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Abstract001

Charts play a critical role in conveying nu-002
merical data insights through structured vi-003
sual representations. However, semantic vi-004
sual understanding and numerical reasoning005
requirements hinder the accurate description006
of charts, interpreting a challenging task in007
chart summarization. Despite recent advance-008
ments in visual language models (VLMs), ap-009
proaches lack robust mechanisms for verify-010
ing statistical fact correctness and are com-011
putationally heavy. To address this gap, this012
paper explores a strategy of using zero-shot013
learning to motivate the lightweight VLMs to014
perform computational reasoning, via Python015
programs as intermediaries to derive valid sum-016
mary statistics for chart understanding. Specifi-017
cally, we introduce a novel chart-to-dictionary018
auxiliary task, offering a more flexible repre-019
sentation compared to traditional chart-to-table020
methods, making it particularly well-suited021
for integration with the Program-of-Thought022
(PoT) strategy. Experimental results demon-023
strate our strategy performs on par with ex-024
isting chart summarization methods across se-025
mantic and factual metrics. Code is available026
on https://anonymous.4open.science/r/027
ZeroShot-PoT-C2T-5A6B.028

1 Introduction029

With the rising demand for visualizing quantita-030

tive data, the growing adoption of digital media031

has played a role in the rapid growth of data visu-032

alization, which has led to the task of automatic033

chart understanding, information extraction, and034

summarization, critical areas of research (Huang035

et al., 2024a; Zhang et al., 2024; Choi et al., 2025).036

Recent advancements in Visual Language Models037

(VLMs) have shown promise in this area (Masry038

et al., 2023; Han et al., 2023; Ko et al., 2024; Masry039

et al., 2024; Meng et al., 2024; Zhang et al., 2024;040

Liu et al., 2024b); however, existing methods still041

struggle with achieving high-quality summaries, es-042

pecially for L2/L3 content - which is identified as043

Figure 1: Example of a chart in Pew dataset with its rep-
resentations in Python dictionary and statistics. Italic in-
dicates L2/L3 content in chart summarization. Strikeout
indicates hallucination errors and error-inducing tokens.

statistics and relations (e.g., min, max) / perceptual 044

and cognitive phenomena (e.g., trends) (Lundgard 045

and Satyanarayan, 2022; Kantharaj et al., 2022; 046

Tang et al., 2023), as shown in Figure 1. The chal- 047

lenge is around the highly inconsistent matching 048

between the generated summary and the chart’s ac- 049

tual data content, which yields factual inconsisten- 050

cies and hallucinations. This is either due to failing 051

to parse the text in the chart or to demarcate the nu- 052

merical value of the visualized data. Additionally, 053

with semantic parsing of the chart elements, VLMs 054

struggle at performing complex reasoning about 055

chart patterns and incorporating statistical reason- 056

ing with chart elements (Liu et al., 2024b). Despite 057

general challenges, although current VLM-based 058

chart understanding methods have shown a certain 059

level of performance, they still face two main chal- 060

lenges: (1) Existing implementations are fine-tuned 061
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or pre-trained specifically on chart-related instruc-062

tion data. While this alignment between the vision063

encoder and language decoder enhances generaliza-064

tion performance, such training processes introduce065

significant computational overhead, making them066

resource-intensive and challenging under compu-067

tational constraints; (2) These tasks continue to068

remain a challenge in understanding the structural069

interplay between the different elements of a chart.070

Effective visual language understanding in particu-071

lar requires two key processes: (a) comprehensive072

semantic layout understanding of the chart; (b) ro-073

bust statistical reasoning to accurately capture and074

analyze the underlying data (Liu et al., 2023b).075

In light of these challenges, we investigate zero-076

shot and training-free approaches for VLMs in077

chart summarization. Program-of-Thoughts (PoT)078

(Chen et al., 2023) is a zero-shot prompting method,079

which was originally proposed to disentangle com-080

putation from reasoning to augment a model’s sta-081

tistical reasoning capability. The success of PoT082

in chart question answering (QA) (Zhang et al.,083

2024) with Python programs has motivated our ex-084

ploration of chart summarization, investigating the085

effectiveness of the PoT guiding VLMs to perform086

numerical computations and logical reasoning via087

Python programs as intermediate steps in the chart088

summarization process, which focuses on generat-089

ing more structurally complex and extensive sen-090

tences, rather than just concise answers. Instead of091

relying on the provided real chart data tables for092

PoT in recent PoT research works, we acknowledge093

that in real-world scenarios, most charts lack ac-094

companying data tables. Therefore, we investigate095

a PoT strategy pipeline for chart summarization096

with simultaneously generated chart data tables.097

Our key contributions are as follows:098

• We propose a PoT-integrated, training-free099

pipeline, enhancing lightweight VLMs for100

chart summarization in a zero-shot learning101

setting.102

• We demonstrate the PoT prompting strategy103

outperforms Direct and MCoT approaches in104

certain scenarios, particularly across diverse105

types of VLMs, charts, and supplementary106

textual data in chart summarization.107

• We conduct comprehensive evaluations across108

lexical, semantic, and factual dimensions to109

validate the effectiveness of the PoT prompt-110

ing strategy for chart summarization.111

2 Literature Review 112

2.1 Chart Understanding 113

Template-Based Early approaches to automatic 114

chart understanding, particularly the sub-task of 115

chart summarization, often relied on planning- 116

based architecture and template-based generation 117

methods (Mittal et al., 1998; Fasciano and La- 118

palme, 2000; Green et al., 2004; Reiter, 2007; Fer- 119

res et al., 2007, 2013). Recent template-based re- 120

search has focused on utilizing statistics (e.g., min, 121

max, trends) from chart numerical data for present- 122

ing the facts (Demir et al., 2012; Cui et al., 2019; 123

Srinivasan et al., 2019; Wang et al., 2020), forming 124

the statistics analysis into textual summarization 125

output. Some research utilized the off-the-shelf 126

OCR (Optical Character Recognition) tools or de- 127

tectors to represent chart data into textual tables and 128

other representations, relying on pipeline methods 129

(Singh et al., 2019; Sidorov et al., 2020; Methani 130

et al., 2020; Hu et al., 2021; Fu et al., 2022; Kan- 131

tharaj et al., 2022; Liu et al., 2023a). More recently, 132

ResNet (He et al., 2016) encoder and LSTM de- 133

coder were used to process the chart and create the 134

caption (Chen et al., 2020a). However, compared 135

to data-driven models, template-based approaches 136

struggle with complex visual patterns and numeri- 137

cal reasoning, with high costs in producing generics 138

and matching variations in vocabulary choices. 139

Pretrained With the progression of deep learn- 140

ing techniques, which subsequently improved gen- 141

eral computer vision using neural networks and 142

Transformer (Vaswani et al., 2017), recent work 143

began to adopt encoder-decoder architectures to 144

improve chart understanding (Wang et al., 2025), 145

including Transformer (Singh and Shekhar, 2020; 146

Obeid and Hoque, 2020; Kantharaj et al., 2022; Lee 147

et al., 2023), LSTM (Spreafico and Carenini, 2020), 148

CNN+LSTM (Hsu et al., 2021), and VLMs (Liu 149

et al., 2023b), which are pre-trained on both visual 150

and text data, often with specialized text and im- 151

age encoders, and have shown significant promise 152

in tasks requiring joint understanding of multiple 153

modalities. However, challenges remain in ground- 154

ing the factual and logical coherence in generated 155

summaries, particularly when dealing with com- 156

plex charts requiring numerical reasoning. 157

Fine-Tuned Aside from pre-training the model, 158

fine-tuning the pre-training model (Tang et al., 159

2023) and instruction fine-tuning (Ouyang et al., 160

2022) have also become widely adopted as an al- 161

ternative to improve the performance of LLMs and 162
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Figure 2: Process of implementing the Program of Thought (PoT) given a chart. It can be seen as a process of
enhancing statistical reasoning to extract summary statistics, typically total counts, minimum, and maximum values
from the chart, along with labels that contain the numerical values.

VLMs (Liu et al., 2023b; Zhou et al., 2023; Masry163

et al., 2023; Han et al., 2023; Ko et al., 2024; Huang164

et al., 2024b; Masry et al., 2024; Meng et al., 2024;165

Zhang et al., 2024; Liu et al., 2024a,b; Masry et al.,166

2025). Instruction tuning is used to generalize the167

language capability of the model, reducing repeti-168

tions and hallucinations generated in summariza-169

tion compared to pre-training approaches (Meng170

et al., 2024). However, these methods typically171

rely on the data tables of charts, failing to capture172

the nuance of the visual artifacts present in charts.173

Furthermore, their heavy parameter sizes present174

notable challenges for deployment in computation-175

ally constrained environments.176

2.2 Chart Representations177

Representing the chart in structured data, the chart-178

to-table (Meng et al., 2024) task represents it in the179

tabular format, but often comes at the cost of losing180

finer details in the chart. Performing similarly to181

data tables, scene graphs are easily formatted for182

web-based charts (Tang et al., 2023). Code format183

is considered, and existing methodologies define184

two typical chart-to-code approaches: (1) Chart185

Derendering (Liu et al., 2023b; Lee et al., 2023);186

and (2) Program of Thoughts (Chen et al., 2023;187

Zhang et al., 2024). However, codes mainly aim to188

run for the chart recreation or question answering189

tasks on narrowly defined questions, rather than190

representing the whole chart. This paper proposes191

an auxiliary task of chart-to-table, which is chart-192

to-dictionary in Python code format, which uses193

VLM’s chart understanding capability to represent194

the chart as a Python dictionary.195

2.3 Prompting196

Inspired by the success of Chain-of-Thought (CoT)197

prompting (Wei et al., 2022) for improving rea-198

soning capabilities, researchers are extending sim- 199

ilar mechanisms to VLMs for chart understand- 200

ing, seeking to mirror the human cognitive pro- 201

cess of visual analysis. This is achieved through 202

multimodal-purpose prompting Multimodal Chain 203

of Thought (MCoT) (Wang et al., 2025; Liu et al., 204

2024b) reasoning, which extends the rationale from 205

texts to visual modalities (Choi et al., 2025). To 206

contrast with MCoT, PoT (Chen et al., 2023; Luo 207

et al., 2024) intermediate reasoning steps are artic- 208

ulated as executable programs, while executing the 209

program to generate reasoning and statistical com- 210

putation about the chart data in complex numerical 211

reasoning tasks. 212

In this work, our pipeline method builds upon 213

these advancements by focusing on PoT prompting 214

in zero-shot chart summarization. By extending 215

the PoT concept to the visual domain of charts, it 216

could decrease hallucinations that language models 217

typically have when outputting calculations, as it 218

provides more explicit and verifiable numeric rea- 219

soning processes for VLMs (Zhang et al., 2024), 220

potentially leading to more accurate and factually 221

grounded summaries by delegating complex cal- 222

culations to a code interpreter. This work differ- 223

entiates itself from existing works by specifically 224

investigating the benefits and limitations of generat- 225

ing executable code as intermediate reasoning steps 226

for chart summarization with lightweight VLMs. 227

3 Method 228

We propose a pipeline with the PoT integrated to 229

augment a VLM’s capability for statistical reason- 230

ing on chart data summarization. An illustration of 231

the proposed PoT-integrated chart summarization 232

pipeline is presented in Figure 2. Our prompts can 233

be found in Appendix C. 234
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Figure 3: Representing chart (top) as a Python dictio-
nary (bottom).

