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ABSTRACT

Causal inference in spatial domains faces two intertwined challenges: (1) unmea-
sured spatial factors, such as weather, air pollution, or mobility, that confound
treatment and outcome, and (2) interference from nearby treatments that violate
standard no-interference assumptions. While existing methods typically address
one by assuming away the other, we show they are deeply connected: interference
reveals structure in the latent confounder. Leveraging this insight, we propose
the Spatial Deconfounder, a two-stage method that reconstructs a substitute con-
founder from local treatment vectors using a conditional variational autoencoder
(C-VAE) with a spatial prior, then estimates causal effects via a flexible outcome
model. We show that this approach enables nonparametric identification of both
direct and spillover effects under weak assumptions—without requiring multiple
treatment types or a known model of the latent field. Empirically, we extend
SpaCE, a benchmark suite for spatial confounding, to include treatment interfer-
ence, and show that the Spatial Deconfounder consistently improves effect esti-
mation across real-world datasets in environmental health and social science. By
turning interference into a multi-cause signal, our framework bridges spatial and
deconfounding literatures to advance robust causal inference in structured data.

1 INTRODUCTION

Causal inference in spatial settings is critical for science and policy, from estimating the health
effects of pollution to evaluating land use, climate interventions, and the spread of infectious disease.
Most data in these domains are observational, since large-scale interventions are typically infeasible
or unethical, so robust methodology is needed to draw valid conclusions. Yet observational studies
in these settings face two fundamental challenges that standard methods rarely address together: (1)
spillover (interference), where the treatment at one site affects outcomes at nearby sites, violating
the Stable Unit Treatment Value Assumption (SUTVA), and (2) spatially structured unobserved
confounding, where latent fields such as weather or socioeconomic context jointly drive treatment
exposures and outcomes. Both are pervasive, and ignoring either leads to biased conclusions.

Spatial data Spatial grid Causal graph

Spatial cell 

Neighborhood

Covariates 

Treatments

Outcome

unobserved
spatial field

Idenfitifcation

Figure 1: Schematic of spatial interference/confounding. Spa-
tial data is represented in geographical cells indexed by site s
with neighborhood Ns. The outcome at s (e.g., mortality rate) is
affected by the treatments (e.g., air quality) and observed con-
founders (e.g., demographic informataion) at both s and Ns.
However, unobserved latent factors (e.g., humidity) can confound
the relationship, rendering causal effects unidentifiable.

Consider air quality and health:
respiratory mortality rates de-
pend on local pollution and
on neighboring regions’ pollu-
tion due to transport and mo-
bility, while latent meteorologi-
cal factors such as temperature
and humidity confound both.
Any method that neglects inter-
ference or hidden confounders
risks misleading the actionable
decisions policy-makers rely on
for regulation and public health.

Existing approaches for spatial
causal inference fall into two
camps: (i) Spatial causal meth-
ods model spillovers using exposure mappings or autoregressive dependencies but assume all rele-
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vant confounders are observed (Hudgens and Halloran, 2008; Forastiere et al., 2021). If unobserved
confounding is present in the data, these methods cannot recover the true effect. (ii) Spatial treat-
ment effect estimation under unobserved confounding is addressed through confounding-adjustment
methods—splines, matching, instrumental variables (IVs) (Dupont et al., 2022; Papadogeorgou
et al., 2019; Papadogeorgou and Samanta, 2023) by assuming explicit smooth field priors, para-
metric forms, or exclusion restrictions in the literature. However, these methods treat interference
as a nuisance or neglect the interference structure completely. Furthermore, they fail to correctly
model the treatment effect if the parametric assumptions are violated, which is likely in practice.

In an orthogonal literature stream, the deconfounder framework (Wang and Blei, 2019) shows that
when each unit receives multiple causes, their joint distribution can reveal latent confounders. How-
ever, this method is designed for i.i.d. data with simultaneous treatments—not spatial domains with
localized interactions. Overall, no method can non-parametrically estimate treatment effects under
both interference and unobserved confounding.

We close this gap with the Spatial Deconfounder. Our key insight is that interference creates the
very multi-cause structure that deconfounders require: each unit receives its own treatment together
with those of its neighbors, all shaped by the same latent spatial field. Rather than a nuisance, inter-
ference becomes a source of signal for recovering hidden confounders. Building on this, we develop
a non-parametric and model-agnostic two-stage framework that first reconstructs a smooth substitute
confounder using a conditional variational autoencoder (C-VAE) with a spatial prior, then estimates
direct and spillover effects via any flexible outcome model (e.g., U-Net, GNN). This enables causal
identification without requiring multiple treatment types or explicit latent-field models. Of note, our
spatial deconfounder framework is completely model-agnostic. In this paper, we present the frame-
work in combination with a C-VAE. However, it can be instantiated with any suitable factor model
of choice. Our contributions are as follows:

1. We introduce the Spatial Deconfounder, a novel non-parametric and model-agnostic frame-
work to jointly address spatial interference and unmeasured confounding by treating neighbor-
hood treatment exposures as multi-cause signals.

2. We prove identification of direct and spillover effects under localized interference and a weak
latent-field sufficiency assumption, without requiring a parametric model for the hidden process.

3. We extend the SpaCE benchmark to include structured interference and show, across climate-,
health-, and social-science datasets, that our method consistently reduces bias relative to spatial
autoregressive, matching, and spline-based baselines.

By leveraging interference as a lens into the hidden structure, the Spatial Deconfounder bridges
spatial causal inference and multi-cause deconfounding, opening a path to robust causal estimation
in complex geographic systems.

2 RELATED WORK

We give a brief overview of the related literature (see Appendix A for a comprehensive survey and
discussion). Our work sits at the intersection of three main literatures: (i) spatial causal inference
under interference and spatially structured confounding, (ii) deconfounding in general average treat-
ment effect (ATE) estimation, and (iii) deep learning for spatial and latent structure modeling.

Classical spatial causal inference. Design- and model-based approaches assume exchangeability
after conditioning on observed covariates (given an exposure mapping) (e.g., Hudgens and Halloran,
2008; Anselin, 1988; Hanks et al., 2015; Forastiere et al., 2021; Tchetgen Tchetgen et al., 2021).
They capture spatial dependence (splines/RSR, SAR, GNNs; simulators for domain physics) but do
not address unobserved spatial confounding.

Spatial confounding and bias-adjustment methods. Bias from unmeasured spatial structure is
mitigated via latent spatial effects, orthogonalization (S2SLS/SPATIAL+), proximity-based match-
ing, IVs, or Bayesian priors (e.g., Hodges and Reich, 2010; Dupont et al., 2022; Papadogeorgou
et al., 2019; Angrist et al., 1996). These methods rely on explicit smooth-field models or IV as-
sumptions (or strong priors); none are able to nonparametrically reconstruct the hidden confounder.

ATE estimation under unobserved confounding. With unmeasured confounding, point identifi-
cation typically fails. Sensitivity analyses yield assumption-indexed bounds, trading point identifi-
cation for robustness (e.g., VanderWeele et al., 2015; Frauen et al., 2023). Another approach is to
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reconstruct the unobserved confounder via the deconfounder framework, which fits a factor model
to multiple causes in order to infer a substitute for the latent confounder, thereby restoring point
identification (Wang and Blei, 2019; Bica et al., 2020). However, existing deconfounders require
many simultaneous causes and assume no interference. We invert this: interference itself yields
multi-cause treatment vectors, enabling latent-field recovery even with a single treatment type.

Deep learning for spatial modeling. U-Nets, GNNs, and patch-wise transformers capture multi-
scale and long-range spatial structure (e.g., Ronneberger et al., 2015; Kipf, 2016; Liu et al., 2021),
yet remain predictive rather than identifying causal effects without added causal structure.

Deep latent-variable models. C-VAEs and related deep generative models can recover latent fac-
tors from data (Kingma and Welling, 2013; Sohn et al., 2015). We adapt this idea to spatial inter-
ference: interference supplies a multi-cause signal to nonparametrically reconstruct a smooth latent
confounder, enabling identification of direct and spillover effects without a specified latent field.

Positioning of our work. Most spatial–interference methods ignore unmeasured confounders or
rely on strong priors, while “deconfounder” methods are not adapted to spatial settings. We close
this gap by using interference as a multi-cause signal to nonparametrically reconstruct latent con-
founders, identifying direct and spillover effects without specifying a latent-field model.

3 BACKGROUND AND SETUP

Notation. We use uppercase letters (e.g., X) for random variables and lowercase letters (e.g., x) for
their realizations. Bold symbols denote vectors. The distribution ofX is written PX , with subscripts
omitted when clear from context.

Data structure: lattice, neighborhoods, and observed variables. We consider a rectangular lattice
S = {(i, j) | i ∈ [Nx], j ∈ [Ny]}, where each site s = (i, j) indexes a geographic cell. For a fixed
radius r > 0, we define the neighborhood of s using the ℓ∞ metric,

Ns = {s′ ∈ S : ∥s′ − s∥∞ ≤ r, s′ ̸= s}, where ∥s′ − s∥∞ = max{|i′ − i|, |j′ − j|}. (1)

Thus Ns is the (2r+1) × (2r+1) square centered at s, excluding s itself. We take r to be in pixels
(multiples of the cell size), though it may also be specified as a physical distance and mapped to the
grid resolution. Other shapes (e.g., ℓ2 balls) are possible, but we use the square ℓ∞ ball by default
for computational convenience.

At each site s we observe covariates Xs ∈ Rdx , a binary treatment As ∈ {0, 1}, and an outcome
Ys ∈ R. For a neighborhoodNs, we write XNs = {Xs′ : s

′ ∈ Ns}, and analogously ANs and YNs .
Realizations are denoted in lowercase, e.g., xs, as, ys, and xNs = {xs′ : s′ ∈ Ns}. For clarity,
we focus on binary treatments, but the framework extends to continuous or multi-valued treatments
through standard generalizations of the potential outcomes framework.

Potential outcomes and interference. We adopt Rubin’s potential outcomes framework (Rubin,
2005). Standard causal inference relies on SUTVA, which rules out interference, i.e., one unit’s
outcome cannot depend on others’ treatments. In spatial settings, this assumption is often violated,
since treatment exposures spill over. We assume localized interference: the potential outcome at site
s depends only on its own treatment and those of its neighbors,

Ys(a) = Ys(as,aNs), (2)

where a is the full treatment vector, as the treatment at s, and aNs = {as′ : s′ ∈ Ns}. The observed
data contain only the realized outcome Ys = Ys(As,ANs) under the assigned intervention.

Causal estimands. Let a(1)Ns
and a

(0)
Ns

be two realizations of the neighbor treatments. Our targets are
(i) the average direct effect, which varies the unit’s own treatment while holding neighbors fixed,

τdir = E
[
Ys(1,aNs)− Ys(0,aNs)

]
, (3)

and (ii) the average spillover effect, which varies neighbors’ treatments while holding the unit fixed,

τspill = E
[
Ys(a,a

(1)
Ns

)− Ys(a,a(0)Ns
)
]
, a ∈ {0, 1}, (4)

with expectations taken over the observed joint distribution of (Xs, ANs
).
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Figure 2: Example spatial distribution of (normalized) confounder, treatment, and outcome in real-
world dataset. The confounder U(s) (summer humidity) varies smoothly across space, while the
treatment As (PM2.5) shows more local heterogeneity. The outcome Ys (respiratory and cardiovas-
cular mortality) reflects broader spatial health patterns.

