

000 001 002 003 004 005 SPATIAL DECONFOUNDER: INTERFERENCE-AWARE 006 DECONFOUNDING FOR SPATIAL CAUSAL INFERENCE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

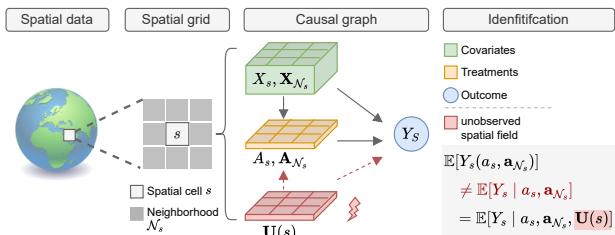
027 Causal inference in spatial domains faces two intertwined challenges: (1) unmeasured spatial factors, such as weather, air pollution, or mobility, that confound treatment and outcome, and (2) interference from nearby treatments that violate standard no-interference assumptions. While existing methods typically address one by assuming away the other, we show they are deeply connected: *interference reveals structure* in the latent confounder. Leveraging this insight, we propose the **Spatial Deconfounder**, a two-stage method that reconstructs a substitute confounder from local treatment vectors using a conditional variational autoencoder (C-VAE) with a spatial prior, then estimates causal effects via a flexible outcome model. We show that this approach enables nonparametric identification of both direct and spillover effects under weak assumptions—without requiring multiple treatment types or a known model of the latent field. Empirically, we extend SpaCE, a benchmark suite for spatial confounding, to include treatment interference, and show that the Spatial Deconfounder consistently improves effect estimation across real-world datasets in environmental health and social science. By turning interference into a multi-cause signal, our framework bridges spatial and deconfounding literatures to advance robust causal inference in structured data.

049 1 INTRODUCTION

050 Causal inference in spatial settings is critical for science and policy, from estimating the health
051 effects of pollution to evaluating land use, climate interventions, and the spread of infectious disease.
052 Most data in these domains are observational, since large-scale interventions are typically infeasible
053 or unethical, so robust methodology is needed to draw valid conclusions. Yet observational studies
054 in these settings face two fundamental challenges that standard methods rarely address together: (1)
055 *spillover (interference)*, where the treatment at one site affects outcomes at nearby sites, violating
056 the Stable Unit Treatment Value Assumption (SUTVA), and (2) *spatially structured unobserved*
057 *confounding*, where latent fields such as weather or socioeconomic context jointly drive treatment
058 exposures and outcomes. Both are pervasive, and ignoring either leads to biased conclusions.

059 Consider air quality and health:
060 respiratory mortality rates depend on local pollution and
061 on neighboring regions' pollution due to transport and mobility, while latent meteorological
062 factors such as temperature and humidity confound both.
063 Any method that neglects interference or hidden confounders risks misleading the actionable
064 decisions policy-makers rely on for regulation and public health.

065 **Existing approaches for spatial causal inference fall into two camps:** (i) Spatial causal methods model spillovers using exposure mappings or autoregressive dependencies but *assume all relevant*



066 **Figure 1: Schematic of spatial interference/confounding.** Spatial data is represented in geographical cells indexed by site s with neighborhood \mathcal{N}_s . The outcome at s (e.g., mortality rate) is affected by the treatments (e.g., air quality) and observed confounders (e.g., demographic information) at both s and \mathcal{N}_s . However, unobserved latent factors (e.g., humidity) can confound the relationship, rendering causal effects unidentifiable.

054 *vant confounders are observed* (Hudgens and Halloran, 2008; Forastiere et al., 2021). If unobserved
 055 confounding is present in the data, these methods cannot recover the true effect. (ii) Spatial treat-
 056 ment effect estimation under unobserved confounding is addressed through confounding-adjustment
 057 methods—splines, matching, instrumental variables (IVs) (Dupont et al., 2022; Papadogeorgou
 058 et al., 2019; Papadogeorgou and Samanta, 2023) by assuming explicit smooth field priors, para-
 059 metric forms, or exclusion restrictions in the literature. However, these methods treat interference
 060 as a nuisance or *neglect the interference structure* completely. Furthermore, they *fail* to correctly
 061 model the treatment effect if the parametric assumptions are violated, which is likely in practice.

062 In an orthogonal literature stream, the *deconfounder* framework (Wang and Blei, 2019) shows that
 063 when each unit receives multiple causes, their joint distribution can reveal latent confounders. How-
 064 ever, this method is designed for i.i.d. data with simultaneous treatments—not spatial domains with
 065 localized interactions. Overall, *no* method can non-parametrically estimate treatment effects under
 066 both interference and unobserved confounding.

067 We close this gap with the **Spatial Deconfounder**. Our key insight is that interference *creates* the
 068 very multi-cause structure that deconfounders require: each unit receives its own treatment together
 069 with those of its neighbors, all shaped by the same latent spatial field. Rather than a nuisance, *inter-
 070 ference becomes a source of signal for recovering hidden confounders*. Building on this, we develop
 071 a non-parametric and model-agnostic two-stage framework that first reconstructs a smooth substitute
 072 confounder using a conditional variational autoencoder (C-VAE) with a spatial prior, then estimates
 073 direct and spillover effects via any flexible outcome model (e.g., U-Net, GNN). This enables causal
 074 identification without requiring multiple treatment types or explicit latent-field models. *Of note, our
 075 spatial deconfounder framework is completely model-agnostic. In this paper, we present the frame-
 076 work in combination with a C-VAE. However, it can be instantiated with any suitable factor model
 077 of choice.* Our **contributions** are as follows:

- 078 1. We introduce the **Spatial Deconfounder**, a novel *non-parametric and model-agnostic* frame-
 079 *work to jointly address spatial interference and unmeasured confounding by treating neighbor-
 080 hood treatment exposures as multi-cause signals.*
- 081 2. We prove *identification* of direct and spillover effects under localized interference and a weak
 082 latent-field sufficiency assumption, without requiring a parametric model for the hidden process.
- 083 3. We extend the SpaCE benchmark to include structured interference and show, across climate-,
 084 health-, and social-science datasets, that our method consistently reduces bias relative to spatial
 085 autoregressive, matching, and spline-based baselines.

086 By leveraging interference as a lens into the hidden structure, the Spatial Deconfounder bridges
 087 spatial causal inference and multi-cause deconfounding, opening a path to robust causal estimation
 088 in complex geographic systems.

090 2 RELATED WORK

091 We give a brief overview of the related literature (see Appendix A for a comprehensive survey and
 092 discussion). Our work sits at the intersection of three main literatures: (i) spatial causal inference
 093 under interference and spatially structured confounding, (ii) deconfounding in general average treat-
 094 ment effect (ATE) estimation, and (iii) deep learning for spatial and latent structure modeling.

095 **Classical spatial causal inference.** Design- and model-based approaches assume exchangeability
 096 after conditioning on *observed* covariates (given an exposure mapping) (e.g., Hudgens and Halloran,
 097 2008; Anselin, 1988; Hanks et al., 2015; Forastiere et al., 2021; Tchetgen Tchetgen et al., 2021).
 098 They capture spatial dependence (splines/RSR, SAR, GNNs; simulators for domain physics) but do
 099 not address *unobserved* spatial confounding.

100 **Spatial confounding and bias-adjustment methods.** Bias from *unmeasured* spatial structure is
 101 mitigated via latent spatial effects, orthogonalization (S2SLS/SPATIAL+), proximity-based match-
 102 ing, IVs, or Bayesian priors (e.g., Hodges and Reich, 2010; Dupont et al., 2022; Papadogeorgou
 103 et al., 2019; Angrist et al., 1996). These methods rely on explicit smooth-field models or IV as-
 104 sumptions (or strong priors); none are able to nonparametrically reconstruct the hidden confounder.

105 **ATE estimation under unobserved confounding.** With unmeasured confounding, point identifi-
 106 cation typically fails. Sensitivity analyses yield assumption-indexed bounds, trading point identifi-
 107 cation for robustness (e.g., VanderWeele et al., 2015; Frauen et al., 2023). Another approach is to

108 reconstruct the unobserved confounder via the *deconfounder* framework, which fits a factor model
 109 to multiple causes in order to infer a substitute for the latent confounder, thereby restoring point
 110 identification (Wang and Blei, 2019; Bica et al., 2020). However, existing deconfounders require
 111 many simultaneous causes and assume no interference. We invert this: interference itself yields
 112 multi-cause treatment vectors, enabling latent-field recovery even with a single treatment type.

113 **Deep learning for spatial modeling.** U-Nets, GNNs, and patch-wise transformers capture multi-
 114 scale and long-range spatial structure (e.g., Ronneberger et al., 2015; Kipf, 2016; Liu et al., 2021),
 115 yet remain predictive rather than identifying causal effects without added causal structure.

116 **Deep latent-variable models.** C-VAEs and related deep generative models can recover latent factors
 117 from data (Kingma and Welling, 2013; Sohn et al., 2015). We adapt this idea to spatial inter-
 118 ference: interference supplies a multi-cause signal to nonparametrically reconstruct a smooth latent
 119 confounder, enabling identification of direct and spillover effects without a specified latent field.

120 **Positioning of our work.** Most spatial–interference methods ignore unmeasured confounders or
 121 rely on strong priors, while “deconfounder” methods are not adapted to spatial settings. We close
 122 this gap by using interference as a multi-cause signal to nonparametrically reconstruct latent con-
 123 founders, identifying direct and spillover effects without specifying a latent-field model.

3 BACKGROUND AND SETUP

127 **Notation.** We use uppercase letters (e.g., X) for random variables and lowercase letters (e.g., x) for
 128 their realizations. Bold symbols denote vectors. The distribution of X is written P_X , with subscripts
 129 omitted when clear from context.

130 **Data structure: lattice, neighborhoods, and observed variables.** We consider a rectangular lattice
 131 $\mathcal{S} = \{(i, j) \mid i \in [N_x], j \in [N_y]\}$, where each site $s = (i, j)$ indexes a geographic cell. For a fixed
 132 radius $r > 0$, we define the neighborhood of s using the ℓ_∞ metric,
 133

$$\mathcal{N}_s = \{s' \in \mathcal{S} : \|s' - s\|_\infty \leq r, s' \neq s\}, \quad \text{where } \|s' - s\|_\infty = \max\{|i' - i|, |j' - j|\}. \quad (1)$$

134 Thus \mathcal{N}_s is the $(2r+1) \times (2r+1)$ square centered at s , excluding s itself. We take r to be in *pixels*
 135 (multiples of the cell size), though it may also be specified as a physical distance and mapped to the
 136 grid resolution. Other shapes (e.g., ℓ_2 balls) are possible, but we use the square ℓ_∞ ball by default
 137 for computational convenience.

138 At each site s we observe covariates $\mathbf{X}_s \in \mathbb{R}^{d_x}$, a binary treatment $A_s \in \{0, 1\}$, and an outcome
 139 $Y_s \in \mathbb{R}$. For a neighborhood \mathcal{N}_s , we write $\mathbf{X}_{\mathcal{N}_s} = \{\mathbf{X}_{s'} : s' \in \mathcal{N}_s\}$, and analogously $A_{\mathcal{N}_s}$ and $Y_{\mathcal{N}_s}$.
 140 Realizations are denoted in lowercase, e.g., \mathbf{x}_s , a_s , y_s , and $\mathbf{x}_{\mathcal{N}_s} = \{\mathbf{x}_{s'} : s' \in \mathcal{N}_s\}$. For clarity,
 141 we focus on binary treatments, but the framework extends to continuous or multi-valued treatments
 142 through standard generalizations of the potential outcomes framework.

143 **Potential outcomes and interference.** We adopt Rubin’s potential outcomes framework (Rubin,
 144 2005). Standard causal inference relies on SUTVA, which rules out interference, i.e., one unit’s
 145 outcome cannot depend on others’ treatments. In spatial settings, this assumption is often violated,
 146 since treatment exposures spill over. We assume *localized interference*: the potential outcome at site
 147 s depends only on its own treatment and those of its neighbors,
 148

$$Y_s(\mathbf{a}) = Y_s(a_s, \mathbf{a}_{\mathcal{N}_s}), \quad (2)$$

149 where \mathbf{a} is the full treatment vector, a_s the treatment at s , and $\mathbf{a}_{\mathcal{N}_s} = \{a_{s'} : s' \in \mathcal{N}_s\}$. The observed
 150 data contain only the realized outcome $Y_s = Y_s(A_s, \mathbf{A}_{\mathcal{N}_s})$ under the assigned intervention.

151 **Causal estimands.** Let $\mathbf{a}_{\mathcal{N}_s}^{(1)}$ and $\mathbf{a}_{\mathcal{N}_s}^{(0)}$ be two realizations of the neighbor treatments. Our targets are
 152 (i) the *average direct effect*, which varies the unit’s own treatment while holding neighbors fixed,

$$\tau_{\text{dir}} = \mathbb{E}[Y_s(1, \mathbf{a}_{\mathcal{N}_s}) - Y_s(0, \mathbf{a}_{\mathcal{N}_s})], \quad (3)$$

153 and (ii) the *average spillover effect*, which varies neighbors’ treatments while holding the unit fixed,

$$\tau_{\text{spill}} = \mathbb{E}[Y_s(a, \mathbf{a}_{\mathcal{N}_s}^{(1)}) - Y_s(a, \mathbf{a}_{\mathcal{N}_s}^{(0)})], \quad a \in \{0, 1\}, \quad (4)$$

154 with expectations taken over the observed joint distribution of $(\mathbf{X}_s, A_{\mathcal{N}_s})$.

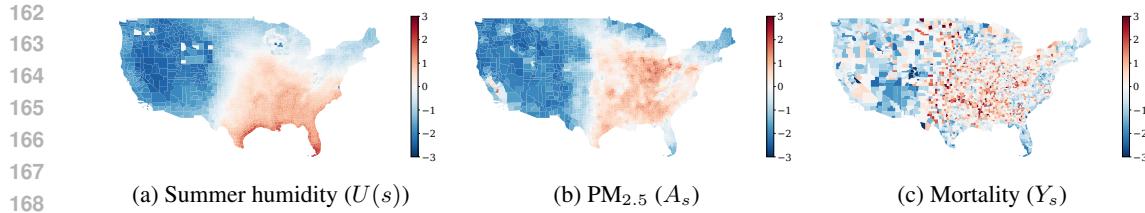


Figure 2: Example spatial distribution of (normalized) confounder, treatment, and outcome in real-world dataset. The confounder $U(s)$ (summer humidity) varies smoothly across space, while the treatment A_s ($PM_{2.5}$) shows more local heterogeneity. The outcome Y_s (respiratory and cardiovascular mortality) reflects broader spatial health patterns.

Unobserved spatial confounding. To identify the treatment effects in Equations (3) and (4), one typically assumes *ignorability*: potential outcomes $Y_s(a_s, \mathbf{a}_{\mathcal{N}_s})$ are independent of treatment assignment given observed covariates $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$. This assumption cannot be tested from the data, and violations lead to biased causal estimates. In practice, many relevant drivers of treatment exposure and outcome remain unobserved. We posit an unobserved spatial field $U : \mathcal{S} \rightarrow \mathbb{R}^{d_U}$ that captures latent influences such as topography, wind patterns, or socioeconomic context. Because $U(s)$ may affect both treatment and outcomes, we generally have

$$\text{Cov}(A_s, U(s)) \neq 0 \quad \text{and} \quad \text{Cov}(Y_s(a, \mathbf{a}_{\mathcal{N}_s}), U(s)) \neq 0, \quad (5)$$

where the covariances are understood component-wise when $U(s)$ is vector-valued. Thus, ignorability fails when conditioning only on \mathbf{X}_s and $\mathbf{X}_{\mathcal{N}_s}$. In Section 5, we show that identification can nevertheless be recovered under mild smoothness assumptions on U together with our deconfounding procedure, through reconstructing a substitute latent field from observed treatment patterns.

Motivating example. Consider real environmental health data on a $0.25^\circ \times 0.25^\circ$ grid covering the continental United States. At each grid cell s , the treatment A_s indicates whether fine particulate matter ($PM_{2.5}$) exceeds the WHO guideline of $10 \mu\text{g}/\text{m}^3$. Neighbor assignments are defined by a radius of one to two grid cells (roughly 25–50 km). The outcome Y_s is the rate of respiratory and cardiovascular mortality aggregated from hospital records. Latent factors can confound this relationship; for example, a meteorological driver such as humidity varies smoothly across space and may jointly influence both pollution exposures and health outcomes. Figure 2 illustrates treatment, outcome, and such a confounder for this dataset. **This example captures the type of smoothly varying, spatially shared latent structure our method targets: large-scale meteorological drivers such as humidity form a latent field $U(s)$ that jointly affects $PM_{2.5}$ exposures and mortality across neighboring counties, while any purely local one-off factors are captured in $(X_s, X_{\mathcal{N}_s})$ or assumed negligible.** We formalize this as a latent-field sufficiency assumption in Section 5.

The remainder of the paper shows how the joint vector $(A_s, \mathbf{A}_{\mathcal{N}_s})$ —a “multiple-cause” analogue supplied for free by interference—can be harnessed to reconstruct $U(s)$ and obtain unbiased estimates of Equations (3) and (4).

4 METHODOLOGY

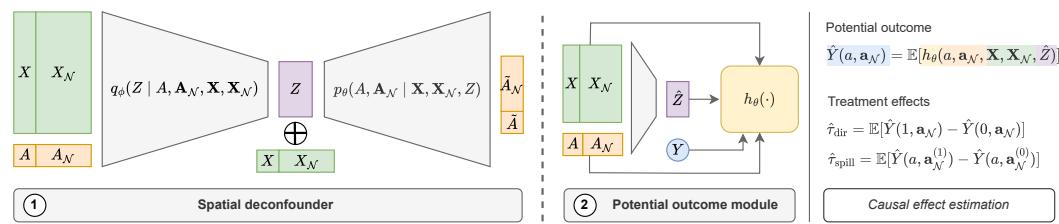


Figure 3: **Architecture of the spatial deconfounder & estimation framework.** Stage ①: The C-VAE takes **treatments** and **observed confounders** as input to learn the latent **substitute confounder**. Stage ②: We employ the reconstructed confounder together with the observed variables (now including the **outcome**) to train the **potential outcome** estimation module.

216 **Algorithm 1** Spatial Deconfounder

217

218 **Input:** Spatial covariates $\{\mathbf{X}_s\}_{s \in \mathcal{S}}$, treatments $\{A_s\}_{s \in \mathcal{S}}$, outcomes $\{Y_s\}_{s \in \mathcal{S}}$, neighborhood radius
219 r , grid Laplacian L

220 1: **Stage ①: Confounder reconstruction (C-VAE)**

221 2: Define encoder $q_\phi(Z_s | A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}) = \mathcal{N}(\mu_\phi(\cdot), \text{diag } \sigma_\phi^2)$, decoder $p_\psi(A_s | \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s)$,
222 and prior $p_\theta(Z) = \mathcal{N}(\mathbf{0}, \tau^{-1}(L + \epsilon I)^{-1})$.

223 3: Minimize

224
$$\mathcal{L}_A = \sum_s \mathbb{E}_{q_\phi}[-\log p_\psi(A_s | \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s)] + \sum_s D_{\text{KL}}(q_\phi \| p_\psi),$$

225 4: Set substitute confounder $\hat{Z}_s \leftarrow \mathbb{E}_{q_\phi}[Z_s]$ for all s .

226 5: **Stage ②: Potential outcome module**

227 6: Choose a spatial model h (e.g., U-Net) to model the conditional expectation of Y given all
228 observed variables as well as the substitute confounder and fit by minimizing

229
$$\mathcal{L}_Y = \sum_s (Y_s - h(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \hat{Z}_s))^2.$$

230 7: Estimate effects by plug-in contrasts (Eq. 11).

231

232

233

234 As illustrated in Algorithm 1, our approach proceeds in two stages. First, we reconstruct a smooth
235 substitute confounder from the joint distribution of local and neighbor treatments, using a conditional
236 variational autoencoder (C-VAE) that leverages interference as a multi-cause signal. Second,
237 we feed the reconstructed confounder into a flexible potential outcome module for outcome mod-
238 eling and effect estimation. This separation follows standard practice in deconfounding to prevent
239 mediators from being inadvertently learned into the substitute confounder, which would break the
240 identifiability of the treatment effects.

241 **Stage ①: Confounder reconstruction.** We model the assignment of treatments $\{A_s\}_{s \in \mathcal{S}}$ using an
242 interference-aware C-VAE. The encoder

$$q_\phi(Z_s | A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}) = \mathcal{N}(\mu_\phi(\cdot), \text{diag } \sigma_\phi^2(\cdot)) \quad (6)$$

243 maps the local treatment and neighborhood treatments, together with local and neighborhood co-
244 variates $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$, into a latent embedding Z_s of the unobserved spatial field $U(s)$. The decoder

$$p_\psi(A_s | \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s) = \sigma(f_\psi(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s)) \quad (7)$$

245 predicts A_s given covariates and the latent. To encode smoothness, we impose a Gaussian–Markov
246 random-field (GMRF) prior $p_\theta(Z) = \mathcal{N}(\mathbf{0}, \tau^{-1}(L + \epsilon I)^{-1})$ with grid Laplacian L , or equivalently
247 a deterministic penalty $\lambda Z^\top L Z$.

248 Formally, our generative model for the treatment field is

$$p_\theta(Z) = \mathcal{N}(\mathbf{0}, \tau^{-1}(L + \epsilon I)^{-1}), \quad p(A | X, Z) = \prod_{s \in \mathcal{S}} p_\psi(A_s | \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s),$$

249 with $A_s | X_s, X_{\mathcal{N}_s}, Z_s \sim \text{Bernoulli}(\sigma(f_\psi(X_s, X_{\mathcal{N}_s}, Z_s)))$. Thus, conditional independence of
250 treatments holds across sites given (Z, X) , and spatial dependence is encoded entirely via the GMRF
251 prior on Z . The “multi-cause” structure of $(A_s, A_{\mathcal{N}_s})$ enters on the inference side through the
252 encoder $q_\phi(Z_s | A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$, which uses local treatment patterns (plus covariates) to infer a
253 substitute confounder for the local value of the spatial latent field.

254 This C-VAE is trained by minimizing

$$\mathcal{L}_A(\phi, \psi) = \sum_s \mathbb{E}_{q_\phi}[-\log p_\psi(A_s | \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s)] + \beta \sum_s D_{\text{KL}}(q_\phi \| p_\psi), \quad (8)$$

255 with KL warm-up ($\beta \uparrow 1$). After convergence, we set $\hat{Z}_s = \mathbb{E}_{q_\phi}[Z_s]$ as the reconstructed confounder.

256 Our C-VAE differs from standard C-VAE-type models in two ways tailored to the spatial–interference setting: (i) the encoder explicitly conditions on $(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$, using neighbor treatments as a multi-cause signal, and (ii) the latent field Z is given a GMRF prior with grid
257 Laplacian L , enforcing spatial dependence consistent with our latent-field sufficiency assumption
258 (Assumption 4 below).

270 **Stage ②: Potential outcome module.** Given \hat{Z}_s , we estimate outcomes using a flexible function h :
 271

$$272 \hat{Y}_s = \hat{\mathbb{E}}[Y \mid A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \hat{Z}_s] = h(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \hat{Z}_s) \quad (9)$$

273 by minimizing the squared error loss
 274

$$275 \mathcal{L}_Y = \sum_s \left(Y_s - h(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \hat{Z}_s) \right)^2. \quad (10)$$

277 This module can be instantiated with any spatial model capable of handling interference and spa-
 278 tial confounding. For example, a U-Net architecture (Ronneberger et al., 2015) captures multi-
 279 scale spatial dependencies through an encoder–decoder with skip connections. Notably, Oprescu
 280 et al. (2025); Ali et al. (2024) use a U-Net to account for interference and spatial confounding in
 281 spatiotemporal settings. Other options include graph neural networks, patch-wise transformers, or
 282 classical spatial regression models, depending on the data modality.