3.1 Chart Representation as a235

VLM-Generated Python Dictionary236

In order for the chart to interface with the code, the237

chart needs to be represented in a manner that can238

interact with the Python interpreter. As shown in239

Figure 3, Python dictionaries can represent the code240

in a more free-form structure, allowing for ground-241

ing the values compared to the data table, which is242

more flexible compared to a markdown table and243

usable by the LLM-generated program. However,244

lightweight VLMs can struggle to create executable245

Python code, which consists of wrong syntax, in-246

complete messages, and even meaningless code-247

agnostic terminologies when facing the complex248

code generation request, adding noise. Given that,249

aside from reflecting understanding from charts,250

the code needs to be valid and executable. In Ap-251

pendix F, we list more details of the failure case252

analysis. To handle failure cases in dictionary gen-253

eration, we mainly used InternVL-2.5-4B (Chen254

et al., 2024) on dictionary generation in a zero-shot255

setting, and if the generated Python dictionary is256

not executable, it is converted with ChatGPT (GPT-257

4o-mini) (OpenAI, 2024) instead.258

3.2 Statistical Analysis with PoT Prompting259

Since the chart is represented as a Python dictio-260

nary, it can be more free-form in containing data261

and being passed to a Python program. We adopt262

a similar methodology described in PoT, as the263

work (Chen et al., 2023) stated that the program’s264

line-by-line structure acts as a proxy for the numer-265

ical reasoning steps of the model. Code is passed266

to an LLM to generate a program to do statistical267

analysis as an intermediate result to provide more 268

context for chart summarization. Compared to QA 269

as a task, statistical analysis with PoT demonstrates 270

numerical reasoning since it demonstrates how the 271

models understand which data points or statistics 272

are necessary to create summary statistics. This 273

paper uses Qwen-2.5-Coder-14B (Hui et al., 2024) 274

for the complex statistics code generation conver- 275

sion. The LLM is instructed to generate a Python 276

program using the Python dictionary in the prompt 277

to generate summary statistics relevant to the chart 278

dictionary. This adapts PoT for the chart summa- 279

rization task as the generated program provides 280

more context to be used for text generation while 281

providing accurate calculations. Code generated 282

by the LLM is constrained to use only the func- 283

tions from Python’s built-in library. To validate 284

and execute the generated Python program by the 285

PoT strategy, we used the built-in exec function in 286

Python for automatic code validation. 287

3.3 Program Execution 288

The generated Python program for statistics calcu- 289

lation is executed using a Python interpreter. This 290

step ensures the accuracy of the statistical results, 291

mitigating potential errors that LLMs might make 292

when generating tokens through direct calculations. 293

The program returns a Python statistics dictionary 294

that contains key-value pairs of the summary statis- 295

tics and the calculated values. At the end, the statis- 296

tical results in our pipeline are input with the chart 297

into a VLM to assist the chart summarization task. 298

4 Experiment 299

We present our experimental setup in Appendix A. 300

The overview of our datasets, evaluation metrics, 301

baseline methods, and benchmark and backbone 302

models is provided in the following subsections. 303

Evaluation. We evaluated PoT prompting for chart 304

summarization on both the test sets of the Pew 305

(Kantharaj et al., 2022) and VisText (Tang et al., 306

2023), following the previous evaluation works 307

(Masry et al., 2023; Meng et al., 2024) for evaluat- 308

ing the PoT on varying degrees of complex charts 309

to show its generalizability. The VisText is built 310

upon Statista (Kantharaj et al., 2022) with richly 311

labelled L2/L3 captions. Chart type distributions of 312

datasets are summarized in Table 1, which across 313

a variety of simple and complex charts. More de- 314

tails on the dataset statistics and topic distribution 315

information are presented in the Appendix B.1. To 316
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evaluate the effectiveness of the methods, we em-317

ploy BLEU (Post, 2018) and CIDEr (Vedantam318

et al., 2015) as the evaluation metric following319

previous works (Kantharaj et al., 2022; Liu et al.,320

2023b; Masry et al., 2023; Meng et al., 2024). Ad-321

ditionally, we use F1 scores of ROUGE (Lin, 2004)322

and BERTScore (Zhang et al., 2020) for seman-323

tic evaluation; UniEval (Zhong et al., 2022) and324

AlignScore-large (Zha et al., 2023) for factual eval-325

uation; and human evaluation with 3 human evalu-326

ators. We provide details of evaluation metrics in327

the Appendix B.3 and Appendix G.328

Type Pew VisText

Simp. Comp. All Simp. Comp. All

Area 7 13 20 157 81 238
Bar 128 840 968 303 128 431
Line 37 312 349 135 78 213
Pie 41 0 41 0 0 0
Scatter 0 15 15 0 0 0

Total 213 1,180 1,393 595 287 882

Table 1: Distribution of chart types by Simple and
Complex complexities of the Pew and VisText datasets.

Baselines. We compared two other types of329

prompting strategies as baselines: (1) Directly330

prompting (Direct) the model to summarize the331

chart, given that this approach is also what is done332

by fine-tuned end-to-end models (Huang et al.,333

2024a; Liu et al., 2024b); (2) Multimodal CoT334

(MCoT), which adheres to the framework in (Wang335

et al., 2025), prompting to return an outline of all336

key information and trends derived from the chart.337

Backbones. To understand the effects of the338

PoT, we compared (1) Existing models and meth-339

ods in the chart-to-text domain: (a) Pretrained340

Chart-To-Text Models: OCR-Field-Infuse (Chen341

et al., 2020b; Kantharaj et al., 2022), Monkey (Li342

et al., 2024); (b) Prefix-tuning Chart-To-Text Mod-343

els: image-scene-graph-PT (Tang et al., 2023),344

image-data-table-PT (Tang et al., 2023); (c) Com-345

monly used VLMs: Blip2-flant5xl (Li et al., 2023),346

Qwen-VL (Bai et al., 2023); and (2) Lightweight347

VLMs: DeepSeek (DeepSeek-VL2-tiny) (Wu348

et al., 2024), InternVL (InternVL-2.5-4B) (Chen349

et al., 2024), LLaVA (LLaVA-v1.6-mistral-7B-hf)350

(Liu et al., 2023c), and Qwen (Qwen2.5-VL-3B-351

Instruct) (Qwen Team, 2025) on the representative352

datasets of Pew and VisText. All experiments were353

done with the zero-shot setting models.354

Method Pew VisText

BLEU CIDEr BLEU CIDEr

OCR-Field-Infuse 0.2 0.3 0.3 -
Monkey 0.4 1.7 - -
Qwen-VL-9.6B 0.5 2.6 - -
Blip2-flant5xl-4B 0.2 0.8 - -
image-scene-graph-PT - - 0.3 -
image-data-table-PT - - 0.3 -

Qwen2.5-VL-3B+PoT 3.1 0.1 1.7 0.1

Table 2: We compare our PoT-adopted zero-shot VLM
(Qwen2.5-VL-3B+PoT) with different chart summariza-
tion methods on Pew and VisText test datasets. We
referenced the results from Chart-To-Text (Kantharaj
et al., 2022), VisText (Tang et al., 2023), and ChartAs-
sistant (Meng et al., 2024).

5 Results & Discussion 355

5.1 PoT Approach Against Existing 356

Chart-To-Text Models 357

Table 2 shows the BLEU and CIDEr scores for 358

each model on the Pew and VisText datasets. We 359

referenced evaluation results from Chart-To-Text 360

(Kantharaj et al., 2022), VisText (Tang et al., 2023), 361

and ChartAssistant (Meng et al., 2024). As shown 362

in the table, we observed that our PoT prompt- 363

ing approach overperforms baseline Chart-To-Text 364

methods in the BLEU evaluation scores, but un- 365

derperforms in the CIDEr evaluation scores. This 366

may be due to CIDEr placing more emphasis on 367

important and rare words, as it calculates TF-IDF 368

weighted n-gram similarity. While BLEU also fo- 369

cuses only on surface-level word matching and ig- 370

nores semantic consistency, we subsequently evalu- 371

ate our PoT prompting approach using BERTScore 372

and ROUGE to capture semantic relevance, and 373

UniEval and AlignScore to assess factual correct- 374

ness beyond lexical overlap. 375

5.2 PoT Approach Against Baselines 376

We evaluate baseline prompting strategies and our 377

PoT prompting strategy and report results of our 378

experiment in Table 3 and Table 4. Full experi- 379

mental results and extended ablation studies are in 380

the Appendix D.1. Across the evaluated models, 381

the impact of the PoT prompting strategy varied 382

significantly with models and chart types. We ob- 383

served instances where the PoT led to substantial 384

improvements in performance, while in other cases, 385

its impact was less pronounced or even negative 386

compared to the Direct and MCoT approaches. 387

PoT Effectiveness Against Chart Types. We no- 388
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VLM
-Prompting