Unobserved spatial confounding. To identify the treatment effects in Equations (3) and (4), one
typically assumes ignorability: potential outcomes Ys(as,aNs

) are independent of treatment assign-
ment given observed covariates (Xs,XNs

). This assumption cannot be tested from the data, and
violations lead to biased causal estimates. In practice, many relevant drivers of treatment exposure
and outcome remain unobserved. We posit an unobserved spatial field U : S → RdU that captures
latent influences such as topography, wind patterns, or socioeconomic context. Because U(s) may
affect both treatment and outcomes, we generally have

Cov(As, U(s)) ̸= 0 and Cov(Ys(a,aNs
), U(s)) ̸= 0, (5)

where the covariances are understood component-wise when U(s) is vector-valued. Thus, ignora-
bility fails when conditioning only on Xs and XNs

. In Section 5, we show that identification can
nevertheless be recovered under mild smoothness assumptions on U together with our deconfound-
ing procedure, through reconstructing a substitute latent field from observed treatment patterns.

Motivating example. Consider real environmental health data on a 0.25◦× 0.25◦ grid covering the
continental United States. At each grid cell s, the treatment As indicates whether fine particulate
matter (PM2.5) exceeds the WHO guideline of 10 µg/m3. Neighbor assignments are defined by a
radius of one to two grid cells (roughly 25–50 km). The outcome Ys is the rate of respiratory and
cardiovascular mortality aggregated from hospital records. Latent factors can confound this relation-
ship; for example, a meteorological driver such as humidity varies smoothly across space and may
jointly influence both pollution exposures and health outcomes. Figure 2 illustrates treatment, out-
come, and such a confounder for this dataset. This example captures the type of smoothly varying,
spatially shared latent structure our method targets: large-scale meteorological drivers such as hu-
midity form a latent field U(s) that jointly affects PM2.5 exposures and mortality across neighboring
counties, while any purely local one-off factors are captured in (Xs, XNs) or assumed negligible.
We formalize this as a latent-field sufficiency assumption in Section 5.

The remainder of the paper shows how the joint vector (As,ANs
)—a “multiple-cause” analogue

supplied for free by interference—can be harnessed to reconstruct U(s) and obtain unbiased esti-
mates of Equations (3) and (4).

4 METHODOLOGY

Treatment effects

Potential outcome

Spatial deconfounder 11          Potential outcome module12 Causal effect estimation

1

Figure 3: Architecture of the spatial deconfounder & estimation framework. Stage 1 : The
C-VAE takes treatments and observed confounders as input to learn the latent substitute confounder.
Stage 2 : We employ the reconstructed confounder together with the observed variables (now in-
cluding the outcome) to train the potential outcome estimation module.
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Algorithm 1 Spatial Deconfounder

Input: Spatial covariates {Xs}s∈S , treatments {As}s∈S , outcomes {Ys}s∈S , neighborhood radius
r, grid Laplacian L

1: Stage 1 : Confounder reconstruction (C-VAE)
2: Define encoder qϕ(Zs |As, ANs

,Xs,XNs
) = N (µϕ,diag σ

2
ϕ), decoder pψ(As |Xs,XNs

, Zs),
and prior pθ(Z) = N (0, τ−1(L+ ϵI)−1).

3: Minimize
LA =

∑
s

Eqϕ
[
− log pψ(As | Xs,XNs , Zs)

]
+

∑
s

DKL

(
qϕ ∥ pψ

)
,

4: Set substitute confounder Ẑs ← Eqϕ [Zs] for all s.
5: Stage 2 : Potential outcome module
6: Choose a spatial model h (e.g., U-Net) to model the conditional expectation of Y given all

observed variables as well as the substitute confounder and fit by minimizing

LY =
∑
s

(
Ys − h(As, ANs

,Xs,XNs
, Ẑs)

)2

.

7: Estimate effects by plug-in contrasts (Eq. 11).

As illustrated in Algorithm 1, our approach proceeds in two stages. First, we reconstruct a smooth
substitute confounder from the joint distribution of local and neighbor treatments, using a condi-
tional variational autoencoder (C-VAE) that leverages interference as a multi-cause signal. Second,
we feed the reconstructed confounder into a flexible potential outcome module for outcome mod-
eling and effect estimation. This separation follows standard practice in deconfounding to prevent
mediators from being inadvertently learned into the substitute confounder, which would break the
identifiability of the treatment effects.

Stage 1 : Confounder reconstruction. We model the assignment of treatments {As}s∈S using an
interference-aware C-VAE. The encoder

qϕ(Zs | As, ANs ,Xs,XNs) = N
(
µϕ(·),diag σ2

ϕ(·)
)

(6)

maps the local treatment and neighborhood treatments, together with local and neighborhood co-
variates (Xs,XNs

), into a latent embedding Zs of the unobserved spatial field U(s). The decoder

pψ(As | Xs,XNs
, Zs) = σ(fψ(Xs,XNs

, Zs)) (7)

predicts As given covariates and the latent. To encode smoothness, we impose a Gaussian–Markov
random-field (GMRF) prior pθ(Z) = N (0, τ−1(L+ ϵI)−1) with grid Laplacian L, or equivalently
a deterministic penalty λZ⊤LZ.

Formally, our generative model for the treatment field is

pθ(Z) = N
(
0, τ−1(L+ ϵI)−1

)
, p(A | X,Z) =

∏
s∈S

pψ
(
As | Xs, XNs , Zs

)
,

with As | Xs, XNs
, Zs ∼ Bernoulli

(
σ(fψ(Xs, XNs , Zs))

)
. Thus, conditional independence of

treatments holds across sites given (Z,X), and spatial dependence is encoded entirely via the GMRF
prior on Z. The “multi-cause” structure of (As, ANs) enters on the inference side through the
encoder qϕ(Zs | As, ANs , Xs, XNs), which uses local treatment patterns (plus covariates) to infer a
substitute confounder for the local value of the spatial latent field.

This C-VAE is trained by minimizing

LA(ϕ, ψ) =
∑
s

Eqϕ
[
− log pψ(As | Xs,XNs , Zs)

]
+ β

∑
s

DKL(qϕ∥pψ), (8)

with KL warm-up (β ↑ 1). After convergence, we set Ẑs = Eqϕ [Zs] as the reconstructed confounder.

Our C-VAE differs from standard C-VAE-type models in two ways tailored to the spa-
tial–interference setting: (i) the encoder explicitly conditions on (As, ANs

, Xs, XNs
), using neigh-

bor treatments as a multi-cause signal, and (ii) the latent field Z is given a GMRF prior with grid
Laplacian L, enforcing spatial dependence consistent with our latent-field sufficiency assumption
(Assumption 4 below).
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Stage 2 : Potential outcome module. Given Ẑs, we estimate outcomes using a flexible function h:

Ŷs = Ê[Y | As, ANs ,Xs,XNs , Ẑs] =h(As, ANs ,Xs,XNs , Ẑs) (9)

by minimizing the squared error loss

LY =
∑
s

(
Ys − h(As, ANs

,Xs,XNs
, Ẑs)

)2

. (10)

This module can be instantiated with any spatial model capable of handling interference and spa-
tial confounding. For example, a U-Net architecture (Ronneberger et al., 2015) captures multi-
scale spatial dependencies through an encoder–decoder with skip connections. Notably, Oprescu
et al. (2025); Ali et al. (2024) use a U-Net to account for interference and spatial confounding in
spatiotemporal settings. Other options include graph neural networks, patch-wise transformers, or
classical spatial regression models, depending on the data modality.

Effect estimation proceeds by plug-in contrasts: the direct effect is

τ̂dir =
1

|S|
∑
s∈S

[
h(1, ANs

,Xs,XNs
, Ẑs)− h(0, ANs

,Xs,XNs
, Ẑs)

]
, (11)

and analogously for spillover effects by varying ANs
. By drawing multiple Ẑs from the full posterior

qϕ instead of the mean, we can obtain uncertainty bands on Ẑs. We can then obtain uncertainty bands
(with respect to the substitute confounder) by evaluating Eq. 11 on the different draws of Ẑs.
Remark 1 (End-to-end variant). One may train a single network by minimizing LA + γ LY while
blocking gradients from LY into the C-VAE. This preserves mediator avoidance while making the
overall implementation and training more straightforward. This separation ensures that the C-VAE
is used only to reconstruct a substitute confounder, not to perform outcome estimation end-to-end.

Predictive checks. Following Rubin (1984), we assess whether the substitute confounder ade-
quately explains the treatment assignment through posterior predictive checks. On a held-out vali-
dation set, we drawM replicated treatment vectors a(1), . . . ,a(M) from the decoder pψ and compare
them against the observed assignment a. Specifically, we compute the predictive p-value

p =
1

M

M∑
m=1

1
{
T (a(m)) < T (a)

}
, (12)

where T (a) is a discrepancy statistic measuring model fit. Following Wang and Blei (2019), we use

T (a) = EZ∼qϕ [log pψ(a | X, Z)] , (13)

the marginal log-likelihood of the observed assignment under the posterior distribution of Z. A
value of p close to 0.5 indicates that the C-VAE reproduces the treatment assignment distribution
well, whereas extreme values signal model misspecification. In our experiments, we only consider
C-VAE models with 0.25 < p < 0.75.

5 THEORETICAL PROPERTIES OF THE SPATIAL DECONFOUNDER

We now provide conditions under which the Spatial Deconfounder establishes causal identifiability
of the direct and spillover effects in Equations (3) and (4). We begin with assumptions on consis-
tency, positivity, and interference structure.
Assumption 1 (Spatial consistency). The observed outcome equals the potential outcome under the
assigned individual and neighborhood treatments. That is,

Ys = Ys(as,aNs
) if site s receives treatment as and its neighborhood Ns receives aNs

. (14)

Assumption 2 (Spatial positivity). For any site s, covariates (Xs,XNs
), and treatment exposures

(as,aNs), the probability of assignment is strictly positive: 0 < Pr(as,aNs | Xs,XNs) < 1. Fur-
thermore, we require latent positivity conditional on theZ, i.e., 0 < Pr(as,aNs | Xs,XNs ,Zs) < 1
if Pr(as,aNs ,Xs,XNs ,Zs) > 0.

Assumption 3 (Localized interference). The potential outcome at site s depends only on its own
treatment and those of its neighbors Ns, not on treatments outside Ns.

6
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Assumptions 1-3 are standard in the causal inference literature (e.g., Chen et al., 2024; Forastiere
et al., 2021) and enable identification of the treatment effects. Classical approaches for treatment
effect estimation in spatial settings additionally assume ignorability of the joint treatment exposure
given observed covariates. We relax this and allow for an unobserved latent field U : S → RdU
spanning the grid. We only require that all confounders affecting purely local variation are observed
in (Xs,XNs

). This assumption is weaker than full ignorability and is plausible in practice.
Assumption 4 (Latent field sufficiency). All confounders that act only on a single site are observed
in (Xs, XNs). Any remaining unobserved confounding is mediated through a shared spatial latent
field U : S → RdU that affects treatment assignments across multiple sites. In particular, there is
no additional unobserved confounder Ũ that changes (As, ANs

, Ys(a,aNs
)) at some site s without

also influencing treatments at other sites s′.

Assumption 4 is the spatial analogue of the “no single-cause confounders” assumption in the decon-
founder literature (e.g., Wang and Blei, 2019; Bica et al., 2020): all purely local confounders are
observed, and any remaining unobserved confounding arises from a shared latent field U that affects
multiple sites. In spatial causal inference, where units are interconnected, causal effects can be iden-
tified only if the confounding structure—observed and unobserved—is consistent across the entire
lattice. Under this factor-model structure, if the joint treatment distribution admits a representation
in terms of a substitute confounder Zs, Proposition 5 of Wang and Blei (2019) implies that the joint
assignment (As, ANs) is ignorable given (Xs, XNs , Zs).

