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Figure 1: Our Restore3D is among the first to simultaneously restore the shape and texture of
relatively complex and diverse objects, producing highly plausible and realistic results.

ABSTRACT

Restoring incomplete or damaged 3D objects is crucial for cultural heritage preser-
vation, occluded object reconstruction, and artistic design. Existing methods pri-
marily focus on geometric completion, often neglecting texture restoration and
struggling with relatively complex and diverse objects. We introduce Restore3D,
a novel framework that simultaneously restores both the shape and texture of bro-
ken objects using multi-view images. To address limited training data, we de-
velop an automated data generation pipeline that synthesizes paired incomplete-
complete samples from large-scale 3D datasets. Central to Restore3D is a multi-
view model, enhanced by a carefully designed Mask Self-Perceiver module with
a Depth-Aware Mask Rectifier. The rectified masks, learned through the self-
perceiver, facilitate an image integration and enhancement phase that preserves
shape and texture patterns of incomplete objects and mitigates the low-resolution
limitations of the base model, yielding high-resolution, semantically coherent,
and view-consistent multi-view images. A coarse-to-fine reconstruction strategy
is then employed to recover detailed textured 3D meshes from refined multi-
view images. Comprehensive experiments show that Restore3D produces visu-
ally and geometrically faithful 3D textured meshes, outperforming existing meth-
ods and paving the way for more robust 3D object restoration. Project Page:
https://iclr-subx.github.io/Restore3D/

1 INTRODUCTION

Recent advances in 3D generation and reconstruction techniques (Cheng et al., 2023b; Poole et al.,
2022; Lin et al., 2023; Li et al., 2023; Tang et al., 2024) have demonstrated impressive capabil-
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Masks

b. Rectified Masks Seg. Minus d.Generated Images Masks e. Generated Masks

Incomplete Images c. Incomplete
Masks Minus  (c & b)

2. Image Integration using Rectified Masks

Figure 2: The importance of masks. In single-view inpainting, user-provided masks define the
regions requiring inpainting. However, in a multi-view context, manually creating consistent masks
across all views is impractical. Directly inverting object masks to serve as inpainting masks in-
evitably causes issues (see Prob. 1 & 3). Moreover, manually adjusting masks based on depth
information (see Prob. 2) is labor-intensive and time-consuming. As shown in the right figure (a),
our mask self-perceiver can automatically indicate the regions that need to be completed. By lever-
aging both preserved and generated masks (d & e), our approach retains the incomplete object’s
patterns, ensuring accurate and consistent multi-view inpainting. These masks are also used for the
image enhancement stage to yield high-resolution restored images (see Fig. 5).

ities, paving the way for innovative applications across diverse fields. Despite these strides, a
significant gap remains in the comprehensive restoration of both shape and texture for broken or
incomplete 3D objects. This challenge is particularly relevant for some applications such as cul-
tural heritage preservation, occluded objects reconstruction, and artistic creation, where high-fidelity
restoration/completion is crucial.

In this study, we aim to develop a robust framework that can simultaneously restore the shape and
texture of incomplete 3D objects while handling complex and diverse data types. Key challenges
in achieving this goal include: i) Data Collection. Existing 3D datasets (Chang et al., 2015; Dai
et al., 2017; Rao et al., 2022) focus primarily on shape completion, often neglecting the equally
critical aspect of texture restoration. Furthermore, these datasets typically contain simple objects.
Creating a diverse, high-quality dataset remains labor-intensive and time-consuming. ii) Complexity
of Object Completion. Addressing the intricacies of restoring complex and general objects requires a
robust framework, as simpler methods typically work only for limited categories of simple objects,
but when applied to more complex cases, they often produce inconsistent or incomplete results.
The synthesized regions fail to align with the original parts, or even worse, parts of the original
structure are overwritten or discarded during the restoration process. iii) Consistency Preservation of
Broken Parts. Incomplete objects may exhibit varying degrees of degradation in shape and texture.
Therefore, preserving the integrity of original components, including consistent color, style, and
structural coherence, is crucial for realistic restoration.

To address these challenges, we propose several complementary solutions: i) Synthetic Data Gen-
eration. To overcome the limitations of existing datasets, we propose to synthesize paired broken
and complete data. ii) Leveraging Foundation Models. Recent advancements in foundation mod-
els (Hong et al., 2023; Shi et al., 2023; Rombach et al., 2022; Oquab et al., 2023; Kirillov et al., 2023;
Yang et al., 2024) have demonstrated exceptional generalizability, due to their extensive architec-
tures, large-scale datasets, and adaptability through fine-tuning. We incorporate foundation mod-
els to provide prior knowledge, enabling our framework to effectively handle complex and diverse
cases. iii) Task-Specific Structures. While foundation models offer valuable priors, task-specific
components are necessary to tailor their application. Motivated by studies (Zhang et al., 2023b; Ye
et al., 2023; Mou et al., 2023), we guide these models toward optimal probability distributions with
specialized modules, achieving more accurate and contextually appropriate restorations.