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr

deepseek-vl2-tiny
ZeroShot-Direct 1.9682 0.0427 2.6653 0.0608 1.7169 0.0471 4.5805 0.1391 0.7646 0.0412 2.4676 0.0591 1.8347 0.0920 1.5262 0.0731 2.0429 0.0851 1.7346 0.0824
ZeroShot-MCoT 1.6352 0.0526 1.8918 0.0403 1.2924 0.0360 3.1608 0.0671 1.0925 0.0657 1.7658 0.0399 0.9308 0.0410 0.7613 0.0353 1.1508 0.0388 0.9001 0.0380
ZeroShot-PoT 0.1254 0.0018 0.2767 0.0127 0.2736 0.0173 0.2496 0.0190 0.2219 0.0005 0.2746 0.0135 0.8102 0.0710 0.3489 0.0523 0.5821 0.0685 0.5603 0.0615

internVL-2.5
ZeroShot-Direct 3.6507 0.0426 3.5832 0.0318 2.7521 0.0296 4.6431 0.1025 2.6224 0.0001 3.4041 0.0328 1.1306 0.0125 0.9387 0.0088 1.3401 0.0212 1.0808 0.0130
ZeroShot-MCoT 2.3817 0.0257 2.0626 0.0106 1.4369 0.0061 1.9856 0.0053 1.5318 0.0003 1.9113 0.0094 0.8414 0.0022 0.8978 0.0005 1.0359 0.0030 0.9175 0.0015
ZeroShot-PoT 2.8535 0.0713 1.9995 0.0664 1.9136 0.0404 2.0840 0.0907 1.3768 0.0819 1.9896 0.0603 1.1281 0.0246 0.9299 0.0172 1.6892 0.0274 1.1736 0.0212

llava-NeXT
ZeroShot-Direct 4.8807 0.1561 5.7756 0.1069 4.6735 0.1133 7.8216 0.2135 4.3993 0.0074 5.5350 0.1107 2.6597 0.0272 2.5564 0.0334 3.4469 0.0612 2.7918 0.0384
ZeroShot-MCoT 6.1606 0.0329 5.9175 0.0928 4.6181 0.0644 5.7460 0.1498 3.9118 0.0808 5.6347 0.0869 2.5957 0.0478 2.2776 0.0243 3.5833 0.0499 2.6622 0.0365
ZeroShot-PoT 3.1421 0.1069 4.1897 0.1027 3.5534 0.0925 2.7975 0.0895 3.3424 0.1210 3.9888 0.0996 2.3603 0.0321 2.2635 0.0457 2.9584 0.0580 2.4604 0.0448

qwen2.5-VL-3B
ZeroShot-Direct 1.9350 0.0523 3.6251 0.1002 2.5562 0.0643 5.9420 0.1384 2.0714 0.0272 3.3929 0.0905 2.6399 0.1481 2.1772 0.0979 3.1147 0.1519 2.4984 0.1254
ZeroShot-MCoT 1.4980 0.0735 2.6168 0.0814 1.8583 0.0602 3.7722 0.2156 1.5976 0.0431 2.4388 0.0794 1.5847 0.0837 1.3648 0.0791 1.9742 0.0707 1.5783 0.0782
ZeroShot-PoT 3.3383 0.0409 3.3091 0.0734 2.3678 0.0597 3.8250 0.1662 1.0761 0.0203 3.0906 0.0712 1.6593 0.0780 1.4806 0.0801 2.0928 0.0890 1.6639 0.0826

Table 3: Evaluation results of VLMs on different prompting methods on Pew and VisText datasets evaluated on
BLEU and CIDEr scores.

tice that the results from different charts are varied,389

and we suppose this may be due to the uniqueness390

of each chart structure, texts included in the chart,391

chart data size, and data complexity. For example,392

in the case of the Qwen2.5-VL model, the BLEU393

score increases from 1.94 to 3.34 with PoT, demon-394

strating the effectiveness of the PoT strategy in395

enhancing information collection from area charts,396

which are with limited data information.397

PoT Effectiveness Against VLMs. Regarding398

influences by VLMs, for the DeepSeek-vl2-tiny399

model, the application of the PoT resulted in con-400

siderably lower scores across all reported metrics401

compared to both the Direct and MCoT methods.402

This suggests that for this particular model archi-403

tecture, the PoT strategy in its current implemen-404

tation might not be beneficial or could even hin-405

der performance on the evaluated tasks. This re-406

veals that the PoT strategy may introduce additional407

noise or mislead the emphasized information, and408

may interfere with the model’s original processing409

and understanding of the chart. In contrast, the410

InternVL-2.5 model demonstrated a more nuanced411

response to the PoT prompting strategy. While the412

Direct method often yielded the highest scores, the413

PoT strategy achieved comparable or even slightly414

better results on certain metrics compared to the415

MCoT strategy in most cases. For example, the416

PoT strategy achieved a BLEU score of 2.85, which417

is lower than the Direct method (3.65) but higher418

than the MCoT strategy (2.38) of the area charts419

in the Pew dataset. Even on considering all chart420

types, these trends hold. This indicates that for421

InternVL-2.5, the PoT strategy can be a viable al-422

ternative to the MCoT strategy in certain scenarios,423

especially from the results of factual evaluation. 424

Similarly, LLaVA-NeXT also had a mixed response 425

given the two datasets, where no conclusive trends 426

can be observed between the different prompting 427

methods. One interesting observation from this 428

comparison is that while the BLEU values of the 429

PoT strategy are lower than the other methods, on 430

average, it outperforms the other prompting tech- 431

niques on CIDEr, AlignScore or UniEval, indicat- 432

ing some of its effectiveness in these cases. We 433

suggest that this may arise from the inherent de- 434

sign and pertaining data differences in the VLMs 435

with respect to chart understanding. Specifically, 436

DeepSeek-vl2 is equipped with a dedicated vision 437

encoder and a vision-language adapter, originally 438

designed to optimize performance on visual tasks 439

such as chart interpretation. In contrast, InternVL- 440

2.5 is built upon a Vision Transformer architecture 441

integrated with a large language model, while pre- 442

trained with one of the benchmark datasets (Chen 443

et al., 2024), the VisText dataset, placing more 444

confidence on the fusion of textual information 445

in the chart-to-text task. As a result, when we en- 446

large the textual information using the PoT strategy, 447

the performance outcomes of DeepSeek-vl2 and 448

InternVL-2.5 can diverge, potentially yielding op- 449

posite trends. This observation suggests that the 450

PoT strategy does not universally benefit all VLMs 451

in chart summarization, but is particularly advanta- 452

geous for those that emphasize textual information. 453

PoT Compared with MCoT. On the other hand, 454

Qwen-2.5VL-3B showed that the PoT strategy con- 455

sistently outperformed the MCoT strategy while 456

underperforming relative to the Direct prompting. 457

This suggests that for the Qwen2.5-VL-3B model, 458
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VLM
-Prompting

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o

deepseek-vl2-tiny
ZeroShot-Direct 13.17 79.00 26.04 76.55 16.35 78.61 27.69 81.54 27.80 83.14 23.50 77.32 7.27 84.34 5.30 78.45 7.78 84.36 6.43 81.47
ZeroShot-MCoT 11.36 74.54 19.12 75.62 13.26 74.45 17.80 79.50 20.68 80.46 17.52 75.48 4.22 80.91 3.67 79.81 6.14 80.90 4.41 80.37
ZeroShot-PoT 15.80 51.09 16.00 55.53 14.61 52.43 13.97 56.76 5.63 53.43 15.47 54.70 3.76 58.44 3.30 57.04 2.85 56.02 3.31 57.17

internVL-2.5
ZeroShot-Direct 12.02 75.29 25.30 77.44 19.36 78.32 27.34 81.97 13.18 82.42 23.55 77.82 6.15 84.00 5.71 82.39 8.52 83.62 6.51 83.12
ZeroShot-MCoT 10.29 79.57 18.75 76.37 12.97 76.10 18.70 77.04 14.59 74.93 17.13 76.35 4.32 81.67 3.92 81.41 4.73 81.38 4.22 81.47
ZeroShot-PoT 25.91 78.48 37.60 84.26 36.74 83.73 27.96 81.63 31.95 87.96 36.87 84.01 10.79 86.60 7.71 86.55 10.76 86.06 9.28 86.44

llava-NeXT
ZeroShot-Direct 19.51 84.26 28.07 83.43 22.91 84.76 27.84 82.69 22.38 81.22 26.59 83.73 10.86 87.53 6.00 86.84 7.07 87.73 7.47 87.24
ZeroShot-MCoT 11.66 83.94 / / 20.00 84.31 21.45 85.70 17.65 87.04 / / / / 4.99 86.29 / / / /

ZeroShot-PoT 16.90 71.24 31.14 83.04 28.15 81.77 27.67 82.10 25.21 83.99 30.02 82.54 5.18 86.21 5.38 85.53 6.73 85.92 5.65 85.81

qwen2.5-VL-3B
ZeroShot-Direct 19.93 80.57 35.17 84.30 23.08 81.29 37.93 87.19 23.09 90.38 31.87 83.64 7.74 84.92 6.75 82.17 10.64 84.38 7.96 83.45
ZeroShot-MCoT 17.17 78.40 36.34 82.75 24.14 80.99 46.65 87.55 21.83 90.12 33.16 82.47 9.76 85.62 7.72 82.61 12.58 85.90 9.44 84.22
ZeroShot-PoT 26.79 81.39 32.09 79.64 26.93 78.87 40.71 85.56 24.60 86.61 30.89 79.72 10.99 82.32 6.60 80.58 13.65 82.60 9.49 81.54

Table 4: Evaluation results of VLMs on different prompting methods on Pew and VisText datasets evaluated on
AlignScore-large and UniEval-overall scores.

the PoT strategy appears to be a more effective459

CoT prompting strategy compared to the standard460

MCoT approach across the evaluated tasks. This461

may be due to the PoT strategy introducing more462

new statistical content into the chart summarization463

process during chart data interpretation compared464

to the MCoT approach. While the PoT generates465

additional statistical information, MCoT primarily466

offers a high-level data outline and trends.467

DeepSeek InternVL Qwen

Template-based 18.67 19.00 22.67
PoT-based 31.33 31.00 27.33

Table 5: Human evaluation.

