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ABSTRACT

This paper examines multiplayer symmetric constant-sum games with more than
two players in a competitive setting, including examples like Mahjong, Poker,
and various board and video games. In contrast to two-player zero-sum games,
equilibria in multiplayer games are neither unique nor non-exploitable, failing to
provide meaningful guarantees when competing against opponents who play dif-
ferent equilibria or non-equilibrium strategies. This gives rise to a series of long-
lasting fundamental questions in multiplayer games regarding suitable objectives,
solution concepts, and principled algorithms. This paper takes an initial step to-
wards addressing these challenges by focusing on the natural objective of equal
share—securing an expected payoff of C/n in an n-player symmetric game with
a total payoff of C. We rigorously identify the theoretical conditions under which
achieving an equal share is tractable and design a series of efficient algorithms, in-
spired by no-regret learning, that provably attain approximate equal share across
various settings. Furthermore, we provide complementary lower bounds that jus-
tify the sharpness of our theoretical results. Our experimental results highlight
worst-case scenarios where meta-algorithms from prior state-of-the-art systems
for multiplayer games fail to secure an equal share, while our algorithm succeeds,
demonstrating the effectiveness of our approach.

1 INTRODUCTION

In recent years, AI systems have achieved remarkable success in multi-agent decision-making prob-
lems, particularly in a wide range of strategic games. These include, but are not limited to, Go (Silver
et al., 2016), Mahjong (Li et al., 2020), Poker (Moravčı́k et al., 2017; Brown & Sandholm, 2018;
2019), Starcraft 2 (Vinyals et al., 2019), DOTA 2 (Berner et al., 2019), League of Legends (Ye et al.,
2020), and Diplomacy (Gray et al., 2020; Bakhtin et al., 2022; , FAIR). Many of these games are
two-player zero-sum games1, where Nash equilibria always exist and can be computed in polynomial
time. Nash equilibria in two-player zero-sum games are also non-exploitable—an agent employing
a Nash equilibrium strategy will not lose even when facing an adversarial opponent who seeks to
exploit the agent’s weaknesses. Although such equilibrium strategies do not necessarily capitalize
on opponents’ weaknesses or guarantee large-margin victories, human players often adopt subop-
timal strategies that deviate significantly from equilibria in complex games with large state spaces.
Consequently, AI agents who adopt equilibrium strategies often outperform humans in practice for
two-player zero-sum games.

In contrast, multiplayer games—defined here as those with more than two players—exhibit fun-
damentally different game structures compared to two-player zero-sum games. This distinction
introduces several unique challenges. Firstly, Nash equilibria are believed to be no longer com-
putable in polynomial time (Daskalakis et al., 2009; Chen & Deng, 2005). Moreover, there may
exist multiple Nash equilibria with distinct values. Such non-uniqueness in equilibria raises a criti-
cal concern about the adoption of equilibrium strategies in multiplayer settings: if a learning agent
adopts an equilibrium that is different from other players, collectively, they are not playing any sin-
gle equilibrium, which undermines the equilibrium property that dissuades the agent from changing
its strategy as long as others maintain theirs. Finally, in multiplayer games, equilibrium strategies

1Games such as DOTA and League of Legends, despite involving two teams, can be mostly considered
similar to two-player zero-sum games in terms of their game structures and solutions.
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are no longer non-exploitable and fail to provide meaningful guarantees when competing against op-
ponents who are not playing equilibria. Although the introduction of alternative equilibrium notions
such as (coarse) correlated equilibria alleviates computational hardness, issues of non-uniqueness
and the lack of guarantees in the general settings remain. This leads to the first critical question:

What is the suitable solution concept for learning in multiplayer games?

Due to the presence of such fundamental challenge, even state-of-the-art expert-level or superhu-
man AI systems for popular multiplayer games, including Mahjong (Li et al., 2020) (4 players),
Poker (Brown & Sandholm, 2019) (6 players), and Diplomacy (Bakhtin et al., 2022; , FAIR) (7 play-
ers), are designed with limited theoretical supports. These works focus on developing algorithmic
frameworks capable of learning effective strategies that excel in ladders, online gaming platforms,
or tournaments against opponents. Generally, most of these systems rely on a basic self-play frame-
work, starting from scratch or from opponents’ strategies acquired through behavior cloning, with
or without regularization. While the success of these self-play algorithms is remarkable, their per-
formance has been demonstrated primarily within the specific applications they were designed for,
often coupled with human expertise and extensive engineering efforts. It remains unclear whether
these algorithms are general-purpose solutions that can be readily applied to multiplayer games
beyond Mahjong, Poker, or Diplomacy. This leads to the second important question:

What is the principled algorithm that provable learns a rich class of multiplayer games?

In this paper, we consider multiplayer symmetric constant-sum games, which are prevalent in games
involving more than two players. Examples include previously discussed multiplayer games like
Mahjong, Poker, and Diplomacy, as well as a variety of board games such as Avalon (Light et al.,
2023), Mafia, and Catan.2 Symmetry brings fairness among players, providing a natural baseline
where a learning agent should at least secure an equal share — achieving an expected payoff of
C/n in an n-player symmetric game with a total payoff of C. This paper takes an initial step toward
addressing the two fundamental questions highlighted above by focusing on securing an equal share
in multiplayer symmetric normal-form games3. The main contributions are summarized as follows:

1. Regarding the question of solution concepts, we first demonstrate the insufficiency of classical
equilibrium concepts and general self-play frameworks (learning from scratch) in achieving an equal
share in symmetric games. We then proceed to identify the structural conditions where equal share
is achievable. In contrast to two-player zero-sum games, we prove that in order to achieve an equal
share in multiplayer games: (1) all opponents need to deploy the same strategy; (2) all opponents
must have limited adaptivity, and the learning agent has to model the opponents (See Section 4). We
show that without either condition, an equal share can not be attained in the worst case. We prove
that our identified conditions apply to practical multiplayer gaming platforms with a large player
base. They are also tightly connected to the design of many prior modern multiplayer AI agents.

2. Regarding the question of principled algorithms, this paper illustrates how we can leverage ex-
isting tools from no-regret learning and no-dynamic-regret learning communities to achieve equal
share with provable guarantees. Concretely, this paper considers several opponent settings: fixed,
slowly adapting, and opponents that adapt at intermediate rates. For all cases, we design algorithms
that approximately achieve equal share, with an error tolerance of 1/poly(T ), where T is the total
number of games played. Additionally, we provide matching lower bounds, demonstrating that these
guarantees cannot be significantly improved in the worst-case scenario.

3. We further complement our theory by experiments on two basic multiplayer symmetric games.
Our experimental results illustrate that (1) the self-play meta-algorithms from prior state-of-the-art
systems for multiplayer games can fail to secure an equal share even under favorable settings, while
our principled algorithm always succeeds; (2) prior meta-algorithm has no clear advantage over our
algorithm on exploitability in the worst case. This indicates that prior self-play algorithms are not
general-purpose and highlights the effectiveness of our theoretical framework.

2All these examples are symmetric games up to randomization of the seating.
3Extensive-Form Games (EFGs) or Markov Games (MGs) can be viewed as special cases of normal-form

games, where each action in normal-form games corresponds to a strategy in EFGs or MGs, although such
representations may not always be efficient.
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1.1 RELATED WORK

AI gaming agents in practice Building superhuman AI has long been a goal in various games. A
large body of works in this line focus on two-player or two-team zero-sum games like Chess (Camp-
bell et al., 2002), Go (Silver et al., 2016), Heads-Up Texas Hold’em (Moravčı́k et al., 2017; Brown
& Sandholm, 2018), Starcraft 2 (Vinyals et al., 2019), DOTA 2 (Berner et al., 2019) and League of
Legends (Ye et al., 2020). Most of them are based on finding equilibria via self-play, fictitious play,
league training, etc. There is comparatively much less amount of work on games with more than two
players, whose game structures are fundamentally different from two-player zero-sum games. Sev-
eral remarkable multiplayer successes include Poker (Brown & Sandholm, 2019), Mahjong (Li et al.,
2020), Doudizhu (Zha et al., 2021) and Diplomacy (Bakhtin et al., 2022; , FAIR). Despite lacking a
clearly formulated learning objective, these works typically design meta-algorithms, which include
initially training the model using behavior cloning from opponents, then enhancing it through self-
play, and finally applying adaptations based on the game’s specific structure or human expertise. It
remains elusive whether such a recipe is generally effective for a wide range of multiplayer games.