Concretely, we first produce an automatic pipeline to construct paired data, which uses the Boolean
modifier in Blender. It offers diverse and large-scale data that are difficult to acquire manually.
Second, we propose an innovative framework named Restore3D, comprising two key components,
i.e., multi-view image inpainting and reconstruction. There are several foundational models (Shi

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2023; Liu et al., 2023a; Xu et al., 2024) in these two components that we can leverage prior
knowledge to further handle more diverse incomplete objects effectively. However, simply apply-
ing foundational models to multi-view images introduces several challenges, as shown in Fig. 2,
including: 1) View Inconsistency: Generated results often differ across views, leading to visual in-
coherence. 2) Depth Understanding: Existing models often lack robust depth perception, resulting
in failures to recognize occlusions and spatial relationships. 3) Inpainting Position Perception: Ac-
curately identifying regions requiring inpainting can be difficult, especially for large masks.

To address these issues, we propose a multi-view base model combined with a specially de-
signed mask self-perceiver module incorporating a depth-aware mask rectifier. This module
autonomously perceives and reconstructs missing components, preserving the integrity of original
broken regions and ensuring consistent results across multiple views. Additionally, by leveraging
the preserved and generated masks predicted by the self-perceiver, we can develop an image in-
tegration and enhancement pipeline (see Fig. 2 & 5), yielding high-quality and consistent results.
To convert high-quality multi-view images into 3D objects, we employ large reconstruction mod-
els (LRMs)(Hong et al., 2023; Xu et al., 2024), which offer efficient single- and multi-view object
reconstruction capabilities. To overcome the limitation of coarse outputs from these models, we
adopt a coarse-to-fine refinement approach. Leveraging recent advances in surface normal predic-
tion models(Bae & Davison, 2024; Ye et al., 2024), we inject normal priors to progressively enhance
geometric quality, and refine texture based on updated geometry by using enhanced images. This
ensures that our refined shapes and textures maintain high fidelity, even for complex scenarios.

We conduct extensive experiments on Objaverse (Deitke et al., 2023), GSO (Downs et al., 2022),
Breaking Bad Dataset (Sellán et al., 2022), Fantastic Breaks (Lamb et al., 2023) and OmniObject3D
(Wu et al., 2023) to validate the quality of inpainting and reconstruction. The results demonstrate
that our inpainting method significantly outperforms previous approaches (Lugmayr et al., 2022;
Zhang et al., 2023b; Rombach et al., 2022), e.g., ↑ 13 in PSNR compared to Nerfiller (Weber et al.,
2024). By carefully designing a mask self-perceiver, our method can alleviate view inconsistency,
understand depth concepts, and capture inpainting regions, achieving consistent structure and tex-
ture styles without requiring user-provided masks to indicate inpainting regions. For reconstruction,
our approach enhances both geometric and texture quality as shown in Fig. 1, indicating that our pro-
posed framework is capable of producing complete shapes and textures with relatively high fidelity
compared to baseline methods (He & Wang, 2023; Xu et al., 2024; Xiang et al., 2024). Overall, our
contributions are summarized as follows,

• To the best of our knowledge, we are among the first to explore the completion of relatively com-
plex shapes and textures. To support this task, we introduce an automated data synthesis pipeline
that generates paired incomplete and complete shapes and textures, providing a rich source of
training data named RestoreIt-3D.

• We propose Restore3D, a novel framework to tackle shape and texture completion through a
combination of multi-view image inpainting and reconstruction. In multi-view image inpainting,
we design a mask self-perceiver with a depth-aware mask rectifier for autonomous perception and
reconstruction of missing components, ensuring preservation of original features. Moreover, we
introduce an image integration and enhancement pipeline to restore fine details. We refine coarse
meshes by using normal priors and enhanced images.

• Comprehensive experiments validate the effectiveness of Restore3D, demonstrating its ability to
produce complete and high-quality textured meshes.

2 RELATED WORK

2D Inpainting and Generation models 2D inpainting methods are designed to complete missing
content in an image using a given image and mask. LaMa (Suvorov et al., 2021) utilizes fast Fourier
convolutions, a large receptive field, and extensive training masks to effectively fill large missing
areas, producing plausible inpainting results. Recent advancements in image generation (Rombach
et al., 2022; Zhang et al., 2023b) have demonstrated superior performance and can be adapted for
inpainting tasks with high-quality outcomes. RePaint (Lugmayr et al., 2022) modifies the diffu-
sion generation process, allowing it to be used for inpainting. NeRFiller (Weber et al., 2024) uses
grid priors to make the 2D diffusion model produce more consistent multi-view inpainting results.
Instant3Dit (Barda et al., 2025) employs a multi-view inpainting model combined with a large recon-
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Figure 3: An overview of multi-view image inpainting. We carefully design a mask self-perceiver
based on a multi-view diffusion model that composes the image and text features with a spatial
mask predicted by a depth-aware mask rectifier, therefore the model can automatically perceive the
missing part and further generate it meanwhile preserving the original parts.

struction model to enable rapid editing of 3D objects. However, these methods require a user-defined
mask to specify the regions that need inpainting.

