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ABSTRACT

Weak-to-strong generalization provides a promising paradigm for scaling large
language models (LLMs) by training stronger models on samples from aligned
weaker ones, without requiring human feedback or explicit reward modeling. How-
ever, its robustness and generalization are hindered by the noise and biases in
weak-model outputs, which limit its applicability in practice. To address this chal-
lenge, we leverage implicit rewards, which approximate explicit rewards through
log-likelihood ratios, and reveal their structural equivalence with Contrastive De-
coding (CD), a decoding strategy shown to reduce noise in LLM generation.
Building on this connection, we propose Contrastive Weak-to-Strong Gen-
eralization (ConG), a framework that employs contrastive decoding between
pre- and post-alignment weak models to generate higher-quality samples. This
approach enables more reliable capability transfer, denoising, and improved ro-
bustness, substantially mitigating the limitations of traditional weak-to-strong
methods. Empirical results across different model families confirm consistent
improvements, demonstrating the generality and effectiveness of ConG. Taken
together, our findings highlight the potential of ConG to advance weak-to-strong
generalization and provide a promising pathway toward AGI. Our code is available
at: https://anonymous.4open.science/r/ConG/

1 INTRODUCTION

Weak-to-strong generalization has emerged as a promising paradigm for scaling the capabilities of
large language models (LLMs) (Burns et al., 2024; Yao et al., 2025; Li et al., 2025; Somerstep et al.,
2025; Zhou et al., 2024b). By leveraging supervised samples generated from an aligned weaker
model, a stronger model can be directly trained without requiring additional reward modeling or
human feedback (Burns et al., 2024; Ouyang et al., 2022; Lee et al., 2024). This enables LLMs to
transfer and extend capabilities to even stronger models, providing opportunities for self-enhancement
and thus offering a potential pathway toward Artificial General Intelligence (AGI) (Goertzel, 2014).

Despite encouraging progress, the paradigm suffers from poor robustness and limited generalization
(Yao et al., 2025; Yang et al., 2025). We attribute this to the inherent biases and preferences embedded
in the weaker model: the samples it generates often contain noise and are of relatively low quality.
As a result, the stronger model fails to generalize reliably, thereby restricting the applicability of
weak-to-strong methods (Lyu et al., 2025). This raises a central research question: How can we
extract higher-quality samples from weak models, without relying on explicit rewards (e.g., human
feedback or reward models), to achieve more effective weak-to-strong generalization?

Recent success of implicit rewards in preference alignment and reasoning enhancement motivates
our approach (Yuan et al., 2024; Cui et al., 2025). Specifically, implicit reward parameterizes the
reward as the log-likelihood ratio between outputs from the post-alignment and pre-alignment models,
and prior work has shown it to be an unbiased approximation of explicit reward (Rafailov et al.,
2023). This suggests that implicit reward can serve as a reliable signal for assessing sample quality.
Moreover, we observe that its log-ratio structure closely matches the form of Contrastive Decoding
(CD), a recently proposed decoding strategy proven to mitigate noise in LLM generation (Li et al.,
2023). This structural consistency implies that the CD process can be interpreted as generating
responses that maximize implicit reward. We formalize this conclusion as the CD–Implicit Reward
Equivalence. Empirically, Figure 1(b) shows a strong linear correlation between implicit and explicit
rewards, with CD-generated samples concentrating in the high implicit-reward region, consistent
with this equivalence.
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Figure 1: Overview of our proposed ConG. (a) Paradigm illustration comparing traditional weak-to-
strong methods with ConG. (b) Scatter plot showing the correlation between implicit and explicit
rewards, together with a comparison of sample rewards from naive sampling and contrastive decoding.
(c) Radar chart comparing weak-to-strong methods on AlpacaEval2 (AE) and Arena-Hard (AH);
metrics with underlines denote Qwen2.5-7B-Instruct, while those without underlines correspond to
Llama3-8B-Instruct. Best viewed in color.

The CD–Implicit Reward Equivalence provides a practical pathway for generating higher-quality
samples from weak models to train stronger ones, enabling weak-to-strong generalization with
reduced noise risk. As illustrated in Figure 1(a), instead of directly using samples generated by the
aligned weak model, we employ contrastive decoding between the pre-alignment and post-alignment
weak models to generate training samples for the strong model. Theoretically, samples obtained
via contrastive decoding preserve the full signal of target preferences and approximately maximize
implicit reward, thereby supporting effective weak-to-strong generalization. We refer to this simple
yet effect paradigm as Contrastive Weak-to-Strong Generalization (ConG). In addition to weak-to-
strong generalization, ConG can naturally reduce to self-alignment when the weak and strong models
are instantiated as the same model, further broadening its applicability.

We evaluate our approach on two mainstream LLM families—Qwen2.5 (Yang et al., 2024) and Llama3
(Dubey et al., 2024). All models are trained for both weak-to-strong alignment and self-alignment
using the UltraFeedback dataset (Cui et al., 2024), and evaluated on AlpacaEval2 (Dubois et al.,
2024) and Arena-Hard (Li et al., 2024). Experimental results demonstrate that ConG consistently
and significantly outperforms traditional weak-to-strong methods across all models. On average, it
yields a gain of about 16.5% over the base model, as shown in Figure 1(c). These results confirm the
generality of ConG across different alignment scenarios and highlight its ability to improve capability
transfer, denoising, and robustness, offering a promising pathway toward AGI. The remainder of
this paper is organized as follows: Section 3 presents the proof of CD–Implicit Reward Equivalence,
Section 4 introduces the detailed formulation of ConG, and Section 5 provides empirical validation.

2 PRELIMINARY

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

In preference alignment, the training dataset D = {(x, yw, yl)} consists of prompts x paired with two
candidate responses, where yw ≻ yl | x indicates that yw is preferred over yl. A common assumption
is that preferences follow the Bradley–Terry model (Bradley & Terry, 1952), in which the probability
of preferring yw over yl is proportional to the exponentiated reward. Under this assumption, a reward
model rθ(x, y) is trained by maximizing the pairwise log-likelihood:

LRM(rθ) = −E(x,yw,yl)∼D
[
log σ

(
rθ(x, yw)− rθ(x, yl)

)]
, (1)

where σ(·) denotes the sigmoid function. Once the reward model is trained, the language model is
treated as a policy πθ(y | x) and optimized to maximize the expected reward while remaining close
to a reference policy πref :

max
πθ

Ex∼D, y∼πθ(·|x)
[
rθ(x, y)

]
− βKL(πθ(· | x) ∥πref(· | x)) , (2)
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where β > 0 controls the regularization strength. This objective is typically optimized using Proximal
Policy Optimization (PPO) (Schulman et al., 2017; Ouyang et al., 2022; Christiano et al., 2017).