Existing results for symmetric games Von Neumann & Morgenstern (1947) gave the first defi-
nition of symmetric games and used the three-player majority-vote example to showcase the stark
difference between symmetric three-player zero-sum games and symmetric two-player zero-sum
games. In his seminal paper that introduced Nash equilibrium, Nash proved that a symmetric finite
multi-player game must have a symmetric Nash equilibrium (Nash, 1951). However, this existence
result holds little significance from an individual standpoint, as there is no reason a priori to assume
that other players are indeed playing according to this symmetric equilibrium. Papadimitriou &
Roughgarden (2005) studied the computational complexity of finding the Nash equilibrium in sym-
metric multi-player games when the number of actions available is much smaller than the number
of players and gave a polynomial-time algorithm for the problem. In this case, symmetry greatly
reduced the computational complexity (as computing Nash in general is PPAD-hard). Daskalakis
(2009) proposed anonymous games, a generalization of symmetric games.

No-regret learning in games There is a rich literature on applying no-regret learning algorithms
to learning equilibria in games. It is well-known that if all agents have no regret, the resulting
empirical average would be an approximate Coarse Correlated Equilibrium (CCE) (Young, 2004),
while if all agents have no swap-regret, the resulting empirical average would be an ϵ-Correlated
Equilibrium (CE) (Hart & Mas-Colell, 2000; Cesa-Bianchi & Lugosi, 2006). Later work continuing
this line of research includes those with faster convergence rates (Syrgkanis et al., 2015; Chen &
Peng, 2020; Daskalakis et al., 2021), last-iterate convergence guarantees (Daskalakis & Panageas,
2018; Wei et al., 2020), and extension to extensive-form games (Celli et al., 2020; Bai et al., 2022b;a;
Song et al., 2022) and Markov games (Song et al., 2021; Jin et al., 2021).

2 PRELIMINARIES

Notation. For any set A, its cardinality is represented by |A|, and ∆(A) denotes a probability
distribution over A. We employ A⊗n to denote the Cartesian product of n instances of A. Given a
distribution x over A, x⊗n represents the joint distribution of n independent copies of x, forming a
distribution over A⊗n. For a function f : A → R, we denote ∥f∥∞ := maxa∈A |f(a)|. We use [n]
to denote the set {1, . . . , n}. In this paper, we use C to denote universal constants, which may vary
from line to line.

2.1 NORMAL-FORM GAMES AND EQUILIBRIUM

Normal-form game An n-player normal-form game consists of a finite set of n players, where
each player has an action space Ai and a corresponding payoff function Ui : A1 × · · · × An →
[−1, 1] with Ui(a1, . . . , an) denotes the payoff received by the i-th player if n players are taking
joint actions (a1, . . . , an). We define a game as constant-sum if there exists constant C such that∑n

i=1 Ui(a1, . . . , an) = C for all joint actions. We further denote a game as zero-sum if it is a
constant-sum game with a total payoff of C = 0. Normal-form games can represent a wide range of
games as their special cases, including sequential games such as extensive-form or Markov games.
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Strategy A (mixed) strategy of a player is a probability distribution over the player’s actions. For
i ∈ [n], we use ai ∈ A and xi ∈ ∆(A) to denote an action and a mixed strategy of the i-th player
respectively. We use a−i ∈ A⊗n−1 and x−i ∈ ∆(A⊗n−1) to denote the actions and the mixed
strategies of the other players. We denote Ui(xi, x−i) := Eai∼xi,a−i∼x−i

[Ui(ai, a−i)] .

Learning protocol We assume that the learner knows the game rule, and thus her own payoff
function U1. At every round t, all players take action simultaneously, and the learner only observes
the opponents’ noisy actions (at2, a

t
3, . . . , a

t
n) that are sampled from their strategies.

Best response Given a mixed strategy x−i of the other n − 1 players, the best response set
BRi(x−i) of the i-th player is defined as BRi(x−i) := argmaxai∈Ai

Ui(ai, x−i).

Equilibrium Nash Equilibrium (NE) is the most commonly-used solution concept for games: a
mixed strategy x ∈ ∆(A1 × · · · × An) of all players is said to be NE if x is a product distribution
4, and no player could gain by deviating from her own strategy while holding all other players’
strategies fixed. That is, for all i ∈ [n] and a′i ∈ Ai, Ea∼x[Ui(ai, a−i)] ≥ Ea∼x[Ui(a

′
i, a−i)].

There are also two equilibrium notions relaxing the notion of NE by no longer requiring x to be
a product distribution. It allows general joint distribution x which describes correlated strategies
among players. In particular, (1) x is a Correlated Equilibrium (CE) if for all i ∈ [n] and a′i ∈ Ai,
Ea∼x[Ui(ai, a−i) | ai] ≥ Ea∼x[Ui(a

′
i, a−i) | ai], and (2) x is Coarse Correlated Equilibrium

(CCE) if for all i ∈ [n] and a′i ∈ Ai: Ea∼x[Ui(ai, a−i)] ≥ Ea∼x[Ui(a
′
i, a−i)]. The major difference

between those two notions is in the cases when the agent deviates from her current strategy, whether
she is still allowed to observe the randomness in drawing actions from the correlated strategy. The
relationship among various equilibrium concepts is encapsulated by NE ⊂ CE ⊂ CCE.

Two-player zero-sum games It is well-known that in two-player zero-sum games, all Nash equi-
libria share the unique payoff value 0. Furthermore, a Nash equilibrium is non-exploitable against
any strategy that is not necessarily an equilibrium. In math, if (µ⋆, ν⋆) is the Nash equilibrium, we
have minν U1(µ

⋆, ν) = maxµ minν U1(µ, ν) = 0.

Multiplayer or general-sum games When the number of players is greater than two, or the games
are no longer constant-sum games, Nash equilibria become PPAD-hard to compute (Daskalakis
et al., 2009) while CEs and CCEs can be still computed in polynomial time. All of these three
concepts admit multiple equilibria with distinct payoffs. Furthermore, they no longer own strong
guarantees, such as non-exploitness, when competing against non-equilibrium players.

2.2 SYMMETRIC GAMES AND EQUAL SHARE

Symmetric games For an n-player normal-form game with an action space {Ai}ni=1 and a payoff
{Ui}ni=1, we say the game is symmetric if (1) Ai = A, for all i ∈ [n]; (2) for any permutation
σ : [n] → [n], we have Ui(a1, · · · , an) = Uσ−1(i)(aσ(1), · · · , aσ(n)).
In short, the payoffs of a symmetric game for employing a specific action are determined solely by
the actions used by others, agnostic of the identities of the players using them. Thus, the payoff
function of the first player denoted as U1, is sufficient to encapsulate the entire game.

Symmetric games are popular in practice as they bring fairness among players. Technically, all
asymmetric can be converted to symmetric games by randomizing the roles of the players at the
beginning of the game. Nevertheless, casting the games in the symmetric form gives a natural and
minimal baseline — the learning agent should attain an equal share in the long run.

Equal share We say an agent attains an equal share, if the agent’s average payoff of the games is
at least C/n for a n-player symmetric constant-sum game with a total payoff of C.

It is not hard to see that shifting the total payoff of a game by any absolute constant will not alter the
strategic aspects of the game. Therefore, without loss of generality, this paper sets a total payoff of
C = 0 and focuses on achieving an equal share in multiplayer symmetric zero-sum games.

4The randomness in different players’ strategies are independent.
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Algorithm 1 Self-play meta-algorithm
1: Initialize learner’s mixed strategy x1.
2: for t = 1, . . . , T do
3: Sample action ati ∼ xt for all player i ∈ [n].
4: Update strategy xt+1 using the gradient information U1(·, at−1).

3 INSUFFICIENCY OF EQUILIBRIA AND SELF-PLAY FOR EQUAL SHARE

In this section, we demonstrate that existing equilibria notions and the self-play from scratch al-
gorithm are not sufficient to secure an equal share in multiplayer symmetric zero-sum games even
under very basic settings. To illustrate this, we consider the following 3-player majority vote game:
Example 1 (Three-player majority vote game). Every player chooses either 0 or 1. If all players
take the same action, then they receive a payoff of 0. Otherwise, being in the majority yields a
positive payoff of 1/2, while being in the minority results in a negative payoff of −1.

Insufficiency of equilibria In this setup, both pure strategies (0, 0, 0) and (1, 1, 1) constitute NE.
However, the existence of multiple NEs creates a predicament for the learning agent. It must choose
which equilibrium to follow, yet there is always the risk that the two opponents are both playing the
other NE, leading to a negative payoff for the learner. In other words, adhering to a single NE does
not reliably ensure an equal share when multiple equilibria exist. Since NE ⊂ CE ⊂ CCE, we
know the same limitation also holds for CE and CCE.

Insufficiency of self-play from scratch Self-play is a training method in which the learning agent
improves its performance by repeatedly playing against copies of itself without human supervision.
See pseudo-code in Algorithm 1. The learner maintains its own strategy {xt}Tt=1. At the tth iteration,
the learner first pretends that all opponents are employing its current strategy xt, and samples actions
from them. Then the learner updates its own strategy to xt+1 using the gradient information from
the gameplay. The updates can be made using any optimizer such as gradient descent or Hedge.