3D Generation and Completion Recent 3D generation models (Wang et al., 2023b; Lin et al., 2023;
Chen et al., 2023c) showcase promising results. DreamFusion (Poole et al., 2022) and SJC (Wang
et al., 2023a) are first proposed to generate 3D assets from text using the strong 2D text-to-image
generation model (Rombach et al., 2022). As 2D diffusion models easily lead to 3D inconsis-
tency, some works (Liu et al., 2023a; Zhou & Tulsiani, 2023; Tang et al., 2023; Szymanowicz et al.,
2023; Tewari et al., 2023; Xu et al., 2023) focus on consistent multi-view image diffusion models.
MVDream (Shi et al., 2023) uses 3D self-attention and camera embedding to achieve multi-view
text-to-image generation. Considering the time-consuming nature of SDS-based methods, there are
some works (Face, 2023; Long et al., 2022; Li et al., 2023; Long et al., 2023; Tang et al., 2024;
Wu et al., 2024a; Lu et al., 2024) that use multi-view diffusion models and reconstruction models.
Another line for 3D generation is that directly train 3D generative models using 3D representations
like point cloud (Nichol et al., 2022; Zeng et al., 2022; Luo & Hu, 2021), meshes (Liu et al., 2023b;
Gao et al., 2022), neural fields (Kim et al., 2023; Anciukevičius et al., 2023; Müller et al., 2023; Jun
& Nichol, 2023; Zhang et al., 2023a; Erkoç et al., 2023; Chen et al., 2023b). In addition to 3D gen-
eration, recent 3D shape completion works (Kasten et al., 2023; Zhang et al., 2021; Dai & Nießner,
2019; Mittal et al., 2022; Pan et al., 2021; Cheng et al., 2023b; Chu et al., 2023) usually use different
types of 3D representations and networks to model global and local structures, e.g., point cloud, sdf,
GAN, VAE, and diffusion models. However, they all learn models on small-scale datasets, therefore
the modeling capacity is limited compared with some 3D generation models trained on large-scale
datasets (e.g., Objavese (Deitke et al., 2023)). Moreover, these works do not consider the texture.

Texture Generation. Several texture generation works (Richardson et al., 2023; Cao et al., 2023;
Chen et al., 2023a) use an iteratively texturing strategy based on the pre-trained depth-to-image
diffusion models, yielding high-quality texture. However, these methods tend to error lighting in-
herited from training data. Paint3D (Zeng et al., 2023) proposes a shape-aware UV Inpainting and a
shape-aware UVHD diffusion model to alleviate this situation. There is another line to learn texture.
Texturify (Siddiqui et al., 2022) employs texture maps on the surface of meshes and uses Style-
GAN (Karras et al., 2019) to predict texture. Mesh2Tex (Bokhovkin et al., 2023) incorporates an
implicit texture field for texture prediction. These methods are lacking in global information model-
ing. PointUV (Yu et al., 2023) first trains a diffusion model specifically for mesh texture generation,
and the proposed coarse-to-fine framework allows it to enjoy the efficiency of 2D representation
while enhancing 3D consistency. Other approaches like AUV-net (Chen et al., 2022), LTG (Yu
et al., 2021), and TUVF (Cheng et al., 2023a) learn to generate UV-Maps for 3D shapes. However,
they typically focus on the texture generation starting from a complete shape.
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3 METHOD

3.1 DATA PREPARATION & TASK DEFINITION

Motivation. We browse the datasets of related tasks and find that the existing datasets (Chang et al.,
2015; Deitke et al., 2023; Collins et al., 2022) are not sufficient to handle the shape and texture
completion of broken objects, which suggests the need to construct specific broken and complete
paired data. However, collecting large-scale paired data in the real world is time-consuming and
labor-intensive. Thus we propose to synthesize broken and complete paired data.

Data Collection. We select the recent dataset, G-objaverse (Qiu et al., 2023) that has more diverse
and general objects, and sample about 83K 3D objects from this dataset.

Synthesis Pipeiline. Specifically, we propose an automatic data processing technique using Boolean
operations (i.e., Difference and Intersect) of Blender. Additionally, we equip the dataset with text
captions using Cap3D (Luo et al., 2023). Subsequently, we normalize and merge the prepared 3D
data. The use of Boolean operations requires the introduction of another object. Therefore, we use
an ico sphere or cube with random size and rotation angle and then randomly place them inside the
3D bounding box of the prepared 3D data to ensure that the objects can be realistically segmented.
After that, it is essential to render this processed data in the format of RGB images to facilitate
model learning. We execute the rendering at a resolution of 256×256. The camera settings include
a randomly chosen elevation between -10◦ and 30◦. Additionally, the azimuth values are uniformly
rendered from 0◦ to 360◦ with a randomly sampled start view, producing a total of 32 images per
object. The Fov of the camera is randomly from 35◦ to 45◦ and the distance is always 2.

Task Definition. The 3D object restoration task aims to reconstruct a complete 3D mesh with texture
from multi-view images of a damaged object. Given multi-view images {I1, I2, . . . , In} capturing
a damaged object from different angles and corresponding camera parameters (Ki, Ei) , the model
will output a complete 3D mesh M = (V, F, T ): Vertices, Faces, and Textures.