283 Effect estimation proceeds by plug-in contrasts: the *direct effect* is
 284

$$285 \hat{\tau}_{\text{dir}} = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \left[h(1, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \hat{Z}_s) - h(0, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \hat{Z}_s) \right], \quad (11)$$

287 and analogously for spillover effects by varying $A_{\mathcal{N}_s}$. By drawing multiple \hat{Z}_s from the full posterior
 288 q_ϕ instead of the mean, we can obtain uncertainty bands on \hat{Z}_s . We can then obtain uncertainty bands
 289 (with respect to the substitute confounder) by evaluating Eq. 11 on the different draws of \hat{Z}_s .
 290

291 **Remark 1** (End-to-end variant). *One may train a single network by minimizing $\mathcal{L}_A + \gamma \mathcal{L}_Y$ while*
 292 *blocking gradients from \mathcal{L}_Y into the C-VAE. This preserves mediator avoidance while making the*
 293 *overall implementation and training more straightforward. This separation ensures that the C-VAE*
 294 *is used only to reconstruct a substitute confounder, not to perform outcome estimation end-to-end.*

295 **Predictive checks.** Following Rubin (1984), we assess whether the substitute confounder ade-
 296 quately explains the treatment assignment through posterior predictive checks. On a held-out vali-
 297 dation set, we draw M replicated treatment vectors $\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(M)}$ from the decoder p_ψ and compare
 298 them against the observed assignment \mathbf{a} . Specifically, we compute the predictive p -value
 299

$$300 p = \frac{1}{M} \sum_{m=1}^M \mathbf{1} \left\{ T(\mathbf{a}^{(m)}) < T(\mathbf{a}) \right\}, \quad (12)$$

303 where $T(\mathbf{a})$ is a discrepancy statistic measuring model fit. Following Wang and Blei (2019), we use
 304

$$305 T(\mathbf{a}) = \mathbb{E}_{Z \sim q_\phi} [\log p_\psi(\mathbf{a} \mid \mathbf{X}, Z)], \quad (13)$$

306 the marginal log-likelihood of the observed assignment under the posterior distribution of Z . A
 307 value of p close to 0.5 indicates that the C-VAE reproduces the treatment assignment distribution
 308 well, whereas extreme values signal model misspecification. *In our experiments, we only consider*
 309 *C-VAE models with $0.25 < p < 0.75$.*

310 5 THEORETICAL PROPERTIES OF THE SPATIAL DECONFOUNDER

312 We now provide conditions under which the Spatial Deconfounder establishes causal identifiability
 313 of the direct and spillover effects in Equations (3) and (4). We begin with assumptions on consis-
 314 tency, positivity, and interference structure.

315 **Assumption 1** (Spatial consistency). *The observed outcome equals the potential outcome under the*
 316 *assigned individual and neighborhood treatments. That is,*

$$317 Y_s = Y_s(a_s, \mathbf{a}_{\mathcal{N}_s}) \quad \text{if site } s \text{ receives treatment } a_s \text{ and its neighborhood } \mathcal{N}_s \text{ receives } \mathbf{a}_{\mathcal{N}_s}. \quad (14)$$

319 **Assumption 2** (Spatial positivity). *For any site s , covariates $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$, and treatment exposures*
 320 *$(a_s, \mathbf{a}_{\mathcal{N}_s})$, the probability of assignment is strictly positive: $0 < \Pr(a_s, \mathbf{a}_{\mathcal{N}_s} \mid \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}) < 1$. Fur-
 321 *thermore, we require latent positivity conditional on the Z , i.e., $0 < \Pr(a_s, \mathbf{a}_{\mathcal{N}_s} \mid \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \mathbf{Z}_s) < 1$**
 322 *if $\Pr(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, \mathbf{Z}_s) > 0$.*

323 **Assumption 3** (Localized interference). *The potential outcome at site s depends only on its own*
 324 *treatment and those of its neighbors \mathcal{N}_s , not on treatments outside \mathcal{N}_s .*

324 Assumptions 1-3 are standard in the causal inference literature (e.g., Chen et al., 2024; Forastiere
 325 et al., 2021) and enable identification of the treatment effects. Classical approaches for treatment
 326 effect estimation in spatial settings additionally assume ignorability of the joint treatment exposure
 327 given observed covariates. We relax this and allow for an unobserved latent field $U : \mathcal{S} \rightarrow \mathbb{R}^{d_U}$
 328 spanning the grid. We only require that all confounders affecting purely local variation are observed
 329 in $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$. This assumption is weaker than full ignorability and is plausible in practice.

330 **Assumption 4** (Latent field sufficiency). *All confounders that act only on a single site are observed
 331 in $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$. Any remaining unobserved confounding is mediated through a shared spatial latent
 332 field $U : \mathcal{S} \rightarrow \mathbb{R}^{d_U}$ that affects treatment assignments across multiple sites. In particular, there is
 333 no additional unobserved confounder \tilde{U} that changes $(A_s, A_{\mathcal{N}_s}, Y_s(a, \mathbf{a}_{\mathcal{N}_s}))$ at some site s without
 334 also influencing treatments at other sites s' .*

335 Assumption 4 is the spatial analogue of the “no single-cause confounders” assumption in the decon-
 336 founder literature (e.g., Wang and Blei, 2019; Bica et al., 2020): all purely local confounders are
 337 observed, and any remaining unobserved confounding arises from a shared latent field U that affects
 338 multiple sites. In spatial causal inference, where units are interconnected, causal effects can be iden-
 339 tified only if the confounding structure—observed and unobserved—is consistent across the entire
 340 lattice. Under this factor-model structure, if the joint treatment distribution admits a representation
 341 in terms of a substitute confounder Z_s , Proposition 5 of Wang and Blei (2019) implies that the joint
 342 assignment $(A_s, A_{\mathcal{N}_s})$ is ignorable given $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s)$.

343 Finally, we assume the C-VAE recovers a consistent proxy for the latent field.

344 **Assumption 5** (Consistency of substitute confounder). *There exists a substitute confounder Z_s that
 345 is a deterministic function of the observed causes and covariates,*

$$347 \quad Z_s = f_\phi(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}),$$

348 and the encoder $q_\phi(Z_s \mid A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$ converges to the corresponding degenerate posterior
 349 $\delta_{f_\phi(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})}$. Thus Z_s is a deterministic function of $(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$ that, together with
 350 $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$, is renders the joint exposure $(A_s, A_{\mathcal{N}_s})$ ignorable as in Definition 1.

351
 352 Assumption 5 does not require the learned Z_s to equal the true latent field; it only posits the existence
 353 of a deterministic function of $(A_s, A_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})$ that restores ignorability when conditioning on
 354 $(\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s)$, analogous to the “consistency of substitute confounders” condition in Wang and Blei
 355 (2019). This is an *identification* assumption rather than a generic claim that CVAEs are identifiable:
 356 Theorem 1 only requires that some such Z_s exist, and any estimation procedure that learns a Z_s
 357 satisfying ignorability yields a consistent plug-in estimator. In practice, we can encourage such
 358 structure by using identifiable objectives such as the IMA-regularized loss of Reizinger et al. (2022).

359 **Intuition.** Under interference, each site’s treatment is observed together with those of its neigh-
 360 bors. Because both A_s and $A_{\mathcal{N}_s}$ are influenced by the same latent field $U(s)$, they provide multiple
 361 noisy “views” of the field. By fitting a factor model to the joint distribution of own and neighbor
 362 treatments, we reconstruct a substitute confounder Z_s capturing the underlying spatial structure.
 363 Conditioning on Z_s (together with observed covariates) restores ignorability, enabling unbiased es-
 364 timation of direct and spillover effects.

365 **Theorem 1** (Causal identifiability). *Suppose Assumptions 1–5 hold. Let Z be a piecewise constant
 366 function of the assigned causes and covariates $(a, \mathbf{a}_{\mathcal{N}}, \mathbf{x}, \mathbf{x}_{\mathcal{N}})$ and let the outcome be a separable
 367 function of the observed and unobserved variables*

$$368 \quad \mathbb{E}_Y[Y_s(a, \mathbf{a}_{\mathcal{N}}) \mid \mathbf{X}_s = \mathbf{x}, \mathbf{X}_{\mathcal{N}_s} = \mathbf{x}_{\mathcal{N}}, Z_s = z] = f_1(a, \mathbf{a}_{\mathcal{N}}, \mathbf{x}, \mathbf{x}_{\mathcal{N}}) + f_2(z), \quad (15)$$

$$369 \quad \mathbb{E}_Y[Y_s \mid A_s = a, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}}, \mathbf{X}_s = \mathbf{x}, \mathbf{X}_{\mathcal{N}_s} = \mathbf{x}_{\mathcal{N}}, Z_s = z] = f_3(a, \mathbf{a}_{\mathcal{N}}, \mathbf{x}, \mathbf{x}_{\mathcal{N}}) + f_4(z), \quad (16)$$

370 for continuously differentiable functions f_1, f_2, f_3, f_4 . Consequently, the direct and spillover effects
 371 are identifiable as

$$372 \quad \tau_{\text{dir}} = \mathbb{E}_{\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z} [\mathbb{E}_Y[Y_s \mid A_s = 1, \mathbf{A}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s] - \mathbb{E}_Y[Y_s \mid A_s = 0, \mathbf{A}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]], \quad (17)$$

$$373 \quad \tau_{\text{spill}} = \mathbb{E}_{\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z} [\mathbb{E}_Y[Y_s \mid a, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}^{(1)}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s] - \mathbb{E}_Y[Y_s \mid a, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}^{(0)}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]]. \quad (18)$$

374 *Proof.* The proof is provided in Appendix B. □

378 **Remark:** The identifiability of our method applies to settings with separable structural equations,
 379 a common modeling assumption in the literature (e.g, Wang and Blei, 2019; Papadogeorgou and
 380 Samanta, 2023). Many often unobserved or unavailable variables in spatial settings can be assumed
 381 to fulfill the equations in practice. In our air quality example, such variables could be persistent
 382 differences in baseline respiratory risk driven by unmeasured long-run pollution and chronic disease
 383 burden or regional differences in care-seeking and reporting intensity. Additionally, systematic
 384 measurement errors in the recorded outcome, i.e., due to the difficulty in detecting, assessing, and
 385 correctly identifying respiratory diseases in a unified manner, can represent such latent confounders.

386 6 EXPERIMENTS

388 We evaluate the Spatial Deconfounder on semi-synthetic datasets from the SpaCE benchmark (Tec
 389 et al., 2024), modified to incorporate both local interference and spatial confounding on real-world
 390 environmental data. To simulate unobserved confounding, we mask key covariates after data generation,
 391 i.e., we completely remove them from the dataset. We then compare different instantiations
 392 of our method against a range of spatial baselines under both local and spatial confounding scenarios.
 393 The section proceeds as follows: we describe the SpaCE environment and our data generation
 394 process, introduce the baselines and evaluation metrics, and finally interpret the results.

395 Additional details - including data generation, residual sampling, packages, hyperparameter tuning,
 396 and validation procedures - can be found in Appendix C. Replication code is available at <https://anonymous.4open.science/r/Spatial-Deconfounder>.

398 **Datasets and SpaCE Benchmark.** We build on the SpaCE benchmark (Tec et al., 2024), which
 399 provides semi-synthetic spatial datasets for causal inference under unobserved confounding. In
 400 its original form, SpaCE simulates causal effects by masking important covariates in real-world
 401 environmental and health data, but it assumes independent treatments and does not account for
 402 interference between neighboring units. This makes it inadequate for evaluating methods, such as
 403 ours, that explicitly address both unobserved spatial confounding and localized spillovers.

404 To address this, we extend the SpaCE data generation process in two ways. First, we project the
 405 raw environmental data onto a uniform $0.25^\circ \times 0.25^\circ$ latitude-longitude grid, allowing convolutional
 406 architectures to exploit spatial locality while preserving large-scale patterns. Second, we incorpo-
 407 rate *interference* into the potential outcome model by allowing outcomes to depend not only on
 408 local treatment A_s but also on neighbor treatments $A_{\mathcal{N}_s}$ within radius r_d . Specifically, we generate
 409 outcomes under two confounding regimes:

$$411 \text{ (Local confounding)} \quad \hat{Y}_s = f(A_s, A_{\mathcal{N}_s}, X_s) + R_s, \quad (19)$$

$$412 \text{ (Spatial confounding)} \quad \hat{Y}_s = f(A_s, A_{\mathcal{N}_s}, X_s, X_{\mathcal{N}_s}) + R_s, \quad (20)$$

414 where f is a predictive function learned from the observed data, X_s are observed covariates, and
 415 R_s are exogenous residuals. The local setting restricts confounding to site-level variables, while the
 416 spatial setting also allows neighborhood covariates to act as confounders.

417 **Semi-synthetic data generation.** To construct \hat{Y}_s , we proceed in four steps: (1) fit f using
 418 ensembles of machine learning models to predict observed outcomes Y_s , (2) compute residuals
 419 $\hat{R}_s = Y_s - f(\cdot)$ and estimate their spatial distribution P_R , (3) replace endogenous residuals with
 420 exogenous noise $R_s \sim P_R$, and (4) generate counterfactuals by varying local and neighbor treat-
 421 ments while holding confounders and residuals fixed. To simulate hidden confounding, we identify
 422 influential covariates by measuring the change in predictive performance when each is removed,
 423 then mask the most important ones at training and evaluation time.

424 **Raw datasets.** From the full SpaCE suite, we focus in the main text on two collections:

426 *Air Pollution and Mortality:* County-level data for the mainland US in 2010, including elderly
 427 mortality (CDC), fine particulate matter ($PM_{2.5}$) treatment exposure (Di et al., 2019), behav-
 428 ioral risk factors (BRFSS) (Centers for Disease Control and Prevention, 2010), and Census
 429 demographics (U.S. Census Bureau, 2010). We study the effect of $PM_{2.5}$ exposure (treatment)
 430 on mortality ($PM_{2.5} \rightarrow m$), with different masked confounders.

431 *PM_{2.5} Components:* High-resolution (1×1 km) gridded data on total $PM_{2.5}$ (Di et al., 2019) and
 432 its chemical composition (Amini et al., 2022), using annual averages for 2000. We focus on the

432 effect of sulfate on overall $PM_{2.5}$ ($SO_4 \rightarrow PM_{2.5}$), with key latent drivers such as *ammonium*
 433 (NH_4) and *organic carbon* (OC) masked.
 434

435 These two datasets provide complementary perspectives: the first captures socioeconomic and de-
 436 mographic confounding, while the second reflects atmospheric chemistry. Additional datasets and
 437 hidden-confounder variants are described in Appendix D.
 438

439 Table 1: Performance under *local confounding*. Results averaged over 10 runs with 95% confidence
 440 intervals. r_d : neighborhood radius in data generation; R: neighborhood radius used by the decon-
 441 founder. Lower values indicate less bias. *Lower values for ATE and SPILL indicate less bias. p*
 442 *indicates the p-value of the predictive check, with values near 0.5 indicating good model fit to 0.5.*

ENVIRONMENT	CONFOUNDER	METHOD	DIR	SPILL	<i>p</i>
$PM_{2.5} \rightarrow m (r_d = 1)$	q_{SUMMER}	C-VAE-SPATIAL+ (R=1)	0.04 ± 0.01	0.42 ± 0.08	0.37 ± 0.07
		C-VAE-SPATIAL+ (R=2)	0.04 ± 0.01	0.44 ± 0.09	0.36 ± 0.04
		DAPSM	0.30 ± 0.03	N/A	N/A
		GCNN	0.41 ± 0.03	N/A	N/A
		S2SLS-LAG1	0.20 ± 0.00	N/A	N/A
		SPATIAL+	0.13 ± 0.04	N/A	N/A
		SPATIAL	0.10 ± 0.07	N/A	N/A
$PM_{2.5} \rightarrow m (r_d = 2)$	ρ_{POP}	C-VAE-SPATIAL+ (R=1)	0.05 ± 0.02	0.15 ± 0.05	0.34 ± 0.04
		C-VAE-SPATIAL+ (R=2)	0.04 ± 0.03	0.24 ± 0.06	0.35 ± 0.04
		DAPSM	0.16 ± 0.01	N/A	N/A
		GCNN	0.18 ± 0.03	N/A	N/A
		S2SLS-LAG1	0.07 ± 0.00	N/A	N/A
		SPATIAL+	0.10 ± 0.02	N/A	N/A
		SPATIAL	0.17 ± 0.03	N/A	N/A
$SO_4 \rightarrow PM_{2.5} (r_d = 1)$	NH_4	C-VAE-SPATIAL+ (R=1)	0.07 ± 0.03	0.64 ± 0.10	0.38 ± 0.04
		C-VAE-SPATIAL+ (R=2)	0.07 ± 0.03	0.16 ± 0.06	0.39 ± 0.06
		DAPSM	1.44 ± 0.00	N/A	N/A
		GCNN	0.52 ± 0.16	N/A	N/A
		S2SLS-LAG1	0.09 ± 0.00	N/A	N/A
		SPATIAL+	0.11 ± 0.03	N/A	N/A
		SPATIAL	0.08 ± 0.02	N/A	N/A
$SO_4 \rightarrow PM_{2.5} (r_d = 2)$	OC	C-VAE-SPATIAL+ (R=1)	0.06 ± 0.03	0.18 ± 0.09	0.43 ± 0.03
		C-VAE-SPATIAL+ (R=2)	0.12 ± 0.06	0.35 ± 0.08	0.43 ± 0.04
		DAPSM	1.24 ± 0.01	N/A	N/A
		GCNN	0.30 ± 0.10	N/A	N/A
		S2SLS-LAG1	0.21 ± 0.00	N/A	N/A
		SPATIAL+	0.13 ± 0.07	N/A	N/A
		SPATIAL	0.29 ± 0.01	N/A	N/A

466 **Baselines and model variants.** We benchmark against classical and modern spatial methods: S2SLS
 467 (Anselin, 1988) with outcome autoregression; spline-based SPATIAL and residualized SPATIAL+
 468 (Dupont et al., 2022); GCNN (Kipf, 2016) for non-linear neighbor aggregation; DAPSM (Papadoge-
 469 orgou et al., 2019) for proximity-based matching; and UNET (Ronneberger et al., 2015), which can
 470 capture spillovers via neighbor treatments but does not adjust for hidden confounding.
 471

472 For the *Spatial Deconfounder*, we instantiate the potential outcome module differently by setting the
 473 head to SPATIAL+ under local confounding (to ensure fairness) and to UNET under spatial confound-
 474 ing (to flexibly capture multi-scale structure). We also vary the neighborhood radius $r \in \{1, 2\}$ con-
 475 sidered by the model and the latent confounder dimension in the C-VAE ($d_Z \in \{1, 2, 4, 8, 16, 32\}$).

476 **Evaluation metrics.** We assess performance on the direct (DIR) and spillover (SPILL) effects. As
 477 standard in causal inference (Hill, 2011; Shi et al., 2019; Cheng et al., 2022), we report standardized
 478 absolute bias, $\sigma_y^{-1} |\hat{\tau} - \tau|$, with true effect τ , estimate $\hat{\tau}$, and outcome standard deviation σ_y .

479 **Results.** Tables 1 and 2 report performance under local and spatial confounding across different
 480 masked confounders (e.g., humidity, population density, ammonium, organic carbon). Across environ-
 481 ments, the Spatial Deconfounder (C-VAE) variants consistently achieve lower bias on direct ef-
 482 ffects than existing spatial baselines. *Even with non-smooth unobserved confounders like population*
 483 *density (ρ_{POP}), our framework still achieves lower bias.* Importantly, unlike most benchmarks, both
 484 C-VAE and UNET can recover spillover effects, with C-VAE generally providing more accurate
 485 estimates. Using UNET as the outcome head further strengthens spillover estimation, highlighting
 the benefit of spatial architectures when paired with deconfounding.

486
 487 Table 2: Performance under *spatial confounding*. Results averaged over 10 runs with 95% confidence
 488 intervals. r_d : neighborhood radius in data generation; R: neighborhood radius used by the
 489 deconfounder. Lower values indicate less bias. **Lower values for ATE and SPILL indicate less bias.**
 490 *p* indicates the *p*-value of the predictive check, with values near 0.5 indicating good model fit to 0.5.

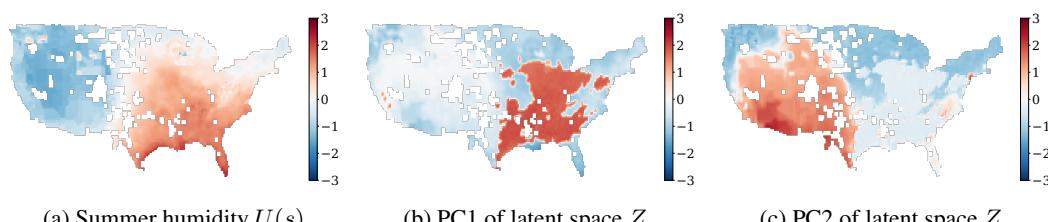
ENVIRONMENT	CONFOUNDER	METHOD	DIR	SPILL	<i>p</i>
$PM_{2.5} \rightarrow m$ ($r_d = 1$)	ρ_{POP}	C-VAE-UNET (R=1)	0.05 ± 0.01	0.22 ± 0.06	0.34 ± 0.03
		C-VAE-UNET (R=2)	0.04 ± 0.02	0.12 ± 0.06	0.36 ± 0.06
		DAPSM	0.20 ± 0.01	N/A	N/A
		GCNN	0.17 ± 0.06	N/A	N/A
		S2SLS-LAG1	0.05 ± 0.00	N/A	N/A
		SPATIAL+	0.27 ± 0.18	N/A	N/A
		SPATIAL	0.06 ± 0.06	N/A	N/A
		UNET	0.06 ± 0.01	0.17 ± 0.04	N/A
$SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$)	OC	C-VAE-UNET (R=1)	0.06 ± 0.02	0.09 ± 0.04	0.44 ± 0.03
		C-VAE-UNET (R=2)	0.06 ± 0.02	0.18 ± 0.06	0.45 ± 0.03
		DAPSM	1.57 ± 0.00	N/A	N/A
		GCNN	0.42 ± 0.15	N/A	N/A
		S2SLS-LAG1	0.13 ± 0.00	N/A	N/A
		SPATIAL+	0.06 ± 0.05	N/A	N/A
		SPATIAL	0.04 ± 0.01	N/A	N/A
		UNET	0.07 ± 0.02	0.05 ± 0.02	N/A

505 Additional experiments in Appendix D confirm these trends across broader settings. In a few cases
 506 where classical baselines perform comparably or slightly better, the scenarios involve very weak or
 507 extremely smooth confounding — conditions where stronger parametric assumptions may be advan-
 508 tageous. Overall, the results demonstrate that leveraging interference as a multi-cause signal yields
 509 substantial improvements in both direct and spillover effect estimation. These findings validate the
 510 core premise of the Spatial Deconfounder: interference can be exploited, rather than treated as a
 511 nuisance, to improve causal inference under unobserved confounding.

7 CONCLUSION

515 We introduce the **Spatial Deconfounder**, the first framework to jointly address interference and
 516 unobserved spatial confounding by treating neighborhood treatments as a multi-cause signal. A
 517 C-VAE with a spatial prior reconstructs a substitute confounder, enabling estimation of direct and
 518 spillover effects with flexible outcome models. We prove identification of these effects under mild
 519 assumptions on the latent spatial field and outcome structure.

520 Beyond methodological advances, our results highlight a conceptual shift: interference, often treated
 521 as a nuisance, can be exploited as a source of information about hidden structure. **That said, our**
 522 **goal is not only conceptual but also practical:** despite relying on idealized assumptions (latent-field
 523 sufficiency, substitute confounders, and a specific C-VAE instantiation), our semi-synthetic experi-
 524 ments on minimally modified environmental-health data show that the Spatial Deconfounder reduces
 525 bias relative to strong classical and deep-learning spatial baselines, providing empirical support for
 526 **leveraging interference-driven multi-cause vectors together with a spatial latent-field representation**
 527 **in practice.** This perspective opens the door to more robust causal inference in complex spatial
 528 systems, with future extensions to spatiotemporal data, continuous treatments, and large-scale ap-
 529 plications. Discussion of broader impacts and the use of LLMs in the preparation of this paper is
 530 provided in Appendix F.



531 Figure 4: **Reconstructed latent confounder compared to the true (unobserved) spatial field.** The lead-
 532 ing principal component of Z_s (PC1) captures the treatment, while the second principal component
 533 (PC2) recovers large-scale spatial structure of the true confounder.

540 REFERENCES
541

542 S. Ali, O. Faruque, and J. Wang. Estimating direct and indirect causal effects of spatiotemporal inter-
543 ventions in presence of spatial interference. In *Joint European Conference on Machine Learning*
544 and *Knowledge Discovery in Databases*, 2024.

545 A. Almodóvar, A. Javaloy, J. Parras, S. Zazo, and I. Valera. Decaflow: A deconfounding causal
546 generative model. *arXiv preprint arXiv:2503.15114*, 2025.

547 H. Amini, M. Danesh-Yazdi, Q. Di, W. Requia, Y. Wei, Y. Abu-Awad, L. Shi, M. Franklin, C.-
548 M. Kang, J. Wolfson, P. James, R. Habre, Q. Zhu, J. Apte, Z. Andersen, I. Kloog, F. Dominici,
549 P. Koutrakis, and J. Schwartz. Hyperlocal super-learned PM2.5 components across the contiguous
550 us, 2022.