5.3 PoT Approach Against VLM Backbones468

While the PoT strategy demonstrated potential469

for improving performance, particularly for the470

InternVL-2.5 and Qwen2.5-VL-3B models in cer-471

tain scenarios, we conducted further investigations472

to valid the effectiveness of adopting PoT and iden-473

tify the potential information factors contributing474

to the varying effectiveness of the PoT strategy475

and to estimate the extent to which information476

influences the performance of the PoT strategy477

pipeline. We compared: (1) Template-based: us-478

ing the predefined Python program template; and479

(2) PoT-based: using the PoT for generating the480

statistics dictionary in chart summarization with481

human evaluation, as shown in Table 5. In addition,482

we conducted a series of experiments focusing on483

the textual components that serve as supplemen-484

tary inputs to the VLM alongside the input chart. 485

The experimental settings are as follows: (1) Title: 486

Use only the title as input to the VLM, without 487

applying the PoT strategy; (2) Dict+Title: Use the 488

PoT-generated Python dictionary along with the 489

title as input to the VLM; (3) Stats+Title: Use 490

the PoT strategy to generate a statistics dictionary, 491

combined with the title as input to the VLM; (4) 492

Dict+Stats+Title: Use the full set of inputs, includ- 493

ing the PoT-generated Python dictionary, the PoT- 494

generated statistics dictionary, and the title as input 495

to the VLM; (5) Dict+StatsT+Title: Replace the 496

LM with a predefined Python program template for 497

generating the statistics dictionary, and use the gen- 498

erated statistics dictionary together with the Python 499

dictionary and title as input to the VLM. The exper- 500

imental results that were evaluated on ROUGE-L 501

and BERTScores are illustrated in Table 6. 502

PoT Effectiveness Influenced by Input Textual 503

Data. While the evaluation results remain influ- 504

enced by the underlying VLM performance, we 505

observed that in over half of the cases, the com- 506

bination of the title and Python dictionaries out- 507

performed using the title alone. We attribute this 508

to the fact that directly extracted data, despite po- 509

tential noise, can retain more valuable information 510

than purely generated text, potentially steering the 511

model toward more accurate outputs. However, this 512

also highlights the power of using the PoT strategy, 513

as it guides the model to emphasize more on the 514

enhanced inaccuracies and noise with the poorly 515

extracted data, while weakening the chart analysis, 516

which negatively impacts the overall performance 517
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VLM
+Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS

deepseek-vl2-tiny
Title 13.57 84.78 13.57 85.49 12.26 84.83 16.98 86.96 11.99 84.22 13.33 85.34 14.65 86.87 14.44 85.69 15.68 86.89 14.79 86.30
Dict+Title 9.51 83.33 6.15 82.04 6.78 82.49 11.80 84.68 7.96 83.44 5.55 82.27 5.37 84.13 3.85 83.26 5.34 84.23 4.23 83.73
Statis+Title 9.22 82.89 8.66 83.51 8.48 83.25 9.07 83.21 8.77 83.61 8.64 83.43 9.84 84.43 8.86 83.91 10.46 84.35 9.51 84.16
Dict+Statis+Title 9.16 82.84 10.19 84.33 9.50 83.94 10.79 84.12 8.38 82.90 10.00 84.19 10.88 85.28 9.37 84.22 11.91 85.29 10.38 84.77
Dict+StatisT+Title 8.18 82.47 8.87 83.23 8.95 83.04 10.79 84.06 6.72 81.08 8.92 83.17 10.44 85.15 9.89 84.04 10.71 84.97 10.23 84.56

internVL-2.5
Title 13.80 84.33 13.55 85.02 12.59 84.58 15.74 85.59 13.34 84.46 13.38 84.91 10.50 85.17 9.58 84.24 11.28 85.18 10.22 84.71
Dict+Title 16.15 85.54 15.69 86.02 14.80 85.62 15.73 86.34 15.22 85.87 9.09 85.92 9.58 86.29 7.00 85.14 9.69 86.44 7.91 85.76
Statis+Title 13.79 84.68 13.22 85.65 13.04 85.39 12.90 85.70 12.80 85.44 13.17 85.57 13.05 85.82 11.65 84.98 13.14 85.75 12.38 85.39
Dict+Statis+Title 13.86 85.06 14.17 85.95 13.67 85.58 14.32 86.31 13.28 85.23 14.04 85.85 13.43 86.20 11.96 85.18 14.04 86.26 12.85 85.71
Dict+StatisT+Title 14.74 85.66 14.30 85.88 13.68 85.55 15.04 86.00 13.14 84.76 14.17 85.79 13.96 86.23 12.49 85.19 15.10 86.44 13.52 85.78

qwen2.5-VL-3B
Title 14.91 85.86 16.22 86.66 14.74 85.91 18.38 87.56 14.88 86.12 15.88 86.49 17.78 87.30 16.39 86.19 18.98 87.31 17.40 86.76
Dict+Title 15.70 85.76 15.61 86.00 14.35 85.50 19.53 87.51 15.22 85.36 8.09 85.91 9.38 86.75 6.55 85.71 9.86 86.81 7.46 86.25
Statis+Title 13.64 85.04 14.48 85.98 13.39 85.44 17.57 87.14 13.45 85.42 14.28 85.86 14.19 86.63 13.68 85.68 14.71 86.62 14.06 86.16
Dict+Statis+Title 13.91 85.26 14.00 85.83 12.73 85.36 17.16 86.95 13.32 85.15 13.77 85.73 14.15 86.74 13.24 85.60 15.19 86.76 13.94 86.19
Dict+StatisT+Title 13.25 85.28 14.47 85.98 13.03 85.47 18.07 87.02 13.06 85.00 14.19 85.86 14.78 86.79 13.36 85.43 15.96 86.87 14.36 86.15

Table 6: Ablation study results for different models regarding data used from Pew and VisText datasets evaluated on
F1 scores of ROUGE-L and BERTScore scores.

of the model pipeline. In addition, we observed518

that the PoT strategy can consistently outperform519

in most cases with the InternVL model. This in-520

dicates the effectiveness of the PoT strategy with521

a pretrained VLM, which is better than directly522

using the title to enhance the overall pipeline per-523

formance in the chart summarization.524

6 Future Work525

From experimental results, it is observed that the526

summarization with the PoT strategy varied by dif-527

ferent types of charts that the model was captioning.528

Most models performed well on relatively simpler529

bar and pie charts, while struggling with more com-530

plex charts, such as multiple line or scatter plots.531

This indicates that the generalizability requirement532

of the summarization task may involve some sort533

of normalization or some way to bridge the gap be-534

tween the varying levels of complexity presented by535

the chart. In future work, we would like to explore536

more sophisticated PoT approaches capable of gen-537

erating longer and richer statistical information dur-538

ing the pipeline, thereby enhancing the quality of539

chart summaries. Since the PoT strategy in this540

work only extends outputs from short, answer-like541

responses to relatively concise statistical dictionar-542

ies. However, for the chart summarization task, we543

believe the PoT strategy contains untapped poten-544

tial to capture factual numeric data by its statistical545

reasoning capability. Moreover, given the signif-546

icant influence of the PoT-generated information547

in model inference, we will also further investigate548

whether the PoT can contribute to mitigating hallu- 549

cination errors in the chart summarization process, 550

improving the overall factual accuracy of generated 551

chart summaries. 552

7 Conclusion 553

In this work, we conducted a systematic evalua- 554

tion of the Program-of-Thought (PoT) prompting 555

strategy across currently used lightweight vision- 556

language models under the zero-shot settings on 557

the Pew and VisText benchmarks for the chart sum- 558

marization task. Our experiments reveal that the 559

efficacy of the PoT varies markedly with model ar- 560

chitectures and sizes, pretrained data, correspond- 561

ing to types of charts, including area, bar, line, 562

pie, and scatter. In conditions of VLMs and chart 563

types, the PoT proved to be a competitive alterna- 564

tive to the Direct and MCoT prompting approaches 565

with pretrained model, such as the InternVL. Be- 566

yond prompting strategies, we introduced a novel 567

chart-to-dictionary auxiliary task, demonstrating its 568

promise for capturing robust and semantic nuances 569

in chart understanding, which is also conveniently 570

applicable with the PoT. As charts grow more com- 571

plex along with the data they represent, there is a 572

need to establish a data structure to evaluate chart- 573

parsing outside the table due to data loss that occurs 574

from the chart to the table. 575

Limitations 576

The diverse performance of the PoT strategy across 577

the evaluated models raises several important con- 578
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siderations. The model architecture and size likely579

play a significant role in determining the effective-580

ness of different prompting strategies. The mod-581

els used in this paper were of lightweight VLMs.582

While effective in the presented lightweight mod-583

els, the language decoder may have yielded too low584

conclusive powers on the efficacy of the PoT and585

CoT prompting methods relative to direct prompt-586

ing. However, it is seen that the PoT strategy still587

can offer comparable results to the other prompting588

methodologies using lightweight VLMs in some589

cases or for some chart types, which indicates that590

on higher parameter models, it can be assumed591

that, in the worst case, these different prompting592

techniques may offer similar results. The research593

design, comparing three zero-shot prompting meth-594

ods across four distinct vision-language models and595

a set of tasks, provides a valuable initial exploration596

of the PoT’s potential on chart summarization with597

VLMs. Further research can implement few-shot598

reasoning with examples that can hypothetically599

increase performance. Additionally, the study fo-600

cused its experimentation on lightweight VLMs,601

which might have contributed to the poor results in602

text generation. Expanding the scope of the study603

to larger parameter models might lead to more con-604

clusive results.605

Ethics Statement606

To the best of the researchers’ knowledge, all607

datasets used in this study were sourced from pub-608

licly available benchmarks. The authors of the609

benchmark dataset also have obtained the license610

to distribute the dataset for non-malicious purposes611

intent which this research has abided by.612
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A Experiment Set-up954

The experiments are conducted with loaded pre-955

trained models from the vLLM API. As much as956

possible, the default parameters were used, unless957

suggested otherwise from official documentation.958

The temperature is set to 0.2, and the repetition959

penalty is set to 1.2 across all runs. All exper-960

iments are carried out on our machine (CPU: In-961

tel(R) Core(TM) i9-9920X CPU @ 3.50GHz, GPU:962

1 NVIDIA RTX3090). Python code generation for963

producing statistics by the Qwen2.5-Coder-14B- 964

Instruct model is the most computationally costly 965

task, which costs 10-12 hours on 1 GPU. 966

B Extended Evaluation Details 967

B.1 Dataset Analysis 968

We chose the Pew (Kantharaj et al., 2022) (GPL-3.0 969

license) and VisText (Tang et al., 2023) (GPL-3.0 970

license) large-domain English datasets to investi- 971

gate and evaluate our PoT strategy for generating 972

L2/L3 content in chart summarization, as they pro- 973

vide rich and suitable L2/L3 captions for this task. 974

The VisText is built upon the Statista (Kantharaj 975

et al., 2022) dataset, but with additionally detailed 976

labelled L2/L3 captions. Since the chart labelled in 977

the VisText may have multiple L2/L3 captions, we 978

automatically selected the longest L2/L3 captions 979

in the test set of the VisText dataset as gold sum- 980

maries paired to charts for the chart summarization 981

task. The statistics of the Pew and VisText datasets 982

used in this paper are presented in Table 7. In addi- 983

tion, the distribution of topics covered in the Pew 984

and VisText datasets is illustrated in Figure 4. 985

Statistic Pew VisText

Simp. Comp. All Simp. Comp. All

#Vocab. 3,529 8,342 9,342 3,413 1,995 4,360
Avg.Character 454 522 511 165 152 161
Avg.Token 91 106 104 34 31 33
Avg.Sentence 2.86 3.33 3.26 1.16 0.99 1.11

Table 7: Statistics of datasets by Simple and Complex
complexities of the Pew and VisText test sets.