Finally, we assume the C-VAE recovers a consistent proxy for the latent field.
Assumption 5 (Consistency of substitute confounder). There exists a substitute confounder Zs that
is a deterministic function of the observed causes and covariates,

Zs = fϕ(As, ANs , Xs, XNs),

and the encoder qϕ(Zs | As, ANs
, Xs, XNs

) converges to the corresponding degenerate posterior
δfϕ(As,ANs ,Xs,XNs )

. Thus Zs is a deterministic function of (As, ANs
, Xs, XNs

) that, together with
(Xs, XNs

), is renders the joint exposure (As, ANs
) ignorable as in Definition 1.

Assumption 5 does not require the learnedZs to equal the true latent field; it only posits the existence
of a deterministic function of (As, ANs

, Xs, XNs
) that restores ignorability when conditioning on

(Xs, XNs
, Zs), analogous to the “consistency of substitute confounders” condition in Wang and Blei

(2019). This is an identification assumption rather than a generic claim that CVAEs are identifiable:
Theorem 1 only requires that some such Zs exist, and any estimation procedure that learns a Zs
satisfying ignorability yields a consistent plug-in estimator. In practice, we can encourage such
structure by using identifiable objectives such as the IMA-regularized loss of Reizinger et al. (2022).

Intuition. Under interference, each site’s treatment is observed together with those of its neigh-
bors. Because both As and ANs are influenced by the same latent field U(s), they provide multiple
noisy “views” of the field. By fitting a factor model to the joint distribution of own and neighbor
treatments, we reconstruct a substitute confounder Zs capturing the underlying spatial structure.
Conditioning on Zs (together with observed covariates) restores ignorability, enabling unbiased es-
timation of direct and spillover effects.
Theorem 1 (Causal identifiability). Suppose Assumptions 1–5 hold. Let Z be a piecewise constant
function of the assigned causes and covariates (a,aN ,x,xN ) and let the outcome be a separable
function of the observed and unobserved variables

EY
[
Ys(a,aN ) | Xs = x,XNs = xN , Zs = z

]
= f1(a,aN ,x,xN ) + f2(z), (15)

EY
[
Ys | As = a,ANs

= aN ,Xs = x,XNs
= xN , Zs = z

]
= f3(a,aN ,x,xN ) + f4(z), (16)

for continuously differentiable functions f1, f2, f3, f4. Consequently, the direct and spillover effects
are identifiable as

τdir = EXs,XNs ,Z

[
EY

[
Ys | As = 1,ANs ,Xs,XNs , Zs

]
− EY

[
Ys | As = 0,ANs ,Xs,XNs , Zs

]]
, (17)

τspill = EXs,XNs ,Z

[
EY

[
Ys | a,ANs = a

(1)
Ns

,Xs,XNs , Zs

]
− EY

[
Ys | a,ANs = a

(0)
Ns

,Xs,XNs , Zs

]]
.

(18)

Proof. The proof is provided in Appendix B.
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Remark: The identifiability of our method applies to settings with separable structural equations,
a common modeling assumption in the literature (e.g, Wang and Blei, 2019; Papadogeorgou and
Samanta, 2023). Many often unobserved or unavailable variables in spatial settings can be assumed
to fulfill the equations in practice. In our air quality example, such variables could be persistent
differences in baseline respiratory risk driven by unmeasured long-run pollution and chronic dis-
ease burden or regional differences in care-seeking and reporting intensity. Additionally, systematic
measurement errors in the recorded outcome, i.e., due to the difficulty in detecting, assessing, and
correctly identifying respiratory diseases in a unified manner, can represent such latent confounders.

6 EXPERIMENTS

We evaluate the Spatial Deconfounder on semi-synthetic datasets from the SpaCE benchmark (Tec
et al., 2024), modified to incorporate both local interference and spatial confounding on real-world
environmental data. To simulate unobserved confounding, we mask key covariates after data gener-
ation, i.e., we completely remove them from the dataset. We then compare different instantiations
of our method against a range of spatial baselines under both local and spatial confounding scenar-
ios. The section proceeds as follows: we describe the SpaCE environment and our data generation
process, introduce the baselines and evaluation metrics, and finally interpret the results.

Additional details - including data generation, residual sampling, packages, hyperparameter tuning,
and validation procedures - can be found in Appendix C. Replication code is available at https:
//anonymous.4open.science/r/Spatial-Deconfounder.

Datasets and SpaCE Benchmark. We build on the SpaCE benchmark (Tec et al., 2024), which
provides semi-synthetic spatial datasets for causal inference under unobserved confounding. In
its original form, SpaCE simulates causal effects by masking important covariates in real-world
environmental and health data, but it assumes independent treatments and does not account for
interference between neighboring units. This makes it inadequate for evaluating methods, such as
ours, that explicitly address both unobserved spatial confounding and localized spillovers.

To address this, we extend the SpaCE data generation process in two ways. First, we project the
raw environmental data onto a uniform 0.25◦×0.25◦ latitude–longitude grid, allowing convolutional
architectures to exploit spatial locality while preserving large-scale patterns. Second, we incorpo-
rate interference into the potential outcome model by allowing outcomes to depend not only on
local treatment As but also on neighbor treatments ANs

within radius rd. Specifically, we generate
outcomes under two confounding regimes:

(Local confounding) Ŷs = f(As, ANs , Xs) +Rs, (19)

(Spatial confounding) Ŷs = f(As, ANs
, Xs, XNs

) +Rs, (20)

where f is a predictive function learned from the observed data, Xs are observed covariates, and
Rs are exogenous residuals. The local setting restricts confounding to site-level variables, while the
spatial setting also allows neighborhood covariates to act as confounders.

Semi-synthetic data generation. To construct Ŷs, we proceed in four steps: (1) fit f using
ensembles of machine learning models to predict observed outcomes Ys, (2) compute residuals
R̂s = Ys − f(·) and estimate their spatial distribution PR, (3) replace endogenous residuals with
exogenous noise Rs ∼ PR, and (4) generate counterfactuals by varying local and neighbor treat-
ments while holding confounders and residuals fixed. To simulate hidden confounding, we identify
influential covariates by measuring the change in predictive performance when each is removed,
then mask the most important ones at training and evaluation time.

Raw datasets. From the full SpaCE suite, we focus in the main text on two collections:

Air Pollution and Mortality: County-level data for the mainland US in 2010, including elderly
mortality (CDC), fine particulate matter (PM2.5) treatment exposure (Di et al., 2019), behav-
ioral risk factors (BRFSS) (Centers for Disease Control and Prevention, 2010), and Census
demographics (U.S. Census Bureau, 2010). We study the effect of PM2.5 exposure (treatment)
on mortality (PM2.5 → m), with different masked confounders.

PM2.5 Components: High-resolution (1× 1 km) gridded data on total PM2.5 (Di et al., 2019) and
its chemical composition (Amini et al., 2022), using annual averages for 2000. We focus on the
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effect of sulfate on overall PM2.5 (SO4 → PM2.5), with key latent drivers such as ammonium
(NH4) and organic carbon (OC) masked.

These two datasets provide complementary perspectives: the first captures socioeconomic and de-
mographic confounding, while the second reflects atmospheric chemistry. Additional datasets and
hidden-confounder variants are described in Appendix D.

Table 1: Performance under local confounding. Results averaged over 10 runs with 95% confidence
intervals. rd: neighborhood radius in data generation; R: neighborhood radius used by the decon-
founder. Lower values indicate less bias. Lower values for ATE and SPILL indicate less bias. p
indicates the p-value of the predictive check, with values near 0.5 indicating good model fit to 0.5.

DIR SPILL p
ENVIRONMENT CONFOUNDER METHOD

PM2.5 → m (rd = 1) qSUMMER C-VAE-SPATIAL+ (R=1) 0.04 ± 0.01 0.42 ± 0.08 0.37 ± 0.07
C-VAE-SPATIAL+ (R=2) 0.04 ± 0.01 0.44 ± 0.09 0.36 ± 0.04
DAPSM 0.30 ± 0.03 N/A N/A
GCNN 0.41 ± 0.03 N/A N/A
S2SLS-LAG1 0.20 ± 0.00 N/A N/A
SPATIAL+ 0.13 ± 0.04 N/A N/A
SPATIAL 0.10 ± 0.07 N/A N/A

PM2.5 → m (rd = 2) ρPOP C-VAE-SPATIAL+ (R=1) 0.05 ± 0.02 0.15 ± 0.05 0.34 ± 0.04
C-VAE-SPATIAL+ (R=2) 0.04 ± 0.03 0.24 ± 0.06 0.35 ± 0.04
DAPSM 0.16 ± 0.01 N/A N/A
GCNN 0.18 ± 0.03 N/A N/A
S2SLS-LAG1 0.07 ± 0.00 N/A N/A
SPATIAL+ 0.10 ± 0.02 N/A N/A
SPATIAL 0.17 ± 0.03 N/A N/A

SO4 → PM2.5 (rd = 1) NH4 C-VAE-SPATIAL+ (R=1) 0.07 ± 0.03 0.64 ± 0.10 0.38 ± 0.04
C-VAE-SPATIAL+ (R=2) 0.07 ± 0.03 0.16 ± 0.06 0.39 ± 0.06
DAPSM 1.44 ± 0.00 N/A N/A
GCNN 0.52 ± 0.16 N/A N/A
S2SLS-LAG1 0.09 ± 0.00 N/A N/A
SPATIAL+ 0.11 ± 0.03 N/A N/A
SPATIAL 0.08 ± 0.02 N/A N/A

SO4 → PM2.5 (rd = 2) OC C-VAE-SPATIAL+ (R=1) 0.06 ± 0.03 0.18 ± 0.09 0.43 ± 0.03
C-VAE-SPATIAL+ (R=2) 0.12 ± 0.06 0.35 ± 0.08 0.43 ± 0.04
DAPSM 1.24 ± 0.01 N/A N/A
GCNN 0.30 ± 0.10 N/A N/A
S2SLS-LAG1 0.21 ± 0.00 N/A N/A
SPATIAL+ 0.13 ± 0.07 N/A N/A
SPATIAL 0.29 ± 0.01 N/A N/A

Baselines and model variants. We benchmark against classical and modern spatial methods: S2SLS
(Anselin, 1988) with outcome autoregression; spline-based SPATIAL and residualized SPATIAL+
(Dupont et al., 2022); GCNN (Kipf, 2016) for non-linear neighbor aggregation; DAPSM (Papadoge-
orgou et al., 2019) for proximity-based matching; and UNET (Ronneberger et al., 2015), which can
capture spillovers via neighbor treatments but does not adjust for hidden confounding.

For the Spatial Deconfounder, we instantiate the potential outcome module differently by setting the
head to SPATIAL+ under local confounding (to ensure fairness) and to UNET under spatial confound-
ing (to flexibly capture multi-scale structure). We also vary the neighborhood radius r ∈ {1, 2} con-
sidered by the model and the latent confounder dimension in the C-VAE (dZ ∈ {1, 2, 4, 8, 16, 32}).
Evaluation metrics. We assess performance on the direct (DIR) and spillover (SPILL) effects. As
standard in causal inference (Hill, 2011; Shi et al., 2019; Cheng et al., 2022), we report standardized
absolute bias, σ−1

y |τ̂ − τ |, with true effect τ , estimate τ̂ , and outcome standard deviation σy .