3.2 MULTI-VIEW IMAGE INPAINTING

Motivation. Traditional single-view image inpainting methods (Suvorov et al., 2021; Rombach
et al., 2022; Zhang et al., 2023b) rely on the user-provided masks that indicate the areas to be in-
painted. While this approach works well in the context of single-view images, it presents significant
challenges when extended to multi-view contexts as shown in Fig. 2. 1. View inconsistency. In a
multi-view scenario, the user is required to manually provide a mask for each of the views (e.g., four
views in our case). This also introduces the risk of errors, as the mask needs to be accurately aligned
across different perspectives to maintain 3D consistency. 2. Uncertainty Regarding Inpainting Ar-
eas. These models cannot autonomously perceive the regions that require inpainting when a large
mask is applied. Additionally, they do not incorporate depth perception, limiting their understand-
ing of occlusion and spatial relationships. To address these challenges, we propose an innovative
approach that enables the model to ensure view consistency and self-perceive the mask. Concretely,
we design the following two parts.

Mask Self-perceiver. We propose a mask self-perceiver module based on a multi-view image gen-
eration model as shown in Fig. 3. It has two projectors that consist of transformer-based blocks
and camera modulation layers, which project the depth and image features (fd, fr) extracted from
CLIP (Radford et al., 2021) to the diffusion feature space. The camera modulation helps the model
to discriminate the feature under different cameras. Then these projected features (pd, pr) will be
fed to the respective cross-attention blocks as key and value (Kd,Kr,Vd,Vr). The process can be
formulated as follows, where f∗ can be depth or image features, p∗ is the projected features of them.

p∗ = Proj(f∗, c) = Trans(Mod(f∗, c)) (1)

s∗ = Softmax(
QKT

∗√
d

)V∗ (2)

Similarly, s∗,K∗ and V∗ are the results of p∗ via cross-attention and linear layers. Q originates
from the pre-layer features in the diffusion model.

Depth-aware Mask Rectifier. Since depth effectively captures the incomplete shape while disre-
garding texture information, the rectifier can focus solely on identifying the regions that require
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Figure 4: Geometry and Texture Refinement. We separately refine the geometry and texture of
the coarse results inferred by LRMs (Xu et al., 2024).

generation and preservation. Moreover, the depth can help the model understand the spatial relation
and occlusion. Specifically, This module leverages depth features obtained after the cross-attention
layer, along with incomplete masks, and inputs them into a mask rectifier. The rectifier then outputs
a mask indicating where needs to be generated i.e., leveraging the text features and where needs to
be preserved i.e., using the image features. The process can be formulated as follows,

Mr = Sigmoid(Conv(CBAM(Conv[sd,Mo]))) (3)

fn = (1−Mr)st +Mrsr (4)

Conv is convolution layers, CBAM is Convolutional Block Attention Module (Woo et al., 2018).

Training objectives Given training samples, including incomplete images I, depth images D, in-
complete masks M, text prompts P and camera embedding C, the multi-view inpainting loss can be
formulated as follows,

L = min
θ

Ez,ϵ∼N (0,I),t∥ϵ− ϵθ(zt; t, I,D,M,P, C)∥22. (5)

3.3 IMAGE INTEGRATION AND ENHANCEMENT

Motivation. The input resolution of multi-view model is 256 x 256, which is subsequently en-
coded to 32 x 32 using a Variational Autoencoder. As a result, local details are compressed, leading
to a loss of clarity in both the original and generated regions of the image. This compression
often causes the inpainted part to be unclear, and the reconstructed image may lose fine details
that are essential for achieving high-quality results. Moreover, high-quality images will help the
next reconstruction stage to give accurate and detailed textured meshes. To address these chal-
lenges, we propose a pipeline that enables the model to restore local details and preserve the
original patterns. Enhancement Models. We explore two types of enhancement models. Real-
ESRGAN (Wang et al.) is effective at preserving the patterns of low-resolution images with min-
imal misalignment, making it ideal for recovering the overall structure. ControlNet-Tile (Zhang
et al., 2023b) offers advanced capabilities for enhancing image details, but will modify the origi-
nal pattern when a high denoising step is used. Based on these properties, we design the follow-
ing enhancement pipeline. 1. Input resolution alignment using Real-ESRGAN. Before integrating
with the original images, we need to align the resolution. Using Real-ESRGAN effectively pre-
serves the overall structure and does not introduce content that is not related to the original style.

ControlNet
Tile

&Blender
2x SR

512 x 512256 x 256 512 x 512 1024 x 1024

Integration
1x, 2x

or 4x SR
（Optional）

Figure 5: Image Integration and Enhancement
Pipeline using Rectified Masks.

2. Integration of generated and original parts
using rectified masks. As depicted in Fig. 5,
this procedure infers the preserved and gener-
ated masks used to compose the images, which
preserves the original parts as soon as possi-
ble. However, this procedure inevitably leads
to some artifacts, e.g., inconsistent color tran-
sitions. To address these artifacts, we lever-
age the mentioned property of ControlNet-Tile
to enhance the images. 3. Image harmoniz-
ing using ControlNet-Tile with a blending strat-
egy. Directly using ControlNet-Tile will alter
the original pattern and destroy the integration step. Inspired by previous works (Avrahami et al.,
2022; Lugmayr et al., 2022), we incorporate a mask blending technique within the diffusion pro-
cess. This technique helps maintain the original patterns, eliminates any gaps caused by integration
in image space, and enhances the image quality.
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Figure 6: Visual comparison with inpainting methods.
3.4 MULTI-VIEW IMAGE RECONSTRUCTION

Fast Reconstruction using Large Reconstruction Models (LRMs). Recent advancements in
LRMs (Hong et al., 2023; Tang et al., 2024; Xu et al., 2024), which leverage sophisticated architec-
tures, large-scale datasets, and extensive model parameters, have demonstrated impressive capabil-
ities in 3D object reconstruction from single or sparse-view images. These models are particularly
well-suited for tasks requiring fast mesh reconstruction. However, while LRMs can produce initial
reconstructions efficiently, the results are often coarse and lack the fine details necessary for high-
quality 3D representations. To address this limitation, we adopt a coarse-to-fine schema and refine
the shapes and textures of the outputs generated by LRMs, separately, as shown in Fig. 4.