B.2 Experiment Implementations 986

We mainly used DeepSeek-VL2 (deepseek-VL2- 987

tiny) (Wu et al., 2024) for testing and our exper- 988

iments. Additionally, we also tested the follow- 989

ing models: InternVL (internVL-2.5-4B) (Chen 990

et al., 2024), LLaVA-NeXT (llava-v1.6-mistral-7b- 991

hf) (Liu et al., 2023c), and Qwen-2.5 (qwen2.5- 992

VL-3B-Instruct) (Qwen Team, 2025) for main and 993

ablation experiments. InternVL was reported to 994

have one of our benchmark datasets, VisText, in its 995

pretraining datasets (Chen et al., 2024). This likely 996

contributed to its stronger performance, highlight- 997

ing the potential benefits of pretraining. For the 998

other models, there is no overlap with our bench- 999

mark datasets, nor evidence suggesting that the 1000

models were semantically aligned with the test dis- 1001

tributions or were familiar with recurring chart pat- 1002

terns from their source papers. All experiments 1003
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Figure 4: The distributions of topics of VisText and Pew test datasets.

were done in Python 3.12 using the vLLM (Kwon1004

et al., 2023) library, with the models being im-1005

plemented at the zero-shot setting. Similar to the1006

previous work, the usage of ‘#’ tokens in the gen-1007

erated tokens was restricted to avoid the pitfalls of1008

only generating the reasoning chain as comments1009

instead of executable code.1010

B.3 Evaluation Metric Descriptions1011

To quantitatively measure the performance of our1012

proposed method in chart summarization, we em-1013

ploy two popular automatic evaluation metrics1014

in chart understanding: BLEU (Bilingual Evalu-1015

ation Understudy) and CIDEr (Consensus-based1016

Image Description Evaluation), in addition to two1017

also well-known automatic evaluation metrics in1018

text summarization: ROUGE (Lin, 2004) and1019

BERTScore (Zhang et al., 2020). In order to evalu-1020

ate factual correctness in chart summarization, we1021

additionally adopt UniEval (Zhong et al., 2022)1022

and AlignScore (Zha et al., 2023).1023

BLEU (Post, 2018) This score calculates the n-1024

gram overlap between the ground-truth summary1025

and the generated summary. It indicates lexical sim-1026

ilarity between the generated and ground-truth text,1027

assessing how closely the generated text replicates1028

word sequences that occur in the reference.1029

CIDEr (Vedantam et al., 2015) This score mea-1030

sures the TFIDF weighted n-gram overlaps be-1031

tween reference and generated text. By weight-1032

ing n-grams according to their value in a reference1033

summary corpus, CIDEr seeks to more accurately1034

capture the informativeness and relevance of gen-1035

erated descriptions, especially in image and chart 1036

captioning tasks. 1037

BLEU and CIDEr are commonly used metrics 1038

throughout natural language generation, image cap- 1039

tioning, and chart summarization. Together, they 1040

capture a more nuanced quantitative measure of 1041

model performance in terms of surface similarity 1042

and content alignment with reference summaries. 1043

While we note that reference-based measures like 1044

BLEU and CIDEr do have some limitations, since 1045

they can have loose correlation with human prefer- 1046

ence for aspects of semantic equivalence and fac- 1047

tuality, their popularity and ability to provide an 1048

initial quantitative score make them effective mea- 1049

sures in chart summarization model evaluation. As 1050

a result, we consider additional metrics for evaluat- 1051

ing the chart summarization. 1052

ROUGE (Lin, 2004) This score is a prevailing 1053

metric in text summarization research based on 1054

semantic similarity. 1055

BERTScore (Zhang et al., 2020) This score of- 1056

fers a complementary perspective by quantifying 1057

semantic similarity between system outputs and 1058

reference texts. 1059

UniEval (Zhong et al., 2022) This score assesses 1060

factual correctness by framing the evaluation as a 1061

Boolean question-answering task. 1062

AlignScore (Zha et al., 2023) This score evaluates 1063

factual correctness by quantifying the information 1064

alignment between two arbitrary text pieces. 1065
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C Prompts1066

C.1 LM Chat Templates1067

We show an exemplar from our chat templates for1068

internVL here. The full chat templates can be found1069

in our repository.1070
1071

1 {%- set ns = namespace(found_image=false1072
) -%}1073

2 {{ bos_token }}1074
3 {%- for message in messages %}1075
4 {%- if message['role'] == 'system '1076

%}1077
5 {{- '<|im_start|>system\n' +1078

message['content '] + '<|1079
im_end|>\n' -}}1080

6 {%- elif message['role'] == 'user'1081
%}1082

7 {%- set content = message['1083
content '] -%}1084

8 {%- if '<image >' in content and1085
not ns.found_image %}1086

9 {%- set content = content |1087
replace('<image >', '<1088
image >\n', 1) -%}1089

10 {%- set ns.found_image =1090
true -%}1091

11 {%- endif -%}1092
12 {{- '<|im_start|>user\n' +1093

content + '<|im_end|>\n' -}}1094
13 {%- elif message['role'] == '1095

assistant ' %}1096
14 {{- '<|im_start|>assistant\n' +1097

message['content '] + '<|1098
im_end|>\n' -}}1099

15 {%- endif %}1100
16 {%- endfor %}1101
17 {%- if add_generation_prompt %}1102
18 {{- '<|im_start|>assistant\n' -}}1103
19 {%- endif %}11041105

C.2 Chart-to-Dictionary Extraction with1106

Program of Thoughts1107

Similar to the chart-to-table task, this is done in a1108

zero-shot setting. We employ the core concept of1109

PoT to guide the VLM in generating a valid and1110

executable Python dictionary from the input chart.1111
1112

1 user_prompt = "<img_placeholder >\1113
nConvert the chart into a python1114
dictionary `chart_dict `. Only1115
consider the chart's data when1116
summarizing."1117

2 assistant_ = "```python\n chart_dict ="11181119

We discover that with the request message of1120

"check errors" within the prompt, the LM can1121

implicitly check and correct both syntax errors in1122

the output format and the facts in the data.1123
1124

1 user_prompt = "<img_placeholder >\1125
nConvert the chart into a python1126
dictionary `chart_dict `. Check json1127
syntax errors. Only consider the1128
chart 's data when summarizing , no1129

punctuations. Only return the valid 1130
version." 11311132

C.3 Dictionary-to-Statistics with Program of 1133

Thoughts 1134

The illustrated prompt content is the same used in 1135

VLMs tested in this work, but formatted specifi- 1136

cally with each VLM’s template. 1137
1138

1 system_prompt = "You are a data analyst. 1139
You are given a dictionary that 1140

represents a chart called ` 1141
chart_dict `. \ 1142

2 You need to implement the function ` 1143
get_summary_statistics(chart_dict)` 1144
that takes the dictionary as input 1145
and returns a dictionary with the 1146
relevant statistics that can be used 1147
to summarize the chart. \ 1148

3 Avoid sorting dictionary objects 1149
directly and USE ONLY PYTHON BUILT - 1150
IN FUNCTIONS. Name the keys of the 1151
dictionary to elaborate how it is a 1152
descriptive statistic. When writing 1153
Python , follow the PEP style guide. 1154
\ 1155

4 Return ONLY the code of the function 1156
that will run without any errors and 1157
can work using `eval()`." 1158

5 1159
6 user = "Implement the function ` 1160

get_summary_statistics ` that takes a 1161
dictionary as input and returns a 1162

dictionary with the relevant 1163
statistics that can be used to 1164
summarize the chart using only built 1165
-in Python functions. Make sure to 1166
label the keys of the `summary_dict ` 1167
to be descriptive The input 1168

dictionary is defined as {chart_dict 1169
}." 1170

7 1171
8 assistant_ = "```python\ndef 1172

get_summary_statistics(chart_dict):\ 1173
n # Define output dictionary ` 1174
summary_dict ` to store the summary 1175
statistics\n" 11761177

C.4 Chart-to-Summary with Program of 1178

Thoughts 1179

1180
1 user = "Summarize the insights of the 1181

chart with title: '{title}'. The 1182
summary use language similar to the 1183
chart. Don't explicitly describe 1184
chart elements such as chart type. 1185
NEVER START A SENTENCE WITH A NUMBER 1186
. The chart has the dictionary: { 1187
dictionary_str} and the 1188
summary_statistics: {summary_dict }." 1189

2 1190
3 assistant_ = "Let's think step by step 1191

to with as few steps as possible to 1192
summarize the chart: " 11931194
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D Extended Results1195