Here, we argue that self-play from scratch (the algorithm adopted in Brown & Sandholm (2019))
again fails to secure an equal share in the same three-player majority vote game: Consider two
opponents play the same fixed strategy that is one of the NEs. In this case, the learner has no choice
but to play the exact same NE as the opponents to secure an equal share. That is, if the learner’s
algorithm is agnostic to the strategies of the opponents, it is doomed to fail. We note that while
recent systems (Li et al., 2020; Jacob et al., 2022) combine self-play with behavior cloning which is
no longer agnostic to opponents’ strategies, our experiment shows that their meta-algorithms remain
insufficient to secure an equal share in the worst-case scenario (See Section 6).

4 SUFFICIENT CONDITIONS FOR SECURING EQUAL SHARE

In this section, we identify the structural conditions of the games where equal share is achievable.
We will show that the following two conditions are needed to achieve equal share:

Condition 1. All opponents need to deploy the same strategy, i.e., x2 = . . . = xn;
Condition 2. All opponents must have limited adaptivity and the player has to model the opponents,

i.e., {xj}nj=2 can not adversarially change across different rounds of the game.

We justify these two conditions by proving that without either condition, an equal share can not be
attained in multiplayer symmetric games in the worst case. We remark that both conditions restrict
the strategies of opponents rather than the type of games.

Non-adaptive opponents that deploy different strategies We start by considering the case where
Condition 2 holds but Condition 1 does not hold.
Proposition 4.1. There exist symmetric zero-sum games with opponents using fixed but differing
strategies, such that no learner’s strategy secures an equal share. In math,

max
x1

min
x2,··· ,xn

U1(x1, · · · , xn) ≤ min
x2,··· ,xn

max
x1

U1(x1, · · · , xn) ≤ 0 (1)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where both inequalities can be made strict in certain games.

Here, we can further strengthen the proposition to require opponents to deploy strategies without
“collusion”. That is, the hard instance holds even when the strategies employed by opponents are
statistically independent without any shared randomness. Proposition 4.1 highlights the challenge
when opponents are free to adopt different strategies.

Adaptive opponents that deploy identical strategy We next examine the case where Condition
1 holds but Condition 2 does not hold.
Proposition 4.2. There exist symmetric zero-sum games such that no learner’s strategy secures an
equal share against adversarial opponents, even under the constraint that they adhere to identical
strategy at each round. In math,

max
x1

min
x

U1(x1, x
⊗n−1) ≤ min

x
max
x1

U1(x1, x
⊗n−1) = 0, (2)

where the inequality can be made strict in certain games.

Proposition 4.2 implies a property that makes multiplayer games significantly different from two-
player zero-sum games: even under the favorable scenario of all opponents employing identical
strategies, one can no longer find a fixed “non-exploitable” strategy agnostic to the strategies of
opponents. All strategies are exploitable. Opponent modeling is necessary to secure an equal share.

Solution concepts beyond equilibrium Combining Proposition 4.1 and Proposition 4.2, we ob-
serve that both conditions mentioned at the beginning of Section 4 are needed to make equal share
achievable. In math, we conclude from Eq.(1) and Eq.(2) that, out of the four related minimax
concepts, only minx maxx1 U1(x1, x

⊗n−1) = 0 across all multiplayer symmetric zero-sum games,
which guarantees an equal share. This remaining minimax concept precisely corresponds to the two
identified conditions where opponents employ identical strategies, and the learner must be adaptive
to the opponents. Therefore, we will use minx maxx1

U1(x1, x
⊗n−1) as our target solution con-

cept for this paper to achieve equal share. We remark that this solution concept does not necessarily
correspond to any equilibrium in most multiplayer games. We conclude with this solution concept
from a principled manner with equal share as our primary objective. For conciseness, from now on,
we will also refer to the common strategy employed by all opponents as the meta-strategy.

4.1 CONNECTIONS BETWEEN IDENTIFIED CONDITIONS AND PRACTICE

While the two identified conditions may seem restrictive, here we argue that they in fact apply to
practical multiplayer gaming platforms with a large player base. Condition 1 is further implicitly
adopted by most prior state-of-the-art AI agents for multiplayer games.

Connection to multiplayer games with a large player base We argue that both identified con-
ditions are well-justified in modern multiplayer gaming platforms with a large player base. Imagine
a casino hosting N players who randomly join poker tables or an online Mahjong match-making
platform with N users. Let {xi}Ni=1 be the strategy set for these N players. We can then define
the population meta-strategy as x̄ = (1/N)

∑N
i=1 xi. The following proposition claims that, for

n-player symmetric zero-sum games, in terms of the expected payoff, playing against n − 1 ran-
dom players is almost the same as playing against n− 1 players who all adopt the same population
meta-strategy x̄, as long as N ≫ (n− 2)2.
Proposition 4.3. Let Ex−1

be the expectation over the randomness on sampling n − 1 strategies
uniformly from the set {xi}Ni=1 without replacement. Then for any strategy z ∈ ∆(A), we have
|Ex−1

[U1(z, x−1)]− U1(z, x̄
⊗n−1)| ≤ 2(n− 2)2/N .

Furthermore, it is often safe to assume that the population meta-strategy x̄ — the average strategy
of all players within the player pool — will not quickly adapt to one particular player’s strategy.

Connection to practical AI systems We remark that a majority of practical AI systems for mul-
tiplayer games (Li et al., 2020; Brown & Sandholm, 2019; Bakhtin et al., 2022; , FAIR) leverage
self-play meta-algorithms (Algorithm 1), which equate the strategies of all opponents with those of
the learner. This implicitly assumes all opponents employ an identical strategy at every round.

6
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5 PROVABLY EFFICIENT ALGORITHMS

In this section, we explore efficient algorithms that provably secure an equal share under the two
conditions identified in Section 4. Particularly, we consider several opponent settings with various
adaptivity: fixed, slowly adapting, and opponents that adapt at intermediate rates.

We use the following notations throughout this section: at round t, let xt denote the learner’s strategy,
and yt the meta-strategy employed by all opponents. We denote ut(·) as the expected payoff function
of the learner at round t, where ut(·) := U1(·, (yt)⊗n−1). Then the average payoff of the learner is:

uavg(T ) := (1/T )
∑T

t=1 u
t(xt).

5.1 FIXED OPPONENTS

We begin by exploring the simple stationary scenario, where the meta-strategy used by the opponents
remains constant over time, denoted as yt = y for all t ∈ [T ].

Notably, in this particular scenario, the payoff function ut(·) remains constant over time. Addition-
ally, by symmetry, it is not hard to observe that at least one action will consistently yield an expected
payoff of 0 in all rounds. This implies maxa∈A

∑T
t=1 u

t(a) ≥ 0, which makes the no-regret learn-
ing tool well-poised to achieve equal share in this setting. Standard (static) regret, defined as follows,
compares the learner’s total payoff to the total payoff achieved by the best action in hindsight:

Reg(T ) := maxa∈A
∑T

t=1 u
t(a)−

∑T
t=1 u

t(xt),

An algorithm has no-regret if Reg(T ) ≤ o(T ) for all large T . We deploy a standard no-regret
learning algorithm — Hedge (Freund & Schapire, 1997), which provides the following guarantees:

Theorem 5.1 (Stationary opponents). Let {xt}Tt=1 be the strategy sequence implemented by the
Hedge algorithm against stationary opponents. Then, with probability at least 1− δ, we have

uavg(T ) ≥ u⋆ − C
√
log(A/δ)/T ,

for some absolute constant C, where u⋆ := maxa∈A U1(a, y
⊗n−1) ≥ 0.

The probability is taken over the random actions by opponents sampled from the meta-strategy5.
Theorem 5.1 claims that with stationary opponents, the Hedge algorithm approximately achieves an
equal share up to a Õ(1/

√
T ) error, which demonstrates its effectiveness in the long run.

5.2 ADAPTIVE OPPONENTS

In practical scenarios, encountering a fixed opponent strategy is relatively uncommon. More often,
opponents adapt and modify their strategies over time, responding to the game’s dynamics and the
actions of other players. Thus, in this section, we shift our focus to the non-stationary scenario,
where the meta-strategy yt adopted by the opponents varies over time.

According to Proposition 4.2, it is clear that attaining an equal share is impossible if opponents can
change their meta-strategy yt arbitrarily fast across different rounds. Thus we introduce a constraint
on the adaptive power of the opponents by positing a variation budget VT , which bounds the total
variation of the payoff function across the time horizon. Specifically, we assume the payoff function
belongs to U , which is defined as

U :=
{
{ut}Tt=1

∣∣∣∑T−1
t=1

∥∥ut+1 − ut
∥∥
∞ ≤ VT

}
. (3)

Furthermore, we denote G(n,A, VT ) as the set of tuples, which consists of a n-player symmetric
zero-sum game with A actions and a corresponding meta-strategy sequence {yt}Tt=1, such that the
payoff function {ut}Tt=1 ∈ U . This constraint effectively moderates the adaptivity of the opponents
compared to a fully adversarial setup.