2.2 DIRECT PREFERENCE OPTIMIZATION (DPO)

Direct Preference Optimization (DPO) (Rafailov et al., 2023) provides a stable, scalable alternative
to RLHF by directly optimizing the policy from preference comparisons, without an explicit reward
model or on-policy sampling. DPO can be derived by reparameterizing the reward function r(x, y)
through the closed-form solution to the KL-regularized reward maximization problem:

r(x, y) = β log
πr(y | x)
πref(y | x)

+ β logZ(x), (3)

where πr is the aligned policy, πref is the reference policy, and Z(x) is a partition function independent
of y. The corresponding implicit reward for a trainable policy πθ is

r̂(x, y) = β log
πθ(y | x)
πref(y | x)

. (4)

Given the preference dataset D = {(x, yw, yl)} (with yw ≻ yl | x), substituting r̂ into the pairwise
likelihood yields the DPO loss:

LDPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
r̂(x, yw)− r̂(x, yl)

)]
. (5)

3 CD–IMPLICIT REWARD EQUIVALENCE

In this section, we begin by discussing how language models can be interpreted as implicit rewards
that capture preferences (Section 3.1). Building on this foundation, Section 3.2 demonstrates that the
formulation of implicit rewards is mathematically consistent with contrastive decoding, leading to
the formalization of the CD–Implicit Reward Equivalence. Finally, Section 3.3 presents empirical
evidence showing that contrastive decoding outputs inherently encode preference information and
provide higher-quality supervision signals, thereby laying the foundation for the weak-to-strong
generalization method introduced in the next section.

3.1 LANGUAGE MODELS AS REWARD FUNCTIONS

As defined in Eqn. 4, the implicit reward r̂(x, y) can be expressed as the difference in log-probabilities
between the aligned policy πr and the reference policy πref. By factorizing the log-probability at the
token level (Zhou et al., 2024b), we obtain:

r̂(x, y) = β

|y|∑
t=1

[log πθ(yt | x, y<t)− log πref(yt | x, y<t)] , (6)

where y<t denotes the prefix of the first t− 1 tokens of y, and yt denotes the token at position t. This
token-level decomposition shows that the implicit reward can be viewed as the sum of per-token
log-probability differences between the aligned policy πr and the reference policy πref. In practice,
this token-level implicit reward serves as a dense, model-based proxy for the explicit reward r(x, y)
provided by a trained reward model, enabling preference estimation directly from model behavior
without additional annotation.

3.2 CONNECTION BETWEEN CONTRASTIVE DECODING AND IMPLICIT REWARD

As shown in Section 3.1, the token-level implicit reward measures the relative preference between two
policies πr and πref via the per-token log-probability difference. This formulation is mathematically
consistent with the inference-time decoding strategy–contrastive decoding (Li et al., 2023), which
generates tokens by comparing their probability distribution under πr and πref.

At each decoding step t, contrastive decoding defines the next-token distribution as:
pα(yt | x, y<t) = softmax

(
F(yt)

)
,

F(yt) =

{
(1− α) log πr(yt|x,y<t)

πref(yt|x,y<t)
+ α log πr(yt | x, y<t), if yt ∈ Vhead,

−∞, otherwise,

(7)
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Figure 2: Performance comparison of contrastive decoding with different contrastive coefficients
α for Llama3.2-3B-Instruct (top row) and Qwen2.5-3B-Instruct (bottom row). (a,d) Relationship
between α and implicit/explicit rewards. (b,e) Relationship between α and response length. (c,f)
Win-rate matrices showing the proportion of cases where row α outperforms column α.

where α ∈ [0, 1] (contrastive coefficient) controls the relative weight of the contrastive term. Smaller
α increases the influence of the probability gap, biasing the model toward higher-implicit-reward
tokens, while α = 1 reduces to standard decoding under πr.

The candidate set Vhead is obtained via vocabulary pruning:

Vhead(x, y<t) =
{
yt ∈ X : πr(yt | x, y<t) ≥ λ ·max

w
πr(w | x, y<t)

}
, (8)

where λ ∈ [0, 1] is the threshold. If the predicted probability of a token under πr is far smaller than
the top candidate in the same decoding step, it is unlikely to be a reasonable prediction; thus, such
tokens are excluded from Vhead by setting their logits to −∞ in Eqn. 7.

Comparing Eqn. 7 with the token-level implicit reward in Eqn. 4 shows that the contrastive term
log πr(yt|x,y<t)

πref(yt|x,y<t)
is exactly the implicit reward up to a scaling factor (1 − α). Therefore, under

the contrastive decoding distribution pα, the decoding objective is to find y∗ that approximately
maximizes the implicit reward, as follows:

y∗ = argmax
y

|y|∑
t=1

[
(1− α) log

πr(yt | x, y<t)

πref(yt | x, y<t)
+ α log πr(yt | x, y<t)

]
. (9)

Based on this derivation, samples generated with contrastive decoding are expected to have higher
implicit rewards than standard decoding, and α offers a direct control over the implicit reward level
by adjusting the weight of the contrastive term (see Appendix D for a detailed proof). We formalize
this conclusion as the CD–Implicit Reward Equivalence.

3.3 EMPIRICAL ANALYSIS

In Section 3.2, we established the theoretical correspondence between contrastive decoding and
implicit rewards. We empirically examine this connection by varying the contrastive coefficient α
and analyzing its effect on both rewards and generation behavior.

We first consider how α influences the implicit and explicit rewards. The results, summarized in
Figure 2 (a) and Figure 2 (d), reveal a clear pattern: implicit reward decreases monotonically with
increasing α, consistent with our theoretical prediction, while explicit reward remains relatively high
for α ∈ [0, 0.5] before dropping sharply once α > 0.5. This suggests that smaller α values preserve
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more preference information from πr, whereas larger values overemphasize the contrastive term and
deteriorate overall generation quality.

To ensure that these differences are not confounded by superficial factors such as response length, we
analyze the length distributions across α in Figure 2 (b) and Figure 2 (e). The distributions remain
stable regardless of α, indicating that the observed performance variation arises from content quality
rather than response length bias.

Finally, the relative performance across different α settings is captured by the win-rate matrices
in Figure 2 (c) and Figure 2 (f). Generations with α ∈ [0, 0.5] consistently outperform those with
α ∈ [0.6, 1.0], reinforcing the observation that moderate contrastive strength leads to higher-quality
outputs. Taken together, these results provide strong empirical support for our theoretical analysis,
highlighting the critical role of α in balancing reward alignment and generation robustness.

4 CONTRASTIVE WEAK-TO-STRONG GENERALIZATION (CONG)

Building on the CD–Implicit Reward Equivalence established in Section 3.3, we introduce Contrastive
Weak-to-Strong Generalization (ConG). The central idea is to leverage contrastive decoding (CD)
to extract higher-quality responses from weak models, and use them to drive the generalization of
stronger models. ConG consists of two stages: (i) ConG-S, which employs CD responses for SFT
to provide a high-reward initialization, and (ii) ConG, which further strengthens weak-to-strong
generalization with DPO.