D.1 Ablation Studies1196

Table 8 and Table 9 present BLEU and CIDEr eval-1197

uation results, and ROUGE-1 and ROUGE-L evalu-1198

ation results, respectively, for various VLMs, tested1199

with different prompting strategies. Table 10 and1200

Table 11 present coherence, consistency, fluency,1201

and relevance from UniEval evaluation results. Ta-1202

ble 12, Table 13, and Table 14 present AlignScore-1203

large score and UniEval score results for various1204

VLMs regarding textual data types with our PoT1205

chart summarization pipeline. We discover that1206

even the evaluation scores of template-based statis-1207

tics generation mostly outperform other PoT-based1208

statistics generation, but most summaries generated1209

by template-based statistics are low-quality. The1210

factual evaluation results can also indicate that the1211

simple rule-based transformation from a Python1212

dictionary to a structured key-value statistical anal-1213

ysis is rigid and incurs higher computational and1214

development costs.1215

With empirical results, how a candidate task to1216

represent charts structurally can be an effective aux-1217

iliary to the existing chart-to-table task can be sort1218

of answered. While the evaluation of chart-to-table1219

might be more objective in its evaluation, there1220

might be merit to exploring the chart-to-dictionary1221

task for chart understanding. Not only this enable1222

the integration of the chart in a PoT context, but it1223

also facilitates a more robust representation of the1224

chart, given the increasing complexities of charts in1225

the wild. This work acknowledges that there is an1226

overlap between chart redrawing and this task, but1227

the chart redrawing tends to focus more on the re-1228

construction of the chart with executable matplotlib1229

code rather than capturing the semantic nuances of1230

the chart elements explored in this work.1231

D.2 Comparison between Manual1232

Template-based and PoT-based Statistics1233

Generation1234

We show an exemplar of the predefined extracting1235

data rules in our manual template method. The full1236

rules can be found in our repository.1237
1238

1 if isinstance(values , list) and values1239
and all(isinstance(x, (int , float))1240
for x in values):1241

2 return [{1242
3 "Category": prefix ,1243
4 "Total": len(values),1244
5 "Sum": sum(values),1245
6 "Average": statistics.mean(1246

values),1247

7 "Minimum": min(values), 1248
8 "Maximum": max(values), 1249
9 "Range": max(values) - min( 1250

values) 1251
10 }] 12521253

Figure 5: Histogram comparing the numbers of failure
cases (output summaries <3 tokens in length) in the
generated summaries from PoT-based and Template-
based DeepSeek on the Pew dataset.

Figure 5 shows a comparison of the numbers of 1254

short failed summaries generated by using the PoT- 1255

based and Template-based Deepseek model on the 1256

Pew dataset, indicating the effectiveness of using 1257

the PoT instead of a simple rule-based template 1258

with the VLM in chart summarization. 1259

Figure 6: Histogram comparing the numbers of failure
cases in the chart data dictionary generation by each
VLM on each dataset.

E Case Study 1260

A case study in Figure 7 demonstrates an end-to- 1261

end chart-to-text method using the PoT. In this 1262

specific instance, the chart-to-dictionary properly 1263

captures the appropriate format of how to organize 1264

the data, but fundamentally mislabels or misreads 1265

the values of which values go to which parties. 1266

15



VLM
+Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr

deepseek-vl2-tiny
Title 1.9682 0.0427 2.6653 0.0608 1.7169 0.0471 4.5805 0.1391 0.7646 0.0412 2.4676 0.0591 1.8347 0.0920 1.5262 0.0731 2.0429 0.0851 1.7346 0.0824
Dict+Title 0.3425 0.0000 0.2343 0.0040 0.1940 0.0055 0.7802 0.0095 0.3621 0.0002 0.1707 0.0025 0.2472 0.0115 0.0853 0.0077 0.2067 0.0124 0.0855 0.0081
Statis+Title 0.3627 0.0182 0.3498 0.0214 0.2932 0.0118 0.2772 0.0133 0.5526 1.2809 0.3407 0.0183 0.4872 0.0688 0.5449 0.0582 0.4168 0.0654 0.5153 0.0636
Dict+Statis+Title 0.6960 0.0135 0.6807 0.0236 0.6517 0.0251 0.6614 0.0341 0.3309 0.0011 0.6875 0.0235 0.5583 0.0713 0.4584 0.0737 1.1808 0.0796 0.6914 0.0754
Dict+StatisT+Title 0.7589 0.0023 0.4311 0.0170 0.5564 0.0181 0.3408 0.0320 0.3350 0.0279 0.4914 0.0173 0.4408 0.0676 0.7812 0.0568 0.8565 0.0538 0.7502 0.0589

internVL-2.5
Title 3.6507 0.0426 3.5832 0.0318 2.7521 0.0296 4.6431 0.1025 2.6224 0.0001 3.4041 0.0328 1.1306 0.0125 0.9387 0.0088 1.3401 0.0212 1.0808 0.0130
Dict+Title 3.7973 0.1391 3.1843 0.0650 2.2829 0.0612 2.7083 0.1088 1.6723 0.0569 0.7148 0.0052 0.2476 0.0057 0.0790 0.0023 0.4311 0.0110 0.2141 0.0047
Statis+Title 3.2816 0.0253 2.0090 0.0569 1.9310 0.0478 1.6361 0.0591 1.0602 0.0443 1.9939 0.0540 1.2121 0.0100 1.0379 0.0169 1.5626 0.0210 1.2156 0.0157
Dict+Statis+Title 3.6093 0.1211 3.1860 0.0697 2.5661 0.0615 2.9342 0.1188 1.8525 0.0960 3.0319 0.0695 1.4938 0.0326 1.0729 0.0102 1.9497 0.0237 1.3735 0.0192
Dict+StatisT+Title 4.1720 0.1772 3.1456 0.0633 2.4598 0.0770 2.7016 0.1286 3.2064 0.0431 3.0008 0.0689 1.7194 0.0555 1.2597 0.0205 2.3460 0.0506 1.5926 0.0371

qwen2.5-VL-3B
Title 1.9350 0.0523 3.6251 0.1002 2.5562 0.0643 5.9420 0.1384 2.0714 0.0272 3.3929 0.0905 2.6399 0.1481 2.1772 0.0979 3.1147 0.1519 2.4984 0.1254
Dict+Title 2.6846 0.0953 3.1135 0.0693 2.2941 0.0652 3.6053 0.1937 1.5115 0.0629 0.6707 0.0060 0.3687 0.0168 0.0869 0.0090 0.4078 0.0136 0.1515 0.0097
Statis+Title 3.3383 0.0409 3.3091 0.0734 2.3678 0.0597 3.8250 0.1662 1.0761 0.0203 3.0906 0.0712 1.6593 0.0780 1.4806 0.0801 2.0928 0.0890 1.6639 0.0826
Dict+Statis+Title 3.0823 0.0830 3.0102 0.0727 2.1315 0.0616 3.3978 0.1346 2.0385 0.0294 2.8237 0.0711 1.6373 0.0781 1.2874 0.0596 2.1118 0.0714 1.5484 0.0678
Dict+StatisT+Title 2.4238 0.0222 3.2131 0.0640 2.2744 0.0693 3.4002 0.1018 2.6648 0.0662 2.9969 0.0652 1.7080 0.1080 1.4815 0.0688 2.3149 0.1042 1.6950 0.0883

Table 8: Ablation study results (BLEU / CIDEr) for different models regarding data used from Pew and VisText
datasets.

VLM
+Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L

deepseek-vl2-tiny
Title 24.62 13.57 25.88 13.57 23.66 12.26 29.17 16.98 24.03 11.99 25.40 13.33 22.37 14.65 21.72 14.44 23.56 15.68 22.33 14.79
Dict+Title 14.82 9.51 8.94 6.15 9.97 6.78 16.71 11.80 13.05 7.96 8.05 5.55 7.35 5.37 4.98 3.85 7.31 5.34 5.56 4.23
Statis+Title 15.23 9.22 13.65 8.66 13.12 8.48 12.66 9.07 14.72 8.77 13.53 8.64 14.26 9.84 12.21 8.86 14.70 10.46 13.38 9.51
Dict+Statis+Title 15.86 9.16 16.70 10.19 16.32 9.50 16.81 10.79 13.98 8.38 16.57 10.00 16.48 10.88 13.75 9.37 17.14 11.91 15.29 10.38
Dict+StatisT+Title 15.24 8.18 14.19 8.87 15.34 8.95 16.48 10.79 10.64 6.72 14.53 8.92 15.46 10.44 14.44 9.89 16.12 10.71 15.11 10.23

internVL-2.5
Title 27.44 13.80 28.86 13.55 26.81 12.59 30.08 15.74 27.82 13.34 28.37 13.38 17.17 10.50 16.19 9.58 18.21 11.28 16.92 10.22
Dict+Title 28.78 16.15 28.52 15.69 25.93 14.80 27.67 15.73 27.57 15.22 15.53 9.09 15.87 9.58 10.69 7.00 15.53 9.69 12.43 7.91
Statis+Title 25.52 13.79 24.53 13.22 24.03 13.04 21.58 12.90 24.05 12.80 24.33 13.17 20.81 13.05 18.58 11.65 20.81 13.14 19.72 12.38
Dict+Statis+Title 26.64 13.86 28.52 14.17 27.27 13.67 26.11 14.32 27.55 13.28 28.11 14.04 22.24 13.43 20.30 11.96 22.66 14.04 21.38 12.85
Dict+StatisT+Title 26.86 14.74 28.18 14.30 26.66 13.68 26.23 15.04 28.19 13.14 27.73 14.17 22.52 13.96 20.53 12.49 23.43 15.10 21.76 13.52

qwen2.5-VL-3B
Title 24.83 14.91 30.29 16.22 27.70 14.74 32.16 18.38 29.51 14.88 29.62 15.88 26.14 17.78 24.85 16.39 27.12 18.98 25.74 17.40
Dict+Title 26.12 15.70 27.49 15.61 25.49 14.35 30.70 19.53 29.14 15.22 13.50 8.09 14.10 9.38 9.29 6.55 15.00 9.86 10.91 7.46
Statis+Title 24.75 13.64 27.53 14.48 25.53 13.39 29.58 17.57 27.06 13.45 27.06 14.28 22.11 14.19 21.27 13.68 22.70 14.71 21.83 14.06
Dict+Statis+Title 25.56 13.91 26.58 14.00 24.62 12.73 28.36 17.16 25.85 13.32 26.13 13.77 22.23 14.15 20.46 13.24 23.20 15.19 21.59 13.94
Dict+StatisT+Title 23.72 13.25 27.44 14.47 25.24 13.03 29.28 18.07 25.69 13.06 26.89 14.19 22.10 14.78 20.74 13.36 23.70 15.96 21.82 14.36

Table 9: Ablation study results (ROUGE-1 / ROUGE-L) for different models regarding data used on Pew and
VisText datasets.