Results. Tables 1 and 2 report performance under local and spatial confounding across different
masked confounders (e.g., humidity, population density, ammonium, organic carbon). Across envi-
ronments, the Spatial Deconfounder (C-VAE) variants consistently achieve lower bias on direct ef-
fects than existing spatial baselines. Even with non-smooth unobserved confounders like population
density (ρpop), our framework still achieves lower bias. Importantly, unlike most benchmarks, both
C-VAE and UNET can recover spillover effects, with C-VAE generally providing more accurate
estimates. Using UNET as the outcome head further strengthens spillover estimation, highlighting
the benefit of spatial architectures when paired with deconfounding.
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Table 2: Performance under spatial confounding. Results averaged over 10 runs with 95% confi-
dence intervals. rd: neighborhood radius in data generation; R: neighborhood radius used by the
deconfounder. Lower values indicate less bias. Lower values for ATE and SPILL indicate less bias.
p indicates the p-value of the predictive check, with values near 0.5 indicating good model fit to 0.5.

DIR SPILL p
ENVIRONMENT CONFOUNDER METHOD

PM2.5 → m (rd = 1) ρPOP C-VAE-UNET (R=1) 0.05 ± 0.01 0.22 ± 0.06 0.34 ± 0.03
C-VAE-UNET (R=2) 0.04 ± 0.02 0.12 ± 0.06 0.36 ± 0.06
DAPSM 0.20 ± 0.01 N/A N/A
GCNN 0.17 ± 0.06 N/A N/A
S2SLS-LAG1 0.05 ± 0.00 N/A N/A
SPATIAL+ 0.27 ± 0.18 N/A N/A
SPATIAL 0.06 ± 0.06 N/A N/A
UNET 0.06 ± 0.01 0.17 ± 0.04 N/A

SO4 → PM2.5 (rd = 1) OC C-VAE-UNET (R=1) 0.06 ± 0.02 0.09 ± 0.04 0.44 ± 0.03
C-VAE-UNET (R=2) 0.06 ± 0.02 0.18 ± 0.06 0.45 ± 0.03
DAPSM 1.57 ± 0.00 N/A N/A
GCNN 0.42 ± 0.15 N/A N/A
S2SLS-LAG1 0.13 ± 0.00 N/A N/A
SPATIAL+ 0.06 ± 0.05 N/A N/A
SPATIAL 0.04 ± 0.01 N/A N/A
UNET 0.07 ± 0.02 0.05 ± 0.02 N/A

Additional experiments in Appendix D confirm these trends across broader settings. In a few cases
where classical baselines perform comparably or slightly better, the scenarios involve very weak or
extremely smooth confounding — conditions where stronger parametric assumptions may be advan-
tageous. Overall, the results demonstrate that leveraging interference as a multi-cause signal yields
substantial improvements in both direct and spillover effect estimation. These findings validate the
core premise of the Spatial Deconfounder: interference can be exploited, rather than treated as a
nuisance, to improve causal inference under unobserved confounding.

7 CONCLUSION

We introduce the Spatial Deconfounder, the first framework to jointly address interference and
unobserved spatial confounding by treating neighborhood treatments as a multi-cause signal. A
C-VAE with a spatial prior reconstructs a substitute confounder, enabling estimation of direct and
spillover effects with flexible outcome models. We prove identification of these effects under mild
assumptions on the latent spatial field and outcome structure.

Beyond methodological advances, our results highlight a conceptual shift: interference, often treated
as a nuisance, can be exploited as a source of information about hidden structure. That said, our
goal is not only conceptual but also practical: despite relying on idealized assumptions (latent-field
sufficiency, substitute confounders, and a specific C-VAE instantiation), our semi-synthetic experi-
ments on minimally modified environmental-health data show that the Spatial Deconfounder reduces
bias relative to strong classical and deep-learning spatial baselines, providing empirical support for
leveraging interference-driven multi-cause vectors together with a spatial latent-field representation
in practice. This perspective opens the door to more robust causal inference in complex spatial
systems, with future extensions to spatiotemporal data, continuous treatments, and large-scale ap-
plications. Discussion of broader impacts and the use of LLMs in the preparation of this paper is
provided in Appendix F.
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Figure 4: Reconstructed latent confounder compared to the true (unobserved) spatial field. The lead-
ing principal component of Zs (PC1) captures the treatment, while the second principal component
(PC2) recovers large-scale spatial structure of the true confounder.
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A EXTENDED LITERATURE REVIEW

The Spatial Deconfounder draws on three strands of prior work: (i) spatial causal inference under
interference and spatially structured confounding, (ii) deconfounding methods for ATE estimation
with unobserved confounders, and (iii) deep learning for spatial and latent structure modeling. We
detail each in the sections that follow.

A.1 SPATIAL CAUSAL INFERENCE UNDER INTERFERENCE AND SPATIALLY STRUCTURED
CONFOUNDING

Classical spatial causal inference. Most estimators of direct and spillover effects assume that
bias can be removed by conditioning on observed covariates (together with a specified exposure
mapping or interference structure). Design-based work—grounded in exposure mappings, partial-
interference designs, and randomization inference—derives estimators or hypothesis tests under
known neighborhood or network structure (e.g., Hudgens and Halloran, 2008; Sobel, 2006; Aronow
and Samii, 2017; Forastiere et al., 2021; Tchetgen Tchetgen et al., 2021). Model-based strate-
gies then adjust for that structure while still relying on measured covariates or correct functional
form: spatial autoregressive and two-stage least-squares estimators for spatial-lag/lagged-error mod-
els (Anselin, 1988), and spline/GAM or restricted spatial regression approaches that treat residual
spatial trend as a nuisance to improve precision and approximate balance (e.g., Hanks et al., 2015).
Deep graph/convolutional architectures can pool information across nearby units to improve pre-
diction or imputation, but by themselves do not furnish identification without additional causal as-
sumptions (Kipf, 2016). Domain-specific simulators (e.g., wildfire spread or atmospheric transport)
encode spatial dependence through process-based physics and are often used as inputs to causal
analyses, yet they typically still condition on observed drivers or require design-identifying assump-
tions (e.g. Larsen et al., 2022; Zigler et al., 2025). All of the above presume exchangeability given
observed covariates (or a valid design); if important spatial determinants of treatment and outcome
are unmeasured, residual confounding bias can remain.

Spatial confounding and bias-adjustment methods. A growing literature tackles unmeasured
spatial confounding directly. One family augments outcome models with latent spatial random ef-
fects (e.g., BYM/ICAR or GMRF priors) to soak up smooth hidden structure; this can reduce bias
when the confounder is well captured by the basis, but may leave bias or distort fixed effects un-
der misspecification (Rue and Held, 2005; Hodges and Reich, 2010). Restricted spatial regression
and related orthogonalization schemes constrain the latent field away from covariates to mitigate
bias (Hanks et al., 2015). Building on this idea, Dupont et al. (2022) (SPATIAL+) explicitly or-
thogonalizes spatial structure in the covariates from the outcome trend to purge bias from unmea-
sured spatial confounding. Propensity-score strategies that incorporate spatial proximity—such as
distance-adjusted propensity score matching—aim to proxy smooth unmeasured confounders via
geography (Papadogeorgou et al., 2019). Instrumental-variable designs exploit exogenous spatial
shocks (e.g., wind direction, policy boundaries, thermal inversions) to identify causal effects despite
hidden confounding, but require strong relevance/exclusion conditions that are difficult to validate
under interference (e.g., Angrist et al., 1996; Imbens and Rubin, 2015; Deryugina et al., 2019). Fi-
nally, Bayesian frameworks that jointly model interference and latent spatial fields (e.g., Papadoge-
orgou and Samanta, 2023) achieve identification under specified priors and structural assumptions.
In short, existing approaches either (i) assume smoothly varying latent fields or valid instruments or
(ii) rely on strong parametric priors. None exploit interference patterns themselves as a signal for
nonparametrically recovering the hidden confounder, nor do they aim to explicitly reconstruct the
unobserved confounding process—a gap our Spatial Deconfounder addresses.

A.2 DECONFOUNDING METHODS FOR ATE ESTIMATION WITH UNOBSERVED
CONFOUNDERS

When confounders are unmeasured, point identification of causal effects generally fails. One ap-
proach is to derive bounds through sensitivity analysis (e.g., VanderWeele et al., 2015; Dorn et al.,
2025; Oprescu et al., 2023; Frauen et al., 2023), trading identifiability for robustness. Another is the
deconfounder framework, which fits a factor model to multiple causes in order to infer a substitute
for the latent confounder, thereby restoring point identification (Wang and Blei, 2019; Bica et al.,
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2020; Hatt and Feuerriegel, 2024). This stream is closest in spirit to our work: like us, it leverages
multiplicity of treatments as a proxy for hidden structure. However, existing deconfounder methods
require datasets with many simultaneous treatments (e.g., recommender systems, panel data) and as-
sume no interference. Our approach resolves both limitations: interference itself naturally generates
multiple-cause treatment vectors, enabling latent field recovery even with a single treatment type.

A.3 DEEP LEARNING FOR SPATIAL AND LATENT STRUCTURE MODELING

Deep learning for spatial modeling. Modern deep architectures capture rich spatial structure but,
on their own, remain predictive rather than identifying. U-Nets and encoder–decoder variants model
multi-scale patterns on grids (Ronneberger et al., 2015; Oktay et al., 2018); graph neural networks
extend to irregular domains (Kipf, 2016; Hamilton et al., 2017; Veličković et al., 2017); and patch-
wise transformers model long-range dependencies on images and geospatial rasters (Dosovitskiy
et al., 2020; Liu et al., 2021). Spatiotemporal extensions (e.g., ConvLSTM and graph/vision trans-
formers) further capture dynamics (Shi et al., 2015). These tools provide flexible representations but
require additional causal structure for identification.

Deep latent-variable models. Finally, conditional variational autoencoders (C-VAEs) and related
deep generative models are widely used for representation learning with latent factors (Kingma and
Welling, 2013; Sohn et al., 2015). Beyond C-VAEs, the broader family of latent-variable models
includes variational autoencoders with structured priors (Rezende et al., 2014; Maaløe et al., 2016),
disentangled representation learning (Higgins et al., 2017), normalizing flows (Rezende and Mo-
hamed, 2015), and diffusion-based generative models (Ho et al., 2020; Kingma et al., 2021), all
of which offer flexible ways to recover hidden structure from high-dimensional data. While these
methods are not causal in themselves, they provide natural tools for reconstructing latent processes
from observed multi-cause data. In our framework, a C-VAE combined with a spatial prior enables
smooth, nonparametric recovery of a substitute confounder from local treatment vectors, which is
then used for causal identification. Other architectures (e.g., diffusion models or flow-based meth-
ods) could, in principle, be substituted, but the key contribution lies in adapting deep latent-factor
reconstruction to the spatial interference setting, where treatments on neighboring units jointly re-
veal the latent field.

A.4 CAUSAL GENERATIVE MODELS

Recent work has proposed using expressive generative models as parameterizations of structural
causal models. One stream of work uses autoregressive flows to obtain identifiable SCMs given
a causal ordering (e.g., Javaloy et al., 2023; Khemakhem et al., 2021). Others combine diffusion-
or GAN-based models with structural equations to model complex, high-dimensional counterfac-
tuals (Sanchez and Tsaftaris, 2022; Kocaoglu et al., 2017). However, all of the methods assume
unconfoundedness and are thus orthogonal to our Spatial Deconfounder. A different stream of liter-
ature combines causal inference and generative modeling under hidden confounding (e.g., Xia et al.,
2021; Almodóvar et al., 2025). Similar to our work, the recently proposed DeCaFlow (Almodóvar
et al., 2025) extends this line by learning confounded SCMs with causal normalizing flows and
variational inference based on the deconfounder framework. However, these works are restricted to
specific variables types, e.g., continuous treatments, and do not apply to the spatial setting. Build-
ing upon proxy variables, follow-up work on the deconfounder clarifies identifiability conditions in
multi-cause settings (Wang and Blei, 2021). Similarly, this work assumes multiple treatments in an
independent setting and does not apply to spatial causal inference tasks.