552 J. D. Angrist, G. W. Imbens, and D. B. Rubin. Identification of causal effects using instrumental
553 variables. *Journal of the American Statistical Association*, 91(434):444–455, 1996.

555 L. Anselin. *Spatial Econometrics: Methods and Models*, volume 4. Springer Science & Business
556 Media, 1988.

557 P. M. Aronow and C. Samii. Estimating average causal effects under general interference, with
558 application to a social network experiment. *The Annals of Applied Statistics*, 11(4):1912—1947,
559 2017.

561 I. Bica, A. Alaa, and M. Van Der Schaar. Time series deconfounder: Estimating treatment effects
562 over time in the presence of hidden confounders. In *International conference on machine learning*, 2020.

564 Centers for Disease Control and Prevention. Behavioral risk factor surveillance system (BRFSS),
565 2010.

567 W. Chen, R. Cai, Z. Yang, J. Qiao, Y. Yan, Z. Li, and Z. Hao. Doubly robust causal effect estimation
568 under networked interference via targeted learning. In *Proceedings of the 41st International
569 Conference on Machine Learning*, 2024.

571 L. Cheng, R. Guo, R. Moraffah, P. Sheth, K. S. Candan, and H. Liu. Evaluation Methods and
572 Measures for Causal Learning Algorithms . *IEEE Transactions on Artificial Intelligence*, 3(06):
573 924–943, 2022.

574 A. Curth, D. Svensson, J. Weatherall, and M. van der Schaar. Really doing great at estimating
575 CATE? a critical look at ML benchmarking practices in treatment effect estimation. In *Advances
576 Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.

578 T. Deryugina, G. Heutel, N. H. Miller, D. Molitor, and J. Reif. The mortality and medical costs of
579 air pollution: Evidence from changes in wind direction. *American Economic Review*, 109(12):
580 4178–4219, 2019.

581 Q. Di, H. Amini, L. Shi, I. Kloog, R. Silvern, J. Kelly, M. B. Sabath, C. Choirat, P. Koutrakis,
582 A. Lyapustin, Y. Wang, L. J. Mickley, and J. Schwartz. An ensemble-based model of pm2.5 con-
583 centration across the contiguous united states with high spatiotemporal resolution. *Environment
584 International*, 130:104909, 2019.

586 J. Dorn, K. Guo, and N. Kallus. Doubly-valid/doubly-sharp sensitivity analysis for causal inference
587 with unmeasured confounding. *Journal of the American Statistical Association*, 120(549):331–
588 342, 2025.

589 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
590 M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
591 recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

593 E. Dupont, S. N. Wood, and N. H. Augustin. Spatial+: A novel approach to spatial confounding.
Biometrics, 78(4):1279–1290, 2022.

594 N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola. Autogluon-tabular:
 595 Robust and accurate automl for structured data. *arXiv preprint arXiv:2003.06505*, 2020.
 596

597 L. Forastiere, E. M. Airoldi, and F. Mealli. Identification and estimation of treatment and interfe-
 598 rence effects in observational studies on networks. *Journal of the American Statistical Association*,
 599 116(534):901–918, 2021.

600 D. Frauen, V. Melnychuk, and S. Feuerriegel. Sharp bounds for generalized causal sensitivity anal-
 601 ysis. *Advances in Neural Information Processing Systems*, 2023.
 602

603 W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. *Advances*
 604 *in Neural Information Processing Systems*, 2017.

605 E. M. Hanks, E. M. Schliep, M. B. Hooten, and J. A. Hoeting. Restricted spatial regression in
 606 practice: geostatistical models, confounding, and robustness under model misspecification. *Envi-
 607 ronmetrics*, 26(4):243–254, 2015.
 608

609 T. Hatt and S. Feuerriegel. Sequential deconfounding for causal inference with unobserved con-
 610 founders. In *Conference on Causal Learning and Reasoning*, 2024.

611 K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *IEEE*
 612 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
 613

614 I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Ler-
 615 chner. Beta-vae: Learning basic visual concepts with a constrained variational framework. In
 616 *International Conference on Learning Representations*, 2017.

617 J. L. Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational and*
 618 *Graphical Statistics*, 20(1):217–240, 2011.
 619

620 J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural*
 621 *Information Processing Systems*, 2020.

622 J. S. Hodges and B. J. Reich. Adding spatially-correlated errors can mess up the fixed effect you
 623 love. *The American Statistician*, 64(4):325–334, 2010.

625 M. G. Hudgens and M. E. Halloran. Toward causal inference with interference. *Journal of the*
 626 *American Statistical Association*, 103(482):832–842, 2008.
 627

628 G. W. Imbens and D. B. Rubin. *Causal inference in statistics, social, and biomedical sciences*.
 629 Cambridge University Press, 2015.

630 A. Javaloy, P. Sánchez-Martín, and I. Valera. Causal normalizing flows: from theory to practice.
 631 *Advances in Neural Information Processing Systems*, 2023.
 632

633 I. Khemakhem, R. Monti, R. Leech, and A. Hyvarinen. Causal autoregressive flows. In *International*
 634 *conference on artificial intelligence and statistics*, 2021.

635 D. Kingma, T. Salimans, B. Poole, and J. Ho. Variational diffusion models. In *Advances in Neural*
 636 *Information Processing Systems*, 2021.
 637

638 D. P. Kingma and M. Welling. Auto-encoding variational bayes. *International Conference on*
 639 *Learning Representations*, 2013.

640 T. Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint*
 641 *arXiv:1609.02907*, 2016.
 642

643 M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath. Causalgan: Learning causal implicit
 644 generative models with adversarial training. *arXiv preprint*, arXiv:1709.02023, 2017.
 645

646 A. Larsen, S. Yang, B. J. Reich, and A. G. Rappold. A spatial causal analysis of wildland fire-
 647 contributed pm2. 5 using numerical model output. *The annals of applied statistics*, 16(4):2714,
 2022.

648 R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A research platform
 649 for distributed model selection and training, 2018.

650

651 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical
 652 vision transformer using shifted windows. In *IEEE/CVF International Conference on Computer
 653 Vision*, 2021.

654 W. Ma, C. Chen, J. Abrigo, C. H.-K. Mak, Y. Gong, N. Y. Chan, C. Han, Z. Liu, and Q. Dou.
 655 Treatment outcome prediction for intracerebral hemorrhage via generative prognostic model with
 656 imaging and tabular data. In *International conference on medical image computing and computer-
 657 assisted intervention*, 2023.

658 L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models. In
 659 *International Conference on Machine Learning*, 2016.

660

661 G. E. Moran, D. Sridhar, Y. Wang, and D. Blei. Identifiable deep generative models via sparse
 662 decoding. *Transactions on Machine Learning Research*, 2022.

663 O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh,
 664 N. Y. Hammerla, B. Kainz, et al. Attention u-net: Learning where to look for the pancreas. *arXiv
 665 preprint arXiv:1804.03999*, 2018.

666

667 M. Oprescu, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, and U. Shalit. B-learner: Quasi-oracle
 668 bounds on heterogeneous causal effects under hidden confounding. In *International Conference
 669 on Machine Learning*, 2023.

670 M. Oprescu, D. K. Park, X. Luo, S. Yoo, and N. Kallus. Gst-unet: Spatiotemporal causal inference
 671 with time-varying confounders. *arXiv preprint arXiv:2502.05295*, 2025.

672 G. Papadogeorgou and S. Samanta. Spatial causal inference in the presence of unmeasured con-
 673 founding and interference. *arXiv preprint arXiv:2303.08218*, 2023.

674

675 G. Papadogeorgou, C. Choirat, and C. M. Zigler. Adjusting for unmeasured spatial confounding
 676 with distance adjusted propensity score matching. *Biostatistics*, 20(2):256–272, 2019.

677 P. Reizinger, L. Gresele, J. Brady, J. Von Kügelgen, D. Zietlow, B. Schölkopf, G. Martius, W. Bren-
 678 del, and M. Besserve. Embrace the gap: Vaes perform independent mechanism analysis. *Advances
 679 in Neural Information Processing Systems*, 2022.

680

681 D. Rezende and S. Mohamed. Variational inference with normalizing flows. In *International Con-
 682 ference on Machine Learning*, 2015.

683

684 D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate infer-
 685 ence in deep generative models. In *International Conference on Machine Learning*, 2014.

686

687 D. R. Roberts, V. Bahn, S. Ciuti, M. S. Boyce, J. Elith, G. Guillera-Arroita, S. Hauenstein, J. J.
 688 Lahoz-Monfort, B. Schröder, W. Thuiller, D. I. Warton, B. A. Wintle, F. Hartig, and C. F. Dor-
 689 mann. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic
 690 structure. *Ecography*, 40(8):913–929, 2017.

691

692 O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
 693 segmentation. In *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015*,
 694 2015.

695

696 D. B. Rubin. Bayesianly justifiable and relevant frequency calculations for the applied statistician.
 697 *The Annals of Statistics*, pages 1151–1172, 1984.

698

699 D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. *Journal of
 700 the American Statistical Association*, 100(469):322–331, 2005.

701

H. Rue and L. Held. *Gaussian Markov random fields: theory and applications*. Chapman and
 702 Hall/CRC, 2005.

P. Sanchez and S. A. Tsaftaris. Diffusion causal models for counterfactual estimation. *arXiv
 703 preprint*, arXiv:2202.10166, 2022.

702 C. Shi, D. M. Blei, and V. Veitch. Adapting neural networks for the estimation of treatment effects.
 703 In *Advances in Neural Information Processing Systems*, 2019.
 704

705 X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional lstm network:
 706 A machine learning approach for precipitation nowcasting. *Advances in Neural Information Pro-*
 707 *cessing Systems*, 2015.

708 M. E. Sobel. What do randomized studies of housing mobility demonstrate? causal inference in the
 709 face of interference. *Journal of the American Statistical Association*, 101(476):1398–1407, 2006.
 710

711 K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
 712 generative models. *Advances in Neural Information Processing Systems*, 2015.

713 E. J. Tchetgen Tchetgen, I. R. Fulcher, and I. Shpitser. Auto-g-computation of causal effects on a
 714 network. *Journal of the American Statistical Association*, 116(534):833–844, 2021.
 715

716 M. Tec, A. Trisovic, M. Audirac, S. Woodward, J. Hu, N. Khoshnevis, and F. Dominici. SpaCE:
 717 The spatial confounding environment. In *International Conference on Representation Learning*,
 718 2024.

719 U.S. Census Bureau. 2010 census, 2010.
 720

721 T. J. VanderWeele, E. J. T. Tchetgen, and M. E. Halloran. Interference and sensitivity analysis.
 722 *Statistical science: A Review Journal of the Institute of Mathematical Statistics*, 29(4):687, 2015.

723 P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention net-
 724 works. *arXiv preprint arXiv:1710.10903*, 2017.
 725

726 Y. Wang and D. Blei. A proxy variable view of shared confounding. In *International Conference on
 727 Machine Learning*, 2021.

728 Y. Wang and D. M. Blei. The blessings of multiple causes. *Journal of the American Statistical
 729 Association*, 114(528):1574–1596, 2019.
 730

731 P. Wu and K. Fukumizu. Towards principled causal effect estimation by deep identifiable models.
 732 *arXiv preprint arXiv:2109.15062*, 2021.
 733

734 P. A. Wu and K. Fukumizu. \$\beta\$-intact-VAE: Identifying and estimating causal effects under
 735 limited overlap. In *International Conference on Learning Representations*, 2022.

736 K. Xia, K.-Z. Lee, Y. Bengio, and E. Bareinboim. The causal-neural connection: Expressiveness,
 737 learnability, and inference. *Advances in Neural Information Processing Systems*, 2021.

738 C. Zigler, V. Liu, F. Mealli, and L. Forastiere. Bipartite interference and air pollution transport:
 739 estimating health effects of power plant interventions. *Biostatistics*, 26(1):kxae051, 2025.
 740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A EXTENDED LITERATURE REVIEW
757758 The **Spatial Deconfounder** draws on three strands of prior work: (i) spatial causal inference under
759 interference and spatially structured confounding, (ii) deconfounding methods for ATE estimation
760 with unobserved confounders, and (iii) deep learning for spatial and latent structure modeling. We
761 detail each in the sections that follow.
762763 A.1 SPATIAL CAUSAL INFERENCE UNDER INTERFERENCE AND SPATIALLY STRUCTURED
764 CONFOUNDING
765766 **Classical spatial causal inference.** Most estimators of direct and spillover effects assume that
767 bias can be removed by conditioning on *observed* covariates (together with a specified exposure
768 mapping or interference structure). Design-based work—grounded in exposure mappings, partial-
769 interference designs, and randomization inference—derives estimators or hypothesis tests under
770 known neighborhood or network structure (e.g., Hudgens and Halloran, 2008; Sobel, 2006; Aronow
771 and Samii, 2017; Forastiere et al., 2021; Tchetgen Tchetgen et al., 2021). Model-based strate-
772 gies then adjust for that structure while still relying on measured covariates or correct functional
773 form: spatial autoregressive and two-stage least-squares estimators for spatial-lag/lagged-error mod-
774 els (Anselin, 1988), and spline/GAM or restricted spatial regression approaches that treat residual
775 spatial trend as a nuisance to improve precision and approximate balance (e.g., Hanks et al., 2015).
776 Deep graph/convolutional architectures can pool information across nearby units to improve pre-
777 diction or imputation, but by themselves do not furnish identification without additional causal as-
778 sumptions (Kipf, 2016). Domain-specific simulators (e.g., wildfire spread or atmospheric transport)
779 encode spatial dependence through process-based physics and are often used as inputs to causal
780 analyses, yet they typically still condition on observed drivers or require design-identifying assump-
781 tions (e.g. Larsen et al., 2022; Zigler et al., 2025). All of the above *presume exchangeability given*
782 *observed covariates (or a valid design)*; if important spatial determinants of treatment and outcome
783 are unmeasured, residual confounding bias can remain.
784785 **Spatial confounding and bias-adjustment methods.** A growing literature tackles *unmeasured*
786 spatial confounding directly. One family augments outcome models with latent spatial random ef-
787 fects (e.g., BYM/ICAR or GMRF priors) to soak up smooth hidden structure; this can reduce bias
788 when the confounder is well captured by the basis, but may leave bias or distort fixed effects under
789 misspecification (Rue and Held, 2005; Hodges and Reich, 2010). Restricted spatial regression
790 and related orthogonalization schemes constrain the latent field away from covariates to mitigate
791 bias (Hanks et al., 2015). Building on this idea, Dupont et al. (2022) (SPATIAL+) explicitly or-
792 thogonalizes spatial structure in the covariates from the outcome trend to purge bias from unmea-
793 sured *spatial* confounding. Propensity-score strategies that incorporate spatial proximity—such as
794 distance-adjusted propensity score matching—aim to proxy smooth unmeasured confounders via
795 geography (Papadogeorgou et al., 2019). Instrumental-variable designs exploit exogenous spatial
796 shocks (e.g., wind direction, policy boundaries, thermal inversions) to identify causal effects despite
797 hidden confounding, but require strong relevance/exclusion conditions that are difficult to validate
798 under interference (e.g., Angrist et al., 1996; Imbens and Rubin, 2015; Deryugina et al., 2019). Fi-
799 nally, Bayesian frameworks that jointly model interference and latent spatial fields (e.g., Papadoge-
800 orgou and Samanta, 2023) achieve identification under specified priors and structural assumptions.
801 In short, existing approaches either (i) assume smoothly varying latent fields or valid instruments or
802 (ii) rely on strong parametric priors. None exploit interference patterns themselves as a *signal* for
803 nonparametrically recovering the hidden confounder, nor do they aim to explicitly reconstruct the
804 unobserved confounding process—a gap our Spatial Deconfounder addresses.
805806 A.2 DECONFOUNDING METHODS FOR ATE ESTIMATION WITH UNOBSERVED
807 CONFOUNDERS
808809 When confounders are unmeasured, point identification of causal effects generally fails. One ap-
810 proach is to derive bounds through sensitivity analysis (e.g., VanderWeele et al., 2015; Dorn et al.,
811 2025; Oprescu et al., 2023; Frauen et al., 2023), trading identifiability for robustness. Another is the
812 *deconfounder* framework, which fits a factor model to multiple causes in order to infer a substitute
813 for the latent confounder, thereby restoring point identification (Wang and Blei, 2019; Bica et al.,
814

810 2020; Hatt and Feuerriegel, 2024). This stream is closest in spirit to our work: like us, it leverages
 811 multiplicity of treatments as a proxy for hidden structure. However, existing deconfounder methods
 812 require datasets with many simultaneous treatments (e.g., recommender systems, panel data) and as-
 813 sume no interference. Our approach resolves both limitations: interference itself naturally generates
 814 multiple-cause treatment vectors, enabling latent field recovery even with a single treatment type.
 815

816 A.3 DEEP LEARNING FOR SPATIAL AND LATENT STRUCTURE MODELING

817 **Deep learning for spatial modeling.** Modern deep architectures capture rich spatial structure but,
 818 on their own, remain predictive rather than identifying. U-Nets and encoder–decoder variants model
 819 multi-scale patterns on grids (Ronneberger et al., 2015; Oktay et al., 2018); graph neural networks
 820 extend to irregular domains (Kipf, 2016; Hamilton et al., 2017; Velicković et al., 2017); and patch-
 821 wise transformers model long-range dependencies on images and geospatial rasters (Dosovitskiy
 822 et al., 2020; Liu et al., 2021). Spatiotemporal extensions (e.g., ConvLSTM and graph/vision trans-
 823 formers) further capture dynamics (Shi et al., 2015). These tools provide flexible representations but
 824 require additional causal structure for identification.
 825

826 **Deep latent-variable models.** Finally, conditional variational autoencoders (C-VAEs) and related
 827 deep generative models are widely used for representation learning with latent factors (Kingma and
 828 Welling, 2013; Sohn et al., 2015). Beyond C-VAEs, the broader family of latent-variable models
 829 includes variational autoencoders with structured priors (Rezende et al., 2014; Maaløe et al., 2016),
 830 disentangled representation learning (Higgins et al., 2017), normalizing flows (Rezende and Mo-
 831 hamed, 2015), and diffusion-based generative models (Ho et al., 2020; Kingma et al., 2021), all
 832 of which offer flexible ways to recover hidden structure from high-dimensional data. While these
 833 methods are not causal in themselves, they provide natural tools for reconstructing latent processes
 834 from observed multi-cause data. In our framework, a C-VAE combined with a spatial prior enables
 835 smooth, nonparametric recovery of a substitute confounder from local treatment vectors, which is
 836 then used for causal identification. Other architectures (e.g., diffusion models or flow-based meth-
 837 ods) could, in principle, be substituted, but the key contribution lies in adapting deep latent-factor
 838 reconstruction to the spatial interference setting, where treatments on neighboring units jointly re-
 839 veal the latent field.
 840

841 A.4 CAUSAL GENERATIVE MODELS

842 Recent work has proposed using expressive generative models as parameterizations of structural
 843 causal models. One stream of work uses autoregressive flows to obtain identifiable SCMs given
 844 a causal ordering (e.g., Javaloy et al., 2023; Khemakhem et al., 2021). Others combine diffusion-
 845 or GAN-based models with structural equations to model complex, high-dimensional counterfac-
 846 tuals (Sanchez and Tsaftaris, 2022; Kocaoglu et al., 2017). However, all of the methods assume
 847 unconfoundedness and are thus orthogonal to our Spatial Deconfounder. A different stream of liter-
 848 ature combines causal inference and generative modeling under hidden confounding (e.g., Xia et al.,
 849 2021; Almodóvar et al., 2025). Similar to our work, the recently proposed DeCaFlow (Almodóvar
 850 et al., 2025) extends this line by learning confounded SCMs with causal normalizing flows and
 851 variational inference based on the deconfounder framework. However, these works are restricted to
 852 specific variables types, e.g., continuous treatments, and do not apply to the spatial setting. Build-
 853 ing upon proxy variables, follow-up work on the deconfounder clarifies identifiability conditions in
 854 multi-cause settings (Wang and Blei, 2021). Similarly, this work assumes multiple treatments in an
 855 independent setting and does not apply to spatial causal inference tasks.
 856

857 A.5 DEEP IDENTIFIABLE MODELS AND NETWORK DECONFOUNDING

858 A complementary line of work focuses on identifiability in deep latent variable models. Sparse
 859 deep generative models establish identifiability of VAEs under sparsity constraints Moran et al.
 860 (2022), while Intact-VAE (Wu and Fukumizu, 2021) and β -Intact-VAE (Wu and Fukumizu, 2022)
 861 provide identifiable generative models for causal inference under unobserved confounding, IVs,
 862 proxies, and networked confounding. Applications to medical data show how identifiable VAEs can
 863 recover meaningful latent prognostic factors (Ma et al., 2023). These methods are typically designed
 for i.i.d. or network-structured observations and often rely on known adjacency structure, e.g.,

864 using neighbor information to help identify latent confounders in network deconfounding tasks. Our
 865 Spatial Deconfounder differs by targeting a specific spatial setting with localized grid-interference.
 866 More importantly, we note that our Spatial Deconfounder is not limited to the use of a C-VAE.
 867 The framework is model-agnostic and can be combined with other generative factor models. In
 868 contrast to these identifiable deep models, our focus is on a spatial–interference design: we show
 869 that interference-generated multi-cause vectors (A_s, A_{N_s}), together with a spatial prior on Z , are
 870 sufficient to identify both direct and spillover effects without specifying a parametric latent-field
 871 model.

872

873

A.6 OUR WORK

874

875 Our contribution lies at the intersection of spatial causal inference, methods for deconfounding under
 876 unobserved confounding, and modern deep latent-variable modeling. Existing approaches to spatial
 877 interference either assume that all relevant confounders are observed, or else mitigate bias through
 878 strong structural assumptions and priors—for example, by imposing smooth latent fields, leveraging
 879 restrictive IV conditions, or specifying parametric Bayesian models. In parallel, the “deconfounder”
 880 framework demonstrates that multiplicity of causes can be exploited to infer substitutes for unob-
 881 served confounders, thereby restoring point identification; however, these methods are designed for
 882 i.i.d. settings with many simultaneous treatments (e.g., recommender systems, panels), and do not
 883 naturally extend to spatial domains where interference and locality are intrinsic.

884

885 The *Spatial Deconfounder* closes this gap. We treat interference itself as the source of multi-cause
 886 information: treatment vectors on a unit and its neighbors contain precisely the dependence needed
 887 to reveal the hidden confounding field. By training a C-VAE with a spatial prior, we nonparamet-
 888 rically reconstruct a smooth latent confounder from these local treatment vectors. This substitute
 889 confounder can then be used to adjust for bias, enabling identification and estimation of both direct
 890 and spillover effects. Crucially, our method achieves this without committing to a fully specified
 891 latent-field model or relying on IV-style exclusion restrictions, thereby combining the flexibility of
 892 nonparametric deconfounding with the structural realities of spatial interference.

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 **B PROOFS**

920 We first provide background by stating supporting definitions and lemmas. Then we prove our main
 921 theorem on the identifiability of the treatment effects.

923 **B.1 SUPPORTING LEMMAS AND DEFINITIONS**

925 **Definition 1** (Ignorability). *The grid treatment $(a_s, \mathbf{a}_{\mathcal{N}_s})$ is ignorable given $Z_s, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}$, if for all*
 926 *$s = 1, \dots, n$ and for all $(a, \mathbf{a}_{\mathcal{N}}) \in \mathcal{A}^{|\mathcal{S}|}$*

928
$$(A_s, \mathbf{A}_{\mathcal{N}_s}) \perp\!\!\!\perp Y_s(a, \mathbf{a}_{\mathcal{N}}) \mid Z_s, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}. \quad (21)$$

929 **Definition 2** (Factor models). *A factor model of the assigned spatial treatments is a latent-variable
 930 model*

932
$$p_\phi(z_{1:|\mathcal{S}|}, \mathbf{x}_{1:|\mathcal{S}|}, \mathbf{x}_{\mathcal{N}_{1:|\mathcal{S}|}}, a_{1:|\mathcal{S}|}, \mathbf{a}_{\mathcal{N}_{1:|\mathcal{S}|}}) \quad (22)$$

934
$$= p(z_{1:|\mathcal{S}|}, \mathbf{x}_{1:|\mathcal{S}|}, \mathbf{x}_{\mathcal{N}_{1:|\mathcal{S}|}}, a_{1:|\mathcal{S}|}, \mathbf{a}_{\mathcal{N}_{1:|\mathcal{S}|}}) \prod_{s=1}^{|\mathcal{S}|} p_\phi(a_s \mid z_s, \mathbf{x}_s, \mathbf{x}_{\mathcal{N}_s}) \prod_{k \in \mathcal{N}_s} p_\phi(a_k \mid z_s, \mathbf{x}_s, \mathbf{x}_{\mathcal{N}_s}) \quad (23)$$

936 rendering the assigned treatments conditionally independent.