Stage I: ConG-S (Contrastive Decoding for SFT). Let πw
r denote the post-alignment weak model

and πw
ref the pre-alignment weak model. For each prompt x ∈ X , we instantiate contrastive decoding

with the weak models to obtain the decoding distribution

pwα(yt | x, y<t) = softmax
(
Fw(yt)

)
,

Fw(yt) =

(1− α) log
πw
r (yt | x, y<t)

πw
ref(yt | x, y<t)

+ α log πw
r (yt | x, y<t), if yt ∈ Vhead,

−∞, otherwise,

(10)

with α ∈ [0, 1] and Vhead defined in Eqn. 8. Decoding under pwα yields a chosen sample yw for each
x, forming DSFT = {(x, yw)}. Let πs

ref be the initial strong model; we obtain πs
SFT by minimizing

the standard SFT loss on chosen samples:

LSFT(π
s
θ) = −E(x,yw)∼DSFT

[log πs
θ(yw | x)] . (11)

This stage moves the strong model’s policy toward the CD–induced preference distribution, providing
a high-reward starting point for preference optimization.

Stage II: ConG (Generalization with DPO). After SFT, we further refine the strong model using
DPO. For each prompt x, we sample an additional response yl from πs

SFT under standard decoding
and pair it with the corresponding CD response yw. This construction is justified by two factors: (i)
CD responses approximate maximizers of implicit reward (Eqn. 9), so in expectation their implicit
reward satisfies r̂w > r̂l (see Appendix D for a detailed proof). (ii) since πs

SFT has been trained on
yw, the distributions of yw and yl are well matched, ensuring that their comparison isolates reward
differences rather than distributional shifts. We then optimize the strong model with the DPO loss,
taking πs

SFT as the reference policy:

LDPO(π
s
θ) = −E(x,yw,yl)∼DDPO

[
log σ

(
β log

πs
θ(yw | x)

πs
SFT(yw | x)

− β log
πs
θ(yl | x)

πs
SFT(yl | x)

)]
, (12)

where β > 0 controls preference sharpness and σ(·) denotes the logistic function. This stage exploits
the reward gap r̂w > r̂l while maintaining distributional consistency, thereby pushing the strong
model toward more reliable and robust generalization.

Together, ConG-S and ConG constitute our framework for contrastive weak-to-strong generalization.
A detailed algorithmic description is provided in Appendix B. Notably, when πw

ref = πs
ref , ConG

naturally reduces to a form of self-alignment.

5
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Table 1: Main results on AlpacaEval2 and Arena-Hard. “Base” denotes the reference model
without additional alignment. “WR” denotes the raw win rate, “LC” the length-controlled win rate,
“SC” the style-controlled win rate, and “Avg.” the average score across benchmarks. Best results are
highlighted in bold and second-best are underlined.

Qwen2.5-3B-Instruct (Weak) Llama3.2-3B-Instruct (Weak)

Method AlpacaEval 2 Arena-Hard Avg. AlpacaEval 2 Arena-Hard Avg.

LC WR SC WR LC WR SC WR

Base 13.8±0.3 14.3±1.5 30.5±2.3 33.8±2.7 22.8 20.2±0.4 23.8±1.4 22.6±2.2 20.2±2.6 21.8

DPO 29.4±0.4 34.9±1.5 42.4±2.5 44.3±2.7 37.8 31.4±0.3 34.8±1.7 29.8±2.1 29.3±2.4 29.6
ORPO 22.7±0.2 26.3±1.4 34.5±2.1 38.0±2.8 30.4 27.7±0.5 30.1±1.5 24.7±2.4 25.5±2.2 25.8
SimPO 34.1±0.3 35.9±1.3 45.7±2.8 50.1±2.9 41.5 34.0±0.4 36.9±1.4 32.0±2.5 31.2±2.3 33.5
ConG-S (self) 33.3±0.4 37.7±1.7 46.6±2.3 51.8±2.7 42.4 30.9±0.3 33.0±1.6 33.3±2.8 31.6±2.2 32.2
ConG (self) 35.9±0.5 43.3±1.6 49.2±2.4 53.5±2.9 45.5 34.7±0.2 37.8±1.3 33.3±2.5 32.6±2.8 34.6

Qwen2.5-7B-Instruct (Strong) Llama3-8B-Instruct (Strong)

Method AlpacaEval 2 Arena-Hard Avg. AlpacaEval 2 Arena-Hard Avg.

LC WR SC WR LC WR SC WR

Base 32.3±0.4 30.2±1.5 38.3±2.2 40.1±2.8 35.2 28.1±0.3 28.1±1.3 24.7±2.5 25.2±2.7 26.5

Weak SFT 17.8±0.3 17.2±1.4 27.4±2.6 31.3±2.7 23.4 13.7±0.4 14.8±1.6 14.1±2.8 13.8±2.5 14.1
AuxConf 21.2±0.2 20.7±1.3 27.2±2.4 32.1±2.6 25.3 16.7±0.5 19.5±1.7 14.3±2.3 13.5±2.6 16.0
WSPO 18.6±0.3 21.0±1.2 29.1±2.2 33.7±2.9 25.6 17.3±0.4 19.8±1.6 18.5±2.1 16.9±2.4 18.1
ConG-S (w→s) 38.7±0.5 43.1±1.7 52.4±2.5 57.8±2.9 48.0 33.7±0.2 34.3±1.4 39.6±2.3 39.2±2.8 36.7
ConG (w→s) 43.0±0.4 51.9±1.6 54.5±2.6 61.2±2.7 52.7 38.3±0.3 41.2±1.5 43.6±2.2 43.3±2.9 41.6

5 EXPERIMENTS

In this section, we conduct extensive experiments to address the following research questions:

• RQ1: How does our proposed ConG-S and ConG perform compared to baseline approaches in
both weak-to-strong alignment and self-alignment settings?

• RQ2: How does the effectiveness of ConG-S and ConG in weak-to-strong alignment vary with
different capability gaps between the weak and strong models?

• RQ3: How does the contrastive coefficient α influence the performance of ConG-S and ConG in
weak-to-strong alignment?

• RQ4: How do ConG-S and ConG affect downstream evaluations, and to what extent do they
preserve the model’s general capabilities without degradation?

5.1 EXPERIMENTAL SETUP

In this subsection, we summarize the base models, dataset, evaluation benchmarks and baseline
methods used in our experiments. Further details and additional experiments are provided in Appendix
C and Appendix E.

Base Models and Dataset. We conduct experiments on two widely used model families: Qwen2.5
(Yang et al., 2024) and Llama3 (Dubey et al., 2024). For weak-to-strong alignment, we follow
prior works (Zhu et al., 2025; Lyu et al., 2025) and select the smaller-parameter models within each
family, Qwen2.5-3B-Instruct and Llama3.2-3B-Instruct, as the reference weak models πweak

ref , and the
larger-parameter counterparts, Qwen2.5-7B-Instruct and Llama3-8B-Instruct, as the reference strong
models πstrong

ref . We further construct the aligned weak model πweak
r by fine-tuning each reference

weak model with DPO, which is then used to facilitate contrastive decoding and provide chosen
samples. For preference alignment data, we adopt the UltraFeedback dataset (Cui et al., 2024). To
construct pairwise supervision for DPO training, we employ a reward model, ArmoRM-Llama3-8B-
v0.1 (Wang et al., 2024), to rank the self-generated samples from the reference weak models and
generate pairwise annotations.