A.5 DEEP IDENTIFIABLE MODELS AND NETWORK DECONFOUNDING

A complementary line of work focuses on identifiability in deep latent variable models. Sparse
deep generative models establish identifiability of VAEs under sparsity constraints Moran et al.
(2022), while Intact-VAE (Wu and Fukumizu, 2021) and β-Intact-VAE (Wu and Fukumizu, 2022)
provide identifiable generative models for causal inference under unobserved confounding, IVs,
proxies, and networked confounding. Applications to medical data show how identifiable VAEs can
recover meaningful latent prognostic factors (Ma et al., 2023). These methods are typically designed
for i.i.d. or network-structured observations and often rely on known adjacency structure, e.g.,
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using neighbor information to help identify latent confounders in network deconfounding tasks. Our
Spatial Deconfounder differs by targeting a specific spatial setting with localized grid-interference.
More importantly, we note that our Spatial Deconfounder is not limited to the use of a C-VAE.
The framework is model-agnostic and can be combined with other generative factor models. In
contrast to these identifiable deep models, our focus is on a spatial–interference design: we show
that interference-generated multi-cause vectors (As, ANs

), together with a spatial prior on Z, are
sufficient to identify both direct and spillover effects without specifying a parametric latent-field
model.

A.6 OUR WORK

Our contribution lies at the intersection of spatial causal inference, methods for deconfounding under
unobserved confounding, and modern deep latent-variable modeling. Existing approaches to spatial
interference either assume that all relevant confounders are observed, or else mitigate bias through
strong structural assumptions and priors—for example, by imposing smooth latent fields, leveraging
restrictive IV conditions, or specifying parametric Bayesian models. In parallel, the “deconfounder”
framework demonstrates that multiplicity of causes can be exploited to infer substitutes for unob-
served confounders, thereby restoring point identification; however, these methods are designed for
i.i.d. settings with many simultaneous treatments (e.g., recommender systems, panels), and do not
naturally extend to spatial domains where interference and locality are intrinsic.

The Spatial Deconfounder closes this gap. We treat interference itself as the source of multi-cause
information: treatment vectors on a unit and its neighbors contain precisely the dependence needed
to reveal the hidden confounding field. By training a C-VAE with a spatial prior, we nonparamet-
rically reconstruct a smooth latent confounder from these local treatment vectors. This substitute
confounder can then be used to adjust for bias, enabling identification and estimation of both direct
and spillover effects. Crucially, our method achieves this without committing to a fully specified
latent-field model or relying on IV-style exclusion restrictions, thereby combining the flexibility of
nonparametric deconfounding with the structural realities of spatial interference.
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B PROOFS

We first provide background by stating supporting definitions and lemmas. Then we prove our main
theorem on the identifiability of the treatment effects.

B.1 SUPPORTING LEMMAS AND DEFINITIONS

Definition 1 (Ignorability). The grid treatment (as,aNs
) is ignorable given Zs,Xs,XNs

, if for all
s = 1, . . . , n and for all (a,aN ) ∈ A|S|

(As,ANs
) ⊥⊥ Ys(a,aN ) | Zs,Xs,XNs

. (21)

Definition 2 (Factor models). A factor model of the assigned spatial treatments is a latent-variable
model

pϕ(z1:|S|,x1:|S|,xN1:|S| , a1:|S|,aN1:|S|) (22)

=p(z1:|S|,x1:|S|,xN1:|S|)

|S|∏
s=1

pϕ(as | zs,xs,xNs
)
∏
k∈Ns

pϕ(ak | zs,xs,xNs
) (23)

rendering the assigned treatments conditionally independent.

Lemma 1. For the relation between the substitute confounder and factor models, it holds under
weak regularity conditions

1. Assume the true distributions of the treatments p(a1:|S|,aN1:|S|) can be rep-
resented by a factor model employing the substitute confounder Z, i.e.,
pϕ(z1:|S|,x1:|S|,xN1:|S| , a1:|S|,aN1:|S|). With the assumption of latent field suffi-
ciency (see Assumption 4), the assigned treatments (a,aN ) are ignorable given Zs, Xs,
and XNs , i.e.,

(As,ANs
) ⊥⊥ Ys(a,aN ) | Zs,Xs,XNs

. (24)

2. A factor model that represents the distribution of the assigned treatments always exists.

Proof. The statement follows from Proposition 5 in Wang and Blei (2019).

B.2 PROOF OF THE MAIN THEOREM

Theorem 1 (Causal identifiability). Suppose Assumptions 1–5 hold. Let Z be a piecewise constant
function of the assigned causes and covariates (a,aN ,x,xN ) and let the outcome be a separable
function of the observed and unobserved variables

EY
[
Ys(a,aN ) | Xs = x,XNs = xN , Zs = z

]
= f1(a,aN ,x,xN ) + f2(z), (15)

EY
[
Ys | As = a,ANs

= aN ,Xs = x,XNs
= xN , Zs = z

]
= f3(a,aN ,x,xN ) + f4(z), (16)

for continuously differentiable functions f1, f2, f3, f4. Consequently, the direct and spillover effects
are identifiable as

τdir = EXs,XNs ,Z

[
EY

[
Ys | As = 1,ANs ,Xs,XNs , Zs

]
− EY

[
Ys | As = 0,ANs ,Xs,XNs , Zs

]]
, (17)

τspill = EXs,XNs ,Z

[
EY

[
Ys | a,ANs = a

(1)
Ns

,Xs,XNs , Zs

]
− EY

[
Ys | a,ANs = a

(0)
Ns

,Xs,XNs , Zs

]]
.

(18)

Proof. First, observe that by the power-property and the separability of the outcome, we have

EY [Ys(a,aN )] = EX,XN ,Z

[
EY [Ys(a,aN ) | Xs,XNs

, Zs]
]

(25)

= EX,XN [f1(a,aN ,Xs,XNs
)] + EZ [f2(Zs)]. (26)
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For the direct and indirect effects τdir and τind follows

τdir = EX,XN [f1(As = 1,aNs
,Xs,XNs

)]− EX,XN [f1(As = 0,aNs
,Xs,XNs

)] (27)

=

∫
C(1,0)

∇νEX,XN [f1(ν,aN ,Xs,XNs
)]dν, ν ∈ R (28)

and

τind = EX,XN [f1(as,ANs = a
(1)
Ns
,Xs,XNs)]− EX,XN [f1(as,ANs = a

(0)
Ns
,Xs,XNs)] (29)

=

∫
C(a

(1)
Ns
,a

(0)
Ns

))

∇κEX,XN [f1(as,ANs
= κ,Xs,XNs

)]dκ, κ ∈ R|S|−1. (30)

We thus need to find an expression for the gradient to rewrite the integral in terms of observable
quantities.

To do so, we first consider the conditional expected outcome. By Assumption 5 there exists a
function g such that Z = g(a,aN ,X,XN ). Therefore, it holds

EX,XN ,Z

[
EY [Ys | As = as,ANs

= aNs
,XNs

, Zs]
]

(31)

=EX,XN

[
EY [Ys | As = as,ANs

= aNs
,Xs,XNs

, Zs = g(as,aNs
,Xs,XNs

)] (32)

=EX,XN

[
EY [Ys(as,aNs) | As = as,ANs = aNs ,Xs,XNs , Zs = g(as,aNs ,Xs,XNs)]

]
, (33)

where the latter equality follows from Assumption 1.

As Ys(as,aNs
) ⊥⊥ As,ANs

| Xs,XNs
, Zs (by Lemma 1) and the outcomes are assumed to be

separable, it follows

EX,XN ,Z

[
EY [Ys | As = as,ANs = aNs ,Xs,XNs , Zs]

]
(34)

=EX,XN

[
EY [Ys(as,aNs) | Xs,XNs , Zs = g(as,aNs ,Xs,XNs)]

]
(35)

=EX,XN [f1(as,aNs ,Xs,XNs)] + EZ [f2(g(as,aNs ,Xs,XNs))]. (36)

Recall that by the definition of the conditional expected outcome, we have

EX,XN ,Z

[
EY [Ys | As = as,ANs = aNs ,Xs,XNs , Zs]

]
= (37)

EX,XN [f3(as,aNs ,Xs,XNs)] + EZ [f4(g(as,aNs ,Xs,XNs))]. (38)

Now, we are ready to consider the gradients in 29. Observe that for the gradients of the conditional
outcome, it holds

∇asEX,XN ,Z

[
EY [Ys | as,ANs = aNs ,Xs,XNs , Zs]

]
(39)

=∇asEX,XN [f1(as,aNs
,Xs,XNs

)] +∇asEZ [f2(g(as,aNs
))] (40)

=∇asEX,XN [f3(as,aNs ,Xs,XNs)] +∇asEZ [f4(g(as,aNs))] (41)

with a similar expression for ∇aNs
. Note that, up to a set of Lebesgue measure zero, the gradients

of f2 and f4 disappear, i.e.,

∇asEZ [f2(g(as,aNs ,Xs,XNs))] = ∇g(as,aNs ,Xs,XNs )
f2∇asg(as,aNs ,Xs,XNs) = 0 (42)

and

∇asEZ [f4(g(as,aNs
,Xs,XNs

))] = ∇g(as,aNs ,Xs,XNs )
f4∇asg(as,aNs

,Xs,XNs
) = 0 (43)

as
∇asg(as,aNs

,Xs,XNs
) = 0.

Similarly,

∇aNs
EZ [f2(g(as,aNs

,Xs,XNs
))] = ∇aNs

EZ [f4(g(as,aNs
,Xs,XNs

))] = 0.

Overall, we receive

∇asEX,XN [f1(as,aNs ,Xs,XNs)] = ∇asEX,XN [f3(as,aNs ,Xs,XNs)] (44)

and

∇aNs
EX,XN [f1(as,aNs ,Xs,XNs)] = ∇aNs

EX,XN [f3(as,aNs ,Xs,XNs)]. (45)
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Finally, we can identify the direct treatment τdir effect as

τdir =

∫
C(1,0)

∇νEX,XN [f1(ν,aN ,Xs,XNs)]dν, ν ∈ R (46)

=

∫
C(1,0)

∇νEX,XN [f3(ν,aN ,Xs,XNs)]dν, ν ∈ R (47)

= EX,XN [f3(As = 1,aN ,Xs,XNs)]− EX,XN [f3(As = 0,aN ,Xs,XNs)] (48)
= EX,XN [f3(As = 1,aN ,Xs,XNs

)] + EZ [f4(Zs)] (49)
− EX,XN [f3(As = 0,aN ,Xs,XNs

)]− EZ [f4(Zs)] (50)

= EZ,X,XN

[
EY

[
Ys | as=1,aNs

,Xs,XNs
, Zs

]
− EY

[
Ys | as=0,aNs

,Xs,XNs
, Zs

]]
(51)

and similarly the indirect treatment effect τind as

τind =

∫
C(a

(1)
Ns
,a

(0)
Ns

)

∇κEX,XN [f1(as,ANs = κ,Xs,XNs)]dκ (52)

=

∫
C(a

(1)
Ns
,a

(0)
Ns

)

∇κEX,XN [f3(as,ANs
= κ,Xs,XNs

)]dκ (53)

= EX,XN [f3(as,a
(1)
Ns
,Xs,XNs)]− EX,XN [f3(as, a

(0)
Ns
,Xs,XNs)] (54)

= EX,XN [f3(as,a
(1)
Ns
,Xs,XNs

)] + EZ [f4(Zs)] (55)

− EX,XN [f3(as,a
(0)
Ns
,Xs,XNs

)]− EZ [f4(Zs)] (56)

= EZ,X,XN

[
EY

[
Ys | as,a(1)Ns

,Xs,XNs
, Zs

]
− EY

[
Ys | as,a(0)Ns

,Xs,XNs
, Zs

]]
(57)

Overall, we proved that the substitute confounder generated by our spatial deconfounder renders the
treatment effects identifiable.
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C IMPLEMENTATION DETAILS

This section provides implementation details for our experimental setup. We cover four aspects:

1. Semi-synthetic data generation: construction of counterfactual outcomes under interference
and spatial confounding using the SpaCE benchmark framework, with hidden confounders sim-
ulated by masking key covariates.