938 **Lemma 1.** *For the relation between the substitute confounder and factor models, it holds under
 939 weak regularity conditions*

940 1. *Assume the true distributions of the treatments $p(a_{1:|\mathcal{S}|}, \mathbf{a}_{\mathcal{N}_{1:|\mathcal{S}|}})$ can be rep-
 941 resented by a factor model employing the substitute confounder Z , i.e.,
 942 $p_\phi(z_{1:|\mathcal{S}|}, \mathbf{x}_{1:|\mathcal{S}|}, \mathbf{x}_{\mathcal{N}_{1:|\mathcal{S}|}}, a_{1:|\mathcal{S}|}, \mathbf{a}_{\mathcal{N}_{1:|\mathcal{S}|}})$. With the assumption of latent field suffi-
 943 ciency (see Assumption 4), the assigned treatments $(a, \mathbf{a}_{\mathcal{N}})$ are ignorable given Z_s, \mathbf{X}_s ,
 944 and $\mathbf{X}_{\mathcal{N}_s}$, i.e.,*

946
$$(A_s, \mathbf{A}_{\mathcal{N}_s}) \perp\!\!\!\perp Y_s(a, \mathbf{a}_{\mathcal{N}}) \mid Z_s, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}. \quad (24)$$

948 2. *A factor model that represents the distribution of the assigned treatments always exists.*

950 *Proof.* The statement follows from Proposition 5 in Wang and Blei (2019). \square

953 **B.2 PROOF OF THE MAIN THEOREM**

954 **Theorem 1** (Causal identifiability). *Suppose Assumptions 1–5 hold. Let Z be a piecewise constant
 955 function of the assigned causes and covariates $(a, \mathbf{a}_{\mathcal{N}}, \mathbf{x}, \mathbf{x}_{\mathcal{N}})$ and let the outcome be a separable
 956 function of the observed and unobserved variables*

958
$$\mathbb{E}_Y[Y_s(a, \mathbf{a}_{\mathcal{N}}) \mid \mathbf{X}_s = \mathbf{x}, \mathbf{X}_{\mathcal{N}_s} = \mathbf{x}_{\mathcal{N}}, Z_s = z] = f_1(a, \mathbf{a}_{\mathcal{N}}, \mathbf{x}, \mathbf{x}_{\mathcal{N}}) + f_2(z), \quad (15)$$

959
$$\mathbb{E}_Y[Y_s \mid A_s = a, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}}, \mathbf{X}_s = \mathbf{x}, \mathbf{X}_{\mathcal{N}_s} = \mathbf{x}_{\mathcal{N}}, Z_s = z] = f_3(a, \mathbf{a}_{\mathcal{N}}, \mathbf{x}, \mathbf{x}_{\mathcal{N}}) + f_4(z), \quad (16)$$

961 for continuously differentiable functions f_1, f_2, f_3, f_4 . Consequently, the direct and spillover effects
 962 are identifiable as

963
$$\tau_{\text{dir}} = \mathbb{E}_{\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z} [\mathbb{E}_Y[Y_s \mid A_s = 1, \mathbf{A}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s] - \mathbb{E}_Y[Y_s \mid A_s = 0, \mathbf{A}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]], \quad (17)$$

965
$$\tau_{\text{spill}} = \mathbb{E}_{\mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z} [\mathbb{E}_Y[Y_s \mid a, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}^{(1)}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s] - \mathbb{E}_Y[Y_s \mid a, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}^{(0)}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]]. \quad (18)$$

968 *Proof.* First, observe that by the power-property and the separability of the outcome, we have

970
$$\mathbb{E}_Y[Y_s(a, \mathbf{a}_{\mathcal{N}})] = \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}, Z} [\mathbb{E}_Y[Y_s(a, \mathbf{a}_{\mathcal{N}}) \mid \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]] \quad (25)$$

971
$$= \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a, \mathbf{a}_{\mathcal{N}}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] + \mathbb{E}_Z[f_2(Z_s)]. \quad (26)$$

972 For the direct and indirect effects τ_{dir} and τ_{ind} follows
973

$$\tau_{dir} = \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(A_s = 1, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] - \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(A_s = 0, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] \quad (27)$$

$$= \int_{C(1,0)} \nabla_{\nu} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(\nu, \mathbf{a}_{\mathcal{N}}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] d\nu, \quad \nu \in \mathbb{R} \quad (28)$$

977 and
978

$$\tau_{ind} = \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}^{(1)}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] - \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}^{(0)}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] \quad (29)$$

$$= \int_{C(a_{\mathcal{N}_s}^{(1)}, a_{\mathcal{N}_s}^{(0)}))} \nabla_{\kappa} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a_s, \mathbf{A}_{\mathcal{N}_s} = \kappa, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] d\kappa, \quad \kappa \in \mathbb{R}^{|\mathcal{S}|-1}. \quad (30)$$

983 We thus need to find an expression for the gradient to rewrite the integral in terms of observable
984 quantities.

985 To do so, we first consider the conditional expected outcome. By Assumption 5 there exists a
986 function g such that $Z = g(a_s, \mathbf{a}_{\mathcal{N}}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}})$. Therefore, it holds
987

$$\mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}, Z} [\mathbb{E}_Y [Y_s | A_s = a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_{\mathcal{N}_s}, Z_s]] \quad (31)$$

$$= \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [\mathbb{E}_Y [Y_s | A_s = a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s = g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})]] \quad (32)$$

$$= \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [\mathbb{E}_Y [Y_s(a_s, \mathbf{a}_{\mathcal{N}_s}) | A_s = a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s = g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})]], \quad (33)$$

992 where the latter equality follows from Assumption 1.

993 As $Y_s(a_s, \mathbf{a}_{\mathcal{N}_s}) \perp\!\!\!\perp A_s, \mathbf{A}_{\mathcal{N}_s} | \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s$ (by Lemma 1) and the outcomes are assumed to be
994 separable, it follows

$$\mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}, Z} [\mathbb{E}_Y [Y_s | A_s = a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]] \quad (34)$$

$$= \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [\mathbb{E}_Y [Y_s(a_s, \mathbf{a}_{\mathcal{N}_s}) | \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s = g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})]] \quad (35)$$

$$= \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] + \mathbb{E}_Z [f_2(g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}))]. \quad (36)$$

999 Recall that by the definition of the conditional expected outcome, we have

$$\mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}, Z} [\mathbb{E}_Y [Y_s | A_s = a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]] = \quad (37)$$

$$\mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_3(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] + \mathbb{E}_Z [f_4(g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}))]. \quad (38)$$

1003 Now, we are ready to consider the gradients in 29. Observe that for the gradients of the conditional
1004 outcome, it holds

$$\nabla_{a_s} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}, Z} [\mathbb{E}_Y [Y_s | a_s, \mathbf{A}_{\mathcal{N}_s} = \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}, Z_s]] \quad (39)$$

$$= \nabla_{a_s} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] + \nabla_{a_s} \mathbb{E}_Z [f_2(g(a_s, \mathbf{a}_{\mathcal{N}_s}))] \quad (40)$$

$$= \nabla_{a_s} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_3(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] + \nabla_{a_s} \mathbb{E}_Z [f_4(g(a_s, \mathbf{a}_{\mathcal{N}_s}))] \quad (41)$$

1010 with a similar expression for $\nabla_{\mathbf{a}_{\mathcal{N}_s}}$. Note that, up to a set of Lebesgue measure zero, the gradients
1011 of f_2 and f_4 disappear, i.e.,

$$\nabla_{a_s} \mathbb{E}_Z [f_2(g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}))] = \nabla_{g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})} f_2 \nabla_{a_s} g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}) = 0 \quad (42)$$

1013 and

$$\nabla_{a_s} \mathbb{E}_Z [f_4(g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}))] = \nabla_{g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})} f_4 \nabla_{a_s} g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}) = 0 \quad (43)$$

1016 as

$$\nabla_{a_s} g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}) = 0.$$

1018 Similarly,

$$\nabla_{\mathbf{a}_{\mathcal{N}_s}} \mathbb{E}_Z [f_2(g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}))] = \nabla_{\mathbf{a}_{\mathcal{N}_s}} \mathbb{E}_Z [f_4(g(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}))] = 0.$$

1021 Overall, we receive

$$\nabla_{a_s} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] = \nabla_{a_s} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_3(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] \quad (44)$$

1024 and

$$\nabla_{\mathbf{a}_{\mathcal{N}_s}} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_1(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})] = \nabla_{\mathbf{a}_{\mathcal{N}_s}} \mathbb{E}_{\mathbf{X}, \mathbf{X}_{\mathcal{N}}} [f_3(a_s, \mathbf{a}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s})]. \quad (45)$$

1026 Finally, we can identify the direct treatment τ_{dir} effect as
 1027

$$1028 \tau_{dir} = \int_{C(1,0)} \nabla_\nu \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_1(\nu, \mathbf{a}_N, \mathbf{X}_s, \mathbf{X}_{N_s})] d\nu, \quad \nu \in \mathbb{R} \quad (46)$$

$$1029 = \int_{C(1,0)} \nabla_\nu \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(\nu, \mathbf{a}_N, \mathbf{X}_s, \mathbf{X}_{N_s})] d\nu, \quad \nu \in \mathbb{R} \quad (47)$$

$$1030 = \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(A_s = 1, \mathbf{a}_N, \mathbf{X}_s, \mathbf{X}_{N_s})] - \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(A_s = 0, \mathbf{a}_N, \mathbf{X}_s, \mathbf{X}_{N_s})] \quad (48)$$

$$1031 = \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(A_s = 1, \mathbf{a}_N, \mathbf{X}_s, \mathbf{X}_{N_s})] + \mathbb{E}_Z [f_4(Z_s)] \quad (49)$$

$$1032 - \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(A_s = 0, \mathbf{a}_N, \mathbf{X}_s, \mathbf{X}_{N_s})] - \mathbb{E}_Z [f_4(Z_s)] \quad (50)$$

$$1033 = \mathbb{E}_{Z, \mathbf{X}, \mathbf{X}_N} \left[\mathbb{E}_Y [Y_s | a_s = 1, \mathbf{a}_{N_s}, \mathbf{X}_s, \mathbf{X}_{N_s}, Z_s] - \mathbb{E}_Y [Y_s | a_s = 0, \mathbf{a}_{N_s}, \mathbf{X}_s, \mathbf{X}_{N_s}, Z_s] \right] \quad (51)$$

1034 and similarly the indirect treatment effect τ_{ind} as
 1035

$$1036 \tau_{ind} = \int_{C(a_{N_s}^{(1)}, a_{N_s}^{(0)})} \nabla_\kappa \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_1(a_s, \mathbf{A}_{N_s} = \kappa, \mathbf{X}_s, \mathbf{X}_{N_s})] d\kappa \quad (52)$$

$$1037 = \int_{C(a_{N_s}^{(1)}, a_{N_s}^{(0)})} \nabla_\kappa \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(a_s, \mathbf{A}_{N_s} = \kappa, \mathbf{X}_s, \mathbf{X}_{N_s})] d\kappa \quad (53)$$

$$1038 = \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(a_s, \mathbf{a}_{N_s}^{(1)}, \mathbf{X}_s, \mathbf{X}_{N_s})] - \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(a_s, \mathbf{a}_{N_s}^{(0)}, \mathbf{X}_s, \mathbf{X}_{N_s})] \quad (54)$$

$$1039 = \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(a_s, \mathbf{a}_{N_s}^{(1)}, \mathbf{X}_s, \mathbf{X}_{N_s})] + \mathbb{E}_Z [f_4(Z_s)] \quad (55)$$

$$1040 - \mathbb{E}_{\mathbf{X}, \mathbf{X}_N} [f_3(a_s, \mathbf{a}_{N_s}^{(0)}, \mathbf{X}_s, \mathbf{X}_{N_s})] - \mathbb{E}_Z [f_4(Z_s)] \quad (56)$$

$$1041 = \mathbb{E}_{Z, \mathbf{X}, \mathbf{X}_N} \left[\mathbb{E}_Y [Y_s | a_s, \mathbf{a}_{N_s}^{(1)}, \mathbf{X}_s, \mathbf{X}_{N_s}, Z_s] - \mathbb{E}_Y [Y_s | a_s, \mathbf{a}_{N_s}^{(0)}, \mathbf{X}_s, \mathbf{X}_{N_s}, Z_s] \right] \quad (57)$$

1042 Overall, we proved that the substitute confounder generated by our spatial deconfounder renders the
 1043 treatment effects identifiable. \square
 1044

1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 **C IMPLEMENTATION DETAILS**
10811082 This section provides implementation details for our experimental setup. We cover four aspects:
10831084 1. **Semi-synthetic data generation:** construction of counterfactual outcomes under interference
1085 and spatial confounding using the SpaCE benchmark framework, with hidden confounders sim-
1086 ulated by masking key covariates.
1087 2. **Predictive model:** how the outcome model f is estimated with ensembles of machine-learning
1088 models, including convolutional networks for spatial structure.
1089 3. **Software and hyperparameters:** the AutoML framework used for training and tuning, along
1090 with default settings.
1091 4. **Benchmarks:** implementation details for baseline methods.1092 **Semi-synthetic outcomes.** Recall from Section 6 that we construct counterfactual outcomes via
1093

1094
$$\hat{Y}_s = f(A_s, \mathbf{A}_{\mathcal{N}_s}, \mathbf{X}_s) + R_s \quad \text{or} \quad \hat{Y}_s = f(A_s, \mathbf{A}_{\mathcal{N}_s}, \mathbf{X}_s, \mathbf{X}_{\mathcal{N}_s}) + R_s,$$

1095

1096 where f is a predictive model learned from real-world environmental data and R_s are exogenous,
1097 spatially correlated residuals with the same distribution as the endogenous residuals.1098 **Predictive model with interference.** We estimate f using ensembles of machine-learning models,
1099 with ensemble weights determined by predictive accuracy on held-out validation data. Following
1100 Tec et al. (2024) and the benchmarking guidelines of Curth et al. (2021), this avoids bias toward
1101 causal estimators tied to a single model class. To capture spatial structure, we include ResNet-
1102 18 (He et al., 2016) as one of the base learners. Training and hyperparameter tuning are automated
1103 with the AutoGluon Python package (Erickson et al., 2020), which performs model selection,
1104 hyperparameter search, and overfitting control with minimal human intervention. Default settings
1105 for AutoGluon are summarized in Table 3.1106 Table 3: Hyperparameters used in AutoML
1107

1108 Parameter	1109 Value
1110 package	AutoGluon v1.4.0
1111 fit.presets	good_quality
1112 fit.tuning_data	custom with algorithm 2
1113 fit.use_bag_holdout	true
1114 fit.time_limit	null
1115 feature_importance.time_limit	900
hyperparameters	get_hyperparameter_config('multimodal')
hyperparameters.AG_AUTOMM.optim.max_epochs	10
hyperparameters.AG_AUTOMM.model.timm_image.checkpoint_name	resnet18

1116 **Spatially-aware train-validation split.** We implement a *spatially-aware* train-validation data split
1117 (Roberts et al., 2017) that takes interference into account to avoid overfitting due to spatial correlations.
1118 We only consider nodes with complete neighborhoods for training and validation. This spatial
1119 splitting strategy identifies a limited number of validation nodes and applies breadth-first search to
1120 exclude their adjacent neighbors from the training dataset. For this study, we define each grid cell to
1121 have edges connecting it to its 8 surrounding cells. This algorithm is described in algorithm 2.1122 **Synthetic Residual Generation.** Following the approach established in Tec et al. (2024), we gen-
1123 erate synthetic residuals using a Gaussian Markov Random Field (GMRF) from a spatial graph.
1124 Specifically, we sample the synthetic residuals according to: $\mathbf{R} \sim_{\text{iid}} \text{MultivariateNormal}(\mathbf{0}, \hat{\lambda}(\mathbb{D} -$
1125 $\hat{\rho}\mathbb{A}\mathbb{D})^{-1})$, where \mathbb{A} represents the spatial graph's adjacency matrix, \mathbb{D} denotes a diagonal matrix
1126 containing the degree (number of neighbors) for each spatial location, $\hat{\rho}$ parameterizes the spatial
1127 dependence between observations and their neighbors (estimated from the true residuals obtained
1128 from f), and $\hat{\lambda}$ is calibrated to preserve the exact variance of the observed residuals. We refer the
1129 reader to Tec et al. (2024) for additional details.1130 **Benchmark Training and Hyperparameter Tuning.** To ensure a fair comparison, we use the RAY
1131 TUNE (Liaw et al., 2018) framework for hyperparameter tuning. For all but DAPSM, the tuning metric
1132 is implemented as mean-squared error (MSE) from a validation set obtained with the spatially-aware
1133 splitting method in algorithm 2. We use this splitting algorithm for computing the tuning metric
since random splitting would result in extreme overfitting (Roberts et al., 2017). For DAPSM we

1134 **Algorithm 2** Spatially-aware validation split selection with radius and complete neighborhoods

1135 **Input:** Graph as map of neighbors $s \rightarrow \mathbb{N}_s$ where $\mathbb{N}_s \subset \mathbb{S}$ is the set of neighbors of s .

1136 **Params:** Fraction α of seed validation points (default $\alpha = 0.02$); number of BFS levels L to

1137 include in the validation set (default $L = 1$); buffer size B indicating the number of BFS levels

1138 to leave outside training and validation (default $B = 1$); radius r_m of the model to consider

1139 when determining the split (default $r_m = 1$)

1140 **Output:** Set of training nodes $\mathbb{T} \subset \mathbb{S}$ and validation nodes $\mathbb{V} \subset \mathbb{S}$.

1141 1: # Helper function to check if node has complete r -hop neighborhood

1142 2: **function** HASCOMPLETENEIGHBORHOOD(s, r):

1143 3: expected_count = $(2r + 1)^2$ # For square grid

1144 4: actual_neighbors = GetNeighborsWithinRadius(s, r)

1145 5: **return** $|\text{actual_neighbors}| = \text{expected_count}$

1146 6: # Filter to only nodes with complete neighborhoods

1147 7: $\mathbb{S}_{\text{valid}} = \{s \in \mathbb{S} : \text{HASCOMPLETENEIGHBORHOOD}(s, r_m)\}$

1148 8: # Initialize validation set with seed nodes from valid nodes only

1149 9: $\mathbb{V} = \text{SampleWithoutReplacement}(\mathbb{S}_{\text{valid}}, \alpha)$

1150 10: # Expand validation set with neighbors

1151 11: **for** $\ell \in \{0, \dots, L - 1\}$ **do**

1152 12: tmp = \mathbb{V}

1153 13: **for** $s \in \text{tmp}$ **do**

1154 14: $\mathbb{V} = \mathbb{V} \cup \mathbb{N}_s$

1155 15: **end for**

1156 16: **end for**

1157 17: # Compute buffer

1158 18: $\mathbb{B} = \mathbb{V}$

1159 19: **for** $b \in \{0, \dots, B - 1 + r_m\}$ **do**

1160 20: tmp = \mathbb{B}

1161 21: **for** $s \in \text{tmp}$ **do**

1162 22: $\mathbb{B} = \mathbb{B} \cup \mathbb{N}_s$

1163 23: **end for**

1164 24: **end for**

1165 25: # Exclude buffer for training set (from valid nodes only)

1166 26: $\mathbb{T} = \mathbb{S}_{\text{valid}} \setminus \mathbb{B}$

1167 27: **return** \mathbb{T}, \mathbb{V}

1168 use the covariate balance criterion following Papadogeorgou et al. (2019). After selecting the best

1169 hyperparameters, the method is retrained on the full data. Table 4 summarizes our hyperparameter

1170 search space for different baseline models. For C-VAE models with radius R evaluated on a dataset

1171 of radius r_d , training and validation are restricted to nodes with radius $r_m = \max(r_d, R)$. Each

1172 C-VAE model also specifies a latent confounder dimension $d_Z \in \{1, 2, 4, 8, 16, 32\}$. The licenses

1173 of the data sources used for training are summarized in the supplement of Tec et al. (2024), which

1174 allow sharing and reuse for non-commercial purposes.

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Model	Iterations	Tuning Metric	Value
C-VAE-SPATIAL+	100	weight_decay_C-VAE beta_max (β) ($r_d = 1, PM_{2.5}$) beta_max (β) ($r_d = 1, SO_4$) beta_max (β) ($r_d = 2$) lam_t lam_y	loguniform between 1e-4 and 1e-3 loguniform between 1e-8 and 10 loguniform between 1e-5 and 10 loguniform between 1e-5 and 1e-4 loguniform between 1e-5 and 1.0 loguniform between 1e-5 and 1.0
C-VAE-UNET	60	weight_decay_C-VAE beta_max (β) weight_decay_head unet_base_chan	loguniform between 1e-4 and 1e-3 loguniform between 1e-3 and 1 loguniform between 1e-4 and 1e-3 16 or 32
DAPSM	N/A	propensity_score_penalty_value propensity_score_penalty_type spatial_weight	choose from [0.001, 0.01, 0.1, 1.0] l1 or l2 uniform between 0.0 and 1.0
GCNN	N/A	hidden_dim hidden_layers weight_decay lr epochs dropout	16 or 32 1 or 2 loguniform between 1e-6 and 1e-1 1e-3 or 3e-4 1000 or 2500 loguniform between 1e-3 to 0.5
SPATIAL+	2,500	lam_t lam_y	loguniform between 1e-5 and 1.0 loguniform between 1e-5 and 1.0
SPATIAL	2,500	lam	loguniform between 1e-5 and 1.0
UNET	50	unet_base_chan	choose from [8, 16, 32]

Table 4: Hyperparameter configurations evaluated for each model using a validation set. Iterations denotes the number of Ray Tune trials performed per model.

D FURTHER EXPERIMENTAL RESULTS

Our full experimental results are available for local confounding and spatial confounding at Table 5 and Table 6, respectively. There is a general pattern that C-VAE models tend to outperform benchmarks in estimating direct effects. In particular, C-VAE are the only local confounding methods that can also estimate spillover effects. In spatial confounding datasets with $r_d = 1$, deconfounders tend to have better direct effect and spillover estimation than UNET.