However, it can be observed that in terms of ob-1267

serving the increasing trend in the time-series data,1268

the dictionary was able to somewhat capture this.1269

The generated PoT is agnostic of the actual values1270

of the functions and is able to correctly identify the1271

relevant keys needed to create summary statistics1272

of total, average, and min and max values. The gen-1273

erated caption captures the general ideas that the1274

chart was able to portray, specifically describing1275

the chart elements of date in the x-axis and anger1276

in the y-axis. While not as verbose as the original1277

text, the generated summary was able to capture1278

the key ideas and trends in the caption.1279

F Failure Case Analysis 1280

F.1 Python Dictionary Generation 1281

In order to keep the desired quality of the statistics 1282

in this work, we decided to use InternVL-2.5-4B 1283

(Chen et al., 2024) with ChatGPT-4o-mini (Ope- 1284

nAI, 2024) to generate the data dictionary. Fig- 1285

ure 6 shows comparisons of failure numbers of 1286

the chart data dictionary generation by each VLM, 1287

presenting InternVL has the best capability on 1288

handling and generating more data dictionaries 1289

from the chart data. Since LLaVA is primarily 1290

an LLM (LLaMA) with a vision adapter, whereas 1291

DeepSeek, InternVL, and Qwen are specialized 1292

vision-language models with strong visual encod- 1293

ing, we test DeepSeek, InternVL, and Qwen on 1294
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VLM
-Prompting

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
coh cons coh cons coh cons coh cons coh cons coh cons coh cons coh cons coh cons coh cons

deepseek-vl2-tiny
ZeroShot-Direct 86.91 48.42 80.57 55.94 85.51 52.75 85.14 65.36 84.82 71.25 82.08 55.48 87.91 69.66 82.15 60.05 87.84 69.94 85.08 65.03
ZeroShot-MCoT 78.14 52.97 77.88 59.61 76.82 58.31 82.94 62.99 80.91 72.62 77.80 59.42 83.20 71.06 83.01 66.03 83.20 69.34 83.11 68.19
ZeroShot-PoT 44.51 32.56 47.73 43.95 44.33 40.39 48.31 45.93 43.74 41.96 46.81 42.93 52.60 48.64 51.62 47.32 49.61 46.52 51.40 47.48

internVL-2.5
ZeroShot-Direct 81.15 55.46 81.70 60.16 84.77 55.98 88.64 67.23 89.11 59.54 82.74 59.24 90.54 62.16 88.90 60.34 89.56 62.71 89.50 61.41
ZeroShot-MCoT 86.89 53.07 81.20 54.44 81.89 51.98 81.16 57.06 79.06 55.26 81.43 53.89 88.26 58.34 88.06 57.88 87.71 57.94 88.03 58.02
ZeroShot-PoT 86.79 47.76 90.84 61.34 90.55 59.63 87.45 58.23 94.53 67.90 90.65 60.70 93.17 65.92 94.04 64.05 93.18 63.67 93.60 64.46

llava-NeXT
ZeroShot-Direct 91.08 60.18 89.18 62.70 92.15 60.67 86.85 66.79 81.96 67.66 89.80 62.33 94.43 67.26 93.07 67.23 93.35 68.33 93.50 67.50
ZeroShot-MCoT 92.90 55.01 / / 92.00 59.19 91.26 66.69 93.73 66.05 / / / / 93.26 65.01 / / / /

ZeroShot-PoT 74.14 44.92 88.52 62.23 87.72 59.42 87.54 62.48 90.63 62.64 88.10 61.29 92.91 64.74 91.55 65.75 92.83 64.20 92.23 65.10

qwen2.5-VL-3B
ZeroShot-Direct 87.39 53.39 88.87 66.98 87.14 58.37 91.00 72.48 94.42 78.91 88.54 64.92 87.62 72.22 86.76 64.40 87.17 71.31 87.09 68.18
ZeroShot-MCoT 80.06 61.37 86.08 67.24 85.49 60.40 91.11 74.43 93.24 79.90 86.07 65.79 88.42 74.59 86.04 67.87 89.18 73.11 87.44 70.95
ZeroShot-PoT 87.38 57.06 82.68 61.71 83.35 56.77 87.48 73.66 93.30 65.71 83.17 60.80 85.33 67.24 84.06 63.47 85.32 68.70 84.71 65.75

Table 10: Evaluation results of VLMs on different prompting methods on Pew and VisText datasets evaluated on
UniEval-coherence and UniEval-consistency.

VLM
-Prompting

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
flu rel flu rel flu rel flu rel flu rel flu rel flu rel flu rel flu rel flu rel

deepseek-vl2-tiny
ZeroShot-Direct 95.08 85.59 90.91 78.78 92.45 83.72 91.45 84.22 92.99 83.48 91.40 80.33 94.63 85.16 92.39 79.22 94.33 85.33 93.46 82.30
ZeroShot-MCoT 90.53 76.52 89.34 75.65 88.58 74.09 91.57 80.50 88.29 80.02 89.22 75.47 89.85 79.54 90.82 79.37 91.27 79.81 90.67 79.52
ZeroShot-PoT 86.10 41.17 85.39 45.03 83.07 41.92 87.04 45.75 87.47 40.56 84.89 44.17 84.14 48.39 83.02 46.21 83.08 44.87 83.34 46.47

internVL-2.5
ZeroShot-Direct 83.32 81.21 86.38 81.52 87.87 84.65 84.43 87.57 91.29 89.71 86.71 82.57 93.57 89.73 92.17 88.12 92.86 89.33 92.72 88.85
ZeroShot-MCoT 91.80 86.53 89.28 80.57 89.57 80.97 89.49 80.47 87.92 77.49 89.38 80.72 92.84 87.23 92.64 87.07 92.75 87.10 92.72 87.12
ZeroShot-PoT 93.40 85.96 94.70 90.18 94.92 89.82 95.05 85.81 95.81 93.59 94.76 89.93 95.23 92.07 95.23 92.87 95.45 91.96 95.28 92.43

llava-NeXT
ZeroShot-Direct 95.02 90.77 93.04 88.81 94.73 91.48 90.92 86.19 94.10 81.14 93.44 89.34 95.55 87.73 94.94 92.11 95.73 92.71 95.29 92.68
ZeroShot-MCoT 95.30 92.53 / / 94.60 91.46 94.33 90.54 95.10 93.28 / / / / 94.55 92.34 / / / /

ZeroShot-PoT 92.13 73.79 93.48 87.95 93.06 86.86 92.64 85.74 93.16 89.53 93.33 87.43 95.16 92.02 94.62 90.19 94.92 91.73 94.84 91.06

qwen2.5-VL-3B
ZeroShot-Direct 95.15 86.34 93.70 87.65 93.40 86.26 95.07 90.19 95.46 92.74 93.71 87.41 95.06 84.77 93.11 84.42 94.73 84.32 94.03 84.49
ZeroShot-MCoT 92.87 79.32 93.22 84.46 93.71 84.37 94.88 89.78 95.14 92.21 93.41 84.60 93.79 85.66 92.72 83.82 94.61 86.69 93.47 85.01
ZeroShot-PoT 93.91 87.23 92.16 82.01 92.50 82.87 93.78 87.31 94.45 92.99 92.34 82.58 93.69 83.03 93.08 81.69 93.85 82.52 93.43 82.25

Table 11: Evaluation results of VLMs on different prompting methods on Pew and VisText datasets evaluated on
UniEval-fluency and UniEval-relevance.

generating the dictionary for chart data on Pew and1295

VisText datasets, respectively.1296

But we are aware that most failure cases are due1297

to (1) limitation on maximum LLM output length,1298

so the output Python code is cut off a part; (2) com-1299

plex structure or format of the JSON data or Python1300

style, which cannot be generally read, recognized,1301

or pass the execution tests, and are consequently1302

categorized as failure cases, rather than nonsense or1303

empty outputs. Common error message instances1304

are collected and listed in Table 15. In future work,1305

we will implement a module to refine the Python1306

code into their correct format, ensuring the collec-1307

tion of all valuable data.1308

F.2 Python Code Generation 1309

Figure 8 presents a comparison between the 1310

failure-prone code generated by general-purpose 1311

LLMs and the acceptable code produced by code- 1312

specialized LLMs, where those models were specif- 1313

ically pre-trained and fine-tuned on programming 1314

codes, such as Qwen-Coder. With this observation, 1315

we chose to use Qwen-2.5-Coder-14B (Hui et al., 1316

2024), which is optimized for generating accurate 1317

and efficient code outputs, to ensure the quality of 1318

the generated code. 1319

G Human Evaluation Details 1320

We randomly selected 50 chart samples from 1321

both datasets, comprising outputs from both the 1322

template-based and PoT-based methods, with 10 1323
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VLM
+Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o AS-l UE-o R-1 R-L R-1 R-L

deepseek-vl2-tiny
Title 13.17 79.00 26.04 76.55 16.35 78.61 27.69 81.54 27.80 83.14 23.50 77.32 7.27 84.34 5.30 78.45 7.78 84.36 6.43 81.47
Dict+Title 4.80 53.55 3.29 47.27 4.03 51.71 26.52 66.96 7.82 52.20 4.23 49.11 3.52 65.44 3.34 60.25 5.24 62.13 3.85 62.10
Statis+Title 4.66 59.60 14.10 61.36 11.79 58.88 11.89 64.40 7.48 58.17 13.25 60.77 2.49 67.19 2.47 63.54 2.87 64.39 2.57 64.73
Dict+Statis+Title 15.80 51.09 16.00 55.53 14.61 52.43 13.97 56.76 5.63 53.43 15.47 54.70 3.76 58.44 3.30 57.04 2.85 56.02 3.31 57.17
Dict+StatisT+Title 6.64 60.28 / / / / 24.54 65.79 12.99 49.84 / / 3.59 63.63 3.72 62.40 4.91 64.81 3.97 63.32

internVL-2.5
Title 12.02 75.29 25.30 77.44 19.36 78.32 27.34 81.97 13.18 82.42 23.55 77.82 6.15 84.00 5.71 82.39 8.52 83.62 6.51 83.12
Dict+Title 33.85 81.43 39.15 85.36 32.86 83.51 33.17 83.75 33.14 86.08 37.26 84.80 11.00 86.38 6.01 84.41 14.31 86.88 9.36 85.54
Statis+Title 23.73 80.98 38.08 84.03 34.56 83.07 24.64 78.52 38.70 88.01 36.60 83.63 8.75 86.12 7.50 86.45 11.83 86.58 8.88 86.39
Dict+Statis+Title 25.91 78.48 37.60 84.26 36.74 83.73 27.96 81.63 31.95 87.96 36.87 84.01 10.79 86.60 7.71 86.55 10.76 86.06 9.28 86.44
Dict+StatisT+Title 31.44 81.63 38.25 85.56 28.59 83.33 36.54 83.73 30.28 84.41 35.59 84.88 10.09 86.47 5.87 85.47 12.05 86.54 8.50 86.00

qwen2.5-VL-3B
Title 19.93 80.57 35.17 84.30 23.08 81.29 37.93 87.19 23.09 90.38 31.87 83.64 7.74 84.92 6.75 82.17 10.64 84.38 7.96 83.45
Dict+Title 31.04 78.27 31.97 80.16 25.50 80.53 40.41 86.07 31.48 87.28 30.58 80.47 9.72 81.90 6.75 79.62 11.06 81.67 8.59 80.73
Statis+Title 26.80 81.39 32.09 79.64 26.93 78.87 40.72 85.56 24.60 86.61 30.89 79.72 10.99 82.32 6.60 80.58 13.65 82.60 9.49 81.54
Dict+Statis+Title 23.41 79.91 33.29 80.53 26.66 80.84 35.81 85.10 26.57 86.92 31.49 80.80 10.89 82.51 5.47 80.11 12.92 83.60 8.73 81.60
Dict+StatisT+Title 17.21 76.84 32.93 80.63 26.62 80.72 33.39 86.96 24.70 81.14 31.05 80.79 10.73 80.86 6.01 79.77 12.89 83.94 8.95 81.07