Geometry Refinement using Normal Prior. A key component in optimizing shape structure is to
obtain high-quality surface normals. Recent surface normal estimation methods (Ye et al., 2024)
have demonstrated the ability to predict relatively accurate normals for in-the-wild monocular im-
ages or videos. Therefore, we can employ an off-the-shelf normal estimation model to provide
normal priors and then use it to optimize the shape structure of 3D objects. Since these models
are primarily trained on monocular images or videos, the predicted normals are typically in camera
space. Thus we need to convert these normals into world space using camera extrinsic parameters.
Specifically, we select StableNorm, a model that accepts coarse rendered normals and RGB images
as inputs to predict refined normal outputs. The consistency of the rendered normals contributes to
the stability and accuracy of the predicted normals, allowing for more precise geometry refinement.

Texture Refinement using High-quality Images. Since the current shape differs from the coarse
shape, the original texture no longer aligns with the updated geometry. Thus we propose to learn
the textures that better match the optimized shape. Concretely, we can use Xatlas to obtain UV
coordinates, enabling us to back-project the colors from the inpainted images onto the UV textures.
After that, we treat the UV textures as parameters and use the high-quality images to optimize it.

Training Objectives. We apply a normal loss Lnormal based on the rendered normals In and the
target normals În. Additionally, we apply a mask loss Lmask to ensure that the optimization regions
are correctly aligned. The loss function is defined as follows,

Lshape = Lnormal + Lmask = ∥In − În∥22 + ∥M− M̂∥22. (6)

To optimize the texture, we use a RGB loss Lrgb on the rendered images Irgb and enhanced images
ˆIrgb. The mask loss Lmask is also applied. Moreover, the SSIM Lssim loss is introduced to improve

the texture quality. The loss functions are defined as follows, where λ is a weight parameter.

Ltex = Lrgb + Lmask + λLssim = ∥Irgb − ˆIrgb∥22 + ∥M− M̂∥22 + λSSIM(I, Î), (7)

4 EXPERIMENTS

Dataset. For model training, we sample approximately 83K data from the G-objaverse dataset
(Qiu et al., 2023) and process them using our proposed pipeline. For model testing, we sample
approximately 350 data from the GSO (Downs et al., 2022), Omniobject (Wu et al., 2023), and
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Table 1: Comparison with inpainting and reconstruction methods. △ means using Depth-
Anything (Yang et al., 2024) to obtain the depth images. ♣ means using MV-adapter(Huang et al.,
2024). ♡ means using our model’s predicted masks as inpainting masks.

(a) Inpainting.

Method PSNR ↑ LPIPS ↓ FID ↓ SSIM ↑

Repaint 10.55 0.31 69.57 0.76
SD 12.58 0.22 61.15 0.83
ControlNet 10.66 0.30 69.91 0.76
Pix2gestalt ♣ 16.43 0.21 75.08 0.86
NeRFiller 12.03 0.25 65.20 0.82
Instant3dit 19.40 0.10 48.03 0.94
Instant3dit ♡ 22.37 0.07 36.08 0.95
Ours △ 25.29 0.07 32.05 0.95
Ours 25.50 0.06 31.82 0.95

(b) Reconstruction.

Method PSNR ↑ LPIPS ↓ CD ↓ F-Score ↑

Open-LRM 16.90 0.15 0.011 0.179
InstantMesh 20.60 0.11 0.006 0.321
Unique3D 22.00 0.14 0.005 0.306
Direct3D - - 0.006 0.297
Trellis 21.78 0.12 0.005 0.335
Hunyuan3D-2 21.31 0.14 0.006 0.346
Amodal3R 19.37 0.15 0.008 0.248
Ours 23.35 0.09 0.005 0.389

Table 2: Generalization Ability.
(a) Fantastic Breaks Dataset.

Method PSNR ↑ LPIPS ↓ SSIM ↑

SD 12.59 0.72 0.40
Controlnet 15.63 0.55 0.56
Nerfiller 18.94 0.52 0.81
Instant3dit 23.11 0.14 0.96
Ours 26.91 0.09 0.97

(b) Breaking Bad Dataset.

Method PSNR ↑ LPIPS ↓ SSIM ↑

SD 12.02 0.74 0.53
ControlNet 14.50 0.59 0.71
NeRFiller 17.66 0.52 0.79
Instant3dit 22.27 0.15 0.95
Ours 25.09 0.10 0.95

Objaverse (Deitke et al., 2023) datasets. We also test our model on the Breaking Bad Dataset (Sellán
et al., 2022) and Fantastic Breaks (Lamb et al., 2023), which include physically simulated and real-
world broken objects, to evaluate its generalizability.