6
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Figure 3: Performance of contrastive weak-to-strong generalization. (a) and (b) Results across
different weak–strong model combinations for Qwen2.5 (top) and Llama3 (bottom). (c) and (d)
Effect of contrastive coefficient α on alignment performance, with error bars indicating standard
errors. “Base” refers to the unaligned reference model.

Evaluation Benchmarks and Baselines. We evaluate our method on two widely used instruction-
following benchmarks, AlpacaEval2 (Dubois et al., 2024) and Arena-Hard (Li et al., 2024). For
AlpacaEval2, we report both the length-controlled win rate (LC) and the raw win rate (WR). For
Arena-Hard, we report the win rate (WR) and the style-controlled win rate (SC). For baselines, we
adopt different experimental settings for weak and strong models. For weak models, we evaluate our
method in the self-alignment setting (ConG-S (self) and ConG (self)) against preference optimization
algorithms, including DPO (Rafailov et al., 2023), ORPO (Hong et al., 2024), and SimPO (Meng
et al., 2024). For strong models, we focus on the weak-to-strong alignment setting, where supervision
signals must come from the weak model for fairness. We therefore evaluate our method (ConG-S
(w→s) and ConG (w→s)) against established weak-to-strong approaches: Weak SFT (Burns et al.,
2024), which directly fine-tunes the strong model on weak-model outputs; AuxConf (Burns et al.,
2024), a variant of Weak SFT with an auxiliary confidence loss; and WSPO (Zhu et al., 2025).

5.2 WEAK-TO-STRONG ALIGNMENT RESULTS (RQ1)

We first evaluate the effectiveness of our method in both the self-alignment and weak-to-strong
alignment settings. Specifically, we use Qwen2.5-3B-Instruct and Llama3.2-3B-Instruct as weak
models to improve the performance of the Qwen2.5-7B-Instruct and Llama3-8B-Instruct strong
models, respectively. The results are summarized in Table 1, from which we find that:

• Obs 1: In the self-alignment setting, our method significantly improves over existing pref-
erence optimization baselines. Specifically, ConG-S (self) and ConG (self) achieve average
improvements of about 15.0% and 17.8%, respectively, compared to reference. This highlights
that contrastive decoding outputs from models indeed provide higher-quality supervision signals.

• Obs 2: In the weak-to-strong setting, our method achieves substantial improvements over
the base models. Specifically, ConG-S (w→s) and ConG (w→s) improve the average scores
by around 11.5% and 16.3%, respectively. These results demonstrate that contrastive decoding
effectively transfers preference information from weak to strong models, leading to stronger
alignment. Notably, other baselines even degrade performance relative to the base models.

5.3 EFFECT OF MODEL CAPABILITY GAP (RQ2)

From the results in Table 1, we observe that our method yields larger gains in self-alignment than in
weak-to-strong alignment. This raises the question of whether the capability gap between weak and
strong models affects the improvement. Based on the experiments across different model transitions,
the results in Figure 3 (a) and (b) lead to the following observations:

7
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Table 2: Downstream task results on Qwen2.5-7B-Instruct and Llama3-8B-Instruct. Differences
relative to the Base are shown in parentheses. Improvements are marked in red, decreases in blue.

Method ARC_E ARC_C TruthfulQA MMLU MathQA HellaSwag GSM8K

Qwen2.5-7B-Instruct

Base 81.31 (+0.00) 52.82 (+0.00) 50.18 (+0.00) 71.80 (+0.00) 40.74 (+0.00) 62.04 (+0.00) 80.44 (+0.00)
Weak SFT 76.02 (-5.29) 50.01 (-2.81) 47.12 (-3.06) 67.55 (-4.25) 38.12 (-2.62) 61.44 (-0.60) 75.28 (-5.16)
AuxConf 77.81 (-3.50) 51.37 (-1.45) 49.24 (-0.94) 68.12 (-3.68) 41.02 (+0.28) 60.85 (-1.19) 76.42 (-4.02)
WSPO 78.25 (-3.06) 49.88 (-2.94) 48.71 (-1.47) 70.22 (-1.58) 39.11 (-1.63) 62.55 (+0.51) 77.08 (-3.36)
ConG-S 80.44 (-0.87) 52.21 (-0.61) 50.75 (+0.57) 72.12 (+0.32) 39.95 (-0.79) 61.55 (-0.49) 79.12 (-1.32)
ConG 81.02 (-0.29) 52.64 (-0.18) 50.28 (+0.10) 71.42 (-0.38) 40.51 (-0.23) 62.88 (+0.84) 80.21 (-0.23)

Llama3-8B-Instruct

Base 81.40 (+0.00) 52.99 (+0.00) 46.76 (+0.00) 63.81 (+0.00) 42.01 (+0.00) 57.71 (+0.00) 75.28 (+0.00)
Weak SFT 75.83 (-5.57) 50.45 (-2.54) 44.28 (-2.48) 59.14 (-4.67) 39.22 (-2.79) 54.03 (-3.68) 71.12 (-4.16)
AuxConf 77.42 (-3.98) 51.82 (-1.17) 45.89 (-0.87) 60.92 (-2.89) 41.44 (-0.57) 55.18 (-2.53) 72.08 (-3.20)
WSPO 78.04 (-3.36) 49.91 (-3.08) 46.42 (-0.34) 62.08 (-1.73) 40.36 (-1.65) 58.02 (+0.31) 73.21 (-2.07)
ConG-S 80.62 (-0.78) 52.05 (-0.94) 47.19 (+0.43) 64.01 (+0.20) 41.12 (-0.89) 57.25 (-0.46) 74.38 (-0.90)
ConG 81.22 (-0.18) 52.71 (-0.28) 46.93 (+0.17) 63.54 (-0.27) 42.41 (+0.40) 57.38 (-0.33) 75.66 (+0.38)

• Obs 3: Smaller model capability gaps lead to larger improvements in weak-to-strong align-
ment. Specifically, transitions where the weak and strong models have closer sizes (e.g., 7B→7B)
result in significantly higher alignment improvements compared to those with larger capability
gaps (e.g., 1.5B→7B). This indicates that when the weak model is closer in capacity to the strong
model, the weak model can provide more effective supervision, leading to better alignment.

• Obs 4: Larger strong models contribute to more substantial weak-to-strong alignment
improvements. Specifically, transitions involving stronger strong models (e.g., 3B→7B) show
significantly larger performance gains compared to transitions with smaller strong models (e.g.,
1.5B→3B). This suggests that larger strong models are better at leveraging the preference signals
from weak models, resulting in stronger alignment when trained on these signals.

5.4 IMPACT OF α ON WEAK-TO-STRONG ALIGNMENT (RQ3)

We study the effect of the contrastive coefficient α on weak-to-strong alignment performance. As
shown in Figure 3 (c) and (d), we report results across different α values. The figures show that:

• Obs 5: Moderate values of α result in the best weak-to-strong alignment performance. We
find that setting α to moderate values (e.g., α = 0.3 to α = 0.5) consistently yields the highest
performance gains. These values allow the contrastive term to significantly enhance the weak
model’s preference signal without overwhelming the original model behavior.