5Recall that our learning protocol in Section 2 assumes the learner only observes the noisy actions of the
other players at each round.
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Slowly adapting opponents In non-stationary environments, the total payoff achieved by the best
action in hindsight maxa∈A

∑T
t=1 u

t(a) is no longer non-negative. Therefore, minimizing standard
regret in this setting is no longer effective in securing an equal share. This motivates us to turn our
attention to a stronger notion of regret — dynamic regret, defined as:

D-Reg(T ) :=
∑T

t=1 maxa∈A ut(a)−
∑T

t=1 u
t(xt).

This measures a strategy’s performance against the best action at each time step (dynamic oracle),
providing a more relevant benchmark in changing environments.

In the setting of symmetric games, the dynamic oracle is always assured to secure an equal share,
i.e.,

∑T
t=1 maxa∈A ut(a) ≥ 0. Thus, any algorithm achieving no-dynamic-regret is guaranteed to

achieve an equal share up to a small error. To this ends, we adapt a no-dynamic-regret algorithm—
Strongly Adaptive Online Learner with Hedge H as a black box algorithm (SAOLH) (See Appendix
C.1.2), as proposed by Daniely et al. (2015) to our setting and achieve following guarantees:
Theorem 5.2. Suppose that n ≥ 3, A ≥ 2, and VT ∈ [1, T ], then for any game and any meta-
strategy sequence in G(n,A, VT ), with probability at least 1− δ, SAOLH satisfies

uavg(T ) ≥ u† − CV
1/3
T T−1/3

(√
log(A/δ) + log T

)
for some absolute constant C, where u† := (1/T )

∑T
t=1 maxa∈A ut(a) ≥ 0.

Theorem 5.2 implies that SAOLH achieves a non-negative average payoff, up to an error term that
scales with Õ(V

1/3
T T−1/3). Therefore, if VT is sublinear in T , SAOLH is capable of approximately

achieving equal share over an extended duration.

Opponents that adapt at intermediate rates Interestingly, there is an intermediate regime where
opponents’ strategies {yt}Tt=1 are changing neither too fast nor too slow where the favorable algo-
rithm for the learner might be simply behavior cloning—simply mimic opponents’ strategies.

Formally, we define the behavior cloning algorithm for the learner by making her action in t-th
round the same as the action taken by the 2nd player in (t−1)-th round (See Algorithm 2). Behavior
cloning achieves the following:
Theorem 5.3. Suppose that n ≥ 3, A ≥ 2, and VT ∈ [1, T ], for any game and any meta-strategy
sequence in G(n,A, VT ), behavior cloning guarantees that

E[uavg(T )] ≥ −(VT + 1)/T.

We remark that while the error term O(VT /T ) in Theorem 5.3 is always smaller than the error
term Õ((VT /T )

1/3) in Theorem 5.2, the latter is comparing to the baseline of dynamic oracle u†,
which has a greater value than the baseline in behavior cloning — 0. It is not hard to see that in
the intermediate regime Θ̃(u†) ≤ VT /T ≤ Θ(1), the meta-strategy is changing too fast so that it is
better for the learner to simply copy the meta-strategy instead of running sophisticated no-dynamic-
regret algorithm to learn the game and to counter the meta-strategy by herself.

Matching lower bounds Finally, we also complement our upper bounds by matching lower
bounds showing that SAOLH and behavior cloning are already the near-optimal algorithms in terms
of error rates when compared with the corresponding baselines — the dynamic oracle and zero pay-
off respectively. The techniques used here are based on adapting existing hard instances for a more
general setup to the symmetric zero-sum game setting. Please see more discussion in Appendix C.2.
Theorem 5.4. There exists some absolute constant C > 0 such that for any n ≥ 3, A ≥ 2, and
VT ∈ [1, T ], and any learning algorithm, there exists a game and a meta-strategy sequence in
G(n,A, VT ), such that E[uavg(T )] ≤ u† − CV

1/3
T T−1/3.

Theorem 5.5. There exists some absolute constant C > 0 such that for any n ≥ 3, A ≥ 2, and
VT ∈ [1, T ], and any learning algorithm, there exists a game and a meta-strategy sequence in
G(n,A, VT ) such that E [uavg(T )] ≤ −CVT /T .

The expectation in both theorems are taking over the random actions by the opponents as well as the
possible intrinsic randomness in a stochastic algorithm. Theorem 5.4 and 5.5 match Theorem 5.2
and 5.3 respectively, up to additional logarithmic factors.
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6 EXPERIMENTS

In this section, we focus on the scenario where one learning agent competes against n−1 opponents
who play the identical meta-strategy. For simplicity, we restrict ourselves to the setting of fixed
opponents. We aim to answer: (Q1) Can existing algorithmic frameworks in previous superhuman
AI systems consistently secure an equal share under this favorable setting? If not, what are the
failure cases? (Q2) Are these trained agents exploitable by adversarial opponents? We design the
following two games to compare our algorithm with prior self-play-based algorithms.

Majority Vote (MV). We first consider the standard 3-player majority vote game (Example 1). It
is not hard to see that [1, 0], [0, 1], and [1/2, 1/2] are all NEs, where [p, 1 − p] denotes the mixture
strategy that takes the first action with probability p and the second action with probability 1 − p.
We fix the opponents’ meta-strategy ymeta = [0.49, 0.51] for all rounds.

Switch Dominance Game (SDG). In each round, players simultaneously choose an action from
set {A,B,C}. Let n be the total number of players and nA be the number of agents choosing action
A, We define the game rule as: {

B ≻ A ≻ C if nA > 0.2n,

C ≻ B ≻ A otherwise ,

where the rule i ≻ j ≻ k intuitively means that action i dominates both j and k, and action j
dominates k. SDG is designed so that C is a dominated action when there is a reasonable number
of players taking action A, but a dominating action otherwise. Concretely, for i ≻ j ≻ k, we assign
the following payoff (ri, rj , rk) to players taking actions (i, j, k) respectively, where:

ri = I[nj + nk > 0], rj = I[nk > 0]− I[nj + nk > 0] · ni/(nj + nk),

rk = −I[nj + nk > 0] · ni/(nj + nk)− I[nk > 0] · nj/nk.

This payoff design guarantees that SDG is a symmetric zero-sum game. Throughout our ex-
periments, we choose n = 30 and pick the fixed meta-strategy of the opponents ymeta =
[0.399, 0.6, 0.001] (in the order of action A,B,C) for all rounds. Note that while this game has
an NE strategy [0, 0, 1], its utility is negative against our chosen meta-strategy ymeta.

6.1 LEARNING ALGORITHMS

To better focus on the key game-theoretic property of the algorithms, we idealize the process of
imitation learning by assuming that the learning agent has already learned (i.e., has direct access
to) the meta-strategy ymeta by the opponents. In this setting, according to Theorem 5.1, our the-
oretical framework suggests to directly run the Hedge algorithm (Hedge) against opponents who
play the meta-strategy. We compare our algorithm against three meta-algorithms adopted by prior
state-of-the-art AI systems in practice: (1) self-play from scratch (SP scratch) (Brown & Sandholm,
2019); (2) self-play initialized from behavior cloning (SP BC) (Li et al., 2020), and (3) self-play
initialized from behavior cloning with regularization towards the meta-strategy (SP BC reg) (Jacob
et al., 2022). While these AI systems further implement multi-step lookahead with a few additional
techniques, many of them only apply to sequential games, not the basic normal-form games. Here,
we focus on the comparison of the high-level game-theoretic meta-algorithms.

Algorithm details. We also use the Hedge algorithm as the optimizer for the self-play algorithm
to update its strategy. We choose the learning rate for the Hedge algorithm based on theoretically
optimal value and choose the regularization parameter according to Jacob et al. (2022). We refer
readers to Appendix D for more details.

6.2 RESULTS

To answer Q1 and Q2, we evaluate the utility of the learned strategy x̂ against the pre-specified
meta-strategy ymeta, i.e., U1(x̂, y

⊗(n−1)
meta ), as well as the exploitability of the learner x̂, i.e.,

miny U1(x̂, y
⊗(n−1)). To measure the utility, we evaluate the payoff of the agent’s converged strat-

egy by Monte Carlo methods with 3× 105 games and report the mean and standard deviation of 10
runs. As for the exploitability, pick the best exploiter strategy within 100 runs, and report the payoff
of the learner against that exploiter.

9
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Strategy SP scratch SP BC SP BC 10−5 SP BC 10−4 SP BC 10−3 SP BC 10−2 Hedge

[1, 0] 52% 48% 50% 46% 42% 42% 0%

[0, 1] 48% 52% 50% 54% 58% 58% 100%

Table 1: The distribution of mixed strategies to which different self-play algorithms converge in MV.
We use SP BC λ as the short name of SP BC reg with regularization coefficients λ.