Table 5: Performance under *local confounding*. Results averaged over 10 runs with 95% confidence intervals. r_d : neighborhood radius in data generation; R: neighborhood radius used by the deconfounder. **Lower values for ATE and SPILL indicate less bias. p indicates the p -value of the predictive check, with values near 0.5 indicating good model fit to 0.5.**

Environment	Confounder	Method	DIR	SPILL	p
$PM_{2.5} \rightarrow m (r_d = 1)$	ρ_{pop}	C-VAE-SPATIAL+ (R=0)	0.15 ± 0.11	n/a	0.36 ± 0.07
		C-VAE-SPATIAL+ (R=1)	0.05 ± 0.02	0.34 ± 0.08	0.35 ± 0.09
		C-VAE-SPATIAL+ (R=2)	0.07 ± 0.02	0.52 ± 0.08	0.35 ± 0.03
		DAPSM	0.25 ± 0.01	n/a	n/a
		GCNN	0.36 ± 0.03	n/a	n/a
		S2SLS-LAG1	0.03 ± 0.00	n/a	n/a
		SPATIAL+	0.13 ± 0.04	n/a	n/a
		SPATIAL	0.10 ± 0.07	n/a	n/a
		C-VAE-SPATIAL+ (R=0)	0.15 ± 0.07	n/a	0.38 ± 0.08
	q_{summer}	C-VAE-SPATIAL+ (R=1)	0.04 ± 0.01	0.42 ± 0.08	0.37 ± 0.07
		C-VAE-SPATIAL+ (R=2)	0.04 ± 0.01	0.44 ± 0.09	0.36 ± 0.04
		DAPSM	0.30 ± 0.03	n/a	n/a
		GCNN	0.41 ± 0.03	n/a	n/a
		S2SLS-LAG1	0.20 ± 0.00	n/a	n/a
		SPATIAL+	0.13 ± 0.04	n/a	n/a
		SPATIAL	0.10 ± 0.07	n/a	n/a
$PM_{2.5} \rightarrow m (r_d = 2)$	ρ_{pop}	C-VAE-SPATIAL+ (R=0)	0.11 ± 0.02	n/a	0.35 ± 0.03
		C-VAE-SPATIAL+ (R=1)	0.05 ± 0.02	0.15 ± 0.05	0.34 ± 0.04
		C-VAE-SPATIAL+ (R=2)	0.04 ± 0.03	0.24 ± 0.06	0.35 ± 0.04
		DAPSM	0.16 ± 0.01	n/a	n/a
		GCNN	0.18 ± 0.03	n/a	n/a
		S2SLS-LAG1	0.07 ± 0.00	n/a	n/a
		SPATIAL+	0.10 ± 0.02	n/a	n/a

1242			Spatial	0.17 ± 0.03	n/a	n/a
1243		q_{summer}	C-VAE-SPATIAL+ (R=0)	0.13 ± 0.05	n/a	0.36 ± 0.04
1244			C-VAE-SPATIAL+ (R=1)	0.04 ± 0.02	0.11 ± 0.05	0.36 ± 0.04
1245			C-VAE-SPATIAL+ (R=2)	0.07 ± 0.02	0.19 ± 0.06	0.36 ± 0.04
1246			DAPSM	0.20 ± 0.01	n/a	n/a
1247			GCNN	0.16 ± 0.05	n/a	n/a
1248			S2SLS-LAG1	0.09 ± 0.00	n/a	n/a
1249	$SO_4 \rightarrow PM_{2.5} (r_d = 1)$	NH.4	Spatial+	0.11 ± 0.02	n/a	n/a
1250			Spatial	0.17 ± 0.03	n/a	n/a
1251			C-VAE-SPATIAL+ (R=0)	0.22 ± 0.04	n/a	0.40 ± 0.05
1252			C-VAE-SPATIAL+ (R=1)	0.07 ± 0.03	0.64 ± 0.10	0.38 ± 0.04
1253			C-VAE-SPATIAL+ (R=2)	0.07 ± 0.03	0.16 ± 0.06	0.39 ± 0.06
1254		OC	DAPSM	1.44 ± 0.00	n/a	n/a
1255			GCNN	0.52 ± 0.16	n/a	n/a
1256			S2SLS-LAG1	0.09 ± 0.00	n/a	n/a
1257			Spatial+	0.11 ± 0.03	n/a	n/a
1258			Spatial	0.08 ± 0.02	n/a	n/a
1259	$SO_4 \rightarrow PM_{2.5} (r_d = 2)$	NH.4	C-VAE-SPATIAL+ (R=0)	0.07 ± 0.04	n/a	0.48 ± 0.06
1260			C-VAE-SPATIAL+ (R=1)	0.08 ± 0.03	0.13 ± 0.05	0.44 ± 0.03
1261			C-VAE-SPATIAL+ (R=2)	0.12 ± 0.04	0.09 ± 0.04	0.43 ± 0.03
1262			DAPSM	1.23 ± 0.00	n/a	n/a
1263			GCNN	0.26 ± 0.09	n/a	n/a
1264		OC	S2SLS-LAG1	0.10 ± 0.00	n/a	n/a
1265			Spatial+	0.13 ± 0.07	n/a	n/a
1266			Spatial	0.29 ± 0.01	n/a	n/a
1267			C-VAE-SPATIAL+ (R=0)	0.10 ± 0.07	n/a	0.43 ± 0.04
1268			C-VAE-SPATIAL+ (R=1)	0.06 ± 0.03	0.18 ± 0.09	0.43 ± 0.03
1269			C-VAE-SPATIAL+ (R=2)	0.12 ± 0.06	0.35 ± 0.08	0.43 ± 0.04
1270			DAPSM	1.24 ± 0.01	n/a	n/a
1271			GCNN	0.30 ± 0.10	n/a	n/a
1272	Table 6: Performance under <i>spatial confounding</i> . Results averaged over 10 runs with 95% confidence intervals. r_d : neighborhood radius in data generation; R: neighborhood radius used by the deconfounder. Lower values for ATE and SPILL indicate less bias. p indicates the p -value of the predictive check, with values near 0.5 indicating good model fit to 0.5.					
1273			S2SLS-LAG1	0.21 ± 0.00	n/a	n/a
1274			Spatial+	0.13 ± 0.07	n/a	n/a
1275			Spatial	0.29 ± 0.01	n/a	n/a

Table 6: Performance under *spatial confounding*. Results averaged over 10 runs with 95% confidence intervals. r_d : neighborhood radius in data generation; R: neighborhood radius used by the deconfounder. Lower values for ATE and SPILL indicate less bias. p indicates the p -value of the predictive check, with values near 0.5 indicating good model fit to 0.5.

Environment	Confounder	Method	DIR	SPILL	p
$PM_{2.5} \rightarrow m (r_d = 1)$	ρ_{pop}	C-VAE-UNET (R=0)	0.11 ± 0.04	n/a	0.34 ± 0.04
		C-VAE-UNET (R=1)	0.05 ± 0.01	0.22 ± 0.06	0.34 ± 0.03
		C-VAE-UNET (R=2)	0.04 ± 0.02	0.12 ± 0.06	0.36 ± 0.06
		DAPSM	0.20 ± 0.01	n/a	n/a
		GCNN	0.17 ± 0.06	n/a	n/a
		S2SLS-LAG1	0.05 ± 0.00	n/a	n/a
		Spatial+	0.27 ± 0.18	n/a	n/a
		Spatial	0.06 ± 0.06	n/a	n/a
		UNET	0.06 ± 0.01	0.17 ± 0.04	n/a
	q_{summer}	C-VAE-UNET (R=0)	0.04 ± 0.02	n/a	0.35 ± 0.02
		C-VAE-UNET (R=1)	0.06 ± 0.02	0.13 ± 0.07	0.33 ± 0.02
		C-VAE-UNET (R=2)	0.04 ± 0.02	0.10 ± 0.05	0.36 ± 0.05
		DAPSM	0.28 ± 0.04	n/a	n/a
		GCNN	0.23 ± 0.03	n/a	n/a
		S2SLS-LAG1	0.16 ± 0.00	n/a	n/a
		Spatial+	0.27 ± 0.18	n/a	n/a
		Spatial	0.07 ± 0.06	n/a	n/a
		UNET	0.04 ± 0.01	0.10 ± 0.05	n/a
$PM_{2.5} \rightarrow m (r_d = 2)$	ρ_{pop}	C-VAE-UNET (R=0)	0.09 ± 0.03	n/a	0.32 ± 0.04
		C-VAE-UNET (R=1)	0.15 ± 0.01	0.09 ± 0.03	0.31 ± 0.04
		C-VAE-UNET (R=2)	0.15 ± 0.01	0.13 ± 0.05	0.29 ± 0.06
		DAPSM	0.15 ± 0.02	n/a	n/a
		GCNN	0.15 ± 0.04	n/a	n/a
		S2SLS-LAG1	0.06 ± 0.00	n/a	n/a
		Spatial+	0.08 ± 0.04	n/a	n/a
		Spatial	0.05 ± 0.02	n/a	n/a

1296		UNET	0.15 ± 0.01	0.15 ± 0.03	n/a
1297	q_{summer}	C-VAE-UNET (R=0)	0.05 ± 0.01	n/a	0.30 ± 0.05
1298		C-VAE-UNET (R=1)	0.14 ± 0.01	0.07 ± 0.03	0.30 ± 0.05
1299		C-VAE-UNET (R=2)	0.15 ± 0.01	0.06 ± 0.03	0.33 ± 0.04
1300		DAPSM	0.21 ± 0.01	n/a	n/a
1301		GCNN	0.23 ± 0.03	n/a	n/a
1302		S2SLS-LAG1	0.10 ± 0.00	n/a	n/a
1303		SPATIAL+	0.07 ± 0.03	n/a	n/a
1304		SPATIAL	0.05 ± 0.02	n/a	n/a
1305		UNET	0.15 ± 0.00	0.08 ± 0.04	n/a
1306		$SO_4 \rightarrow PM_{2.5} (r_d = 1)$	$NH\text{-}4$		
1307	OC	C-VAE-UNET (R=0)	0.18 ± 0.03	n/a	0.44 ± 0.03
1308		C-VAE-UNET (R=1)	0.05 ± 0.02	0.22 ± 0.03	0.45 ± 0.03
1309		C-VAE-UNET (R=2)	0.04 ± 0.02	0.37 ± 0.06	0.43 ± 0.03
1310		DAPSM	1.56 ± 0.00	n/a	n/a
1311		GCNN	0.55 ± 0.09	n/a	n/a
1312		S2SLS-LAG1	0.22 ± 0.00	n/a	n/a
1313		SPATIAL+	0.06 ± 0.05	n/a	n/a
1314		SPATIAL	0.04 ± 0.01	n/a	n/a
1315		UNET	0.04 ± 0.01	0.19 ± 0.04	n/a
1316		$SO_4 \rightarrow PM_{2.5} (r_d = 2)$	$NH\text{-}4$		
1317	OC	C-VAE-UNET (R=0)	0.04 ± 0.02	n/a	0.43 ± 0.04
1318		C-VAE-UNET (R=1)	0.13 ± 0.02	0.05 ± 0.02	0.45 ± 0.03
1319		C-VAE-UNET (R=2)	0.15 ± 0.01	0.07 ± 0.03	0.45 ± 0.03
1320		DAPSM	1.47 ± 0.00	n/a	n/a
1321		GCNN	0.66 ± 0.21	n/a	n/a
1322		S2SLS-LAG1	0.16 ± 0.00	n/a	n/a
1323		SPATIAL+	0.06 ± 0.02	n/a	n/a
1324		SPATIAL	0.06 ± 0.05	n/a	n/a
1325		UNET	0.15 ± 0.01	0.11 ± 0.04	n/a
1326					

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 **E ADDITIONAL ROBUSTNESS TESTS**
13511352 **E.1 TREATMENT SPARSITY**
1353

1354 The results in Table 7 examine our method under sparse treatment conditions with 30% and 10%
1355 of grid cells receiving treatment. Despite similar performance under moderate treatment sparsity
1356 (30%), C-VAE-SPATIAL+ considerably outperforms SPATIAL+ when sparsity is extreme (10%),
1357 underscoring the value of our framework for direct effect estimation in highly sparse conditions.
1358 In addition, the predictive p -value is lower as treatment sparsity increases, showing worse model
1359 calibration in sparse settings.

1360 **Table 7: Performance under sparse local confounding.** Results averaged over 10 runs with 95%
1361 confidence intervals. r_d : neighborhood radius in data generation; R: neighborhood radius used by
1362 the deconfounder. Lower values for ATE and SPILL indicate less bias. p indicates the predictive
1363 p -value, with values near 0.5 indicating good model fit to 0.5. Percentage in environment denotes
1364 the fraction of observations receiving treatment.

Environment	Confounder	Method	DIR	SPILL	p
$SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) (10%)	<i>NH</i> -4	C-VAE-SPATIAL+ (R=0)	0.07 ± 0.04	n/a	0.28 ± 0.02
		C-VAE-SPATIAL+ (R=1)	0.19 ± 0.08	0.80 ± 0.23	0.28 ± 0.01
		C-VAE-SPATIAL+ (R=2)	0.14 ± 0.08	1.20 ± 0.12	0.29 ± 0.01
		DAPSM	0.02 ± 0.00	n/a	n/a
		GCNN	0.42 ± 0.07	n/a	n/a
		S2SLS-LAG1	0.04 ± 0.00	n/a	n/a
		SPATIAL+	0.68 ± 0.21	n/a	n/a
		SPATIAL	0.17 ± 0.11	n/a	n/a
		C-VAE-SPATIAL+ (R=0)	0.05 ± 0.03	n/a	0.27 ± 0.01
		C-VAE-SPATIAL+ (R=1)	0.14 ± 0.05	0.71 ± 0.17	0.29 ± 0.02
$SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) (30%)	<i>OC</i>	C-VAE-SPATIAL+ (R=2)	0.08 ± 0.03	1.09 ± 0.18	0.30 ± 0.02
		DAPSM	0.05 ± 0.02	n/a	n/a
		GCNN	0.69 ± 0.20	n/a	n/a
		S2SLS-LAG1	0.26 ± 0.00	n/a	n/a
		SPATIAL+	0.55 ± 0.19	n/a	n/a
		SPATIAL	0.17 ± 0.11	n/a	n/a
		C-VAE-SPATIAL+ (R=0)	0.14 ± 0.03	n/a	0.33 ± 0.02
		C-VAE-SPATIAL+ (R=1)	0.18 ± 0.06	0.42 ± 0.11	0.35 ± 0.03
		C-VAE-SPATIAL+ (R=2)	0.12 ± 0.07	0.25 ± 0.11	0.34 ± 0.02
		DAPSM	1.00 ± 0.00	n/a	n/a
$SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) (30%)	<i>NH</i> -4	GCNN	0.34 ± 0.12	n/a	n/a
		S2SLS-LAG1	0.03 ± 0.00	n/a	n/a
		SPATIAL+	0.12 ± 0.05	n/a	n/a
		SPATIAL	0.16 ± 0.03	n/a	n/a
		C-VAE-SPATIAL+ (R=0)	0.13 ± 0.03	n/a	0.31 ± 0.03
		C-VAE-SPATIAL+ (R=1)	0.15 ± 0.06	0.35 ± 0.09	0.35 ± 0.02
		C-VAE-SPATIAL+ (R=2)	0.11 ± 0.05	0.27 ± 0.10	0.36 ± 0.03
		DAPSM	1.00 ± 0.00	n/a	n/a
		GCNN	0.35 ± 0.14	n/a	n/a
		S2SLS-LAG1	0.07 ± 0.00	n/a	n/a
$SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) (30%)	<i>OC</i>	SPATIAL+	0.12 ± 0.05	n/a	n/a
		SPATIAL	0.15 ± 0.03	n/a	n/a

1392 **E.2 PERFORMANCE UNDER SINGLE-CAUSE CONFOUNDERS**
1393

1394 We evaluate our method under violation of Assumption 4 by introducing a localized single-cause
1395 unobserved confounder named SC . We select $\mathcal{C} = \{c_1, \dots, c_n\}$ as cluster centers, drawn uniformly
1396 from the set of spatial sites, where $n = \lceil s|\mathcal{S}| \rceil$ and s denotes the sparsity. Each cluster center is
1397 assigned a peak intensity $\alpha_c \sim U(0.5, 1.0)$. for any site s , the resulting single-cause confounder is

$$SC_s = \max_{c \in \mathcal{C}} \alpha_c \exp \left(-\frac{d(s, c)}{2} \right)$$

1401 where $d(s, c)$ is the shortest distance path between s and c . We then inject SC into both the treatment
1402 and outcome by adding $0.8 \times \text{std}(X) \times SC$ to each variable where X denotes the respective
1403 treatment or outcome variable. The treatments are binarized by applying a threshold. Table 8
presents the performance of our methods when Assumption 4 is violated. When the unobserved

1404 confounder exhibits greater localization (10%), C-VAE-SPATIAL+ shows larger bias in the direct
 1405 effect estimate compared to SPATIAL+. However, with a moderately sparse unobserved confounder,
 1406 C-VAE-SPATIAL+ achieves comparable performance to SPATIAL+.

1407
 1408 **Table 8: Performance under *local confounding* with **single-cause unobserved confounder** SC .**
 1409 Results averaged over 10 runs with 95% confidence intervals. r_d : neighborhood radius in data
 1410 generation; R: neighborhood radius used by the deconfounder. Lower values for ATE and SPILL
 1411 indicate less bias. p indicates the predictive p -value, with values near 0.5 indicating good model fit
 1412 to 0.5. Percentage in environment denotes the fraction of observations receiving treatment.

Environment	Confounder	Method	DIR	SPILL	p
$PM_{2.5} \rightarrow m (r_d = 1) (10\%)$	SC	C-VAE-SPATIAL+ (R=0)	0.11 ± 0.08	n/a	0.40 ± 0.02
		C-VAE-SPATIAL+ (R=1)	0.11 ± 0.06	0.44 ± 0.14	0.40 ± 0.02
		C-VAE-SPATIAL+ (R=2)	0.08 ± 0.02	0.62 ± 0.07	0.40 ± 0.03
		DAPSM	0.52 ± 0.01	n/a	n/a
		GCNN	0.13 ± 0.03	n/a	n/a
		S2SLS-LAG1	0.20 ± 0.00	n/a	n/a
		SPATIAL+	0.04 ± 0.01	n/a	n/a
		SPATIAL	0.06 ± 0.07	n/a	n/a
$PM_{2.5} \rightarrow m (r_d = 1) (30\%)$	SC	C-VAE-SPATIAL+ (R=0)	0.07 ± 0.02	n/a	0.38 ± 0.02
		C-VAE-SPATIAL+ (R=1)	0.08 ± 0.02	0.26 ± 0.07	0.39 ± 0.03
		C-VAE-SPATIAL+ (R=2)	0.10 ± 0.04	1.14 ± 1.37	0.42 ± 0.05
		DAPSM	0.58 ± 0.00	n/a	n/a
		GCNN	0.16 ± 0.05	n/a	n/a
		S2SLS-LAG1	0.23 ± 0.00	n/a	n/a
		SPATIAL+	0.09 ± 0.01	n/a	n/a
		SPATIAL	0.08 ± 0.02	n/a	n/a

E.3 SENSITIVITY TO HYPERPARAMETERS AND SPILLOVER RADIUS

1430
 1431 **Hyperparameters:** To assess the robustness of our spatial deconfounder across different hyper-
 1432 parameter sets, we conduct a sensitivity analysis. Below, we provide figures that display how
 1433 the hyperparameters of C-VAE-SPATIAL+ and C-VAE-UNET affect the estimation performance.
 1434 Specifically, we assess the hyperparameters β (KL term), the latent dimension d_Z , the learning rate,
 1435 and weight decay. We observe the change in one parameter at a time, while optimizing the other
 1436 hyperparameters conditional on the assessed parameter.

1437 For C-VAE-SPATIAL+, we do not observe a consistent pattern in the error for the direct effect
 1438 DIR. The estimation performance remains robust when changing a single hyperparameter while
 1439 optimizing all others. For the spillover effect SPILL estimation, we generally observe that the error
 1440 increases with β but decreases as d_Z grows. In our models, the optimal β and d_Z are determined
 1441 through hyperparameter tuning on the MSE Loss. Datasets with large r_d typically need low β
 1442 because the smoothness is lower. On the other hand, datasets with small r_d need a higher β to
 1443 enforce smoothness constraints. Furthermore, the optimal value of β depends on the nature of the
 1444 unobserved confounder. For instance, models with a smooth confounder such as humidity q_{summer}
 1445 favor a larger β , whereas models with an anisotropic confounder like the population density ρ_{pop}
 1446 require a relatively smaller β . For C-VAE-UNET, the direct effect DIR and spillover effect SPILL
 1447 remain consistent across varying degrees of hyperparameters, highlighting the important consistency
 1448 with deep learning spatially-aware architectures.

1449 **Neighborhood radius:** Furthermore, we assess the robustness of our spatial deconfounder with
 1450 respect to different interference radii in Figures 5 to 20 for C-VAE-SPATIAL+ and Figures 21 to 36
 1451 for C-VAE-UNET. We observe that our spatial deconfounder is generally robust to misspecification
 1452 of the interference radius. Note that we do not include $r = 0$ models in SPILL plots, as these models
 1453 cannot include neighboring treatments, i.e., spillover effect, by design.

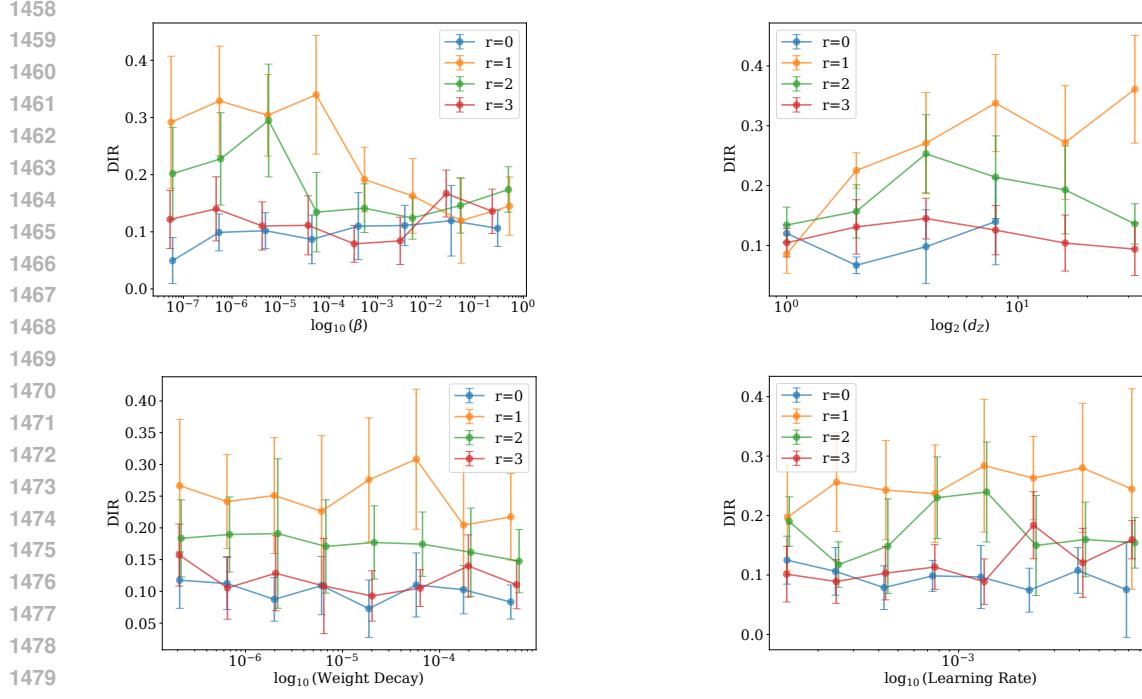


Figure 5: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder OC . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the direct effect.

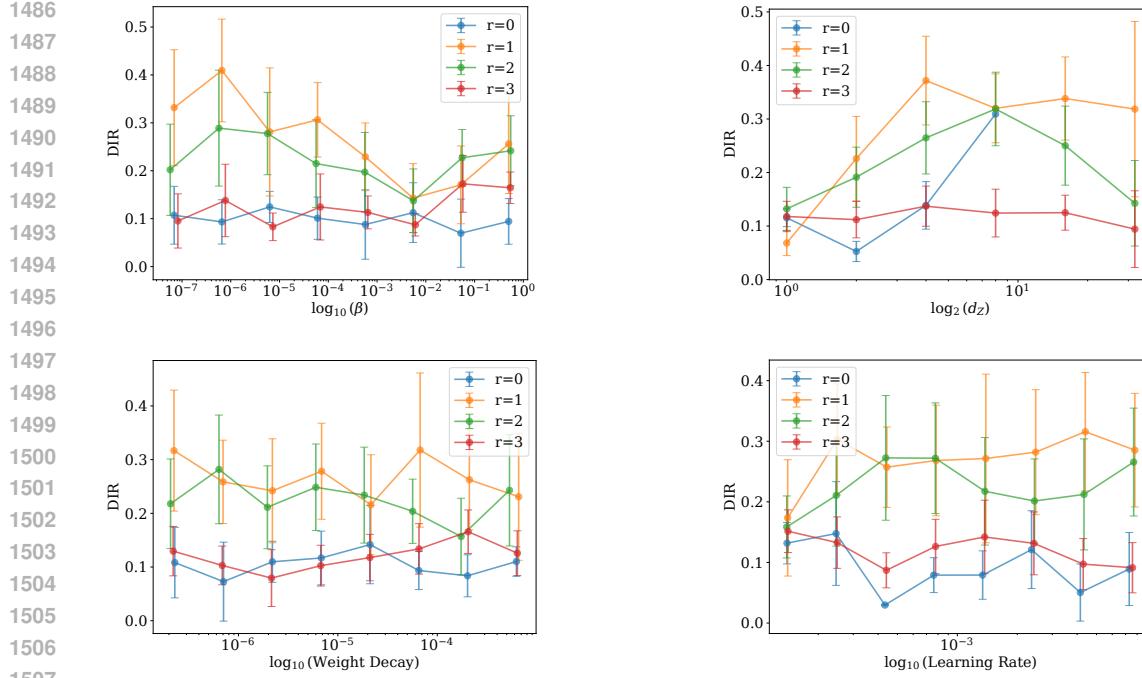


Figure 6: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder NH_4 . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the direct effect.