Metrics. To assess image quality, we choose Peak Signal-to-Noise Ratio (PSNR), Frechet Inception
Distance (FID), Learned Perceptual Image Patch Similarity (LPIPS), and Structural Similarity Index
Measure (SSIM). We evaluate geometry quality using Chamfer Distance (CD) and F-scores.

4.1 INPAINTING RESULTS.

Baselines. We compare our method with single-view image inpainting, i.e., Repaint(Lugmayr et al.,
2022), Stable-Diffusion (Rombach et al., 2022), Controlnet (Zhang et al., 2023b), i.e., Pix2gestalt
+ MV-adater (Ozguroglu et al., 2024; Huang et al., 2024) and multi-view inpainting methods, i.e.,
Nerfiller (Weber et al., 2024) and Instant3dit (Barda et al., 2025). Note that we do not use the image
integration and enhancement pipeline for a fair evaluation.

Qualitative Comparison. As shown in Fig. 6, the results demonstrate that our model produces
plausible and coherent inpainting outcomes. Previous methods require user-provided masks to guide
the model in generating missing parts. When given a relatively large mask, these methods struggle
to capture the inherent structure of the objects, leading to less accurate and coherent inpainting.

Input Open-LRM OursInstantMesh Unique3D Trellis

Figure 7: Visual comparison with reconstruction models.

In contrast, our approach does not
require predefined inpainting masks.
It autonomously perceives and recon-
structs missing regions, capturing the
underlying structure of the object.
This capability allows our method to
produce high-quality and structurally
consistent inpainting results.

Quantitative Comparison. As illus-
trated in Table 1a, we observe the fol-
lowing: 1) Our approach achieves the
best performance in restoring shape
and texture. 2) When applying depth images predicted by Depth-Anything (Yang et al., 2024),
our method yields results comparable to those obtained with ground truth depths. 3) The compared
methods produce noticeably inferior results in terms of inpainting quality.
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Table 3: Ablation studies for multi-view inpainting and reconstruction.
(a) Inpainting.

Method PSNR ↑ LPIPS ↓ SSIM ↑

IF 22.65 0.14 0.90
IF + Conv 26.53 0.08 0.94
IF + Conv + DMR 29.44 0.06 0.95

(b) Reconstruction.

Method PSNR ↑ LPIPS ↓ CD ↓ F-Score ↑

Baseline 20.60 0.11 0.006 0.321
GR - - 0.005 0.389
GR + TR 23.35 0.09 0.005 0.389

Generalization Ability. 1. Physically simulated broken objects. As shown in Fig. 1 and Table 2b,
we further test our model on the Breaking Bad Dataset (Sellán et al., 2022), synthesized by a phys-
ically based method that simulates the natural destruction process of geometric objects. 2. Real-
world broken objects. As shown in Fig. 1 and Table 2a, we also evaluate our model on Fantastic
Breaks (Lamb et al., 2023). These experiments demonstrate the generalization ability of our model
to both unseen real-world scenarios and physically simulated cases, validating its robustness and
practical applicability, despite being trained solely on synthetic data.

4.2 RECONSTRUCTION RESULTS.

Baselines. We compare our method against both single-view and multi-view LRMs, including LRM
(He & Wang, 2023; Hong et al., 2023) and InstantMesh (Xu et al., 2024), Unique3D (Wu et al.,
2024a). We also compare our method with image-to-3D generation methods, Direct3D (Wu et al.,
2024b), and Trellis (Xiang et al., 2024). For single-view baselines, we input the front-view image.
All of the methods use our inpainted and enhanced images as input for a fair comparison.

Quantitative & Qualitative Comparison. As shown in Table 1b, our method achieves superior
rendered image quality and geometry accuracy, with a substantial improvement over baseline meth-
ods. In Fig. 7, it is evident that our approach delivers clearer details and the most accurate geometry
among the compared methods. Training time. Our approach is highly efficient, requiring 20 sec-
onds per object for geometry and texture refinements.

4.3 ABLATION STUDY

Multi-view Inpainting. We conduct ablation studies on the proposed multiview Inpainting module
in the following components: 1) IF. Only inputting incomplete images into the cross-attention layers.

w. TR w/o. TR

w. GR w/o. GR
Input IF

IF + Conv IF + Conv
+ DMR

a. Geometry and Texture Refinement
b. Designed Module

in Multi-view Inpainting.

Figure 8: Visualization of ablation studies.

2) Conv. Concatenating noise and incomplete im-
ages to a learnable convolutional layer. 3) DMR.
Adding the designed Depth-aware Mask Rectifier.
As shown in Table 3a, the results improve progres-
sively with each added component, and using all de-
signed components achieves the highest results. As
shown in Fig. 8b, 1) IF Only: the model captures the
general style of the object but lacks an understanding
of spatial relationships and structure. 2) IF + Conv:
This enables the model to capture spatial position-
ing and understand object structure. However, it is
still prone to color inaccuracies, especially in areas like the head (blended with error black color).
Additionally, the region that needs to be preserved is changed. 3) IF + Conv + DMR: This allows
the model to improve its ability to handle occlusions and spatial relationships, producing the best
inpainting quality, with coherent colors and well-preserved spatial structure.

Reconstruction. We evaluate the impact of the following components: 1) Geometry Refine-
ment (GR), and 2) Texture Refinement (TR). In Table 3b and Fig. 8a, incorporating GR leads to
substantial improvements in geometry quality. TR improves the visual quality of rendered images.