MV SP scratch / SP BC / SP BC reg Hedge

Utility (×10−2) -1.00 ± 0.09 1.03 ± 0.10

Exploitability -1.00 ± 0.00 -1.00 ± 0.00

SDG SP scratch / SP BC / SP BC reg Hedge
Utility -12.67 ± 0.01 1.00 ± 0.00

Exploitability -29.00 ± 0.00 -29.00 ± 0.00

Table 2: The utility and exploitability of each algorithm. Particularly, for MV, as self-play algorithms
converge to two different solutions with roughly equal probability, we evaluate the utility of the
worse converged solution of the two to reflect the performance in the worst case.

Convergence analysis. We first check the convergence for each algorithm in both games:

MV: We report the limiting solution each algorithm converges to within 100 runs, as summarized
in Table 1. Our algorithm (Hedge) consistently converges to the good strategy [0, 1]. All self-play
variants have significant probability converge to the bad strategy [1, 0], which has a negative utility
against the chosen meta-strategy ymeta = [0.49, 0.51].

SDG: We report that while our Hedge algorithm converges to the strategy [0, 1, 0], all self-play
variants consistently converge to the strategy [0, 0, 1].

Utility and Exploitability. We summarize the results in Table 2, which show that even in these
two simple symmetric zero-sum games, none of the self-play algorithms can consistently secure a
non-negative payoff, i.e., an equal share, in the worst case. This undesirable behavior persists even
without opponents making any adaptations! Moreover, based on these two games, we further con-
clude two potential failure modes of self-play algorithms: (1) For games with multiple NEs, such
as MV, self-play methods may converge to different NEs based on different initialization. When
the opponents’ meta-strategy (i.e., the initial strategy for SP BC) lies close to the boundary of the
convergence basins of two different NEs, self-play algorithms will have a non-zero probability of
converging to both of them due to the statistical randomness in the game. It is likely one of the
two NEs is undesirable against the meta-strategy ymeta. (2) For games with a single NE, self-play
algorithms are still very likely to be attracted to this equilibrium. A carefully designed game struc-
ture can result in this NE yielding a negative utility against the chosen meta-strategy, and hence
jailbreak all self-play variants. The aforementioned failure modes highlight a significant limitation
of self-play variants when being applied to diverse and complex multiplayer games. In contrast, the
principled algorithm according to our theory consistently beats the meta-strategy of the opponents,
receives a much higher payoff, and secures an equal share. Regarding exploitability, all learned
strategies can be easily exploited by adversarial opponents.

7 CONCLUSION

Unlike in the two-player zero-sum games, standard equilibria are no longer always the suitable solu-
tion concept for multiplayer games. They are non-unique and lack meaningful guarantees in general
scenarios. This paper establishes a new theoretical framework that provides the solution concepts
and the principled algorithms for multiplayer games from the unique angle of achieving equal share.
We hope our results serve as the first step toward further research on principled methodologies and
algorithms for multiplayer games.
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A EXTENDED PRELIMINARIES

A.1 NO-REGRET LEARNING

No-regret learning is a commonly adopted strategy in game theory to find equilibrium solutions. We
consider a T -step learning procedure, where for each round t ∈ [T ]: (1) the agent picks a mixed
strategy µt over A, (2) the environment picks an adversarial loss ℓt ∈ [0, 1]|A|. The expected utility
for t-th round is defined as −⟨µt, ℓt⟩. To measure the performance of a particular algorithm, a
common approach is to consider regret, where the algorithm’s performance is compared against the
single best action in hindsight. Specifically, for policy sequence (µ1, . . . , µT ) taken by an algorithm,
the static regret is given, by

Reg(T ) =
T∑

t=1

⟨µt, ℓt⟩ −min
a∈A

T∑
t=1

ℓt(a).

We say that the algorithm is a no-regret algorithm if Reg(T ) = o(T ). One of such no-regret learning
algorithms is Hedge algorithm, which performs the following exponential weight updates:

µt+1(a) ∝ µt(a)e−ηtℓt(a), for ∀a ∈ A.

where ηt is the learning rate. See Algorithm 5 for the Hedge algorithm as applied to our problem
setup.

A.2 3-PLAYER MAJORITY AND MINORITY GAME

In this section, we give a formal definition of the 3-player majority and minority game.

We define the 3-player majority game as a symmetric zero-sum game with action space A := {0, 1}
and the payoff function given by:

U1(0, 0, 0) = U1(1, 1, 1) = 0

U1(0, 1, 0) = U1(0, 0, 1) = U1(1, 1, 0) = U1(1, 0, 1) = 1/2

U1(0, 1, 1) = U1(1, 0, 0) = −1.

In other words, players receive a positive payoff if they are part of the majority and a negative payoff
if they are in the minority. Correspondingly, we define the 3-player minority game as a symmetric
zero-sum game with action space A := {0, 1} and the payoff function given by:

U1(0, 0, 0) = U1(1, 1, 1) = 0

U1(0, 1, 0) = U1(0, 0, 1) = U1(1, 1, 0) = U1(1, 0, 1) = −1/2

U1(0, 1, 1) = U1(1, 0, 0) = 1.

In other words, players receive a positive payoff if they are part of the minority and a negative payoff
if they are in the majority.

B PROOFS FOR SECTION 4

In the sequel, we will prove Proposition 4.1 in Section B.1, Proposition 4.2 in Section B.2 and
Propostion 4.3 in Section B.3.

B.1 PROOF OF PROPOSITION 4.1

In this section, we will prove (1), where both inequalities can be made strict in certain games.

Proof of Proposition 4.1. For the first inequality, note that for any (x1, . . . , xn):

U1(x1, · · · , xn) ≤ max
x1

U1(x1, · · · , xn),

which implies

min
x2,··· ,xn

U1(x1, · · · , xn) ≤ min
x2,··· ,xn

max
x1

U1(x1, · · · , xn).
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By further taking maximum over x1 ∈ ∆(A), we prove that

max
x1

min
x2,··· ,xn

U1(x1, · · · , xn) ≤ min
x2,··· ,xn

max
x1

U1(x1, · · · , xn).

To show the first inequality can be strict, we consider the 3-player majority vote. Suppose 3 players
adopt the mixed strategies (α1, 1 − α1), (α2, 1 − α2) and (α3, 1 − α3), respectively. It then holds
that

U1(x1, x2, x3) = U1(α1, α2, α3)

= α1

(
−(1− α2)(1− α3) +

1

2
α2(1− α3) +

1

2
α3(1− α2)

)
+ (1− α1)

(
−α2α3 +

1

2
α2(1− α3) +

1

2
α3(1− α2)

)
.

By choosing α2 = α3 = 0 when α1 > 1/2 and α2 = α3 = 1 when α1 ≤ 1/2, it can be seen that

max
α1

min
α2,α3

U1(α1, α2, α3) ≤ max
α1

min{−α1,−(1− α1)} = −1

2
.

Note that

min
α2,α3

max
α1

U1(α1, α2, α3)

=
1

2
min
α2,α3

max{−2(1− α2)(1− α3) + α2(1− α3) + α3(1− α2),

− 2α2α3 + α2(1− α3) + α3(1− α2)}

=
1

2
min
α2,α3

max{3(α2 + α3)− 4α2α3 − 2, α2 + α3 − 4α2α3}

= 0.

Thus, we show that maxα1
minα2,α3

U1(α1, α2, α3) < minα2,α3
maxα1

U1(α1, α2, α3), which im-
plies the first inequality can be strict.

For the second inequality, due to a restriction on the minimization constraints, it is straightforward
that

min
x2,··· ,xn

max
x1

U1(x1, · · · , xn) ≤ min
x

max
x1

U1(x1, x
⊗n−1).

In the sequel, we prove minx maxx1 U1(x1, x
⊗n−1) = 0 via contradiction. Note that by choosing

x1 = x, we can show that
min
x

max
x1

U1(x1, x
⊗n−1) ≥ 0.

Suppose for some game inequality holds, then by definition

∀x ∈ ∆(A),∃x′ ∈ ∆(A), s.t. U1(x
′, x, · · · , x) > 0.

Define the set-valued argmax function ϕ : ∆(A) → 2∆(A):

ϕ(x) := {x′ ∈ ∆(A) | U1(x
′, x, · · · , x) = max

x′′
U1(x

′′, x, · · · , x)}.

We claim that argmax function ϕ(x) is:

• Always non-empty and convex;

• Has a closed graph.

The first property is obvious, so we focus on the second one. Suppose that sequences {xi}, {yi}
satisfy xi → x, yi → y and yi ∈ ϕ(xi). Since the payoff function is (Lipschitz) continuous,
maxx′′ U1(x

′′, ·) is continuous by Berge’s maximum theorem. Thus maxx′′ U1(x
′′, xi, · · · , xi) con-

verges to maxx′′ U1(x
′′, x, · · · , x). Meanwhile U1(yi, xi, · · · , xi) converges to U1(y, x, · · · , x).