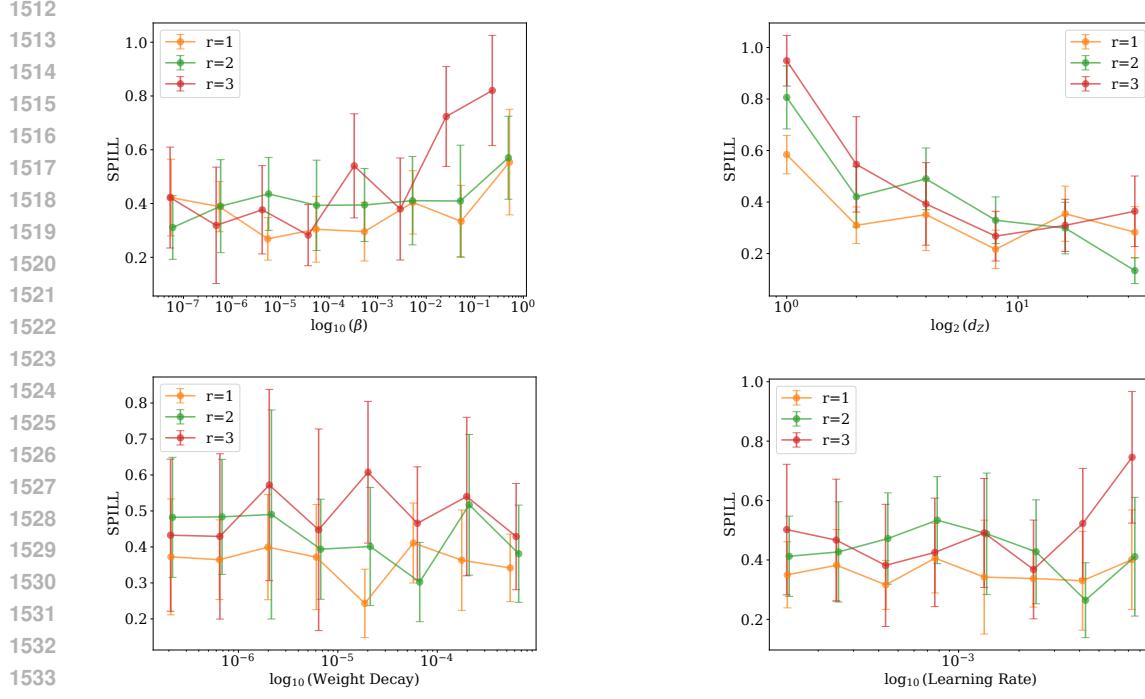


Figure 7: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder OC . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the spillover effect.

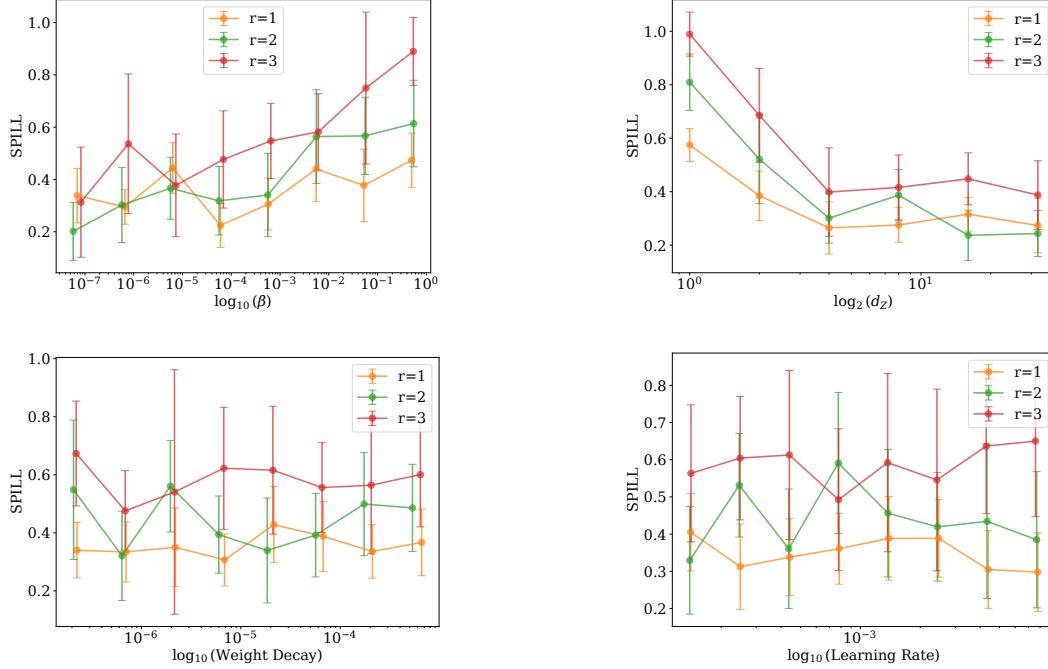


Figure 8: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder NH_4 . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the spillover effect.

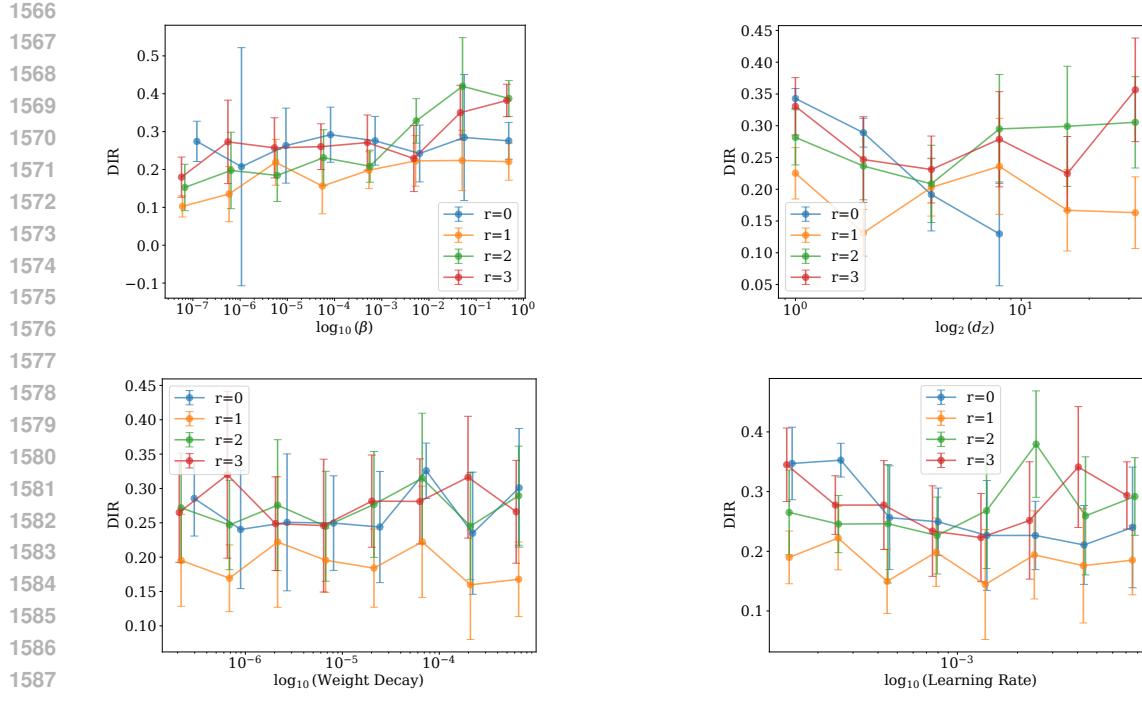


Figure 9: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder OC . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the direct effect.

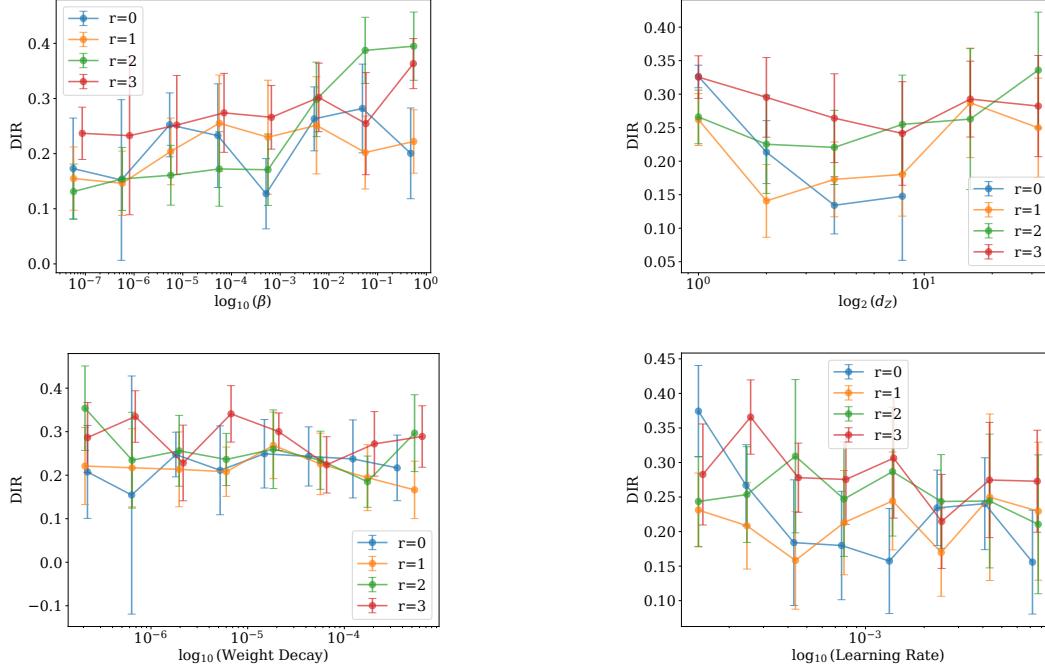


Figure 10: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder NH_4 . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the direct effect.

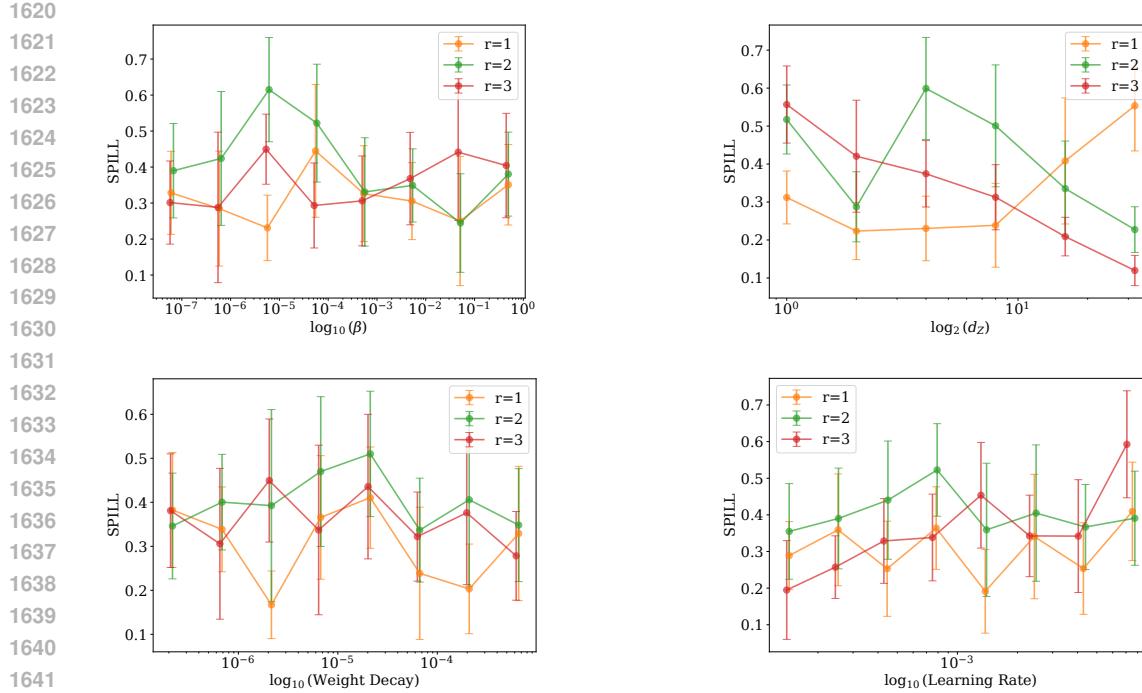
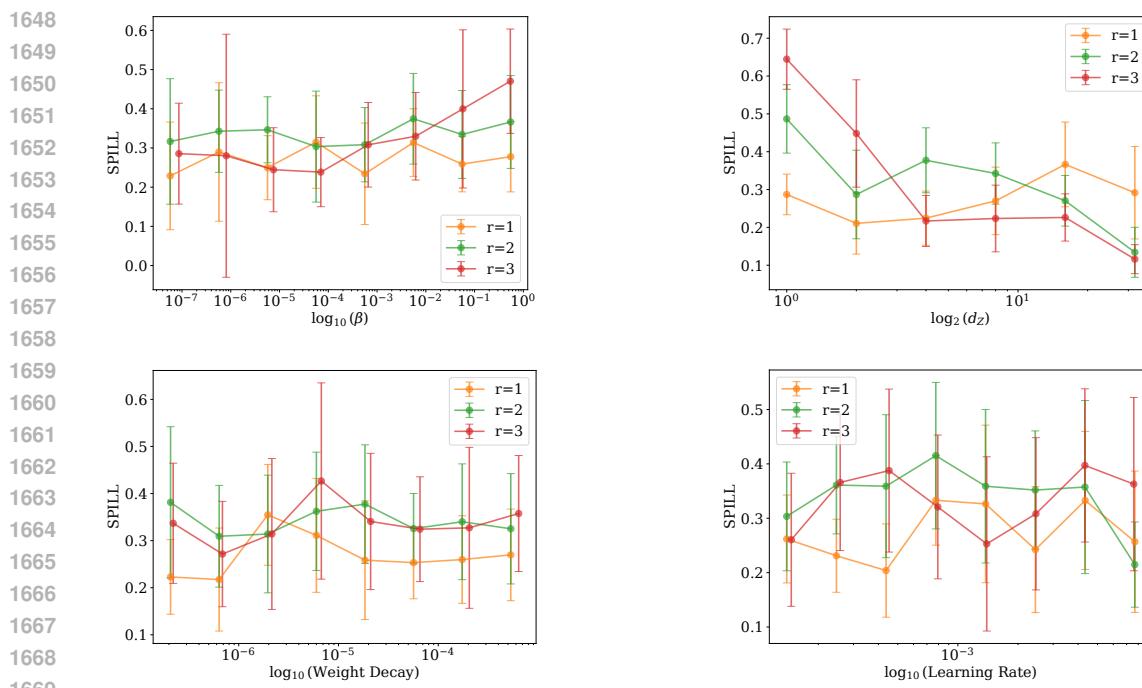


Figure 11: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder OC . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the spillover effect.



1671 Figure 12: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment
 1672 $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder NH_4 . Each subplot shows SPILL as a
 1673 function of a hyperparameter across different neighborhood radii r . The error bounds represent the
 95% confidence interval. The y-axis represents the error on the spillover effect.

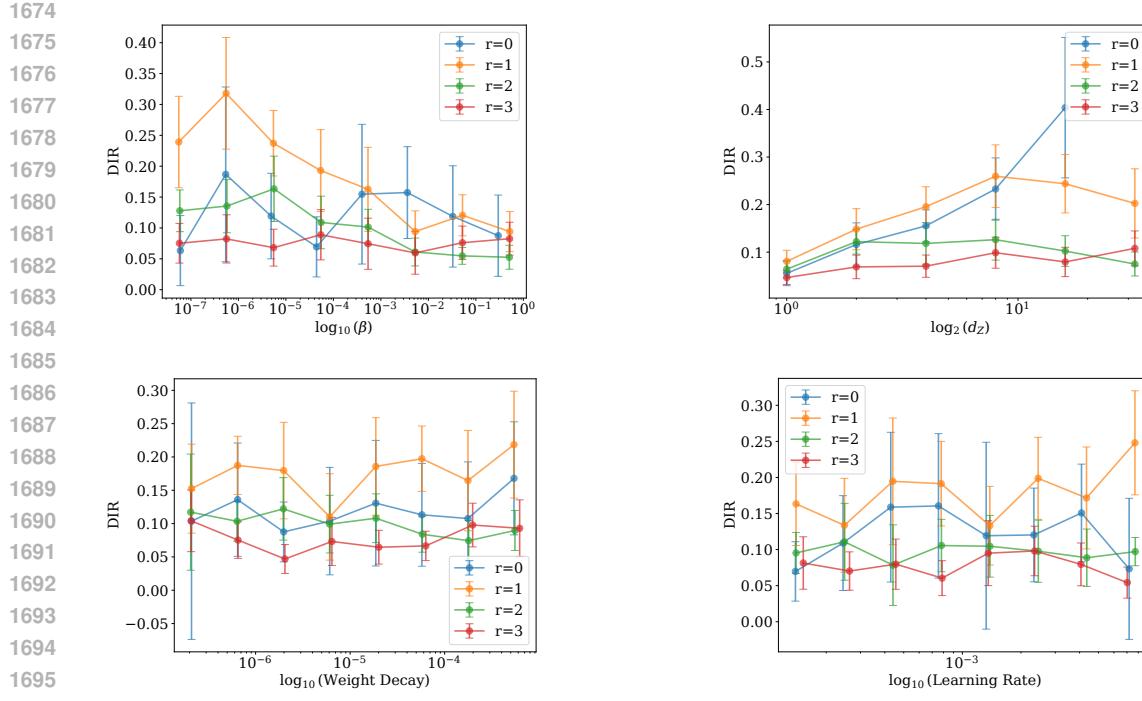


Figure 13: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder q_{summer} . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the direct effect.

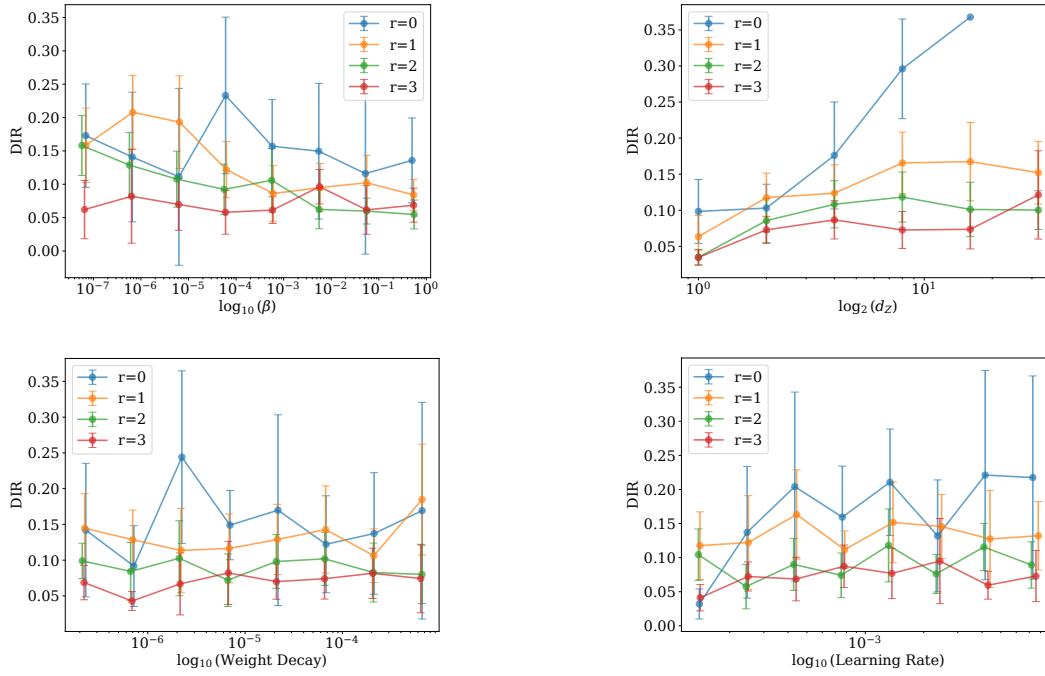


Figure 14: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder ρ_{pop} . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the direct effect.

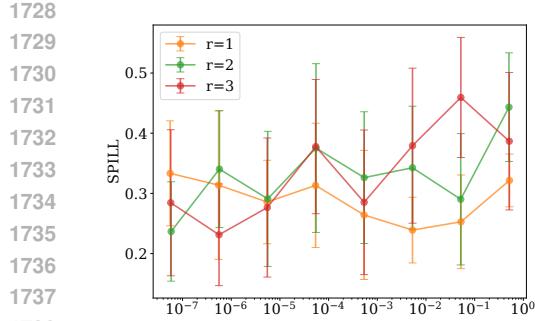
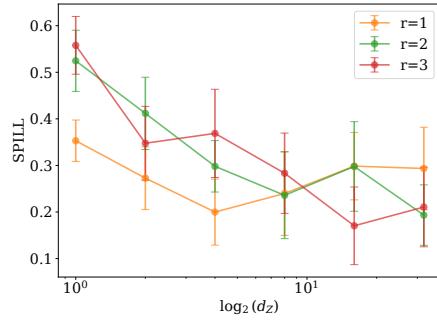
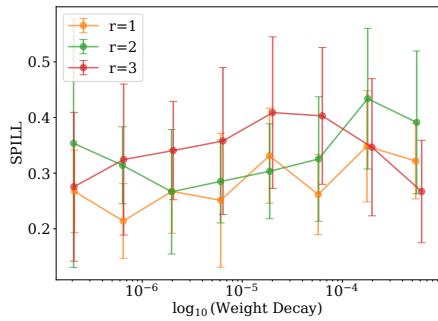
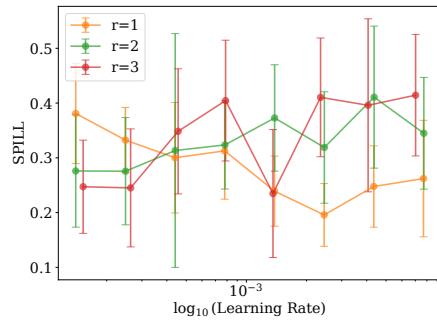


Figure 15: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder q_{summer} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the spillover effect.