2. Predictive model: how the outcome model f is estimated with ensembles of machine-learning
models, including convolutional networks for spatial structure.

3. Software and hyperparameters: the AutoML framework used for training and tuning, along
with default settings.

4. Benchmarks: implementation details for baseline methods.

Semi-synthetic outcomes. Recall from Section 6 that we construct counterfactual outcomes via

Ŷs = f(As,ANs
,Xs) +Rs or Ŷs = f(As,ANs

,Xs,XNs
) +Rs,

where f is a predictive model learned from real-world environmental data and Rs are exogenous,
spatially correlated residuals with the same distribution as the endogenous residuals.

Predictive model with interference. We estimate f using ensembles of machine-learning models,
with ensemble weights determined by predictive accuracy on held-out validation data. Following
Tec et al. (2024) and the benchmarking guidelines of Curth et al. (2021), this avoids bias toward
causal estimators tied to a single model class. To capture spatial structure, we include ResNet-
18 (He et al., 2016) as one of the base learners. Training and hyperparameter tuning are automated
with the AutoGluon Python package (Erickson et al., 2020), which performs model selection,
hyperparameter search, and overfitting control with minimal human intervention. Default settings
for AutoGluon are summarized in Table 3.

Table 3: Hyperparameters used in AutoML

Parameter Value

package AutoGluon v1.4.0
fit.presets good_quality
fit.tuning_data custom with algorithm 2
fit.use_bag_holdout true
fit.time_limit null
feature_importance.time_limit 900
hyperparameters get_hyperparameter_config(’multimodal’)
hyperparameters.AG_AUTOMM.optim.max_epochs 10
hyperparameters.AG_AUTOMM.model.timm_image.checkpoint_name resnet18

Spatially-aware train-validation split. We implement a spatially-aware train-validation data split
(Roberts et al., 2017) that takes interference into account to avoid overfitting due to spatial correla-
tions. We only consider nodes with complete neighborhoods for training and validation. This spatial
splitting strategy identifies a limited number of validation nodes and applies breadth-first search to
exclude their adjacent neighbors from the training dataset. For this study, we define each grid cell to
have edges connecting it to its 8 surrounding cells. This algorithm is described in algorithm 2.

Synthetic Residual Generation. Following the approach established in Tec et al. (2024), we gen-
erate synthetic residuals using a Gaussian Markov Random Field (GMRF) from a spatial graph.
Specifically, we sample the synthetic residuals according to: R ∼iid MultivariateNormal(0, λ̂(D −
ρ̂AD)−1), where A represents the spatial graph’s adjacency matrix, D denotes a diagonal matrix
containing the degree (number of neighbors) for each spatial location, ρ̂ parameterizes the spatial
dependence between observations and their neighbors (estimated from the true residuals obtained
from f ), and λ̂ is calibrated to preserve the exact variance of the observed residuals. We refer the
reader to Tec et al. (2024) for additional details.

Benchmark Training and Hyperparameter Tuning. To ensure a fair comparison, we use the RAY
TUNE (Liaw et al., 2018) framework for hyperparameter tuning. For all but DAPSM, the tuning metric
is implemented as mean-squared error (MSE) from a validation set obtained with the spatially-aware
splitting method in algorithm 2. We use this splitting algorithm for computing the tuning metric
since random splitting would result in extreme overfitting (Roberts et al., 2017). For DAPSM we
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Algorithm 2 Spatially-aware validation split selection with radius and complete neighborhoods

Input: Graph as map of neighbors s→ Ns where Ns ⊂ S is the set of neighbors of s.
Params: Fraction α of seed validation points (default α = 0.02); number of BFS levels L to

include in the validation set (default L = 1); buffer size B indicating the number of BFS levels
to leave outside training and validation (default B = 1); radius rm of the model to consider
when determining the split (default rm = 1)

Output: Set of training nodes T ⊂ S and validation nodes V ⊂ S.
1: # Helper function to check if node has complete r-hop neighborhood
2: function HASCOMPLETENEIGHBORHOOD(s, r):
3: expected count = (2r + 1)2 # For square grid
4: actual neighbors = GetNeighborsWithinRadius(s, r)
5: return |actual neighbors| = expected count
6: # Filter to only nodes with complete neighborhoods
7: Svalid = {s ∈ S : HASCOMPLETENEIGHBORHOOD(s, rm)}
8: # Initialize validation set with seed nodes from valid nodes only
9: V = SampleWithoutReplacement(Svalid, α)

10: # Expand validation set with neighbors
11: for ℓ ∈ {0, . . . , L− 1} do
12: tmp = V
13: for s ∈ tmp do
14: V = V ∪ Ns
15: end for
16: end for
17: # Compute buffer
18: B = V
19: for b ∈ {0, . . . , B − 1 + rm} do
20: tmp = B
21: for s ∈ tmp do
22: B = B ∪ Ns
23: end for
24: end for
25: # Exclude buffer for training set (from valid nodes only)
26: T = Svalid \ B
27: return T,V

use the covariate balance criterion following Papadogeorgou et al. (2019). After selecting the best
hyperparameters, the method is retrained on the full data. Table 4 summarizes our hyperparameter
search space for different baseline models. For C-VAE models with radius R evaluated on a dataset
of radius rd, training and validation are restricted to nodes with radius rm = max(rd, R). Each
C-VAE model also specifies a latent confounder dimension dZ ∈ {1, 2, 4, 8, 16, 32}. The licenses
of the data sources used for training are summarized in the supplement of Tec et al. (2024), which
allow sharing and reuse for non-commercial purposes.
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Model Iterations Tuning Metric Value

C-VAE-SPATIAL+ 100 weight decay C-VAE loguniform between 1e-4 and 1e-3
beta max (β) (rd = 1, PM2.5) loguniform between 1e-8 and 10
beta max (β) (rd = 1, SO4) loguniform between 1e-5 and 10
beta max (β) (rd = 2) loguniform between 1e-5 and 1e-4
lam t loguniform between 1e-5 and 1.0
lam y loguniform between 1e-5 and 1.0

C-VAE-UNET 60 weight decay C-VAE loguniform between 1e-4 and 1e-3
beta max (β) loguniform between 1e-3 and 1
weight decay head loguniform between 1e-4 and 1e-3
unet base chan 16 or 32

DAPSM N/A propensity score penalty value choose from [0.001, 0.01, 0.1, 1.0]
propensity score penalty type l1 or l2
spatial weight uniform between 0.0 and 1.0

GCNN N/A hidden dim 16 or 32
hidden layers 1 or 2
weight decay loguniform between 1e-6 and 1e-1
lr 1e-3 or 3e-4
epochs 1000 or 2500
dropout loguniform between 1e-3 to 0.5

SPATIAL+ 2,500 lam t loguniform between 1e-5 and 1.0
lam y loguniform between 1e-5 and 1.0

SPATIAL 2,500 lam loguniform between 1e-5 and 1.0

UNET 50 unet base chan choose from [8, 16, 32]

Table 4: Hyperparameter configurations evaluated for each model using a validation set.
Iterations denotes the number of Ray Tune trials performed per model.

D FURTHER EXPERIMENTAL RESULTS

Our full experimental results are available for local confounding and spatial confounding at Table 5
and Table 6, respectively. There is a general pattern that C-VAE models tend to outperform bench-
marks in estimating direct effects. In particular, C-VAE are the only local confounding methods
that can also estimate spillover effects. In spatial confounding datasets with rd = 1, deconfounders
tend to have better direct effect and spillover estimation than UNET.

Table 5: Performance under local confounding. Results av eraged over 10 runs with 95% confidence
intervals. rd: neighborhood radius in data generation; R: neighborhood radius used by the decon-
founder. Lower values for ATE and SPILL indicate less bias. p indicates the p-value of the predictive
check, with values near 0.5 indicating good model fit to 0.5.

DIR SPILL p
Environment Confounder Method

PM2.5 → m (rd = 1) ρpop C-VAE-SPATIAL+ (R=0) 0.15 ± 0.11 n/a 0.36 ± 0.07
C-VAE-SPATIAL+ (R=1) 0.05 ± 0.02 0.34 ± 0.08 0.35 ± 0.09
C-VAE-SPATIAL+ (R=2) 0.07 ± 0.02 0.52 ± 0.08 0.35 ± 0.03
DAPSM 0.25 ± 0.01 n/a n/a
GCNN 0.36 ± 0.03 n/a n/a
S2SLS-LAG1 0.03 ± 0.00 n/a n/a
SPATIAL+ 0.13 ± 0.04 n/a n/a
SPATIAL 0.10 ± 0.07 n/a n/a

qsummer C-VAE-SPATIAL+ (R=0) 0.15 ± 0.07 n/a 0.38 ± 0.08
C-VAE-SPATIAL+ (R=1) 0.04 ± 0.01 0.42 ± 0.08 0.37 ± 0.07
C-VAE-SPATIAL+ (R=2) 0.04 ± 0.01 0.44 ± 0.09 0.36 ± 0.04
DAPSM 0.30 ± 0.03 n/a n/a
GCNN 0.41 ± 0.03 n/a n/a
S2SLS-LAG1 0.20 ± 0.00 n/a n/a
SPATIAL+ 0.13 ± 0.04 n/a n/a
SPATIAL 0.10 ± 0.07 n/a n/a

PM2.5 → m (rd = 2) ρpop C-VAE-SPATIAL+ (R=0) 0.11 ± 0.02 n/a 0.35 ± 0.03
C-VAE-SPATIAL+ (R=1) 0.05 ± 0.02 0.15 ± 0.05 0.34 ± 0.04
C-VAE-SPATIAL+ (R=2) 0.04 ± 0.03 0.24 ± 0.06 0.35 ± 0.04
DAPSM 0.16 ± 0.01 n/a n/a
GCNN 0.18 ± 0.03 n/a n/a
S2SLS-LAG1 0.07 ± 0.00 n/a n/a
SPATIAL+ 0.10 ± 0.02 n/a n/a
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SPATIAL 0.17 ± 0.03 n/a n/a
qsummer C-VAE-SPATIAL+ (R=0) 0.13 ± 0.05 n/a 0.36 ± 0.04

C-VAE-SPATIAL+ (R=1) 0.04 ± 0.02 0.11 ± 0.05 0.36 ± 0.04
C-VAE-SPATIAL+ (R=2) 0.07 ± 0.02 0.19 ± 0.06 0.36 ± 0.04
DAPSM 0.20 ± 0.01 n/a n/a
GCNN 0.16 ± 0.05 n/a n/a
S2SLS-LAG1 0.09 ± 0.00 n/a n/a
SPATIAL+ 0.11 ± 0.02 n/a n/a
SPATIAL 0.17 ± 0.03 n/a n/a