• Obs 6: When α > 0.5, performance improvement diminishes with increasing α. After α ex-
ceeds 0.5, further increases in α lead to diminishing returns in alignment performance. Specifically,
as α grows larger, the additional benefits from the contrastive signal become less significant, and
the overall improvement plateaus.

5.5 DOWNSTREAM TASK EVALUATION (RQ4)

To assess whether ConG-based weak-to-strong generalization affects downstream task performance,
we evaluate models trained with different alignment methods on a diverse suite of benchmarks from
the lm-eval-harness (Sutawika et al., 2024). The evaluation covers MMLU (Hendrycks et al., 2021),
ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), TruthfulQA (Lin et al., 2022), MathQA
(Amini et al., 2019), and GSM8K (Cobbe et al., 2021). We follow standard evaluation protocols
and report the results in Table 2, enabling a direct comparison of whether ConG preserves general
capabilities. Based on these results, we draw the following observation:

• Obs 7: ConG introduces negligible degradation on downstream tasks. We observe that ConG
and ConG-S maintain general-purpose capabilities nearly intact, with average changes within 1.0
points across benchmarks, indicating that our method preserves overall model utility.

8
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6 RELATED WORK

AI alignment. A central challenge in modern AI research is ensuring that advanced models act in
line with human intent (Cao et al., 2024; Gao et al., 2024; Leike et al., 2018; Askell et al., 2021).
Current alignment pipelines often depend on human feedback, most prominently RLHF (Ouyang
et al., 2022; Christiano et al., 2017; Stiennon et al., 2020) and DPO (Rafailov et al., 2023). While
effective at present, such approaches scale poorly: human supervision becomes insufficient once
models surpass expert ability, and collecting reliable annotations remains expensive and difficult
(Kim et al., 2024; Zeng et al., 2025). These limitations motivate alignment strategies that reduce or
bypass reliance on direct human oversight.

Weak-to-strong generalization. An alternative line of work explores whether stronger models can
be trained under the supervision of weaker ones, a setting known as weak-to-strong generalization
(W2SG). Initial evidence by Burns et al. (2024) showed that strong models may outperform their weak
teachers, pointing to the potential of this paradigm. Subsequent studies introduced new algorithms
(Zhu et al., 2025; Lyu et al., 2025; Li et al., 2025; Somerstep et al., 2025; Zhou et al., 2024b; Mitchell
et al., 2024; Zhou et al., 2024a) and provided empirical analyses across tasks (Yao et al., 2025; Yang
et al., 2025). Compared with these efforts, our work highlights a different perspective: we connect
W2SG with implicit rewards and contrastive decoding, offering both conceptual justification and
empirical validation on large language models.

Contrastive Decoding. Contrastive decoding lies at the core of our work. The key idea is to refine
generation by contrasting probability distributions during decoding. The original contrastive decoding
method (Li et al., 2023) contrasts a stronger expert model with a weaker amateur model to improve
fluency and coherence. Subsequent extensions explore different contrastive dimensions: DoLa
(Chuang et al., 2024) contrasts later (more mature) layers with earlier layers to stabilize generation,
while ICD (Zhang et al., 2023) contrasts models perturbed with hallucination-inducing noise to
enhance factual accuracy. These studies highlight the flexibility of contrastive decoding and motivate
our use of it as the foundation for weak-to-strong generalization.

7 LIMITATIONS AND FUTURE WORKS

Our work has several limitations. First, contrastive decoding is not yet fully compatible with
mainstream inference acceleration techniques. Even though we adopt a pre-generation design to
mitigate overhead, the additional computation still introduces latency compared to standard decoding,
which may limit efficiency in practice. Second, ConG relies on maintaining multiple alignment
states of the weak model to enable contrastive decoding. While the added complexity is moderate, it
nevertheless increases the engineering burden relative to simpler pipelines.

To address these issues, we see several promising directions. A natural next step is to explore adapting
contrastive decoding to fast inference paradigms such as speculative decoding and caching-based
acceleration, which could greatly reduce latency. In addition, designing lighter-weight strategies to
approximate multiple weak-model alignment states may simplify deployment without sacrificing
effectiveness. We also plan to evaluate ConG in larger-scale, real-world applications, providing
deeper insights into its practicality and robustness.

8 CONCLUSION

We presented Contrastive Weak-to-Strong Generalization (ConG), a new paradigm that connects
implicit rewards with contrastive decoding. Our key insight is that implicit rewards, parameterized as
log-likelihood ratios, are structurally consistent with the mechanism of contrastive decoding. This
equivalence allows us to view contrastive decoding not only as a decoding strategy but also as a
natural way of generating samples that maximize implicit reward. Building on this connection, ConG
leverages contrastive decoding between aligned model states to provide higher-quality supervision
signals, enabling more effective capability transfer, denoising, and improved robustness.

9
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ETHICS STATEMENT

This work investigates methods for improving alignment and generalization of large language models.
While our approach aims to enhance model robustness and utility, we acknowledge potential ethical
concerns, such as the risk of misuse in generating harmful or misleading content. To mitigate these
risks, we strictly used publicly available datasets (e.g., UltraFeedback) and avoided any private
or sensitive information during training and evaluation. We emphasize that our contributions are
methodological, and the broader ethical deployment of aligned language models requires careful
oversight and responsible use by practitioners.

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our work. To this end, we release our code,
training configurations, and evaluation scripts at https://anonymous.4open.science/r/
ConG/. This repository allows researchers to replicate our experiments on both self-alignment
and weak-to-strong generalization, including the contrastive decoding procedure, training setup,
and evaluation pipelines. We hope this transparency facilitates further research and fosters reliable
comparison within the community.
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Hanwool Albert Lee, Zdeněk Kasner, Khalid, LSinev, Jeffrey Hsu, Anjor Kanekar, KonradSzafer,
and AndyZwei. Eleutherai/lm-evaluation-harness: v0.4.3, July 2024. URL https://doi.
org/10.5281/zenodo.12608602.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via
multi-objective reward modeling and mixture-of-experts. In EMNLP (Findings), pp. 10582–10592.
Association for Computational Linguistics, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115, 2024.

Wenkai Yang, Shiqi Shen, Guangyao Shen, Wei Yao, Yong Liu, Gong Zhi, Yankai Lin, and Ji-
Rong Wen. Super(ficial)-alignment: Strong models may deceive weak models in weak-to-strong
generalization. In ICLR. OpenReview.net, 2025.

Wei Yao, Wenkai Yang, Ziqiao Wang, Yankai Lin, and Yong Liu. Understanding the capabilities and
limitations of weak-to-strong generalization. CoRR, abs/2502.01458, 2025.

12

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kai Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. Free process rewards without process labels. CoRR, abs/2412.01981, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL (1), pp. 4791–4800. Association for Computational Linguistics,
2019.

Yi Zeng, Feifei Zhao, Yuwei Wang, Enmeng Lu, Yaodong Yang, Lei Wang, Chao Liu, Yitao Liang,
Dongcheng Zhao, Bing Han, et al. Redefining superalignment: From weak-to-strong alignment to
human-ai co-alignment to sustainable symbiotic society. arXiv preprint arXiv:2504.17404, 2025.

Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. Alleviating hallucinations of large language
models through induced hallucinations. arXiv preprint arXiv:2312.15710, 2023.

Zhanhui Zhou, Jie Liu, Zhichen Dong, Jiaheng Liu, Chao Yang, Wanli Ouyang, and Yu Qiao.
Emulated disalignment: Safety alignment for large language models may backfire! In ACL (1), pp.
15810–15830. Association for Computational Linguistics, 2024a.

Zhanhui Zhou, Zhixuan Liu, Jie Liu, Zhichen Dong, Chao Yang, and Yu Qiao. Weak-to-strong search:
Align large language models via searching over small language models. In NeurIPS, 2024b.

Wenhong Zhu, Zhiwei He, Xiaofeng Wang, Pengfei Liu, and Rui Wang. Weak-to-strong preference
optimization: Stealing reward from weak aligned model. In ICLR. OpenReview.net, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

We employed Large Language Models as a writing assistant to enhance our manuscript. Their use
was limited to refining grammar, clarity, conciseness, and wording. Importantly, the models did not
generate new content or ideas, but served solely as a tool for polishing the presentation.

B ALGORITHMIC DETAILS OF CONG

We provide the unified algorithm for Contrastive Weak-to-Strong Generalization (ConG), which
consists of two stages: (i) ConG-S, using contrastive decoding (CD) responses for SFT, and (ii) ConG,
refining the strong model with DPO.
Algorithm 1 Contrastive Weak-to-Strong Generalization (ConG)
Input: Pre-alignment weak model πw

ref , post-alignment weak model πw
r , initial strong model πs

ref ,
prompt set X , contrastive coefficient α, preference sharpness β.

Output: Aligned strong model πs.

Stage I: ConG-S (Contrastive Decoding for SFT)
for each prompt x ∈ X do

Generate CD response yw from (πw
r , π

w
ref , α).

Add (x, yw) into dataset DSFT.

Train πs
ref on DSFT with SFT loss (Eqn. 11) to obtain πs

SFT.

Stage II: ConG (Generalization with DPO)
for each prompt x ∈ X do

Retrieve yw from DSFT.
Sample additional response yl ∼ πs

SFT with standard decoding.
Construct pair (yw, yl) with rw > rl.
Add (x, yw, yl) into dataset DDPO.

Train πs
SFT on DDPO with DPO loss (Eqn. 12) to obtain final strong model πs.
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C EXPERIMENTAL SETUP

C.1 BENCHMARKS

Our evaluation is conducted on two widely adopted benchmarks for instruction-following language
models: AlpacaEval2 (Dubois et al., 2024) and Arena-Hard (Li et al., 2024). Both benchmarks
follow a pairwise comparison paradigm, in which the output of a tested model is directly compared
against that of a reference model on a shared prompt, and a stronger external judge model decides
which response better satisfies the instruction. This setup provides a scalable and reliable approxi-
mation of human preference judgments, while controlling for common biases such as verbosity and
stylistic artifacts. Below we provide detailed descriptions of these two benchmarks, the evaluation
methodology, and the specific settings used in our experiments.

AlpacaEval2. AlpacaEval2 is the successor of AlpacaEval, designed to address issues of bias and
instability in preference-based evaluation. It consists of around 805 diverse prompts that span open-
ended question answering, reasoning, creative writing, and general instruction-following tasks. The
evaluation protocol compares model responses head-to-head with those of a reference baseline model,
with each pair adjudicated by a strong LLM judge. The main metric is the raw win rate (WR), defined
as the proportion of cases where the evaluated model’s response is preferred over the baseline’s.
To reduce artifacts, AlpacaEval2 additionally reports the length-controlled win rate (LC): a variant
that normalizes for verbosity bias, since longer responses often receive higher preference regardless
of actual quality. Length control is performed by conditioning on response length differences and
recalibrating the win rate, thereby offering a fairer view of content quality. Beyond length, the
benchmark also considers stylistic features such as formatting or lexical variety, and the style-
controlled win rate removes such confounds by balancing stylistic attributes across comparisons.
These refinements make AlpacaEval2 one of the most widely used and trusted benchmarks for
instruction tuning. In our experiments, we follow the standard practice of using GPT-4-1106-preview
(OpenAI, 2023) both as the reference model and as the judge. The reference ensures a consistent
baseline, while GPT-4 as the judge provides stable and high-quality preference assessments.

Arena-Hard. Arena-Hard was specifically developed to capture more challenging evaluation scenar-
ios. Derived from the Chatbot Arena data and further curated with automatic and manual filtering,
Arena-Hard consists of difficult, real-world style prompts designed to separate strong models from
one another. Compared with AlpacaEval2, Arena-Hard emphasizes separability and agreement with
human preferences. Separability means that the benchmark is capable of distinguishing models with
small quality differences, reflected in tighter confidence intervals and less overlap in rankings. Human
agreement means that model rankings generated by Arena-Hard correlate strongly with actual human
preference data, an essential property for trustworthy evaluation. Like AlpacaEval2, Arena-Hard uses
pairwise head-to-head comparisons, reporting raw win rates and, where possible, style-controlled win
rates to mitigate superficial biases such as excessive formatting, verbosity, or stylistic quirks. This
makes Arena-Hard particularly suitable for evaluating strong models where subtle quality differences
matter. In our setup, we adopt GPT-4–0314 (OpenAI, 2023) as the reference model against which
all tested models are compared, while GPT-4-1106-preview is used as the judge model to evaluate
the outputs. This combination has become a de facto standard in recent works because it balances
fairness, stability, and robustness of evaluation.

C.2 IMPLEMENTATION DETAILS

Contrastive Decoding. For all experiments involving contrastive decoding (CD), we adopt the
vocabulary pruning mechanism proposed in the original CD paper, with pruning threshold λ ∈ [0, 1]
fixed at 0.1 across all settings. This pruning step restricts the candidate vocabulary at each decoding
step and effectively reduces spurious low-probability tokens. The contrastive coefficient α is tuned
separately for different weak models via grid search: for Qwen2.5-3B-Instruct we select α = 0.5,
and for Llama3.2-3B-Instruct we select α = 0.4. These values achieve a balance between reward
maximization and distributional stability. To mitigate repetition artifacts in generations, we follow
the original CD implementation and set the repetition penalty coefficient to 1.2. For the sampling
strategy, we use greedy decoding, as our focus is on extracting responses that best approximate
implicit reward maximization rather than increasing output diversity.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

SFT Training. For the supervised fine-tuning (SFT) stage, we adopt the LLaMA-Factory framework
with DeepSpeed ZeRO-3 optimization. Unless otherwise stated, all hyperparameters are consistent
across models. The learning rate is set to 1.0×10−5, chosen from a search range of {5.0×10−6, 1.0×
10−5, 2.0× 10−5}. Training is run for 2 epochs with a cosine learning rate scheduler and a warmup
ratio of 0.1. The maximum response length is fixed at 2048 tokens. These settings provide a stable
training regime while avoiding overfitting, and they are consistent with widely adopted practices for
weak-to-strong alignment.