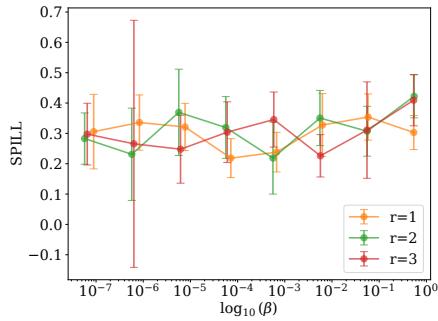
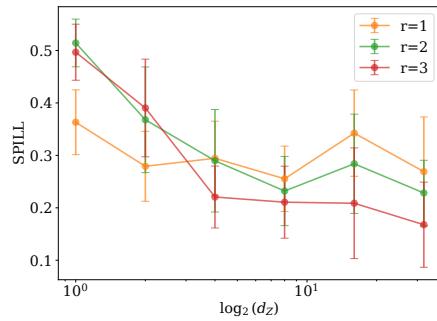
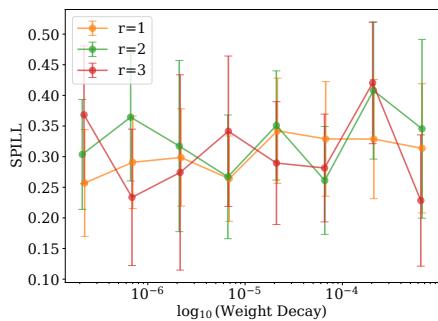
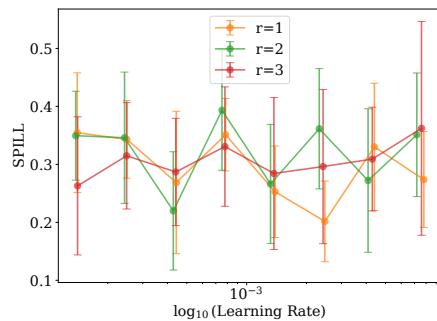
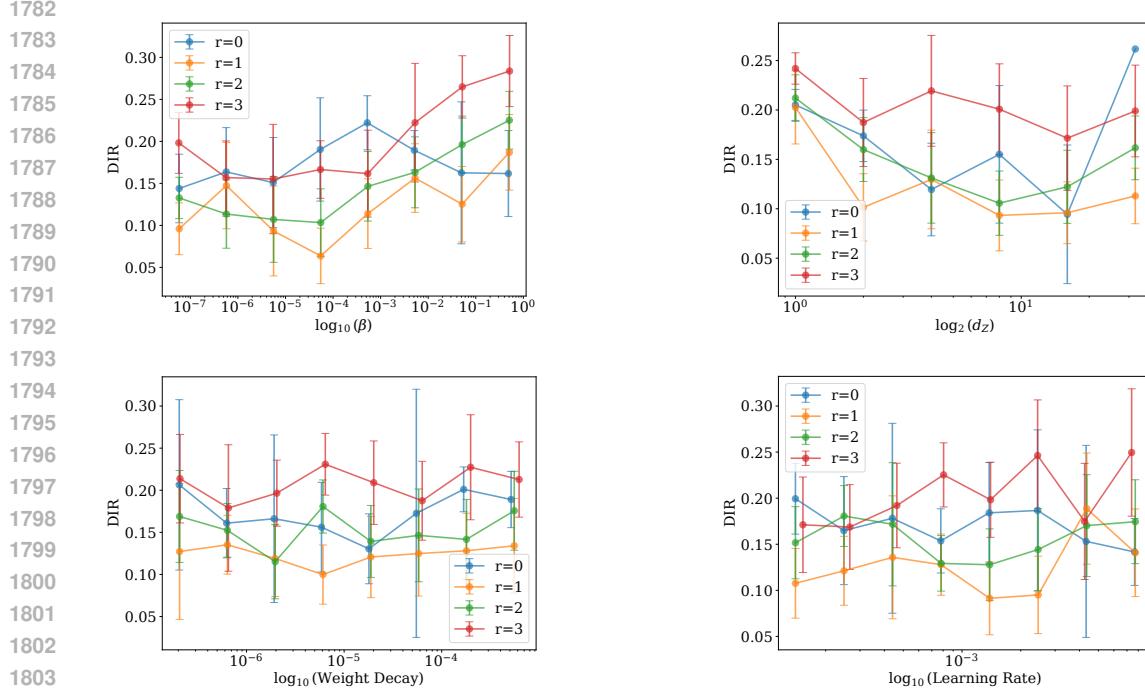
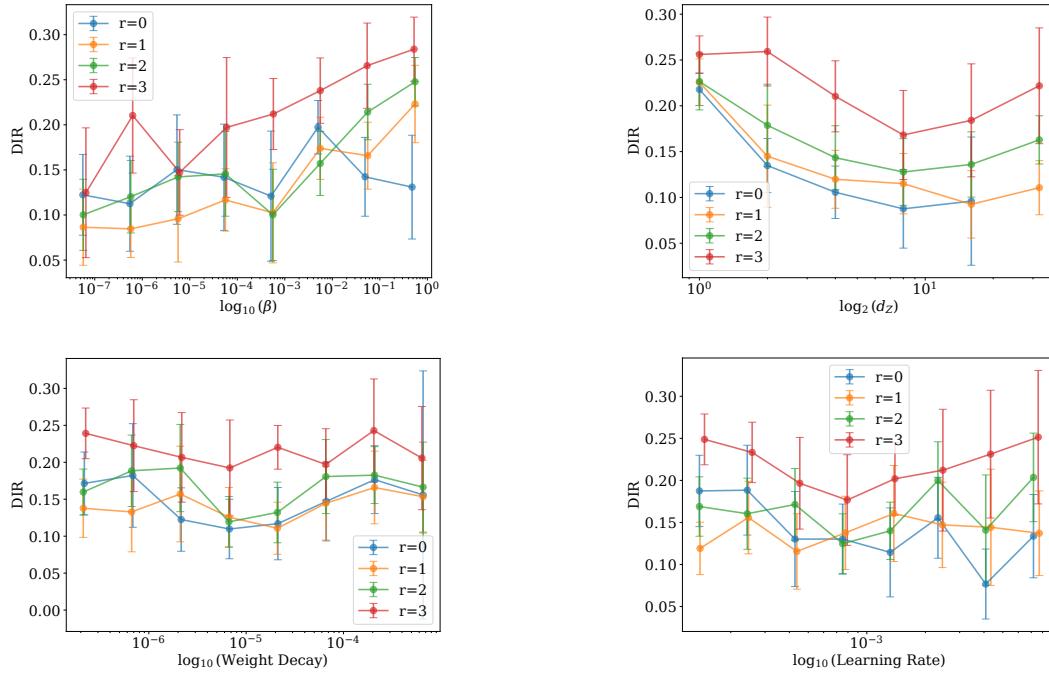


Figure 16: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder ρ_{pop} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the spillover effect.



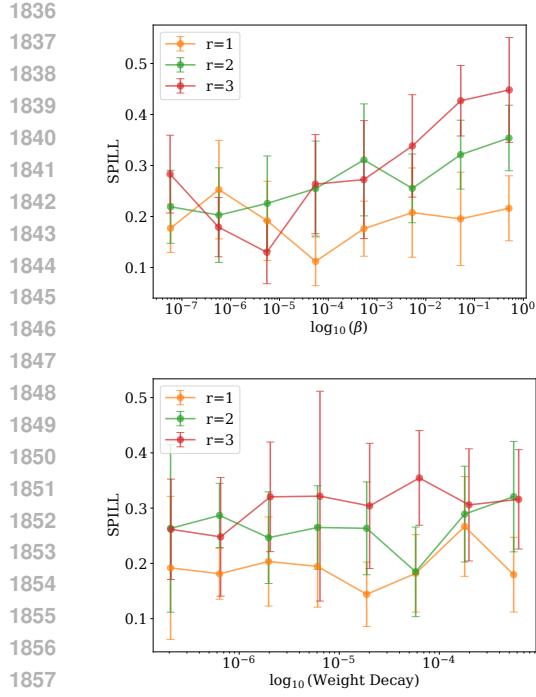


Figure 19: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 2$) with unobserved confounder q_{summer} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the spillover effect.

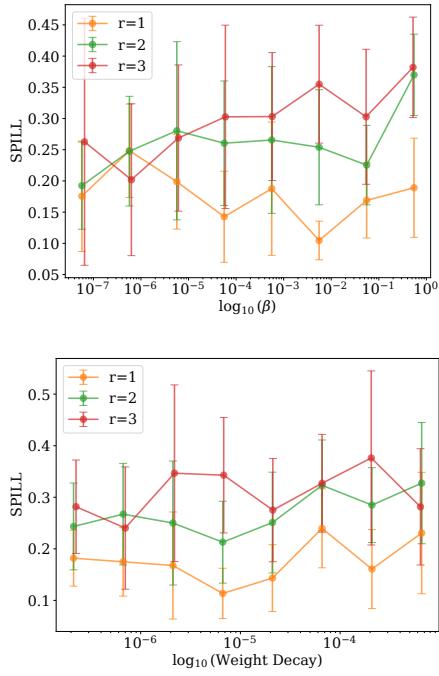
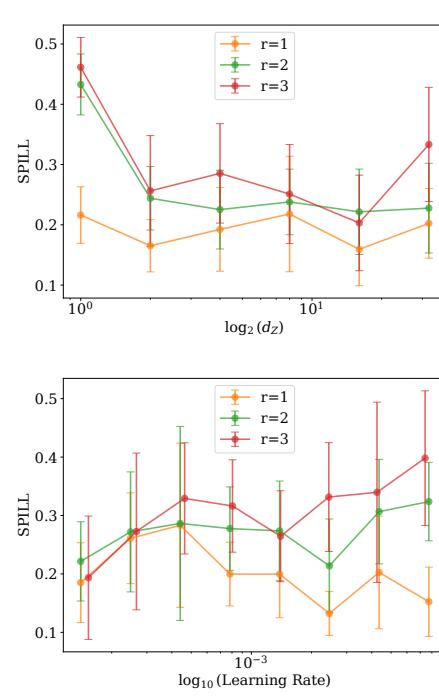
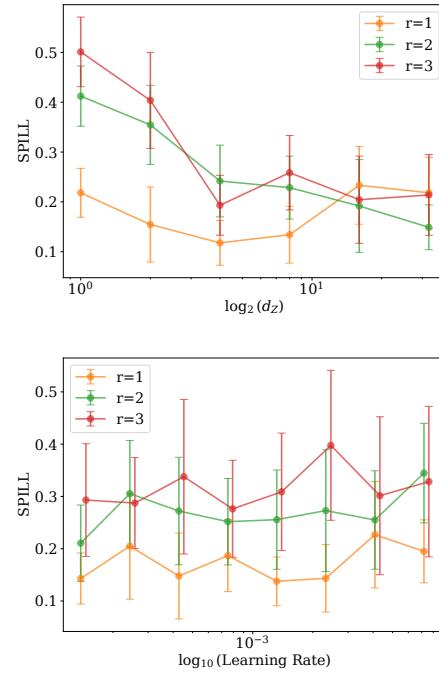


Figure 20: Sensitivity analysis for C-VAE-SPATIAL+ models trained on local confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 2$) with unobserved confounder ρ_{pop} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval. The y-axis represents the error on the spillover effect.

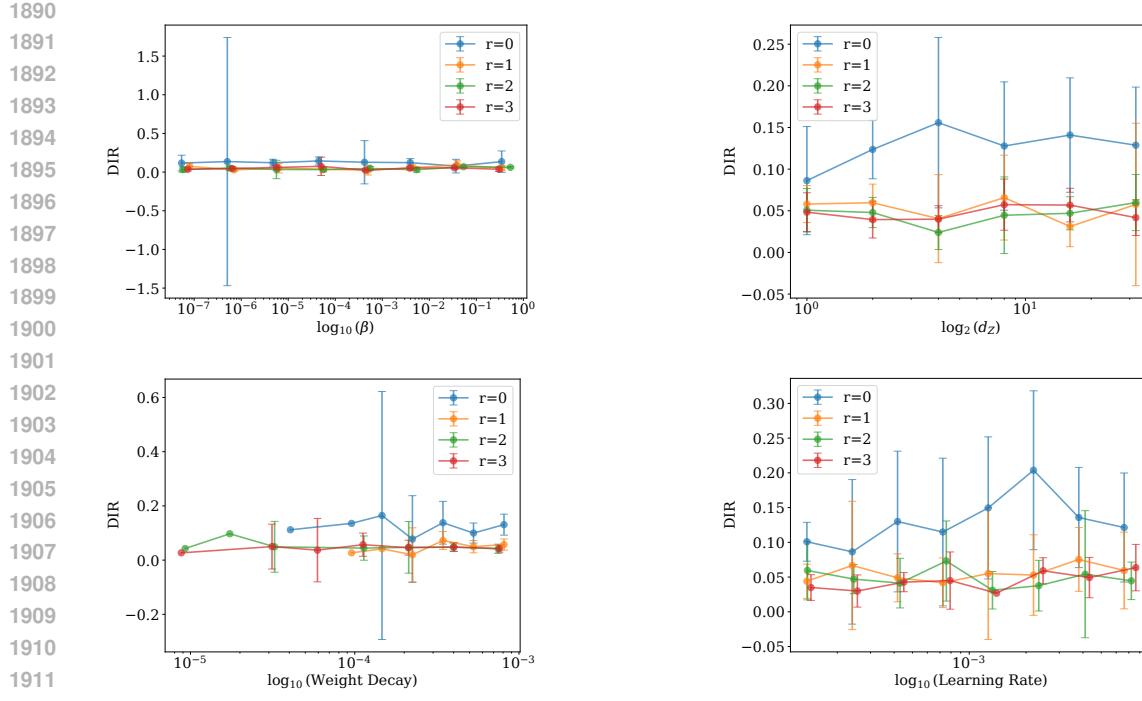


Figure 21: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder OC . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

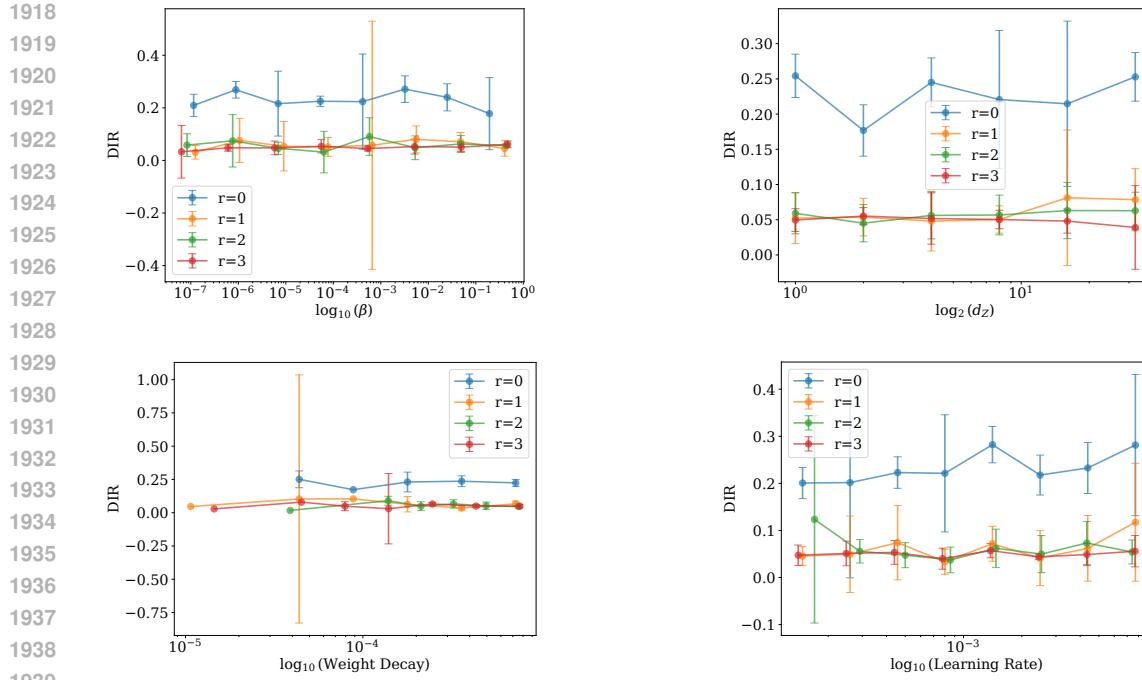


Figure 22: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder NH_4 . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

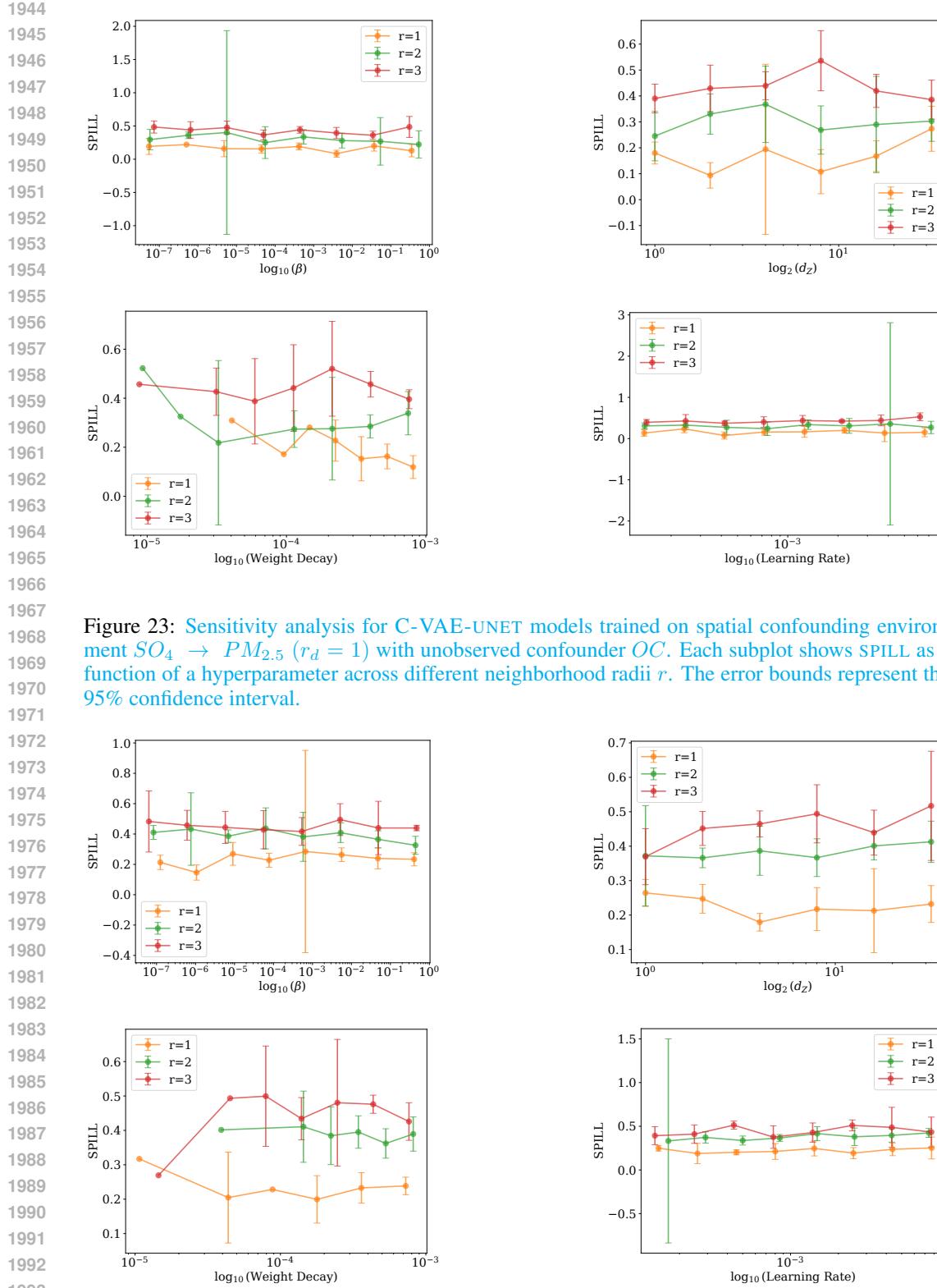


Figure 23: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder OC . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

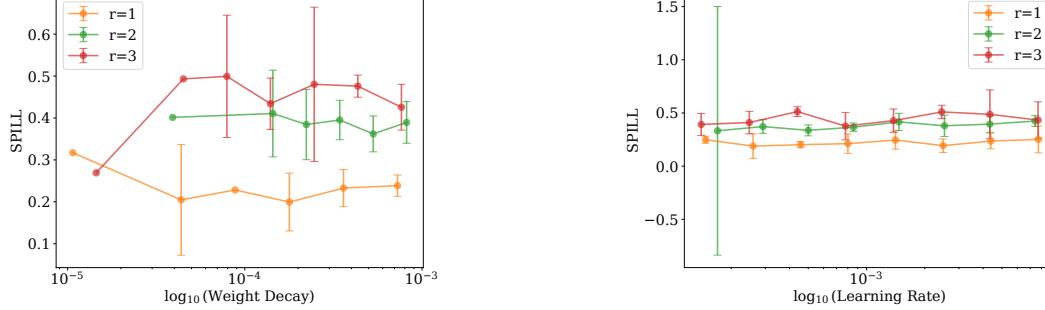


Figure 24: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 1$) with unobserved confounder NH_4 . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

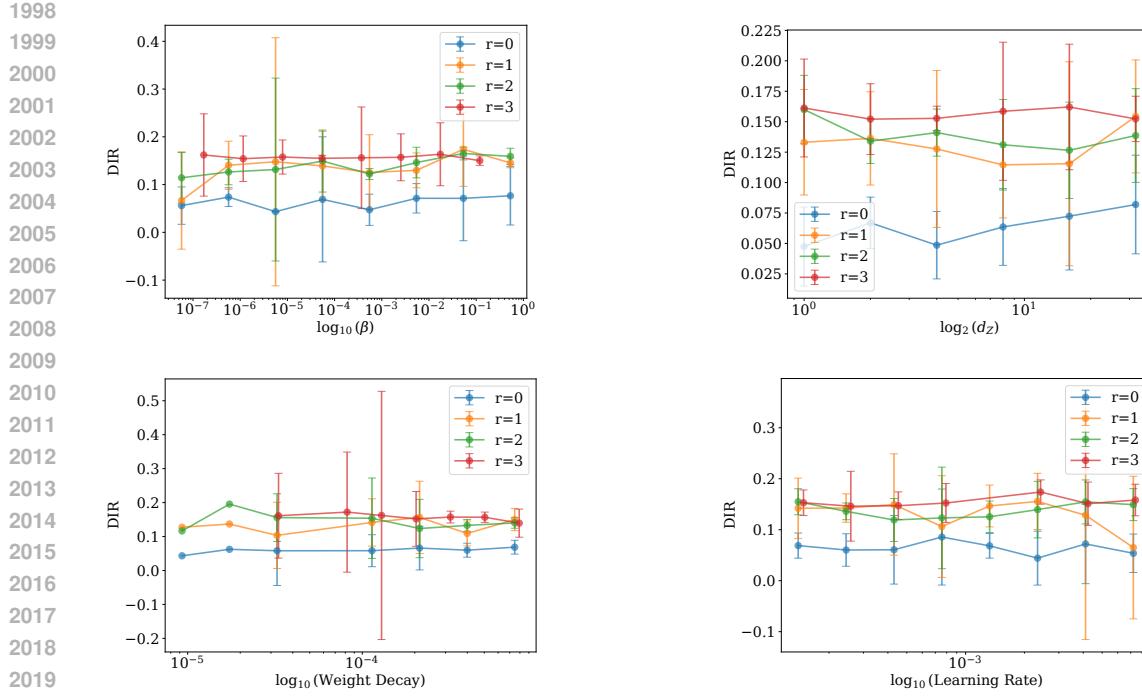


Figure 25: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder OC . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

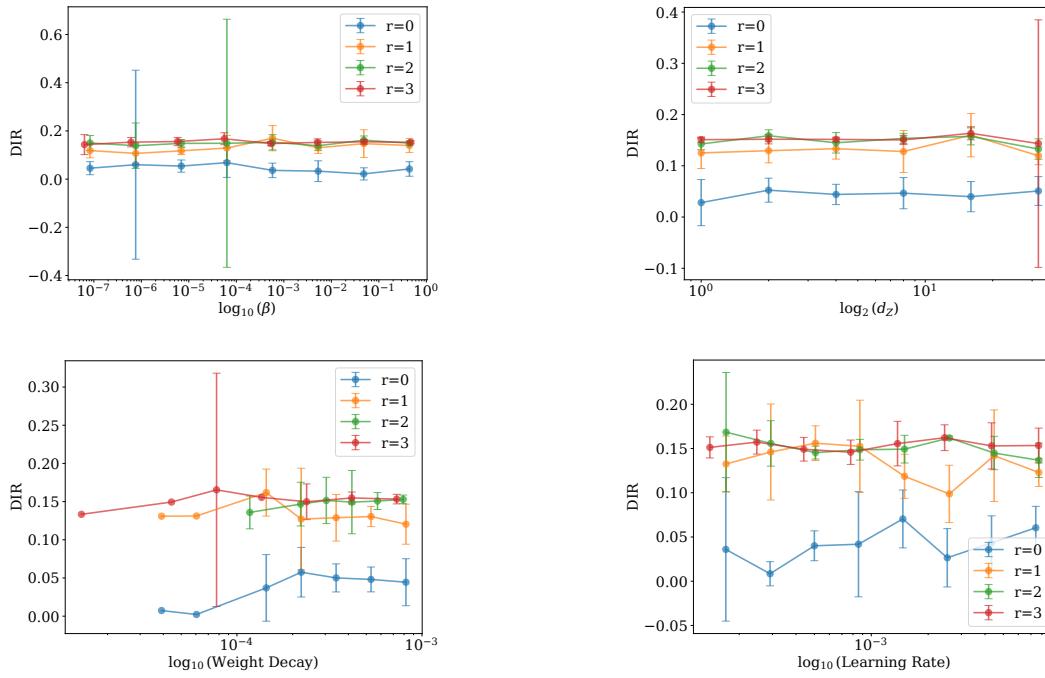


Figure 26: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder NH_4 . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

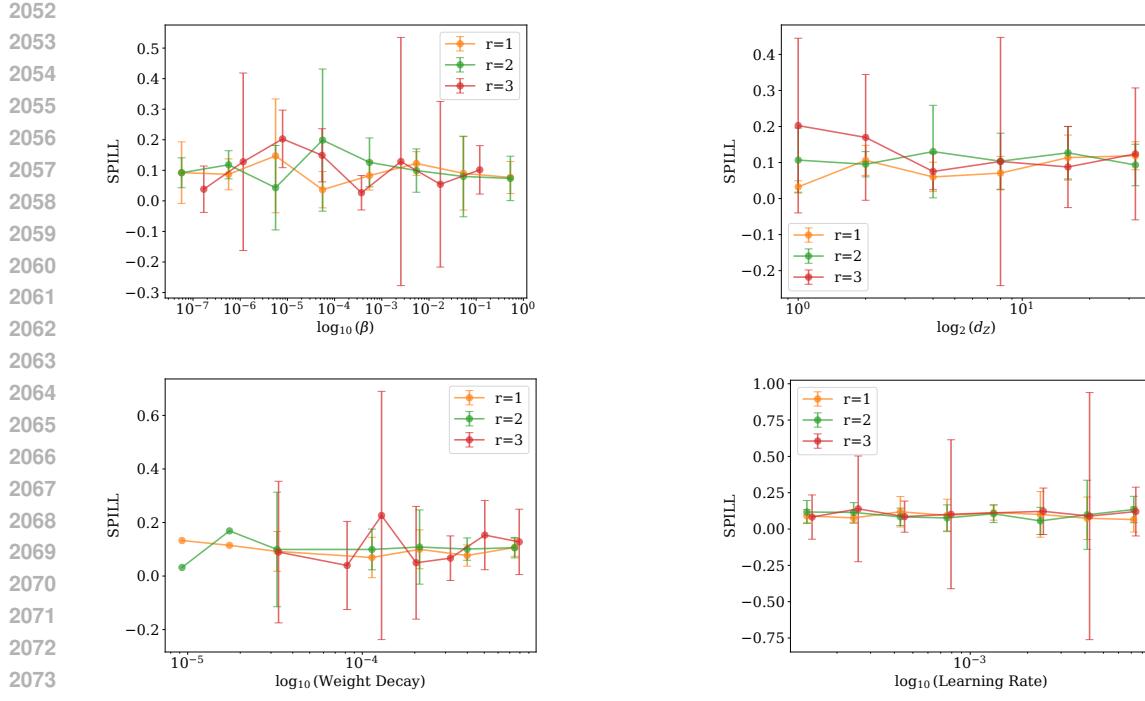


Figure 27: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder OC . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