SO4 → PM2.5 (rd = 1) NH 4 C-VAE-SPATIAL+ (R=0) 0.22 ± 0.04 n/a 0.40 ± 0.05
C-VAE-SPATIAL+ (R=1) 0.07 ± 0.03 0.64 ± 0.10 0.38 ± 0.04
C-VAE-SPATIAL+ (R=2) 0.07 ± 0.03 0.16 ± 0.06 0.39 ± 0.06
DAPSM 1.44 ± 0.00 n/a n/a
GCNN 0.52 ± 0.16 n/a n/a
S2SLS-LAG1 0.09 ± 0.00 n/a n/a
SPATIAL+ 0.11 ± 0.03 n/a n/a
SPATIAL 0.08 ± 0.02 n/a n/a

OC C-VAE-SPATIAL+ (R=0) 0.07 ± 0.03 n/a 0.41 ± 0.02
C-VAE-SPATIAL+ (R=1) 0.08 ± 0.03 0.69 ± 0.10 0.41 ± 0.03
C-VAE-SPATIAL+ (R=2) 0.11 ± 0.04 0.90 ± 0.12 0.44 ± 0.02
DAPSM 1.45 ± 0.00 n/a n/a
GCNN 0.77 ± 0.22 n/a n/a
S2SLS-LAG1 0.00 ± 0.00 n/a n/a
SPATIAL+ 0.11 ± 0.03 n/a n/a
SPATIAL 0.08 ± 0.02 n/a n/a

SO4 → PM2.5 (rd = 2) NH 4 C-VAE-SPATIAL+ (R=0) 0.07 ± 0.04 n/a 0.48 ± 0.06
C-VAE-SPATIAL+ (R=1) 0.08 ± 0.03 0.13 ± 0.05 0.44 ± 0.03
C-VAE-SPATIAL+ (R=2) 0.12 ± 0.04 0.09 ± 0.04 0.43 ± 0.03
DAPSM 1.23 ± 0.00 n/a n/a
GCNN 0.26 ± 0.09 n/a n/a
S2SLS-LAG1 0.10 ± 0.00 n/a n/a
SPATIAL+ 0.13 ± 0.07 n/a n/a
SPATIAL 0.29 ± 0.01 n/a n/a

OC C-VAE-SPATIAL+ (R=0) 0.10 ± 0.07 n/a 0.43 ± 0.04
C-VAE-SPATIAL+ (R=1) 0.06 ± 0.03 0.18 ± 0.09 0.43 ± 0.03
C-VAE-SPATIAL+ (R=2) 0.12 ± 0.06 0.35 ± 08 0.43 ± 0.04
DAPSM 1.24 ± 0.01 n/a n/a
GCNN 0.30 ± 0.10 n/a n/a
S2SLS-LAG1 0.21 ± 0.00 n/a n/a
SPATIAL+ 0.13 ± 0.07 n/a n/a
SPATIAL 0.29 ± 0.01 n/a n/a

Table 6: Performance under spatial confounding. Results averaged over 10 runs with 95% confi-
dence intervals. rd: neighborhood radius in data generation; R: neighborhood radius used by the
deconfounder. Lower values for ATE and SPILL indicate less bias. p indicates the p-value of the
predictive check, with values near 0.5 indicating good model fit to 0.5.

DIR SPILL p
Environment Confounder Method

PM2.5 → m (rd = 1) ρpop C-VAE-UNET (R=0) 0.11 ± 0.04 n/a 0.34 ± 0.04
C-VAE-UNET (R=1) 0.05 ± 0.01 0.22 ± 0.06 0.34 ± 0.03
C-VAE-UNET (R=2) 0.04 ± 0.02 0.12 ± 0.06 0.36 ± 0.06
DAPSM 0.20 ± 0.01 n/a n/a
GCNN 0.17 ± 0.06 n/a n/a
S2SLS-LAG1 0.05 ± 0.00 n/a n/a
SPATIAL+ 0.27 ± 0.18 n/a n/a
SPATIAL 0.06 ± 0.06 n/a n/a
UNET 0.06 ± 0.01 0.17 ± 0.04 n/a

qsummer C-VAE-UNET (R=0) 0.04 ± 0.02 n/a 0.35 ± 0.02
C-VAE-UNET (R=1) 0.06 ± 0.02 0.13 ± 0.07 0.33 ± 0.02
C-VAE-UNET (R=2) 0.04 ± 0.02 0.10 ± 0.05 0.36 ± 0.05
DAPSM 0.28 ± 0.04 n/a n/a
GCNN 0.23 ± 0.03 n/a n/a
S2SLS-LAG1 0.16 ± 0.00 n/a n/a
SPATIAL+ 0.27 ± 0.18 n/a n/a
SPATIAL 0.07 ± 0.06 n/a n/a
UNET 0.04 ± 0.01 0.10 ± 0.05 n/a

PM2.5 → m (rd = 2) ρpop C-VAE-UNET (R=0) 0.09 ± 0.03 n/a 0.32 ± 0.04
C-VAE-UNET (R=1) 0.15 ± 0.01 0.09 ± 0.03 0.31 ± 0.04
C-VAE-UNET (R=2) 0.15 ± 0.01 0.13 ± 0.05 0.29 ± 0.06
DAPSM 0.15 ± 0.02 n/a n/a
GCNN 0.15 ± 0.04 n/a n/a
S2SLS-LAG1 0.06 ± 0.00 n/a n/a
SPATIAL+ 0.08 ± 0.04 n/a n/a
SPATIAL 0.05 ± 0.02 n/a n/a
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UNET 0.15 ± 0.01 0.15 ± 0.03 n/a
qsummer C-VAE-UNET (R=0) 0.05 ± 0.01 n/a 0.30 ± 0.05

C-VAE-UNET (R=1) 0.14 ± 0.01 0.07 ± 0.03 0.30 ± 0.05
C-VAE-UNET (R=2) 0.15 ± 0.01 0.06 ± 0.03 0.33 ± 0.04
DAPSM 0.21 ± 0.01 n/a n/a
GCNN 0.23 ± 0.03 n/a n/a
S2SLS-LAG1 0.10 ± 0.00 n/a n/a
SPATIAL+ 0.07 ± 0.03 n/a n/a
SPATIAL 0.05 ± 0.02 n/a n/a
UNET 0.15 ± 0.00 0.08 ± 0.04 n/a

SO4 → PM2.5 (rd = 1) NH 4 C-VAE-UNET (R=0) 0.18 ± 0.03 n/a 0.44 ± 0.03
C-VAE-UNET (R=1) 0.05 ± 0.02 0.22 ± 0.03 0.45 ± 0.03
C-VAE-UNET (R=2) 0.04 ± 0.02 0.37 ± 0.06 0.43 ± 0.03
DAPSM 1.56 ± 0.00 n/a n/a
GCNN 0.55 ± 0.09 n/a n/a
S2SLS-LAG1 0.22 ± 0.00 n/a n/a
SPATIAL+ 0.06 ± 0.05 n/a n/a
SPATIAL 0.04 ± 0.01 n/a n/a
UNET 0.04 ± 0.01 0.19 ± 0.04 n/a

OC C-VAE-UNET (R=0) 0.04 ± 0.02 n/a 0.46 ± 0.02
C-VAE-UNET (R=1) 0.06 ± 0.02 0.09 ± 0.04 0.44 ± 0.03
C-VAE-UNET (R=2) 0.06 ± 0.02 0.18 ± 0.06 0.45 ± 0.03
DAPSM 1.57 ± 0.00 n/a n/a
GCNN 0.42 ± 0.15 n/a n/a
S2SLS-LAG1 0.13 ± 0.00 n/a n/a
SPATIAL+ 0.06 ± 0.05 n/a n/a
SPATIAL 0.04 ± 0.01 n/a n/a
UNET 0.07 ± 0.02 0.05 ± 0.02 n/a

SO4 → PM2.5 (rd = 2) NH 4 C-VAE-UNET (R=0) 0.04 ± 0.02 n/a 0.43 ± 0.04
C-VAE-UNET (R=1) 0.13 ± 0.02 0.05 ± 0.02 0.45 ± 0.03
C-VAE-UNET (R=2) 0.15 ± 0.01 0.07 ± 0.03 0.45 ± 0.03
DAPSM 1.47 ± 0.00 n/a n/a
GCNN 0.66 ± 0.21 n/a n/a
S2SLS-LAG1 0.16 ± 0.00 n/a n/a
SPATIAL+ 0.06 ± 0.02 n/a n/a
SPATIAL 0.06 ± 0.05 n/a n/a
UNET 0.15 ± 0.01 0.11 ± 0.04 n/a

OC C-VAE-UNET (R=0) 0.04 ± 0.02 n/a 0.43 ± 0.02
C-VAE-UNET (R=1) 0.12 ± 0.02 0.06 ± 0.03 0.43 ± 0.03
C-VAE-UNET (R=2) 0.13 ± 0.03 0.07 ± 0.02 0.44 ± 0.03
DAPSM 1.49 ± 0.01 n/a n/a
GCNN 0.67 ± 0.12 n/a n/a
S2SLS-LAG1 0.09 ± 0.00 n/a n/a
SPATIAL+ 0.05 ± 0.02 n/a n/a
SPATIAL 0.06 ± 0.05 n/a n/a
UNET 0.15 ± 0.01 0.08 ± 0.04 n/a
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E ADDITIONAL ROBUSTNESS TESTS

E.1 TREATMENT SPARSITY

The results in Table 7 examine our method under sparse treatment conditions with 30% and 10%
of grid cells receiving treatment. Despite similar performance under moderate treatment sparsity
(30%), C-VAE-SPATIAL+ considerably outperforms SPATIAL+ when sparsity is extreme (10%),
underscoring the value of our framework for direct effect estimation in highly sparse conditions.
In addition, the predictive p-value is lower as treatment sparsity increases, showing worse model
calibration in sparse settings.

Table 7: Performance under sparse local confounding. Results averaged over 10 runs with 95%
confidence intervals. rd: neighborhood radius in data generation; R: neighborhood radius used by
the deconfounder. Lower values for ATE and SPILL indicate less bias. p indicates the predictive
p-value, with values near 0.5 indicating good model fit to 0.5. Percentage in environment denotes
the fraction of observations receiving treatment.