Table 12: Ablation study results (AlignScore-large / UniEval-overall) for different models regarding data used on
Pew and VisText datasets.

charts sampled for each chart type across area, bar,1324

line, pie, and scatter charts. Three graduate stu-1325

dents (Master’s and PhD) who research in natural1326

language processing were invited for the human1327

evaluation as volunteers. As participation was vol-1328

untary, no payment-related considerations apply.1329

We developed a webpage where human evaluators1330

were requested to select their preferred summary1331

for each pair of summaries of the provided chart.1332

The average total number of selections of each sum-1333

mary category serves as its human evaluation score.1334

An exemplary screenshot of an instance shown on1335

our webpage is shown in Figure 9. The evaluation1336

results indicate the effectiveness of using PoT in1337

generating statistics content for improving the sum-1338

mary quality in chart summarization compared to1339

rule-based statistics extraction.1340
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VLM
+Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
coh cons coh cons coh cons coh cons coh cons coh cons coh cons coh cons coh cons coh cons

deepseek-vl2-tiny
Title 86.91 48.42 80.57 55.94 85.51 52.75 85.14 65.36 84.82 71.25 82.08 55.48 87.91 69.66 82.15 60.05 87.84 69.94 85.08 65.03
Dict+Title 44.42 46.63 38.93 33.56 43.52 40.27 62.19 62.99 43.02 45.05 40.89 36.42 63.46 66.28 57.19 56.75 59.39 63.18 59.41 60.88
Statis+Title 51.95 46.01 54.43 53.74 51.70 50.76 60.55 54.46 48.75 49.90 53.82 52.86 64.43 64.64 59.53 57.99 61.14 60.35 61.24 60.35
Dict+Statis+Title 55.53 35.87 56.77 49.53 55.20 37.07 54.40 50.30 58.58 51.30 56.31 46.25 66.74 55.07 63.70 51.76 63.63 53.65 64.50 53.11
Dict+StatisT+Title 59.99 32.63 / / / / 59.90 58.31 46.11 45.69 / / 60.57 51.09 59.99 50.98 62.62 51.49 60.78 51.14

internVL-2.5
Title 81.15 55.46 81.70 60.16 84.77 55.98 88.64 67.23 89.11 59.54 82.74 59.24 90.54 62.16 88.90 60.34 89.56 62.71 89.50 61.41
Dict+Title 90.89 49.32 93.20 61.16 92.01 56.10 89.73 62.28 91.65 66.91 92.75 59.81 93.29 64.94 93.18 58.34 93.59 66.25 93.31 62.03
Statis+Title 90.60 49.78 90.00 62.09 89.55 59.69 82.30 56.17 93.64 70.09 89.71 61.23 93.19 63.93 93.68 64.66 93.61 64.87 93.53 64.51
Dict+Statis+Title 89.87 47.52 93.15 62.10 93.01 54.95 93.07 65.21 95.84 68.54 93.09 60.26 93.07 65.42 93.12 61.82 93.38 66.56 93.17 63.93
Dict+StatisT+Title 91.59 49.14 93.42 61.72 92.44 54.33 89.19 64.25 91.37 60.36 93.00 59.75 92.73 66.21 93.33 62.25 92.75 66.78 93.03 64.41

qwen2.5-VL-3B
Title 87.39 53.39 88.87 66.98 87.14 58.37 91.00 72.48 94.42 78.91 88.54 64.92 87.62 72.22 86.76 64.40 87.17 71.31 87.09 68.18
Dict+Title 81.76 55.36 83.62 61.79 85.71 58.47 86.86 77.68 91.17 73.52 84.30 61.46 84.63 67.65 83.51 61.10 83.93 67.96 83.91 64.53
Statis+Title 87.38 57.06 82.68 61.71 83.35 56.77 87.48 73.66 93.30 65.71 83.17 60.80 85.33 67.24 84.06 63.47 85.32 68.70 84.71 65.75
Dict+Statis+Title 87.18 51.65 84.73 60.84 86.28 57.91 85.89 76.50 92.69 68.51 85.28 60.51 85.63 67.22 84.26 61.95 86.83 69.25 85.25 65.14
Dict+StatisT+Title 80.49 52.85 84.69 61.54 85.87 58.36 88.08 78.51 82.55 65.05 85.01 61.16 83.15 67.21 84.35 60.77 86.46 71.47 84.53 65.09

Table 13: Ablation study results (UniEval-coherence / UniEval-consistency) for different models regarding data
used on Pew and VisText datasets.

VLM
+Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
flu rel flu rel flu rel flu rel flu rel flu rel flu rel flu rel flu rel flu rel

deepseek-vl2-tiny
Title 95.08 85.59 90.91 78.78 92.45 83.72 91.45 84.22 92.99 83.48 91.40 80.33 94.63 85.16 92.39 79.22 94.33 85.33 93.47 82.30
Dict+Title 81.05 42.11 85.37 31.23 85.85 37.21 83.11 59.55 79.72 41.02 85.30 33.82 72.96 59.07 75.20 51.85 71.72 54.22 73.76 54.37
Statis+Title 90.66 49.79 86.26 51.00 84.58 48.49 86.54 56.07 90.35 43.67 85.96 50.42 79.90 59.77 83.34 53.30 80.20 55.86 81.66 55.66
Dict+Statis+Title 92.76 53.44 85.63 55.13 86.96 53.77 83.35 52.61 83.83 55.49 85.98 54.69 88.18 63.66 87.31 58.60 87.48 59.61 87.59 60.21
Dict+StatisT+Title 91.16 57.35 / / / / 86.83 58.14 65.16 42.38 / / 85.35 57.51 83.39 55.26 86.14 58.99 84.58 56.77

internVL-2.5
Title 83.32 81.21 86.38 81.52 87.87 84.65 84.43 87.57 91.29 89.71 86.71 82.57 93.57 89.73 92.17 88.12 92.86 89.33 92.72 88.85
Dict+Title 95.01 90.50 94.25 92.83 94.27 91.66 94.59 88.39 94.88 90.88 94.29 92.35 95.10 92.18 94.12 92.02 95.02 92.67 94.60 92.22
Statis+Title 94.06 89.51 94.81 89.23 94.48 88.57 95.25 80.34 95.82 92.48 94.74 88.84 95.30 92.04 95.15 92.30 95.43 92.40 95.26 92.26
Dict+Statis+Title 94.65 88.82 94.61 92.83 94.25 92.67 95.41 92.24 95.38 95.25 94.56 92.74 95.18 92.26 94.26 92.08 95.07 92.33 94.71 92.19
Dict+StatisT+Title 94.53 91.27 94.17 92.95 94.60 91.97 93.76 87.71 94.88 91.03 94.28 92.50 95.27 91.68 94.08 92.22 95.01 91.60 94.62 91.93

qwen2.5-VL-3B
Title 95.15 86.34 93.70 87.65 93.40 86.26 95.07 90.19 95.46 92.74 93.71 87.41 95.06 84.77 93.11 84.42 94.73 84.32 94.03 84.49
Dict+Title 94.04 81.93 91.98 83.23 92.55 85.36 93.42 86.32 93.73 90.72 92.21 83.92 93.35 81.98 92.87 81.03 93.77 81.02 93.21 81.28
Statis+Title 93.91 87.23 92.16 82.01 92.50 82.87 93.78 87.31 94.45 92.99 92.34 82.58 93.69 83.03 93.08 81.69 93.85 82.52 93.43 82.25
Dict+Statis+Title 94.14 86.65 92.30 84.26 93.21 85.97 92.69 85.33 94.22 92.27 92.59 84.84 94.14 83.06 92.48 81.76 93.92 84.41 93.27 82.75
Dict+StatisT+Title 93.59 80.41 92.02 84.25 93.27 85.37 93.79 87.47 93.50 83.47 92.42 84.56 92.85 80.23 92.15 81.81 93.82 84.01 92.74 81.91

Table 14: Ablation study results (UniEval-fluency / UniEval-relevance) for different models regarding data used on
Pew and VisText datasets.
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Too long output to be cut off a part

’[’ was never closed (<string>, line 40)
’{’ was never closed (<string>, line 74)

Complex dictionary data structures to be read

unsupported operand type(s) for +: ’int’ and ’str’
unsupported operand type(s) for +: ’int’ and ’list’
unsupported operand type(s) for +: ’int’ and ’dict’
unsupported operand type(s) for +: ’int’ and ’NoneType’

Other specific data to be read

’int’ object has no attribute ’values’
invalid literal for int() with base 10: ’$30K-$99999’
unterminated string literal (detected at line 24) (<string>, line 24)
unterminated f-string literal (detected at line 44) (<string>, line 44)

Table 15: Error message instances from Python dictionary generation failure cases.
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Figure 7: Case study on the generated dictionary, PoT, and generated caption from the experiment trials.
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Figure 8: Comparison of failed generated Python code by the general-purpose LLM and the desired generated
Python code by the code-specialized LLM.

Figure 9: An exemplary screenshot of an instance for human evaluation on our webpage.
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