.061 0.040

Salicylic Acid energy 0.20 0.126 0.134 0.116 - 0.093 0.099
forces 0.85 0.337 0.374 0.195 0.238 0.129 0.098

Toluene energy 0.12 0.100 0.102 0.095 - 0.074 0.078
forces 0.57 0.191 0.216 0.094 0.101 0.067 0.041

Uracil energy 0.14 0.108 0.115 0.106 - 0.095 0.095
forces 0.56 0.218 0.301 0.139 0.173 0.095 0.068

Table 8: Impact of the attention modules on GeoMFormer. All other hyperparameters are kept the
same for a fair comparison.

Inv-Self-Attn Inv-Cross-Attn Equ-Self-Attn Equ-Cross-Attn MSE ↓
✓ ✓ ✓ ✓ 0.0047
✗ ✓ ✓ ✓ 0.0051
✓ ✗ ✓ ✓ 0.0051
✓ ✓ ✗ ✓ 0.0056
✓ ✓ ✓ ✗ 0.0054
✗ ✓ ✓ ✗ 0.0054
✓ ✗ ✓ ✗ 0.0057
✗ ✓ ✗ ✓ 0.0055
✓ ✗ ✗ ✓ 0.0057
✗ ✗ ✓ ✗ 0.0059

D.3 Ablation Studies

In this subsection, we conduct comprehensive experiments for ablation studies on each building
component of our GeoMFormer model, including both self-attention and cross-attention mod-
ules (Inv-Self-Attn,Equ-Self-Attn, Inv-Cross-Attn,Equ-Cross-Attn), feed-forward networks
(Inv-FFN,Equ-FFN), layer normalizations (Inv-LN,Equ-LN) and the structural encoding.
Without loss of generality, we conduct the experiments on the N-body Simulation task.

Impact of the attention modules. As stated in Section 4, our GeoMFormer model consists of four
attention modules. We conduct a series of ablation studies to evaluate their contribution to the overall
performance. In particular, we consider all possible ablation configurations that involve ablating
one or more of the four modules. Note that this is an equivariant prediction task, necessitating the
preservation of at least one equivariant attention module. The results are presented in Table 8, which
indicates that all four attention modules consistently contribute to boosting the model’s performance.

Impact of the FFN. We perform ablation studies to ascertain the contribution of both invariant and
equivariant FFN modules to the model’s performance. Specifically, we examine all possible settings
involving the ablation of one or both of the FFN modules. The results are presented in Table 9, which
demonstrates that both FFN modules positively contribute to enhancing performance.

Impact of the LN. We employ invariant and equivariant LN to stabilize training. To investigate
whether the invariant and equivariant LN modules improve performance, we conduct ablation studies
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Table 9: Impact of the FFN
modules on GeoMFormer. All
other hyperparameters are kept
the same for a fair comparison.

Inv-FFN Equ-FFN MSE ↓
✓ ✓ 0.0047
✗ ✓ 0.0049
✓ ✗ 0.0055
✗ ✗ 0.0057

Table 10: Impact of the LN
modules on GeoMFormer. All
other hyperparameters are kept
the same for a fair comparison.

Inv-LN Equ-LN MSE ↓
✓ ✓ 0.0047
✗ ✓ 0.0051
✓ ✗ 0.0077
✗ ✗ 0.0073

Table 11: Impact of structural
encoding on GeoMFormer. All
other hyperparameters are kept
the same for a fair comparison.

Structural Encoding MSE ↓
✓ 0.0047
✗ 0.0072

that encompass all possible settings of ablating one or both LN modules. The results are displayed in
Table 10, demonstrating that both LN modules help to enhance performance.

Impact of the Structural Encoding. We incorporate the structural encoding as a bias term when
calculating attention probability in our GeoMFormer, as described in Section A. We conduct ablation
studies to see if it helps boost performance. Results are shown in Table 11. It can be seen that the
introduction of structural encoding leads to improved performance.

E Experimental Details

E.1 OC20 IS2RE

Baselines. We compare our GeoMFormer with several competitive baselines for learning geometric
molecular representations. Crystal Graph Convolutional Neural Network (CGCNN) [60] developed
novel approaches to modeling periodic crystal systems with diverse features as node embeddings.
SchNet [51] leveraged the interatomic distances encoded via radial basis functions, which serve as
the weights of continuous-filter convolutional layers. DimeNet++ [15] introduced the directional
message passing that encodes both distance and angular information between triplets of atoms.

GemNet [14] embedded all atom pairs within a given cutoff distance based on interatomic directions,
and proposed three forms of interaction to update the directional embeddings: Two-hop geometric
message passing (Q-MP), one-hop geometric message passing (T-MP), and atom self-interactions.
An efficient variant named GemNet-T is proposed to use cheaper forms of interaction.