Thus

U1(y, x · · · , x) = lim
i→∞

U1(yi, xi, · · · , xi) = lim
i→∞

max
x′′

U1(x
′′, xi, · · · , xi) = max

x′′
U1(x

′′, x, · · · , x).

14
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This implies y ∈ ϕ(x), and that ϕ has a closed graph. Thus by Kakutani’s fixed point theorem,
∃x∗ : x∗ ∈ ϕ(x∗). Now we have

U1(x
∗, · · · , x∗) = max

x′′
U1(x

′′, x∗, · · · , x∗) > 0,

which contradicts with the assumption that the game is zero-sum and symmetric. Consequently, we
prove the equation. As a result, we have

min
x2,··· ,xn

max
x1

U1(x1, · · · , xn) ≤ min
x

max
x1

U1(x1, x
⊗n−1) = 0.

To show the second inequality can be strict, we consider a 3-player minority game. If the other two
players act 0 and 1, respectively, then the learner always receive −1/2 payoff, which is strictly less
than 0. We then finish the proofs.

B.2 PROOF OF PROPOSITION 4.2

In this section, we will prove (2), where the inequality can be made strict in certain games.

Proof of Proposition 4.2. In the proof of Proposition 4.1, we have already shown that
minx maxx1 U1(x1, x

⊗n−1) = 0. Thus, it remains to prove the inequality in (2).

Note that for any x1, x ∈ ∆(A), we have

U1(x1, x
⊗n−1) ≤ max

x1∈∆(A)
U1(x1, x

⊗n−1),

which implies for any x1 ∈ ∆(A)

min
x∈∆(A)

U1(x1, x
⊗n−1) ≤ min

x∈∆(A)
max

x1∈∆(A)
U1(x1, x

⊗n−1).

By further taking maximum over x1 ∈ ∆(A), we show that

max
x1∈∆(A)

min
x∈∆(A)

U1(x1, x
⊗n−1) ≤ min

x∈∆(A)
max

x1∈∆(A)
U1(x1, x

⊗n−1).

To show that the inequality can be strict, we consider the scenario where the learner is involved in
a 3-player majority game and plays a mixed strategy (β, 1 − β) (i.e. play 0 w.p. β; play 1 w.p.
1− β). And the two opponents adopt an identical mixed strategy (p, 1− p) (i.e. play 0 w.p. p; play
1 w.p. 1 − p). Then, we can calculate the payoff of the learner as U1(β, p, p) = β(−(1 − p)2 +
p(1 − p)) + (1 − β)(−p2 + p(1 − p)). It then follows that maxβ∈[0,1] minp∈[0,1] U1(β, p, p) ≤
maxβ∈[0,1] minp∈{0,1} U1(β, p, p) = −1/2, which is strictly less than 0. Thus, we finish the proofs.

B.3 PROOF OF PROPOSITION 4.3

Proof of Proposition 4.3. Let Pw/o(i1, . . . , in−1) denote the probability of observing (i1, . . . , in−1)
when sampling n − 1 points from N without replacement, and let Pw(i1, . . . , in−1) denote the
probability of observing (i1, . . . , in−1) when sampling n− 1 points from N with replacement. For
any a, we then have

Ex−1
[U1(a, x−1)] =

∑
(i1,...,in−1)

Pw/o(i1, . . . , in−1)U1(a, xi1 , . . . , xin−1
)

U1(a, x̄
⊗n−1) =

∑
(i1,...,in−1)

Pw(i1, . . . , in−1)U1(a, xi1 , . . . , xin−1
).

Note that ∥U1∥∞ ≤ 1. Thus, we have∣∣Ex−1 [U1(a, x−1)]− U1(a, x̄
⊗n−1)

∣∣
≤

∑
(i1,...,in−1)

∣∣∣Pw/o(i1, . . . , in−1)− Pw(i1, . . . , in−1)
∣∣∣
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=
∑

(i1,...,in−1) has repeated value

Pw(i1, . . . , in−1)− Pw/o(i1, . . . , in−1)

+
∑

(i1,...,in−1) no repeated value

Pw/o(i1, . . . , in−1)− Pw(i1, . . . , in−1)

= 2
∑

(i1,...,in−1) has repeated value

Pw(i1, . . . , in−1)− Pw/o(i1, . . . , in−1)

= 2

(
1− N(N − 1) . . . (N − n+ 2)

Nn−1

)
= 2

(
1−

(
1− 1

N

)(
1− 2

N

)
. . .

(
1− n− 2

N

))
≤ 2

(
1−

(
1− n− 2

N

)n−2
)

≤ 2(n− 2)2

N
.

C PROOFS FOR SECTION 5

In Section C.1, we establish guarantees for the Hedge algorithm, SAOLH, and behavior cloning. In
Section C.2, we provide a detailed discussion of the matching lower bounds and prove Theorem 5.4
and Theorem 5.5.

C.1 GUARANTEES FOR EFFICIENT ALGORITHMS

In the sequel, we establish guarantees for the Hedge algorithm by proving Theorem 5.1 in Section
C.1.1, for SAOLH by proving Theorem 5.2 in Section C.1.2, and for behavior cloning by proving
Theorem 5.3 in Section C.1.3.

C.1.1 PROOF OF THEOREM 5.1

In this section, we establish guarantees for the Hedge algorithm when facing fixed opponents.

Proof of Theorem 5.1. Let a⋆ ∈ argmaxa∈AU1(·, y⊗n−1). We then have

u⋆ − 1

T

T∑
t=1

ut(xt)

= U1(a
⋆, y⊗n−1)− 1

T

T∑
t=1

ut(xt)

= U1(a
⋆, y⊗n−1)− 1

T

T∑
t=1

U1(a
⋆, at−1)︸ ︷︷ ︸

(i)

+
1

T

T∑
t=1

U1(a
⋆, at−1)−

1

T

T∑
t=1

U1(x
t, at−1)︸ ︷︷ ︸

(ii)

+
1

T

T∑
t=1

U1(x
t, at−1)−

1

T

T∑
t=1

ut(xt)︸ ︷︷ ︸
(iii)

For (i), by Hoeffding’s inequality and union bound, we have with probability at least 1− δ that

(i) ≤ O(

√
log(A/δ)

T
)
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For (ii), by Hedge algorithm, we have

(ii) ≤ O(

√
log(A)

T
)

For (iii), note that {U1(x
t, at−1) − ut(xt)}Tt=1 is a martingale difference sequence, thus by

Azuma–Hoeffding inequality, we have with probability at least 1− δ that

(iii) ≤ O(

√
log(1/δ)

T
).

Combining the above results, we have

u⋆ − 1

T

T∑
t=1

ut(xt) ≤ C

√
log(A/δ)

T

for some absolute constant C > 0. Thus we finish the proofs.

C.1.2 PROOF OF THEOREM 5.2

In this section, we establish guarantees for SAOLH when facing adaptive opponents.

The basic idea behind SAOLH is to execute H in parallel over each interval within a carefully
selected set. This algorithm dynamically adjusts the weight of each interval based on the previously
observed regret. In each round, SAOLH selects an interval in proportion to its assigned weight,
applies H to each time slot within this interval, and follows its advice. Through this mechanism,
SAOLH achieves a near-optimal performance on every time interval. We will leverage the strong
adaptivity of SAOLH in our proofs.

Proof of Theorem 5.2. Let I be any fixed interval in [0, T ], a0 ∈ argmaxa∈A
{∑

t∈I ut(a)
}

and
ut,⋆ := maxa∈A ut(a). It holds that∑

t∈I

(
ut,⋆ − ut(xt)

)
=
∑
t∈I

(
ut,⋆ − ut(a0)

)
︸ ︷︷ ︸

(i)

+
∑
t∈I

(
ut(a0)− U1(a0, a

t
−1)
)

+
∑
t∈I

(
U1(a0, a

t
−1)− U1(x

t, at−1)
)

︸ ︷︷ ︸
(ii)

+
∑
t∈I

(
U1(x

t, at−1)− ut(xt)
)
.

For (i), it can be seen that

(i) =
∑
t∈I

(
ut,⋆ − ut(a0)

)
≤ |I|max

t∈I

{
ut,⋆ − ut(a0)

}
≤ 2VI |I|.

Here the last inequality follows from the following argument: otherwise there exists t0 ∈ I such
that ut0,⋆ − ut0(a0) > 2VI . Let a1 ∈ argmaxa∈Au

t0(a). For all t ∈ I, it then holds that
ut(a1) ≥ ut0(a1)− VI = ut0,⋆ − VI > ut0(a0) + VI ≥ ut(a0). Contradict to the definition of a0!

For (ii), we have

(ii) ≤ max
a∈A

∑
t∈I

(
U1(a, a

t
−1)− U1(x

t, at−1)
)
≤ C(

√
logA+ log T )

√
|I|,

where the last inequality follows from Theorem 1 in (Daniely et al., 2015).