5 CONCLUSION

In this paper, we propose a novel framework named Restore3D, consisting of multi-view image
inpainting and reconstruction, to simultaneously complete both the shape and texture of broken
3D objects. To facilitate this task, we develop an automated data processing pipeline that collects

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

pair-wise data from a large-scale dataset (Deitke et al., 2023). In the multi-view image inpainting,
we design a mask self-perceiver with a depth-aware mask rectifier. This component autonomously
identifies and reconstructs missing regions while preserving the original patterns. To address the low
resolution resulting from the base model (Shi et al., 2023), we implement an image integration and
enhancement pipeline, allowing for seamless integration and detail enhancement by learned masks.
For the reconstruction stage, we employ an LRM to quickly generate a coarse result, followed by
separate geometry refinement using normal priors and texture refinement using enhanced images.
Through this designed framework, our model produces coherent completions of broken objects as
illustrated in Fig. 1. Moreover, our designed framework can also handle simple 3D object editing
and occluded objects.
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A APPENDIX
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a. Data proportion of broken rates 

Our test data (GSO, OmniObject3D, Objaverse)

b. Performance.

a. Data proportion of broken rates 

Fantastic Breaks Dataset. (Real-world Data)

b. Performance.

a. Data proportion of broken rates 

Breaking Bad Dataset. (Physically-simulated Data)

b. Performance.
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Figure 9: Broken Rate vs. Performance.

A.1 FRAGMENT-SIZE DISTRIBUTION VS. PERFORMANCE

We present the fragment-size distribution and corresponding performance on our synthetic test
datasets (GSO, Objaverse, OmniObject3D) and unseen datasets (Breaking Bad Dataset, Fantastic
Breaks) in Fig. 9. Across all datasets, performance consistently improves as the missing region be-
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comes smaller. This is expected, as smaller missing regions provide the model with richer contextual
information, enabling more accurate inference of the missing shape.

Moreover, when the missing region becomes very large, the network gains more flexibility in gen-
erating plausible content. In such cases, the output may deviate from the original ground truth, but
this discrepancy should not necessarily be considered an ”error.” This is because extremely large
missing regions often provide little or no contextual guidance, leading to inherently ambiguous re-
constructions.

A.2 MORE DETAILS ABOUT IMAGE INTEGRATION AND ENHANCEMENT

a. Bilinear b. Real-Esrgan c. Controlnet-tile (low strength)

d. Real-Esrgan
+ Image integration

e. Real-Esrgan
+ Image integration

+ Controlnet-tile (w/ mask)

d. Real-Esrgan
+ Image integration

e. Real-Esrgan
+ Image integration

+ Controlnet-tile (w/ mask)

f. Real-Esrgan
+ Image integration

+ Controlnet-tile (w/o mask)

c. Controlnet-tile
(high strength)Input

Figure 10: Visualization of Image Integration and Enhancement

Table 4: Ablation studies for Image Integration and Enhancement.

Method (256px to 1024px) PSNR ↑ LPIPS ↓ SSIM ↑

Baseline (Bilinear Upsampling) 26.83 0.10 0.97
4x Real-ESRGAN 26.59 0.08 0.97
4x Controlnet-tile 26.56 0.08 0.96
Real-ESRGAN + Image Integration 27.13 0.06 0.97
Real-ESRGAN + Image Integration + Controlnet-tile (w/ mask blending) 26.94 0.06 0.97
Real-ESRGAN + Image Integration + Controlnet-tile (w/o mask blending) 26.55 0.07 0.97

We conduct a more detailed ablation study as shown in the Table 4. The visualization results are
shown in Fig. 10. We observed that: 1. Solely applying enhancement methods does not improve
the quantitative metrics, but can improve visual quality. 2. The performance gains mainly originate
from the image integration, which also validates that our rectified mask well indicates the regions
requiring inpainting or preservation.
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Overall, the organization of this stage is flexible. The key ideas are: 1. Use ControlNet-Tile with
a mask-blending strategy to eliminate color inconsistencies during image integration. 2. Upsample
the image to the desired resolution using Real-ESRGAN, either before or after the integration step.

Input
(Amodal3R)

Input Mask 
(Amodal3R)

Amodal3R Ours

Figure 11: Comparison with Amodal3R.

A.3 COMPARISON WITH AMODAL3R.

As shown in Figure 11, We find that the results of Amodal3R often misalign the conditioned images
and masks. Furthermore, we notice that the base model used by Amodal3R (Trellis) also faced
similar issues with misalignment and inconsistencies, which in turn affected its ability to generate
accurate completions.

Input GTOursDiffEdit Input + Ours 

Figure 12: Comparison with DiffEdit.
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A.4 COMPARISON WITH DIFFEDIT.

As shown in Figure 12, our method significantly outperforms DiffEdit in terms of mask quality.
DiffEdit relies solely on the difference between the noise-conditioned and unconditioned text to infer
the mask. However, this approach is suboptimal because it does not account for explicit image and
depth information, which are crucial for guiding the model to generate more accurate, contextually
appropriate masks in the object restoration task. In contrast, our method incorporates both the image
and depth as conditions, significantly improving the quality of mask generation.