SphereNet [37] used the spherical coordinate system to represent the relative location of each atom
in the 3D space and proposed the spherical message passing. GNS [46] is a framework for learning
mesh-based simulations using graph neural networks and can handle complex physical systems.
Graphormer-3D [53] extended Graphormer[64] to learn geometric molecular representations, which
encodes the interatomic distance as attention bias terms and performed well on large-scale datasets.
Equiformer [35] uses the tensor product operations to build a new scalable equivariant Transformer
architecture and outperforms strong baselines on the large-scale OC20 dataset [6].

Settings. As introduced in Section 5.1.1, we follow the experimental setup of Graphormer-3D [53]
for a fair comparison. Our GeoMFormer model consists of 12 layers. The dimension of hidden layers
and feed-forward layers is set to 768. The number of attention heads is set to 48. The number of
Gaussian Basis kernels is set to 128. We use AdamW as the optimizer and set the hyper-parameter ϵ
to 1e-6 and (β1, β2) to (0.9,0.98). The gradient clip norm is set to 5.0. The peak learning rate is set
to 2e-4. The batch size is set to 128. The dropout ratios for the input embeddings, attention matrices,
and hidden representations are set to 0.0, 0.1, and 0.0 respectively. The weight decay is set to 0.0.
The model is trained for 1 million steps with a 60k-step warm-up stage. After the warm-up stage,
the learning rate decays linearly to zero. Following (author?) [35], we also use the noisy node data
augmentation strategy [19] to improve the performance. The model is trained on 16 NVIDIA Tesla
V100 GPUs.

E.2 OC20 IS2RS

Baselines. In this experiment, we choose several competitive baselines that perform well on equiv-
ariant prediction tasks for molecules. PaiNN [50] built upon the framework of EGNN [48] to maintain
both invariant and equivariant representations and further used the Hardamard product operation to
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transform the equivariant representations. Specialized tensor prediction blocks were also developed
for different molecular properties. TorchMD-Net [55] developed an equivariant Transformer archi-
tecture by using similar Hardamard product operations and achieved strong performance on various
tasks.

SpinConv [54] encoded angular information with a local reference frame defined by two atoms and
used a spin convolution on the spherical representation to capture rich angular information while
maintaining rotation invariance. An additional prediction head is used to perform the equivariant pre-
diction task, GemNet-dT [14] is a variant of GemNet-T that can directly perform force prediction and
other equivariant tasks, e.g., the relaxed positions in this experiment. GemNet-OC [17] is an extension
of GemNet by using more efficient components and achieved better performance on OC20 tasks.

Settings. As introduced in Section 5.1.2, we adopt the direct prediction setting for comparing the
ability to perform equivariant prediction tasks on OC20 IS2RS. In particular, we re-implemented the
baselines and carefully trained these models for a fair comparison. Our GeoMFormer model consists
of 12 layers. The dimension of hidden layers and feed-forward layers is set to 768. The number of
attention heads is set to 48. The number of Gaussian Basis kernels is set to 128. We use AdamW
as the optimizer and set the hyper-parameter ϵ to 1e-6 and (β1, β2) to (0.9,0.98). The gradient clip
norm is set to 5.0. The peak learning rate is set to 2e-4. The batch size is set to 64. The dropout
ratios for the input embeddings, attention matrices, and hidden representations are set to 0.0, 0.1,
and 0.0 respectively. The weight decay is set to 0.0. The model is trained for 1 million steps with
a 60k-step warm-up stage. After the warm-up stage, the learning rate decays linearly to zero. The
model is trained on 16 NVIDIA Tesla V100 GPUs.

E.3 PCQM4Mv2

Baselines. We compare our GeoMFormer with several competitive baselines from the leaderboard
of OGB Large-Scale Challenge [22]. First, we compare several message-passing neural network
(MPNN) variants. Two widely used models, GCN [30] and GIN [62] are compared along with their
variants with virtual node (VN) [18, 23]. Besides, we compare GINE-VN [4] and DeeperGCN-VN [34].
GINE is the multi-hop version of GIN. DeeperGCN is a 12-layer GNN model with carefully designed
aggregators. The result of MLP-Fingerprint [22] is also reported. The complexity of these models is
generally O(n), where n denotes the number of atoms.

Additionally, we compare with several Graph Transformer models, whose computational complexity
is O(n2). TokenGT [29] purely used node and edge representations as the input and adopted the
standard Transformer architecture without graph-specific modifications. EGT [25] used global self-
attention as an aggregation mechanism and utilized edge channels to capture structural information.
GRPE [45] considered both node-spatial and node-edge relations and proposed a graph-specific
relative positional encoding. Graphormer [64] developed graph structural encodings and integrated
them into a standard Transformer model, which achieved impressive performance across several
world competitions [65, 53]. GraphGPS [47] proposed a framework to integrate the positional and
structural encodings, local message-passing mechanism, and global attention mechanism into the
Transformer model. All these models are designed to learn 2D molecular representations.

There also exist several models capable of utilizing the 3D geometric structure information in the
training set of PCQM4Mv2. Transformer-M [40] is a Transformer-based Molecular model that can
take molecular data of 2D or 3D formats as input and learn molecular representations, which was
widely adopted by the winners of the 2nd OGB Large-Scale Challenge. GPS++ [42] is a hybrid
MPNN and Transformer model built on the GraphGPS framework [47]. It follows Transformer-M to
utilize 3D atom positions and auxiliary tasks to win first place in the large-scale challenge.