Combining the upper bound of (i) and (ii), we have for any fixed interval I ⊂ [0, T ],∑
t∈I

(
ut,⋆ − ut(xt)

)
17
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≤ 2VI |I|+
∑
t∈I

(
ut(a0)− U1(a0, a

t
−1)
)
+ C(

√
logA+ log T )

√
|I|

+
∑
t∈I

(
U1(x

t, at−1)− ut(xt)
)
.

We segment the time horizon T into T/|I| batches {Ij} with each length |I|. It then holds for all j
that ∑

t∈Ij

(
ut,⋆ − ut(xt)

)
≤ 2VIj |I|+

∑
t∈Ij

(
ut(a0)− U1(a0, a

t
−1)
)
+ C(

√
logA+ log T )

√
|I|

+
∑
t∈Ij

(
U1(x

t, at−1)− ut(xt)
)
.

Sum over j gives

D-Reg(T )

≤ 2VT |I|+
T∑

t=1

(
ut(a0)− U1(a0, a

t
−1)
)

︸ ︷︷ ︸
(iii)

+C(T/
√
|I|) · (

√
logA+ log T )

+

T∑
t=1

(
U1(x

t, at−1)− ut(xt)
)

︸ ︷︷ ︸
(iv)

.

For (iii), note that {ut(a) − U1(a, a
t
−1)}Tt=1 is a martingale difference sequence, we have with

probability at least 1− δ that

(iii) ≤ max
a∈A

T∑
t=1

(
ut(a)− U1(a, a

t
−1)
)
≤ O

(√
T log(A/δ)

)
,

where the last inequality follows from Azuma–Hoeffding inequality and union bound.

For (iv), note that {U1(x
t, at−1) − ut(xt)}Tt=1 is a martingale difference sequence, thus by

Azuma–Hoeffding inequality, we have with probability at least 1− δ that

(iv) ≤ O
(√

T log(1/δ)
)
.

Consequently we have with probability at least 1− δ that

D-Reg(T ) ≤ 2VT |I|+ C(T/
√

|I|) · (
√
logA+ log T ) +O

(√
T log(A/δ)

)
.

Choosing |I| = (T/VT )
2/3, we have with probability at least 1− δ that

D-Reg(T ) ≤ O
(
V

1/3
T T 2/3(

√
log(A/δ) + log T )

)
.

Finally, by the definition of uavg(T ) and u†, we show that

uavg(T ) ≥ u† − CV
1/3
T T−1/3

(√
log(A/δ) + log T

)
for some absolute constant C.
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Algorithm 2 Behavior Cloning
1: In the first round, play a ∼ Uniform(A).
2: for t = 2, . . . , T do
3: Play at−1

2 , i.e. the action played by Player 2 in the last round.

C.1.3 PROOF OF THEOREM 5.3

In this section, we establish guarantees for behavior cloning when facing adaptive opponents.

Proof of Theorem 5.3. Note that

E

[
T∑

t=1

ut(xt)

]
≥ −1 + E

[
T∑

t=2

ut(xt)

]

= −1 + E

[
T∑

t=2

U1(a
t−1
2 , (yt)⊗n−1)

]

≥ −1− VT − E

[
T∑

t=2

U1(a
t−1
2 , (yt−1)⊗n−1)

]
(by the defition of VT )

= −1− VT − E

[
T∑

t=2

U1(y
t−1, (yt−1)⊗n−1)

]
(since at−1

2 ∼ yt−1)

= −1− VT (since the game is symmetric and zero-sum)

Finally, by the definition of uavg(T ), we finish the proofs.

C.2 MATCHING LOWER BOUNDS

Upon examining Theorem 5.2 alongside Theorem 5.3, it becomes apparent that Theorem 5.2 bench-
marks against a more stringent standard (i.e., the dynamic oracle) and incurs a larger error of
V

1/3
T T−1/3, while Theorem 5.3 sets its comparison against a baseline metric (i.e., the average pay-

off) and attains a smaller error of VT /T . Regarding this observation, one might aspire to devise an
algorithm whose payoff satisfies: uavg(T ) ≥ u† − Õ(VT /T ). However, Theorem 5.4 and Theorem
5.5 demonstrate that such a goal is unattainable, by exploring the fundamental limits faced when
competing against non-stationary opponents.

Theorem 5.4 shows, when contending with non-stationary opponent, the optimal algorithm must
incur a dynamic regret at least order of V 1/3

T T 2/3, closing off the possibility of attaining a better VT

rate. It’s noteworthy that a similar lower bound for dynamic regret has already been established un-
der broader conditions Besbes et al. (2014). The distinction of Theorem 5.4 lies in further restricting
the hard problems to be symmetric games, implying that the structure of symmetric game does not
offer an advantage in improving dynamic regret in the worst case. By comparing this lower bound
with Theorem 5.2, it is evident that SAOLH is demonstrated to be minimax optimal, albeit with the
inclusion of some logarithmic factors.

Theorem 5.5 establishes the fundamental limit when comparing to average payoff 0. The guaran-
tees achieved by Theorem 5.3 can not be improved in the worst case, showing behavior cloning is
demonstrated to be optimal upto some constant.

C.2.1 PROOF OF THEOREM 5.4

Proof of Theorem 5.4. We define

U
(3)
1 (a, b, c) :=


payoff for 3-player majority game if a, b, c ∈ {0, 1}
−1 if a /∈ {0, 1}, b, c ∈ {0, 1}
defined by symmetric o.w.
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which is basically the payoff function for 3-player majority game with extra dummy actions. We
then define

U
(n)
1 (a, a2, . . . , an) :=

1

(n− 1)(n− 2)

∑
2≤i ̸=j≤n

U
(3)
1 (a, ai, aj).

We consider a game that evolves stochastically, with n players, action space A = {0, 1, . . . , A−1},
and the payoff function of the first player given by U

(n)
1 . We segment the decision horizon T into

T/∆T batches {Tj}, with each batch comprising ∆T episodes. We consider two distinct scenarios:

• Case1: All the other players employ a mixture strategy (1/2 − ϵ, 1/2 + ϵ) (i.e., playing 0
with probability 1/2− ϵ, playing 1 with probability 1/2 + ϵ);

• Case 2: All the other players employ a mixture strategy (1/2 + ϵ, 1/2− ϵ) (i.e., playing 0
with probability 1/2 + ϵ, playing 1 with probability 1/2− ϵ);

At the beginning of each batch, one of these scenarios is randomly selected (with equal probability)
and remains constant throughout that batch.

Let m = T/∆T represent total number of batches. We fix some algorithm and a batch j ∈
{1, . . . ,m}. Let δj ∈ {1, 2} indicate batch j belongs to Case1 or Case2. We denote by Pj

δj
the

probability distribution conditioned on batch j belongs to Case δj , and by P0 the probability dis-
tribution when all the other players employ a mixture strategy (1/2, 1/2). We further denote by
Ej
δj
[·] and E0[·] the corresponding expectations. We denote by N j

a the number of times action a was
played in batch j. If the batch j belongs to Case δj , then the optimal action in the batch is −δj + 2.
We first present a useful lemma.

Lemma C.1. Let f : {−1, 0, 1/2}|Tj |×A → [0,M ] be any bounded real function defined on the
payoff matrices R. Then, for any δj ∈ {1, 2}, ϵ ≤ 1/4:

Ej
δj
[f(R)]− E0[f(R)] ≤ M

2

√
−2|Tj | ln (1− 4ϵ2) ≤ 2Mϵ

√
∆T .

By Lemma C.1 with f = N j
−δj+2, we have

Ej
δj
[N j

−δj+2]− E0[N
j
−δj+2] ≤ 2ϵ|Tj |

√
∆T . (4)

Note that

Ej
δj
[ut(xt)] = −Pj

δj
(xt /∈ {0, 1}) + (−ϵ− 2ϵ2)Pj

δj
(xt = δj − 1) + (ϵ− 2ϵ2)Pj

δj
(xt = −δj + 2)

≤ (−ϵ− 2ϵ2)Pj
δj
(xt ̸= −δj + 2) + (ϵ− 2ϵ2)Pj

δj
(xt = −δj + 2)

= −ϵ− 2ϵ2 + 2ϵ · Pj
δj
(xt = −δj + 2),

therefore,

Ej
δj

∑
t∈Tj

ut(xt)

 ≤ (−ϵ− 2ϵ2)|Tj |+ 2ϵ · Ej
δj
[N j

−δj+2]

≤ (−ϵ− 2ϵ2)|Tj |+ 2ϵ · Ej
0[N

j
−δj+2] + 4ϵ2|Tj |

√
∆T . (by (4))

Consequently, we have

1

2
Ej
1

∑
t∈Tj

ut(xt)

+
1

2
Ej
2

∑
t∈Tj

ut(xt)

 ≤ (−ϵ− 2ϵ2)|Tj |+ ϵ|Tj |+ 4ϵ2|Tj |
√
∆T . (5)

It then holds that

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 =

m∑
j=1

EAlg

∑
t∈Tj

ut(xt)


20
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=

m∑
j=1

EAlg

1
2
Ej
1

∑
t∈Tj

ut(xt)

+
1

2
Ej
2

∑
t∈Tj

ut(xt)


≤

m∑
j=1

((−ϵ− 2ϵ2)|Tj |+ ϵ|Tj |+ 4ϵ2|Tj |
√

∆T )

= −2ϵ2T + 4ϵ2T
√
∆T .