DIR SPILL p
Environment Confounder Method

SO4 → PM2.5 (rd = 1) (10%) NH 4 C-VAE-SPATIAL+ (R=0) 0.07 ± 0.04 n/a 0.28 ± 0.02
C-VAE-SPATIAL+ (R=1) 0.19 ± 0.08 0.80 ± 0.23 0.28 ± 0.01
C-VAE-SPATIAL+ (R=2) 0.14 ± 0.08 1.20 ± 0.12 0.29 ± 0.01
DAPSM 0.02 ± 0.00 n/a n/a
GCNN 0.42 ± 0.07 n/a n/a
S2SLS-LAG1 0.04 ± 0.00 n/a n/a
SPATIAL+ 0.68 ± 0.21 n/a n/a
SPATIAL 0.17 ± 0.11 n/a n/a

OC C-VAE-SPATIAL+ (R=0) 0.05 ± 0.03 n/a 0.27 ± 0.01
C-VAE-SPATIAL+ (R=1) 0.14 ± 0.05 0.71 ± 0.17 0.29 ± 0.02
C-VAE-SPATIAL+ (R=2) 0.08 ± 0.03 1.09 ± 0.18 0.30 ± 0.02
DAPSM 0.05 ± 0.02 n/a n/a
GCNN 0.69 ± 0.20 n/a n/a
S2SLS-LAG1 0.26 ± 0.00 n/a n/a
SPATIAL+ 0.55 ± 0.19 n/a n/a
SPATIAL 0.17 ± 0.11 n/a n/a

SO4 → PM2.5 (rd = 1) (30%) NH 4 C-VAE-SPATIAL+ (R=0) 0.14 ± 0.03 n/a 0.33 ± 0.02
C-VAE-SPATIAL+ (R=1) 0.18 ± 0.06 0.42 ± 0.11 0.35 ± 0.03
C-VAE-SPATIAL+ (R=2) 0.12 ± 0.07 0.25 ± 0.11 0.34 ± 0.02
DAPSM 1.00 ± 0.00 n/a n/a
GCNN 0.34 ± 0.12 n/a n/a
S2SLS-LAG1 0.03 ± 0.00 n/a n/a
SPATIAL+ 0.12 ± 0.05 n/a n/a
SPATIAL 0.16 ± 0.03 n/a n/a

OC C-VAE-SPATIAL+ (R=0) 0.13 ± 0.03 n/a 0.31 ± 0.03
C-VAE-SPATIAL+ (R=1) 0.15 ± 0.06 0.35 ± 0.09 0.35 ± 0.02
C-VAE-SPATIAL+ (R=2) 0.11 ± 0.05 0.27 ± 0.10 0.36 ± 0.03
DAPSM 1.00 ± 0.00 n/a n/a
GCNN 0.35 ± 0.14 n/a n/a
S2SLS-LAG1 0.07 ± 0.00 n/a n/a
SPATIAL+ 0.12 ± 0.05 n/a n/a
SPATIAL 0.15 ± 0.03 n/a n/a

E.2 PERFORMANCE UNDER SINGLE-CAUSE CONFOUNDERS

We evaluate our method under violation of Assumption 4 by introducing a localized single-cause
unobserved confounder named SC. We select C = {c1, . . . , cn} as cluster centers, drawn uniformly
from the set of spatial sites, where n = ⌈s|S|⌉ and s denotes the sparsity. Each cluster center is
assigned a peak intensity αc ∼ U(0.5, 1.0). for any site s, the resulting single-cause confounder is

SCs = max
c∈C

αc exp

(
−d(s, c)

2

)
where d(s, c) is the shortest distance path between s and c. We then inject SC into both the treat-
ment and outcome by adding 0.8 × std(X) × SC to each variable where X denotes the respective
treatment or outcome variable. The treatments are binarized by applying a threshold. Table 8
presents the performance of our methods when Assumption 4 is violated. When the unobserved
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confounder exhibits greater localization (10%), C-VAE-SPATIAL+ shows larger bias in the direct
effect estimate compared to SPATIAL+. However, with a moderately sparse unobserved confounder,
C-VAE-SPATIAL+ achives comparable performance to SPATIAL+.

Table 8: Performance under local confounding with single-cause unobserved confounder SC.
Results averaged over 10 runs with 95% confidence intervals. rd: neighborhood radius in data
generation; R: neighborhood radius used by the deconfounder. Lower values for ATE and SPILL
indicate less bias. p indicates the predictive p-value, with values near 0.5 indicating good model fit
to 0.5. Percentage in environment denotes the fraction of observations receiving treatment.

DIR SPILL p
Environment Confounder Method

PM2.5 → m (rd = 1) (10%) SC C-VAE-SPATIAL+ (R=0) 0.11 ± 0.08 n/a 0.40 ± 0.02
C-VAE-SPATIAL+ (R=1) 0.11 ± 0.06 0.44 ± 0.14 0.40 ± 0.02
C-VAE-SPATIAL+ (R=2) 0.08 ± 0.02 0.62 ± 0.07 0.40 ± 0.03
DAPSM 0.52 ± 0.01 n/a n/a
GCNN 0.13 ± 0.03 n/a n/a
S2SLS-LAG1 0.20 ± 0.00 n/a n/a
SPATIAL+ 0.04 ± 0.01 n/a n/a
SPATIAL 0.06 ± 0.07 n/a n/a

PM2.5 → m (rd = 1) (30%) SC C-VAE-SPATIAL+ (R=0) 0.07 ± 0.02 n/a 0.38 ± 0.02
C-VAE-SPATIAL+ (R=1) 0.08 ± 0.02 0.26 ± 0.07 0.39 ± 0.03
C-VAE-SPATIAL+ (R=2) 0.10 ± 0.04 1.14 ± 1.37 0.42 ± 0.05
DAPSM 0.58 ± 0.00 n/a n/a
GCNN 0.16 ± 0.05 n/a n/a
S2SLS-LAG1 0.23 ± 0.00 n/a n/a
SPATIAL+ 0.09 ± 0.01 n/a n/a
SPATIAL 0.08 ± 0.02 n/a n/a

E.3 SENSITIVITY TO HYPERPARAMETERS AND SPILLOVER RADIUS

Hyperparameters: To assess the robustness of our spatial deconfounder across different hyper-
parameter sets, we conduct a sensitivity analysis. Below, we provide figures that display how
the hyperparameters of C-VAE-SPATIAL+ and C-VAE-UNET affect the estimation performance.
Specifically, we assess the hyperparameters β (KL term), the latent dimension dZ , the learning rate,
and weight decay. We observe the change in one parameter at a time, while optimizing the other
hyperparameters conditional on the assessed parameter.

For C-VAE-SPATIAL+, we do not observe a consistent pattern in the error for the direct effect
DIR. The estimation performance remains robust when changing a single hyperparameter while
optimizing all others. For the spillover effect SPILL estimation, we generally observe that the error
increases with β but decreases as dZ grows. In our models, the optimal β and dZ are determined
through hyperparameter tuning on the MSE Loss. Datasets with large rd typically need low β
because the smoothness is lower. On the other hand, datasets with small rd need a higher β to
enforce smoothness constraints. Furthermore, the optimal value of β depends on the nature of the
unobserved confounder. For instance, models with a smooth confounder such as humidity qsummer
favor a larger β, whereas models with an anisotropic confounder like the population density ρpop
require a relatively smaller β. For C-VAE-UNET, the direct effect DIR and spillover effect SPILL
remain consistent across varying degrees of hyperparameters, highlighting the important consistency
with deep learning spatially-aware architectures.

Neighborhood radius: Furthermore, we assess the robustness of our spatial deconfounder with
respect to different interference radii in Figures 5 to 20 for C-VAE-SPATIAL+ and Figures 21 to 36
for C-VAE-UNET. We observe that our spatial deconfounder is generally robust to misspecification
of the interference radius. Note that we do not include r = 0 models in SPILL plots, as these models
cannot include neighboring treatments, i.e., spillover effect, by design.
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Figure 5: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder OC. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 6: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder NH4. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 7: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder OC. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.
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Figure 8: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder NH4. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.
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Figure 9: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder OC. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 10: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder NH4. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 11: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder OC. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.
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Figure 12: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder NH4. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.
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Figure 13: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment PM2.5 → m (rd = 1) with unobserved confounder qsummer. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 14: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding envi-
ronment PM2.5 → m (rd = 1) with unobserved confounder ρpop. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 15: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment PM2.5 → m (rd = 1) with unobserved confounder qsummer. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
log10 (β)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SP
IL
L

r=1
r=2
r=3

100 101
log2 (dZ)

0.1

0.2

0.3

0.4

0.5

SP
IL
L

r=1
r=2
r=3

10−6 10−5 10−4

log10 (Weight Decay)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

SP
IL

L

r=1
r=2
r=3

10−3

log10 (Learning Rate)

0.1

0.2

0.3

0.4

0.5

SP
IL

L

r=1
r=2
r=3

Figure 16: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment PM2.5 → m (rd = 1) with unobserved confounder ρpop. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.
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Figure 17: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment PM2.5 → m (rd = 2) with unobserved confounder qsummer. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 18: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding envi-
ronment PM2.5 → m (rd = 2) with unobserved confounder ρpop. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the direct effect.
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Figure 19: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment PM2.5 → m (rd = 2) with unobserved confounder qsummer. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.
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Figure 20: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environ-
ment PM2.5 → m (rd = 2) with unobserved confounder ρpop. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval. The y-axis represents the error on the spillover effect.
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Figure 21: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder OC. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 22: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder NH4. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 23: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder OC. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 24: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 1) with unobserved confounder NH4. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 25: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder OC. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 26: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder NH4. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 27: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder OC. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 28: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment SO4 → PM2.5 (rd = 2) with unobserved confounder NH4. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 29: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 1) with unobserved confounder qsummer. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 30: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 1) with unobserved confounder ρpop. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 31: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 1) with unobserved confounder qsummer. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.

10−7 10−6 10−5 10−4 10−3 10−2 10−1
log10 (β)

−0.2

0.0

0.2

0.4

0.6

SP
IL
L

r=1
r=2
r=3

100 101
log2 (dZ)

0.0

0.1

0.2

0.3

0.4

SP
IL
L

r=1
r=2
r=3

10−5 10−4 10−3

log10 (Weight Decay)

−1.0

−0.5

0.0

0.5

1.0

1.5

SP
IL

L

r=1
r=2
r=3

10−3

log10 (Learning Rate)

−0.2

0.0

0.2

0.4

0.6

SP
IL

L

r=1
r=2
r=3

Figure 32: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 1) with unobserved confounder ρpop. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 33: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 2) with unobserved confounder qsummer. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 34: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 2) with unobserved confounder ρpop. Each subplot shows DIR as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 35: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 2) with unobserved confounder qsummer. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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Figure 36: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environ-
ment PM2.5 → m (rd = 2) with unobserved confounder ρpop. Each subplot shows SPILL as a
function of a hyperparameter across different neighborhood radii r. The error bounds represent the
95% confidence interval.
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F BROADER IMPACTS AND LLM DISCLOSURE

Limitations While the Spatial Deconfounder advances identification and estimation under inter-
ference and unobserved spatial confounding, several limitations remain. First, our theoretical guar-
antees rely on assumptions such as localized interference and smooth latent confounders; these are
useful but idealized and may not hold in domains with global spillovers or irregular hidden pro-
cesses. Second, the framework is designed for gridded spatial data and assumes a regular lattice;
extending to irregular spatial structures (e.g., graphs or administrative units) is an important direc-
tion for future work. Finally, although the C-VAE prior aids in recovering latent structure, it may not
fully capture unobserved confounders in extremely sparse or noisy data, and computational demands
grow with grid size.

Broader impacts This work contributes to machine learning and causal inference by introducing a
framework for more reliable effect estimation in spatial domains. Applications include environmen-
tal health, climate science, and social sciences, where accurate causal estimates can inform policy
decisions. At the same time, we caution against uncritical use in high-stakes settings: violations
of assumptions or biases in observational data may yield misleading conclusions. We encourage
responsible deployment—especially in contexts affecting vulnerable populations—and recommend
pairing our method with domain expertise, sensitivity analyses, and uncertainty quantification.

LLM usage disclosure. We used ChatGPT-5 and Claude Sonnet 4 to assist with editing, re-
structuring, and polishing the paper text. The authors carefully reviewed, revised, and validated
all outputs to ensure alignment with the intended scientific content. All substantive contribu-
tions—conceptual framing, methodology, theoretical results, and experiments—are the work of the
authors. Consistent with ICLR policy, the authors remain fully responsible for the accuracy and
integrity of the paper’s content.
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