Input Hunyuan3D-2 Ours

Figure 13: Comparison with Hunyuan3D-2.

A.5 COMPARISON WITH HUNYUAN3D-2.

The shape-generation and texture-generation models in Hunyuan3D-2 are very large, so we use
the fast version for inference. Even with the fast version, generating meshes still takes a long
time—for example, shape generation alone often requires several minutes, while the texture-
generation pipeline typically takes more than 30 minutes. In contrast, our model produces a fully
textured mesh in only about one minute. As shown in Figure 13, the results of our model better align
with the input images than Hunyuan3D-2.

A.6 THE ROLE OF COARSE METHES INFERRED BY LRMS

Without LRMs, a typical alternative is to start from a simple primitive (e.g., a sphere) and opti-
mize its shape using our geometry losses. As reported in Table 5, LRMs provide a much better
initialization, leading to faster convergence and improved reconstruction quality.

Table 5: The role of coarse methes inferred by LRMs.

Method CD ↓ F-score ↑

Sphere + geometry optimization 0.02 0.197
LRMs + geometry optimization 0.005 0.389
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A.7 COMPUTE BUDGETS.

As shown in Table 6, our model is computationally efficient, runs on modest GPU memory (single
NVIDIA RTX 3090 GPU (24GB)), and delivers high-quality results.

Table 6: Compute budgets.

Method time

Inpainting 5s
Integration and enhancement 13s
Coarse mesh reconstruction 6s
Geometry and texture refinement 20s
Total 44s

A.8 VIEW-CONSISTENCY SCORING. & USER PREFERENCES.

As shown in Table 7, we use MEt3R to measure the multiview inpainted images. The table shows
that our model outperforms other methods and is very close to the Ground Truth, further validating
its effectiveness. We also provide user studies to measure the reconstructed meshes as shown in
Table 8. 5 is the best score, 1 is the worst score. The results show our model outperforms other
methods.

Table 7: View-consistency scoring.

Method MEt3R

SD 0.44
Controlnet 0.53
Nerfiller 0.50
Pix2gestalt 0.41
Instant3dit 0.34
Ours 0.32
Ground Truth 0.29

Table 8: User preferences.

Method geometry texture

Open-LRM 1.9 2.1
InstantMesh 3.2 3.2
Unique3D 3.3 3.5
Direct3D 3.0 -
Trellis 3.1 3.0
Hunyuan3D 3.5 3.6
Ours 3.9 4.0

A.9 COMPARISON WITH MVINPAINTER.

We include results for MVInpainter as shown in Table 9. Similar to other baselines, it is unable to
accurately perceive the regions that require inpainting. This limitation is reasonable, as MVInpainter
is specifically designed for object removal, which is inherently different from our task. Object
removal typically involves eliminating an entire object, whereas our task focuses on completing
partial regions of an object, leading to fundamentally different requirements and challenges.

A.10 HYPERPARAMETERS & ROBUSTNESS

Even though our pipeline includes a multi-stage process, our pipeline does not involve a large num-
ber of hyperparameters, making it relatively insensitive to hyperparameter choices.
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Table 9: Comparison with MVInpainter.

Method PSNR LPIPS SSIM

MVInpainter 11.12 0.29 0.79
Ours 25.50 0.06 0.95

Across all experiments, we do not perform any instance-specific or object-specific hyperparameter
tuning; instead, we simply adopt the default or officially recommended settings. This design choice
enhances both the practicality and reproducibility of our method. Furthermore, the experimental re-
sults in the ablation studies demonstrate that our model can consistently produce plausible outcomes
in these standard settings.

The key hyperparameters used in our pipeline are listed in Table 10. A higher Controlnet-tile
Strength leads to inconsistent or misaligned results that do not match the preserved (visible) regions.
In contrast, moderate Strength values (e.g., 0.25) reliably maintain alignment while enhancing detail
quality.

Table 10: Hyperparameters.

Method Value

Multiview inpainting Inference timestep 50
Multiview inpainting CFG 5.0
Controlnet-tile Inference timestep 32
Controlnet-tile CFG 7.5
Controlnet-tile Strength 0.25
LRM official setting
StableNormal official setting

A.11 DISCUSSION FOR 3D CONSISTENCY

Our method ensures 3D consistency in the inpainted regions through the following mechanisms:

Multi-View Constraints (Cross-View Attention). Our approach enforces 3D consistency by lever-
aging multi-view constraints, specifically cross-view attention, combined with the strong 3D prior
of the base model, MVDream. The MVDream architecture utilizes a block structure that includes
both cross-view attention and cross-attention mechanisms. Specifically, our Mask Self-perceiver is
applied on the cross-attention layer to aggregate information from the incomplete images and the
textual input. This information is then further processed through cross-view attention in subsequent
blocks. The inpainting process thus implicitly requires the inpainted content across different views
to agree in the latent space, which enforces 3D consistency.

Geometric Anchors in Incomplete Images. While the masks do not contain geometric cues, the
incomplete images themselves provide essential geometric context. These incomplete images act as
geometric anchors, and the diffusion model synthesizes the missing regions in a way that ensures
alignment with the visible portions across all views. If the inpainted region were to be inconsistent,
it would contradict the visible regions from at least one viewpoint, which the model is trained to
avoid such situations.
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