Set ϵ = min{1/(8
√
∆T ), VT∆T /T}. We then have

EAlg[D-Reg(T )] = (ϵ− 2ϵ2)T − EAlg

[
T∑

t=1

ut(xt)

]
≥ (ϵ− 2ϵ2)T − (−2ϵ2T + 4ϵ2T

√
∆T )

= ϵT − 4ϵ2T
√
∆T

= ϵT (1− 4ϵ
√
∆T )

≥ 1

2
ϵT

=
1

2
min

{
1

8
√
∆T

,
VT∆T

T

}
T.

Choosing ∆T = (T/VT )
2/3, we then have

EAlg[D-Reg(T )] ≥ CV
1/3
T T 2/3.

Recall the definition of uavg(T ) and u†, we then finish the proofs.

We prove Lemma C.1 in the following.

Proof of Lemma C.1. We have that

Ej
δj
[f(R)]− E0[f(R)] =

∑
R

f(R)
(
Pj
δj
(R)− P0(R)

)
≤

∑
R:Pj

δj
(R)≥P0(R)

f(R)
(
Pj
δj
(R)− P0(R)

)
≤ M

∑
R:Pj

δj
(R)≥P0(R)

(
Pj
δj
(R)− P0(R)

)

=
M

2
∥Pj

δj
− P0∥TV

≤ M

2

√
2KL(P0 ∥ Pj

δj
), (6)

where the last ineqaulity follows from Pinsker’s inequality. Let Rt ∈ RA be a random vector
denoting the payoff for each action at time t, and let Rt ∈ Rt×A denote the payoff matrix received
upon time t: Rt = [R1, . . . , Rt]

T . By the chain rule for the relative entropy, we have

KL(P0 ∥ Pj
δj
) =

|Tj |∑
t=1

ERt−1

[
KL
(
P0(Rt | Rt−1) ∥ Pj

δj
(Rt | Rt−1)

)]
. (7)

Note that

P0(Rt = [−1, 0,−1, . . . ,−1] | Rt−1) = P0(Rt = [0,−1,−1, . . . ,−1] | Rt−1) = 1/4

P0(Rt = [1/2, 1/2,−1, . . . ,−1] | Rt−1) = 1/2.
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In the case δj = 1, we have

Pj
δj
(Rt = [−1, 0,−1, . . . ,−1] | Rt−1) = (1/2 + ϵ)2

Pj
δj
(Rt = [0,−1,−1, . . . ,−1] | Rt−1) = (1/2− ϵ)2

Pj
δj
(Rt = [1/2, 1/2,−1, . . . ,−1] | Rt−1) = 2(1/2 + ϵ)(1/2− ϵ).

In the case δj = 2, we have

Pj
δj
(Rt = [−1, 0,−1, . . . ,−1] | Rt−1) = (1/2− ϵ)2

Pj
δj
(Rt = [0,−1,−1, . . . ,−1] | Rt−1) = (1/2 + ϵ)2

Pj
δj
(Rt = [1/2, 1/2,−1, . . . ,−1] | Rt−1) = 2(1/2 + ϵ)(1/2− ϵ).

Thus, we have

KL
(
P0(Rt | Rt−1) ∥ Pj

δj
(Rt | Rt−1)

)
(8)

=
1

4
ln

1/4

(1/2 + ϵ)2
+

1

4
ln

1/4

(1/2− ϵ)2
+

1

2
ln

1/2

2(1/2 + ϵ)(1/2− ϵ)

=− ln
(
1− 4ϵ2

)
. (9)

Combining (6), (7) and (8), we have

Ej
δj
[f(R)]− E0[f(R)] ≤ M

2

√
−2|Tj | ln (1− 4ϵ2).

If we further have ϵ ≤ 1/4, it then holds that − ln
(
1− 4ϵ2

)
≤ 16 ln(4/3)ϵ2 and consequently

Ej
δj
[f(R)]− E0[f(R)] ≤ M

2

√
−2|Tj | ln (1− 4ϵ2) ≤ 2Mϵ

√
|Tj | ≤ 2Mϵ

√
∆T .

C.2.2 PROOF OF THEOREM 5.5

Proof of Theorem 5.5. We consider a game that evolves stochastically, with n players, action space
A = {0, 1, . . . , A− 1}, and the same payoff function U

(n)
1 as outlined in Theorem 5.4. We segment

the decision horizon T into T/∆T batches {Tj}, with each batch comprising ∆T episodes. We
consider two distinct scenarios:

• Case1: All the other players play 0;

• Case 2: All the other players play 1.

In Case 1, we have ut(0) = 0 and ut(a) = −1 for all a ̸= 0. In Case 2, we have ut(1) = 0 and
ut(a) = −1 for all a ̸= 1. At the beginning of each batch, one of these scenarios is randomly
selected (with equal probability) and remains constant throughout that batch.

Let m = T/∆T represent total number of batches. We fix some algorithm. Let δj ∈ {1, 2} indicate
batch j belongs to Case1 or Case2. We denote by Pj

δj
the probability distribution conditioned on

batch j belongs to Case δj , and by Ej
δj
[·] the corresponding expectation. It then holds that

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 =

m∑
j=1

EAlg

∑
t∈Tj

ut(xt)


=

m∑
j=1

EAlg

1
2
Ej
1

∑
t∈Tj

ut(xt)

+
1

2
Ej
2

∑
t∈Tj

ut(xt)


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≤
m∑
j=1

EAlg

[
1

2
Ej
1

[
utj,1(xtj,1)

]
+

1

2
Ej
2

[
utj,1(xtj,1)

]]
,

where tj,1 represents the first episode of batch j and the inequality follows from the fact that ut ≤ 0.
Note that

1

2
Ej
1

[
utj,1(xtj,1)

]
+

1

2
Ej
2

[
utj,1(xtj,1)

]
= −1

2

(
Pj
1(x

tj,1 ̸= 0) + Pj
2(x

tj,1 ̸= 1)
)

= −1

2

(
P(xtj,1 ̸= 0) + P(xtj,1 ̸= 1)

)
≤ −1

2
,

where the second equation follows from the fact that xtj,1 is independent of δj . Thus, we have

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 ≤ −m

2
= − T

2∆T
.

Choosing ∆T = T/VT , we have

EAlg

 m∑
j=1

∑
t∈Tj

ut(xt)

 ≤ −VT /2.

Recall the definition of uavg(T ), we then finish the proofs.

D EXPERIMENTS DETAILS

In this section, we provide additional details for our experiments.

D.1 ALGORITHMS

We refer readers to Algorithm 3-6 for detailed implementation of algorithms in the experiment. For
MV, we choose η = 1. For SDG, we choose η = 2.

Algorithm 3 Self-Play

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players

n, and initialize strategy x0.
1: for t = 1 to T do
2: Sample actions at−1

i ∼ xt−1 for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n ).

3: Update
xt(a) ∝ xt−1(a)exp{ηtU1(a, a

t−1
−1 )},∀a ∈ A.

Algorithm 4 Self-Play with Regularization

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players

n, initialize strategy x0, meta-strategy ymeta, and regularization parameter λ.
1: for t = 1 to T do
2: Sample actions at−1

i ∼ xt−1 for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n ).

3: Update

xt(a) ∝ exp

{
log x0(a) +

∑
τ<t ητU1(a, a

τ
−1) + λ

∑
τ<t ητ log ymeta(a)

1 + λ
∑

τ<t ητ

}
,∀a ∈ A.
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Algorithm 5 Hedge

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players

n, and initialize strategy x0.
1: for t = 1 to T do
2: Sample actions at−1

i ∼ ymeta for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n ).

3: Update
xt(a) ∝ xt−1(a)exp{ηtU1(a, a

t−1
−1 )},∀a ∈ A.

Algorithm 6 Exploiter for strategy x

Require: Number of iterations T , action space A, learning rate ηt = η
√

log |A|
t , number of players

n, and initialize strategy x0.
1: for t = 1 to T do
2: Sample actions at−1

1 ∼ x.
3: Sample actions at−1

i ∼ xt−1 for i = 2, . . . , n. Denote at−1
−1 := (at−1

2 , . . . , at−1
n ).

4: Update

xt(a) ∝ xt−1(a)exp

{
− ηt
n− 1

n∑
i=2

U1

(
at−1
1 , at−1

−1 [: i− 1], a, at−1
−1 [i+ 1 :]

)}
,∀a ∈ A.

D.2 COMPUTATION RESOURCES

The experiments are conducted on a server with 256 CPUs. Each experiment can be completed in a
few minutes.
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