Last, we include two complex models with O(n3) complexity. GEM-2 [36] used multiple branches
to encode the full-range interactions between many-body objects and designed an axial attention
mechanism to efficiently approximate the interaction with low computational cost. Uni-Mol+ [39]
proposed an iterative prediction framework to achieve accurate quantum property prediction. It first
generated 3D geometric structures from the 2D molecular graph using fast yet inaccurate methods,
e.g., RDKit [32]. Given the inaccurate 3D structure as the input, the model is required to predict
the equilibrium structure in an iterative manner. The predicted equilibrium structure is used to
predict the quantum property. Uni-Mol+ simultaneously maintain both atom representations and pair
representations, which induce the triplet complexity when updating the pair representations. With the
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carefully designed training strategy, Uni-Mol+ achieves state-of-the-art performance on PCQM4Mv2
while yielding high computational costs.

Settings. As previously stated, DFT-calculated equilibrium geometric structures are provided for
molecules in the training set. The molecules in the validation set do not have such information. We
follow Uni-Mol+ [39] to train our GeoMFormer. In particular, our model takes the RDKit-generated
geometric structures as the input and is required to predict both the HOMO-LUMO energy gap and
the equilibrium structure by leveraging invariant and equivariant representations respectively. After
training, the model is able to predict the HOMO-LUMO gap using the RDKit-generated geometric
structures. We refer the readers to Uni-Mol+ [39] for more details on the training strategies.

Our GeoMFormer model consists of 8 layers. The dimension of hidden layers and feed-forward
layers is set to 512. The number of attention heads is set to 32. The number of Gaussian Basis
kernels is set to 128. We use AdamW as the optimizer, and set the hyper-parameter ϵ to 1e-8 and
(β1, β2) to (0.9,0.999). The gradient clip norm is set to 5.0. The peak learning rate is set to 2e-4. The
batch size is set to 1024. The dropout ratios for the input embeddings, attention matrices, and hidden
representations are set to 0.0, 0.1, and 0.1 respectively. The weight decay is set to 0.0. The model is
trained for 1.5 million steps with a 150k-step warm-up stage. After the warm-up stage, the learning
rate decays linearly to zero. Other hyper-parameters are kept the same as the Uni-Mol+ for a fair
comparison. The model is trained on 16 NVIDIA Tesla V100 GPUs.

E.4 N-Body Simulation

Baselines. Following [48], we choose several competitive baselines for comparison. Radial
Field [31] developed theoretical tools for constructing equivariant flows and can be used to per-
form equivariant prediction tasks. Tensor Field Network [56] embedded the position of an object in
the Cartesian space into higher-order representations via products between learnable radial functions
and spherical harmonics. In SE(3)-Transformer [13], the standard attention mechanism was adapted
to equivariant features using operations in the Tensor Field Network model. EGNN [48] proposed a
simple framework. Its invariant representations encode type information and relative distance, and
are further used in vector scaling functions to transform the equivariant representations.

Settings. The input of the model includes initial positions p0 = {p0
1, . . . ,p

0
5} ∈ R5×3 of

five objects, and their initial velocities v0 = {v0
1, . . . ,v

0
5} ∈ R5×3 and respective charges

c = {c1, . . . , c5} ∈ { − 1, 1}5. We encode positions and velocities via separate equivariant streams,
and updated them with separate invariant representations via cross-attention modules. The equivariant
prediction is based on both equivariant representations.

We follow the settings in [48] for a fair comparison. Our GeoMFormer model consists of 4 layers.
The dimension of hidden layers and feed-forward layers is set to 80. The number of attention heads
is set to 8. The number of Gaussian Basis kernels is set to 64. We use Adam as the optimizer, and
set the hyper-parameter ϵ to 1e-8 and (β1, β2) to (0.9,0.999). The learning rate is fixed to 3e-4. The
batch size is set to 100. The dropout ratios for the input embeddings, attention matrices, activation
functions, and hidden representations are all set to 0.4, and the drop path probability is set to 0.4. The
model is trained for 10,000 epochs. The number of training samples is set to 3.000. The model is
trained on 1 NVIDIA V100 GPUs.

F Broader Impacts and Limitations

This work newly proposes a general framework to learn geometric molecular representations, which
has great significance in molecular modeling. Our model has demonstrated considerable positive
potential for various physical and chemical applications, such as catalyst discovery and optimization,
which can significantly contribute to the advancement of renewable energy processes. However,
it is essential to acknowledge the potential negative impacts including the development of toxic drugs
and materials. Thus, stringent measures should be implemented to mitigate these risks.

There also exist some limitations to our work. Serving as a general architecture, the ability to scale up
both the model and dataset sizes is of considerable interest to the community, which has been partially
explored in our extensive experiment. Additionally, our model can also be extended to encompass
additional downstream invariant and equivariant tasks, which we have earmarked for future research.
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