DPO Training. For the DPO stage, we again use the LLaMA-Factory framework with DeepSpeed
ZeRO-3. For standard DPO, we use a learning rate of 8.0 × 10−7 and set β = 0.1, following
prior work. The preference dataset for DPO is constructed via a standard pipeline: the LLM
generates five candidate responses for each prompt, which are then scored by the reward model
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024), with the highest-scoring response taken as yw
and the lowest-scoring as yl.

In contrast, our ConG method adopts a slightly different configuration: we set the learning rate to
6.0 × 10−7, chosen from a search range of 4.0× 10−7, 6.0× 10−7, 8.0× 10−7, and use β = 0.5.
The higher β value reflects the fact that (yw, yl) pairs are only approximately drawn from the same
distribution—depending on the fidelity of ConG-S—so a stronger preference scaling helps prevent
the optimization from drifting too far from the implicit reward signal.

For WSPO, the weak policy generates multiple candidate responses and ranks them with its own
preference signals to construct paired supervision for optimization.

Baselines. We also re-implement several preference optimization baselines for comparison. For
ORPO, we search λ ∈ {0.1, 0.5, 1.0, 2.0} as suggested in the original paper. For SimPO, we tune
over β ∈ {2.0, 4.0, 6.0, 8.0} and γ ∈ {0.3, 0.5, 1.0, 1.2, 1.4, 1.6}. For WSPO, we follow the default
settings in the original work, with learning rate 1.0× 10−5, β = 0.1, and training for 1 epoch. For
all baselines, the maximum response length is consistently set to 2048 tokens to ensure comparability
with our method.

Computation Environment. All training experiments are conducted using 4×NVIDIA L40 GPUs,
with mixed precision training enabled. Our experimental pipeline follows the official guidelines
provided in the LLaMA-Factory repository, ensuring reproducibility and alignment with established
community practices. We also employ gradient checkpointing and ZeRO-3 optimizer states to
maximize memory efficiency.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D SUPPLEMENTARY PROOFS

In this section, we provide theoretical support for the role of contrastive decoding (CD) in maximizing
implicit reward and justify the preference structure used in ConG. We focus on three aspects: (i) the
equivalence between CD and implicit reward maximization, (ii) the implicit reward gap between
CD and naive sampling, and (iii) the relative reward ordering between CD responses and ConG-S
generations.

CD–Implicit Reward Equivalence. Recall the token-level implicit reward:

r̂t(x, y<t, yt) = log
πr(yt | x, y<t)

πref(yt | x, y<t)
.

At decoding step t, CD defines the sampling distribution as

pα(yt | x, y<t) ∝ exp((1− α) r̂t(x, y<t, yt) + α log πr(yt | x, y<t)) , α ∈ [0, 1]. (13)

This can be rewritten as
pα(yt) ∝ πr(yt) exp

(
(1− α)r̂t(yt)

)
,

showing that CD is precisely an exponential tilting of πr by the statistic r̂t. Hence, CD samples
tokens that maximize a weighted combination of implicit reward and πr’s likelihood, and in the limit
α→0, CD reduces to pure implicit-reward maximization.

Reward Gap between CD and Naive Sampling. Let yCD denote a token sampled from pα, and
ynaive from πr (the case α = 1). The expected implicit reward under pα satisfies

Epα
[r̂t] ≥ Eπr

[r̂t],

with equality only when α = 1. To see this, define Z(η) =
∑

v πr(v) exp(ηr̂t(v)), where η = 1−α.
Then

Epα [r̂t] =
∂

∂η
logZ(η).

Since ∂2
η logZ(η) = Varpα [r̂t] ≥ 0, the function is non-decreasing in η. Thus, moving away

from α = 1 (i.e., increasing the contrastive weight) strictly increases the expected implicit reward.
Summing over t extends the result to full responses, establishing that CD consistently yields higher
implicit reward than naive sampling.

Reward Ordering between CD and ConG-S Generations. In Stage I (ConG-S), we train the
strong model πs

SFT on responses yw drawn from the weak-model CD distribution pwα . Formally,

pwα(yt) ∝ πw
r (yt) exp((1− α)r̂wt ).

The SFT procedure minimizes DKL(p
w
α ∥ πs

θ), projecting pwα onto the strong model family. Unless
πs
SFT can perfectly represent pwα , the projection attenuates the tilting effect, leading to

Eπs
SFT

[r̂w] ≤ Epw
α
[r̂w],

and therefore
E[r̂(x, yl)] ≤ E[r̂(x, yw)],

where yw is a CD response and yl is a sample from πs
SFT.

This establishes the preference ordering yw ≻ yl used in Stage II (DPO), providing the theoretical
justification for ConG’s design.

Summary. Together, these results show that: (i) CD is an implicit-reward–maximizing decoder,
(ii) CD responses have strictly higher expected implicit reward than naive sampling, and (iii) ConG-S
generations cannot exceed the implicit reward of their CD teacher, which justifies pairing (yw, yl) as
preference data in Stage II.
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Table 3: Cross-family weak-to-strong results on AlpacaEval2 and Arena-Hard. Top: Llama3.2-
3B → Qwen2.5-7B. Bottom: Qwen2.5-3B → Llama3-8B. “WR” denotes the raw win rate, “LC”
the length-controlled win rate, “SC” the style-controlled win rate, and “Avg.” the average across
benchmarks. Best results are in bold and second-best are underlined. Numbers are mean ± std.

Llama3.2-3B → Qwen2.5-7B Qwen2.5-3B → Llama3-8B

Method AlpacaEval 2 Arena-Hard Avg. AlpacaEval 2 Arena-Hard Avg.

LC WR SC WR LC WR SC WR

Base 32.3±0.4 30.2±1.5 38.3±2.2 40.1±2.8 35.2 28.1±0.3 28.1±1.3 24.7±2.5 25.2±2.7 26.5

Weak SFT 18.1±0.3 17.5±1.4 27.1±2.5 31.0±2.7 23.4 14.1±0.4 15.0±1.6 14.5±2.8 14.2±2.5 14.4
AuxConf 21.0±0.2 20.3±1.3 27.0±2.4 31.6±2.6 25.0 17.0±0.5 19.9±1.7 14.8±2.3 13.9±2.6 16.4
WSPO 18.4±0.3 20.7±1.2 28.7±2.2 33.2±2.9 25.3 17.6±0.4 20.2±1.6 18.9±2.1 17.4±2.4 18.5
ConG-S (w→s) 37.9±0.5 42.2±1.7 51.5±2.6 56.6±2.9 47.1 34.6±0.2 35.1±1.4 40.7±2.3 40.5±2.8 37.7
ConG (w→s) 42.1±0.4 50.6±1.6 53.8±2.5 60.4±2.7 51.7 39.2±0.3 42.5±1.5 44.9±2.2 44.7±2.9 42.8

E ADDITIONAL EXPERIMENTS

E.1 CROSS-FAMILY WEAK-TO-STRONG ALIGNMENT

To further examine the generality of our proposed ConG framework, we extend the evaluation to a
more challenging cross-family weak-to-strong setting, where the weak and strong models come from
different model families. Specifically, we consider two scenarios: (i) aligning Llama3.2-3B-Instruct
as the weak model to guide Qwen2.5-7B-Instruct as the strong model, and (ii) aligning Qwen2.5-
3B-Instruct as the weak model to guide Llama3-8B-Instruct as the strong model. We use the same
UltraFeedback dataset and training protocol as in the in-family experiments, ensuring fairness and
comparability. Baselines include Weak SFT, AuxConf, WSPO, and standard preference optimization
methods.