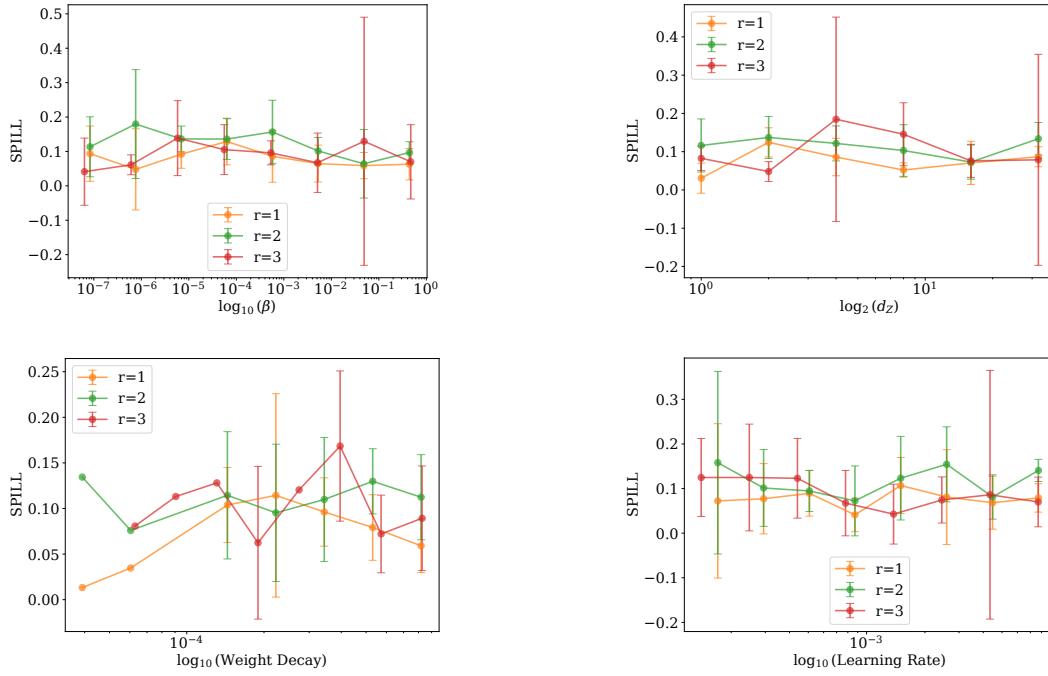


Figure 28: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $SO_4 \rightarrow PM_{2.5}$ ($r_d = 2$) with unobserved confounder NH_4 . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

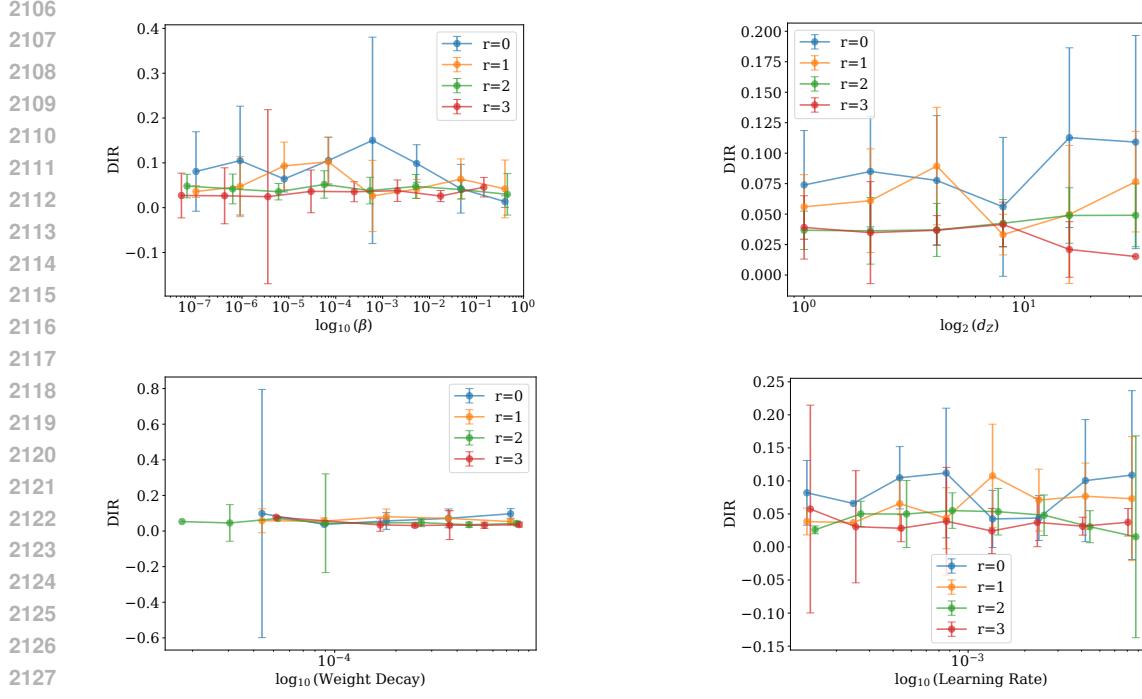


Figure 29: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder q_{summer} . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

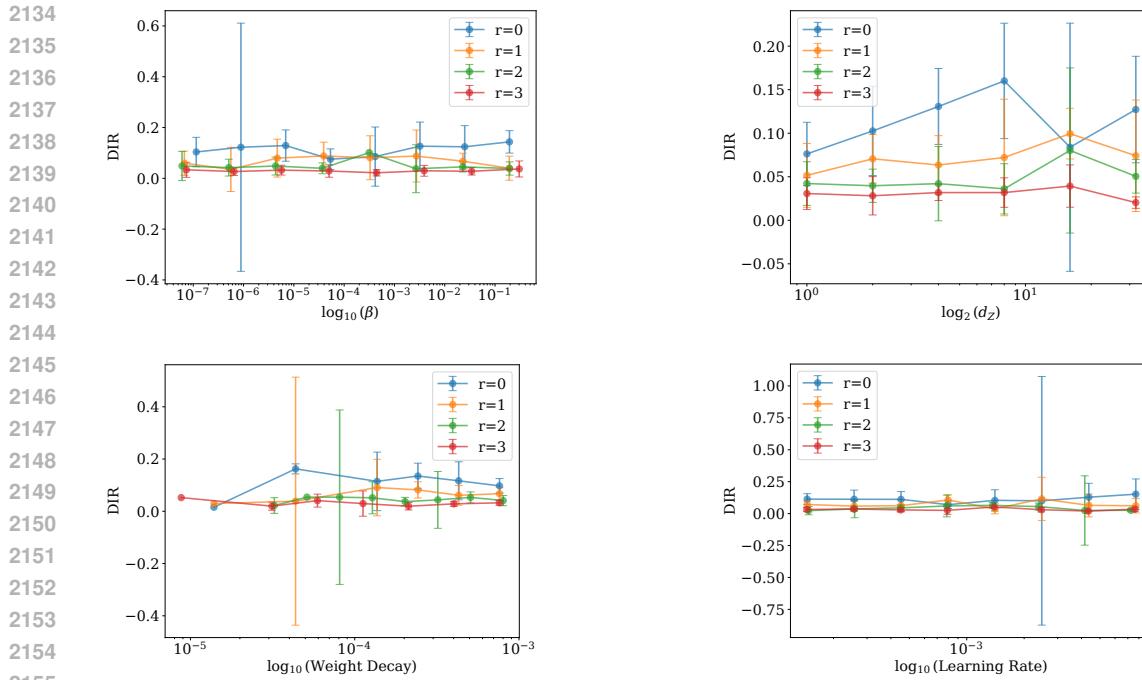


Figure 30: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder ρ_{pop} . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

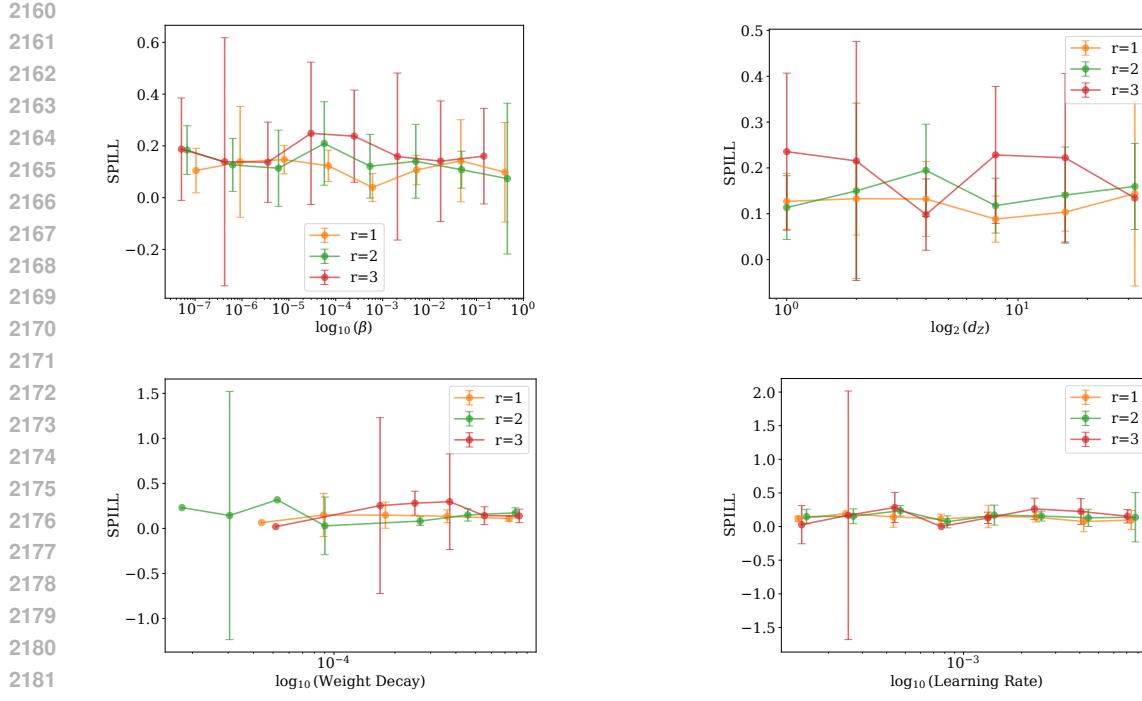


Figure 31: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder q_{summer} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

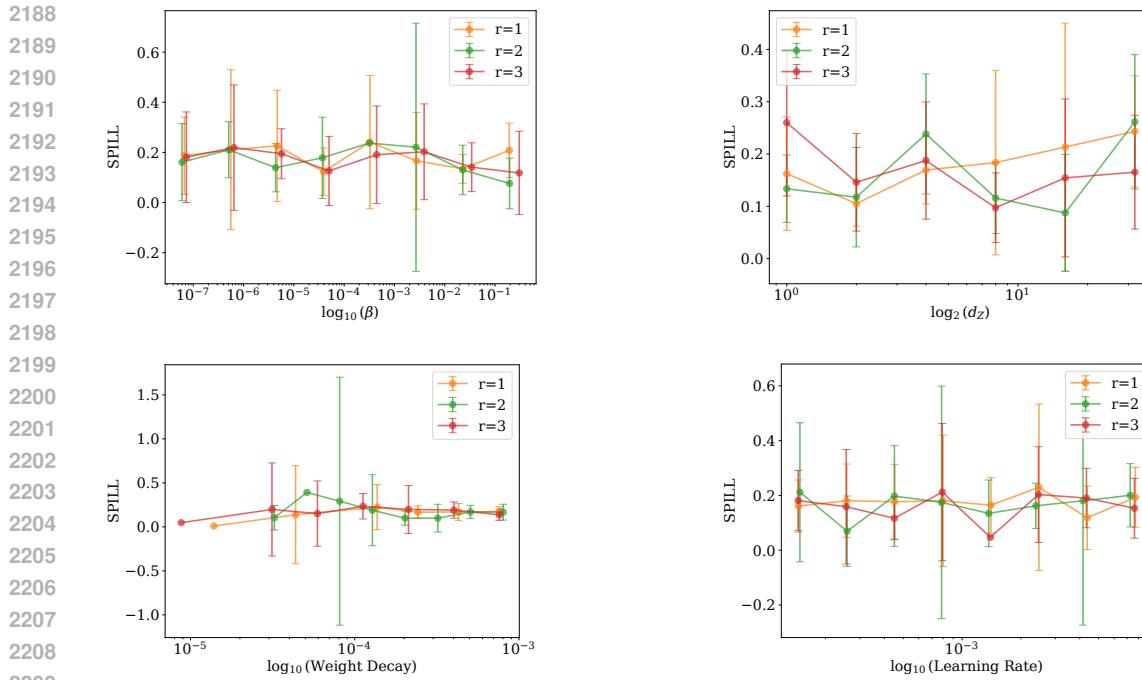


Figure 32: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 1$) with unobserved confounder ρ_{pop} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

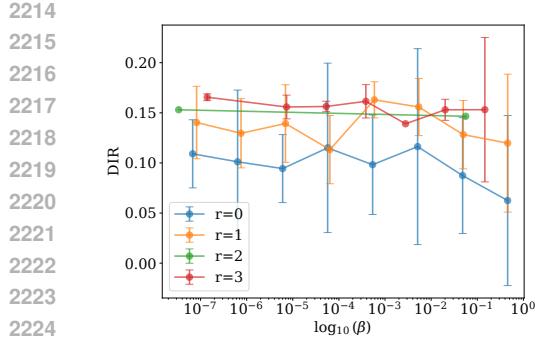
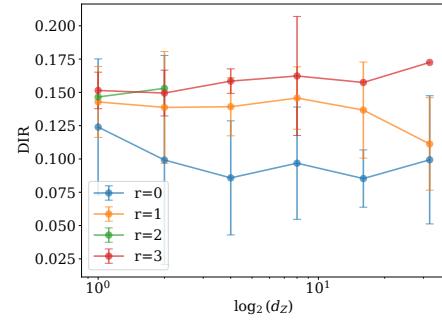
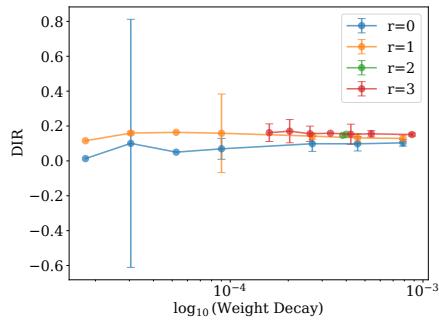


Figure 33: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 2$) with unobserved confounder q_{summer} . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

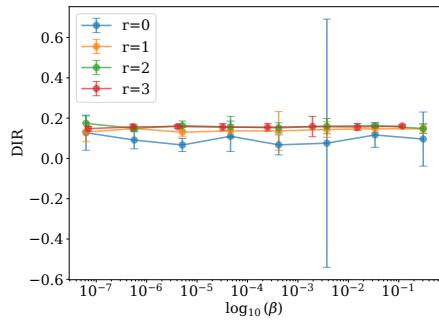
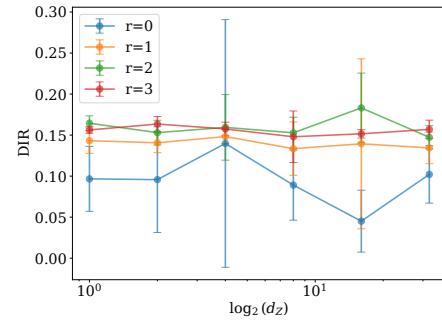
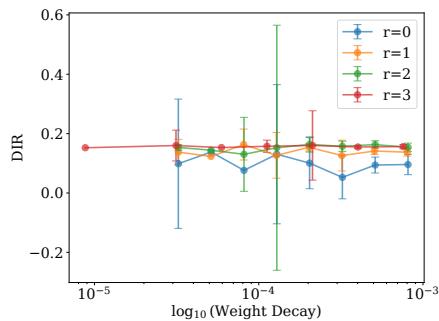
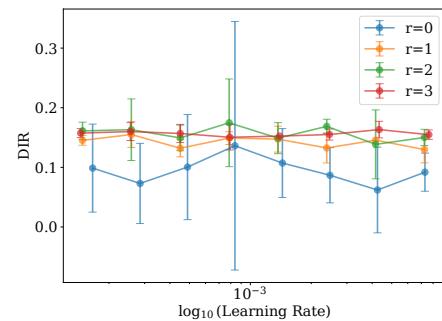


Figure 34: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 2$) with unobserved confounder ρ_{pop} . Each subplot shows DIR as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

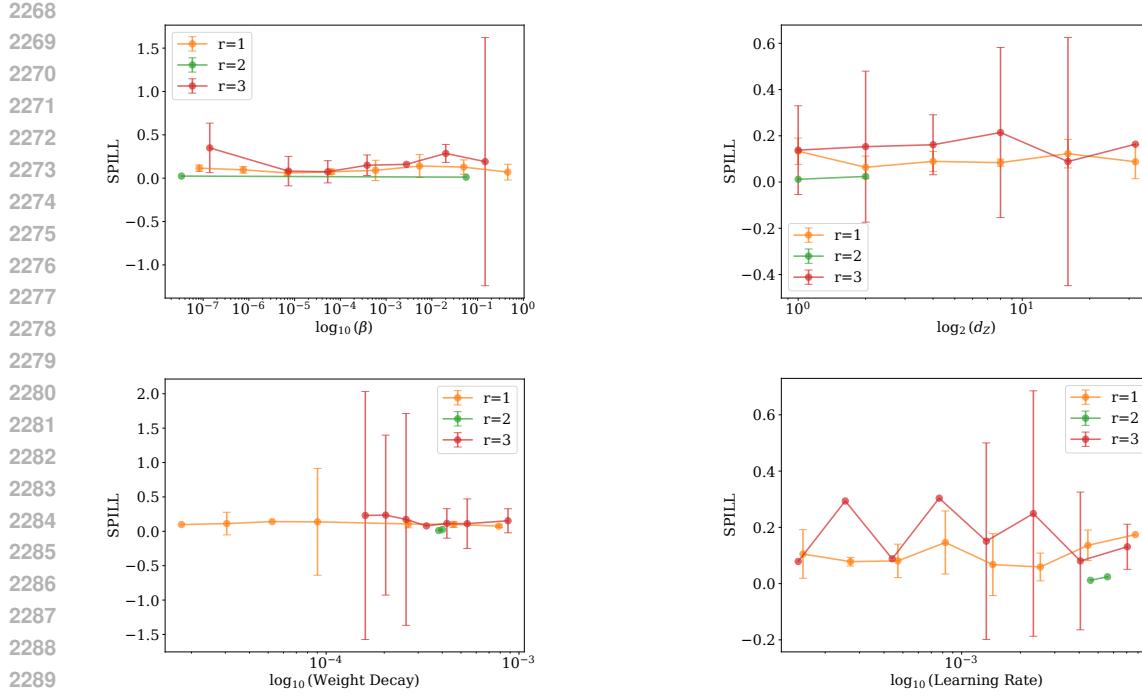


Figure 35: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 2$) with unobserved confounder q_{summer} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

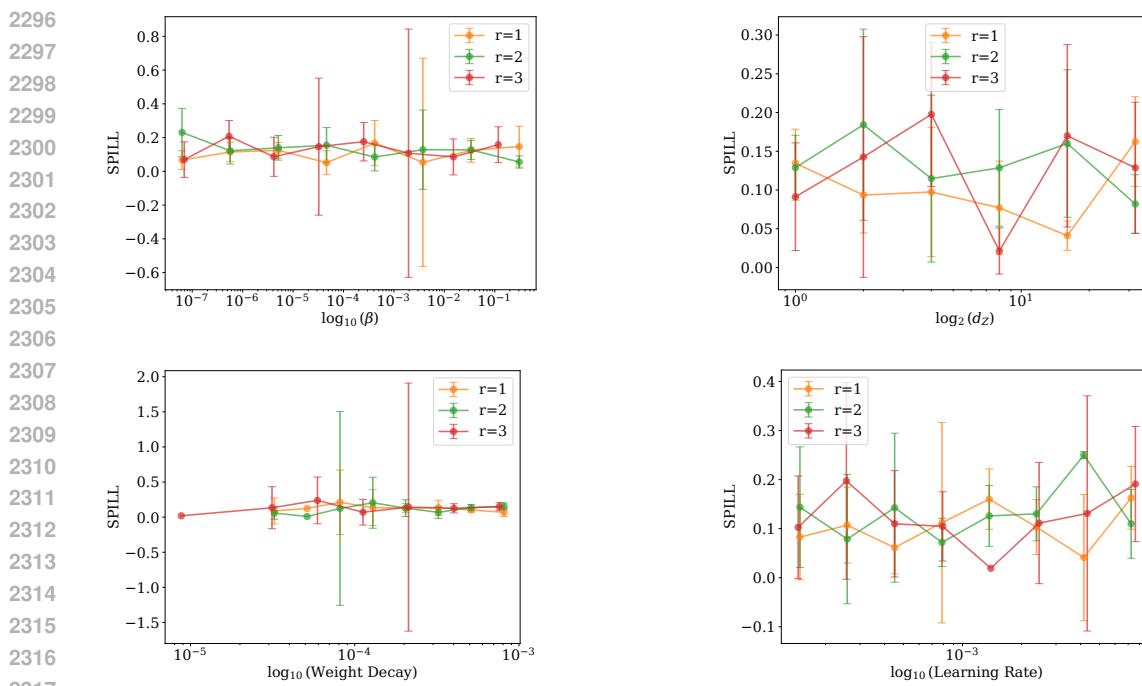


Figure 36: Sensitivity analysis for C-VAE-UNET models trained on spatial confounding environment $PM_{2.5} \rightarrow m$ ($r_d = 2$) with unobserved confounder ρ_{pop} . Each subplot shows SPILL as a function of a hyperparameter across different neighborhood radii r . The error bounds represent the 95% confidence interval.

2322 F BROADER IMPACTS AND LLM DISCLOSURE
23232324 **Limitations** While the Spatial Deconfounder advances identification and estimation under inter-
2325 ference and unobserved spatial confounding, several limitations remain. First, our theoretical guar-
2326 antees rely on assumptions such as localized interference and smooth latent confounders; these are
2327 useful but idealized and may not hold in domains with global spillovers or irregular hidden pro-
2328 cesses. Second, the framework is designed for gridded spatial data and assumes a regular lattice;
2329 extending to irregular spatial structures (e.g., graphs or administrative units) is an important direc-
2330 tion for future work. Finally, although the C-VAE prior aids in recovering latent structure, it may not
2331 fully capture unobserved confounders in extremely sparse or noisy data, and computational demands
2332 grow with grid size.2333 **Broader impacts** This work contributes to machine learning and causal inference by introducing a
2334 framework for more reliable effect estimation in spatial domains. Applications include environmen-
2335 tal health, climate science, and social sciences, where accurate causal estimates can inform policy
2336 decisions. At the same time, we caution against uncritical use in high-stakes settings: violations
2337 of assumptions or biases in observational data may yield misleading conclusions. We encourage
2338 responsible deployment—especially in contexts affecting vulnerable populations—and recommend
2339 pairing our method with domain expertise, sensitivity analyses, and uncertainty quantification.2340 **LLM usage disclosure.** We used ChatGPT-5 and Claude Sonnet 4 to assist with editing, re-
2341 structuring, and polishing the paper text. The authors carefully reviewed, revised, and validated
2342 all outputs to ensure alignment with the intended scientific content. All substantive contribu-
2343 tions—conceptual framing, methodology, theoretical results, and experiments—are the work of the
2344 authors. Consistent with ICLR policy, the authors remain fully responsible for the accuracy and
2345 integrity of the paper’s content.2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375