Results. Table 3 reports the results on AlpacaEval2 and Arena-Hard. We observe that cross-family
alignment remains highly effective under ConG, though performance is slightly lower compared to
in-family alignment. In the Llama3.2-3B→Qwen2.5-7B setting, ConG achieves an average score of
51.7, significantly outperforming all baselines. In contrast, the Qwen2.5-3B→Llama3-8B setting
shows even stronger improvements, where ConG reaches an average score of 42.1, surpassing
alternative methods by a large margin. These results suggest that ConG not only generalizes across
scales within the same model family, but also transfers effectively across heterogeneous architectures.

Observation. The overall trend indicates that cross-family alignment is feasible and beneficial:
while absolute performance is slightly lower than in-family settings (with a gap of roughly 1.0–1.5
points on average), ConG still delivers consistent gains over strong baselines. This demonstrates
that contrastive decoding provides a robust preference signal that transcends model families, further
validating the broad applicability of the proposed framework.

E.2 CASE STUDY
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Case Study on Llama3-8B-Instruct

Instruction Who wears short shorts?

BASE The iconic question!
Who wears short shorts? Well, it’s Kevin Naismith, of course!

ConG-S

The term "shorts" can refer to various individuals from different professions
or groups who wear them as part of their uniform or for casual wear. Here
are a few examples:
1. Athletes: Many sports players, such as baseball players, soccer players,
and basketball players, wear shorts as part of their uniforms.
2. Runners and joggers: People who engage in running or jogging as
exercise often wear shorts for comfort and practicality.
3. Skaters: Skaters, including ice skaters (ice hockey, figure skating) and
inline skaters, wear specialized shorts designed for their respective sports.
4. Cyclists: Some cyclists, especially those who wear lycra or stretchy
clothing, may wear shorts for comfort and mobility.
5. Pool-goers: Lifeguards, swim instructors, and beachgoers often wear
shorts for practicality and sun protection.
6. Golfers: While not exclusively, some golfers wear shorts in warmer
weather or as a fashion choice.
7. Shorts-wearing celebrities: You might spot famous individuals like Drake,
David Beckham (former soccer player turned fashion icon), and other stars
who often incorporate shorts into their everyday or red-carpet outfits.
These are just a few examples, but the list goes on, as shorts are a versatile
and popular clothing item enjoyed by people of all ages and backgrounds!
Who do you have in mind when asking "Who wears short shorts?"

ConG

The phrase "short shorts" can be interpreted in a few ways:
1. Athletes and sports players often wear short shorts as part of their
uniforms, particularly in warm weather or for specific sports like basketball,
soccer, and gymnastics.
2. In casual, summery settings, some people might wear short shorts as a
fashion choice or for comfort.
3. In the context of "who wears short shorts," the answer could be anyone
who chooses to don this style, regardless of age, gender, or activity level!
To give a more specific answer, I’ll say that people from various walks of
life can be found wearing short shorts, but it’s more commonly associated
with:
- Younger generations (kids, teenagers, and young adults) - Athletes and
sports enthusiasts - People living in warm climates or during hot weather
months - Those who prioritize comfort and practicality over traditional dress
codes
Let me know if you’d like more clarification!
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Case Study on Qwen2.5-7B-Instruct

Instruction What is kevlar made out of?

BASE

Kevlar is a synthetic fiber known for its high strength-to-weight ratio and
heat resistance.
It is primarily made from a polyamide polymer, which is derived from a
combination of terephthalic acid and hexamethylenediamine.
The specific chemical structure and manufacturing process give Kevlar its
remarkable properties, making it widely used in various applications such
as body armor, protective clothing, tires, and composite materials for sports
equipment and construction.

ConG-S

Kevlar is primarily made from synthetic polymers, specifically aromatic
polyamides. More precisely:
- Kevlar is synthesized from a monomer called terephthalic acid (TA) and
a diamine called 1,4-phenylene diamine (PDA). - The process involves
chemical reactions to form polymer chains, which are then spun into fibers.
Key points: 1. Monomers: The basic building blocks are polymers derived
from terephthalic acid and PDA. 2. Polymer Structure: The resulting
polymer forms strong, flexible molecules with high tensile strength. 3.
Manufacturing: These polymers are processed into fibers through methods
like melt spinning or wet spinning.
Thus, while not a natural material, Kevlar’s core composition and properties
are defined by these synthetic polymer structures.
It’s widely used for its exceptional strength-to-weight ratio, making it ideal
for applications like body armor, bulletproof vests, and protective gear in
various industries.

ConG

Kevlar is primarily made from synthetic polymers, specifically poly(p-
phenylene terephthalamide). Here’s a detailed breakdown:
1. Chemical Composition: Kevlar is composed of aromatic polyamides.
Its basic structure involves long chains of repeating units derived from
terephthalic acid and para-phenylene diamine.
2. Manufacturing Process: - Raw Materials: The primary raw materials
are terephthalic acid and p-phenylene diamine (PPD). - Polymerization:
These monomers undergo polymerization through a process called polycon-
densation, typically under controlled conditions, to form the long polymer
chains that make up Kevlar. - Drawing and Orientation: After polymer-
ization, the resulting fibers are drawn and oriented to increase their strength
and reduce their density, making them stronger yet lighter.
3. Properties Derived: The specific arrangement and chemical bonds in
these polymeric chains give Kevlar its exceptional strength-to-weight ratio,
heat resistance, and excellent tensile properties.
In essence, while not a simple elemental composition but rather a complex
polymer, Kevlar’s fundamental building blocks come from the aforemen-
tioned chemical precursors.
This material has wide-ranging applications due to its unique properties,
from reinforcing tires and bulletproof vests to composite materials in various
industries.

20


	Introduction
	Preliminary
	Reinforcement Learning from Human Feedback (RLHF)
	Direct Preference Optimization (DPO)

	CD–Implicit Reward Equivalence
	Language Models as Reward Functions
	Connection between Contrastive Decoding and Implicit Reward
	Empirical Analysis

	Contrastive Weak-to-Strong Generalization (ConG)
	Experiments
	Experimental Setup
	Weak-to-Strong Alignment Results (RQ1)
	Effect of Model Capability Gap (RQ2)
	Impact of  on Weak-to-Strong Alignment (RQ3)
	Downstream Task Evaluation (RQ4)

	Related Work
	Limitations and Future Works
	Conclusion
	LLM USAGE STATEMENT
	Algorithmic Details of ConG
	Experimental Setup
	Benchmarks
	Implementation Details

	Supplementary Proofs
	Additional Experiments
	Cross-Family Weak-to-Strong Alignment
	Case Study


