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Abstract

Open Information Extraction (OpenIE) repre-001
sents a crucial NLP task aimed at deriving struc-002
tured information from unstructured text, unre-003
stricted by relation type or domain. This survey004
paper provides an overview of OpenIE tech-005
nologies spanning from 2007 to 2024, empha-006
sizing a chronological perspective absent in007
prior surveys. It examines the evolution of task008
settings in OpenIE to align with the advances009
in recent technologies. The paper categorizes010
OpenIE approaches into rule-based, neural, and011
pre-trained large language models, discussing012
each within a chronological framework. Ad-013
ditionally, it highlights prevalent datasets and014
evaluation metrics currently in use. Building on015
this extensive review, the paper considers how016
traditional OpenIE research can inspire future017
IE research in the LLM era, aiming to provide018
insights into the past, present, and future of019
OpenIE methodologies and applications.020

1 Introduction021

Open Information Extraction (OpenIE) aims to ex-022

tract structured information from unstructured text023

sources (Niklaus et al., 2018), typically outputting024

relationships as triplets (arg1, rel, arg2). As illus-025

trated in Figure 1, unlike standard IE, which relies026

on predefined categories to identify relationships,027

OpenIE operates without such constraints, enabling028

the extraction of diverse and unforeseen relations.029

This flexibility makes OpenIE especially valuable030

for rapidly evolving Natural Language Processing031

(NLP) tasks such as question answering, search032

engines, and knowledge graph completion (Han033

et al., 2020), as well as for handling large-scale and034

dynamic data sources like web data.035

Since its inception in 2007, the field of Ope-036

nIE has witnessed continual advancements. Ini-037

tially utilizing basic linguistic tools, OpenIE mod-038

els have progressively integrated more complex039

syntactic and semantic features, while preserving040

Figure 1: Comparison of OpenIE and standard relation
extraction.

the intuitive task of directly extracting relational 041

triplets from text. The advent of neural models in 042

2019 marks a paradigm shift for OpenIE research, 043

where systems employing Transformer-based ar- 044

chitectures like BERT (Devlin et al., 2019) sig- 045

nificantly enhance feature extraction capabilities. 046

To accommodate the technological shift, a variety 047

of methods and task settings have evolved within 048

diversified OpenIE approaches. 049

The emergence of Large Language Models 050

(LLMs) in 2023 has marked another revolutionary 051

phase, steering OpenIE toward a generative method 052

of information extraction. The robust generaliza- 053

tion abilities of these models not only advance the 054

technical prowess of OpenIE systems but also facil- 055

itate a convergence of methodologies and task set- 056

tings – revisiting the original, straightforward text 057

→ relational triplet format. This transition also 058

fosters potential integration with standard IE tasks, 059

pointing toward a promising future where extrac- 060

tion tasks are tackled through a unified, multi-task 061

approach. 062

As a result, there has been a decline in OpenIE 063

research in the LLM era. Is OpenIE research going 064

to its end? How can traditional OpenIE research 065

inspire IE research in the LLM era? Previous sur- 066
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veys largely focus on pre-LLM era models or limit067

their scope to methodological insights (Gamallo,068

2014; Vo and Bagheri, 2018; Zouaq et al., 2017;069

Glauber and Claro, 2018; Niklaus et al., 2018; Zhou070

et al., 2022). While recent studies (Xu et al., 2023b)071

delve into information extraction in the LLM era,072

they largely bypass OpenIE, concentrating instead073

on standard IE tasks. We aim to bridge this gap by074

providing a holistic survey of the OpenIE field from075

a chronological view, addressing the two research076

questions above.077

From a chronological perspective, we summa-078

rize all task settings (Section 2), data (Section 3),079

evaluation metrics (Section 4), and mainstream080

methods (Section 5) before and after LLM era.081

We use a single table to summarize mainstream082

methods and results from different periods. We em-083

phasize the co-evolution between models and task084

settings, and the various sources of information085

used to address Open challenges. Based on this,086

we compare the ideas and relative strengths and087

weaknesses of large models and traditional models088

(Section 6.1), review the impact of large language089

models on open information extraction and tradi-090

tional methods (Section 6.2), and explore future091

directions (Section 6.3).092

2 Task Settings093

We categorize OpenIE task settings into three094

groups: Open Relation Triplet Extraction (ORTE),095

Open Relation Span Extraction (ORSE) and Open096

relation clustering (ORC). ORTE is the classic task097

setting, while ORSE and ORC settings are vari-098

ations developed to cater to diverse models with099

the advancement of NLP techniques. For all three100

task settings, openness is shown in the absence of101

restraints on relation types. Figure 2 depicts the102

workflow for each task setting.103

ORTE Task: Text → Relational Triplet104

Banko et al. (2007) initially defines open infor-105

mation extraction as an unsupervised task that106

automatically extracts (entity1, relation, entity2)107

triplets from a vast corpus of unstructured web text,108

where entity1, entity2 and relation consist of se-109

lected words from input sentences. Although the110

term triplet is more commonly used, the actual111

extraction tasks are not always limited to triplets112

and can involve more diverse n-ary relations, such113

as condition, temporal information, etc. This task114

setting, irrespective of the learning method or the115

forms of input and output, represents the most ide-116

alized configuration. 117

ORSE Task: Entities + Text → Relation Span 118

Different from the first setting, open relation span 119

extraction finds relational spans according to pre- 120

viously extracted predicates and entities, aiming 121

to partition complex tasks into easier ones to im- 122

prove model performance. However, it should be 123

clear that errors in entity extraction steps can accu- 124

mulate in two-stage pipelines. See Open Relation 125

Extraction (ORSE) in Fig.2 for an example. 126

ORC Task: Entities + Text→ Clustering without 127

Explicit Relation Span or Label 128

Open relation clustering (ORC), also widely known 129

as open relation extraction, clusters relation in- 130

stances (h, t, s), where h and t denote head entity 131

and tail entity respectively, and s denotes the sen- 132

tence corresponding to two entities. Different from 133

the ORTE, ORC does not extract relation from text 134

but uses text between two entities to represent the 135

relation. Clustering similar relations is a step for- 136

ward in labeling specific relations to each relation 137

instance. These task settings outlined above are 138

distinctly characterized by era-specific traits and 139

methodologies, further discussed in Section 5. 140

3 Datasets 141

Table 1 lists some popular and promising OpenIE 142

datasets grouped by their creating methods. 143

Question Answering (QA) derived datasets 144

are converted from other crowd-sourced QA 145

datasets. OIE2016 (Stanovsky and Dagan, 2016) 146

is one of the most popular OpenIE benchmarks, 147

which leverages QA-SRL (He et al., 2015) anno- 148

tations. Additional datasets extend from OIE2016, 149

such as AW-OIE (Stanovsky et al., 2018), Re- 150

OIE2016 (Zhan and Zhao, 2020) and CaRB (Bhard- 151

waj et al., 2019). LSOIE (Solawetz and Larson, 152

2021), is created by converting the QA-SRL 2.0 153

dataset (FitzGerald et al., 2018) to a large-scale 154

OpenIE dataset, which claims to be 20 times larger 155

than the next largest human-annotated OpenIE 156

dataset. 157

Crowdsourced datasets are created from direct 158

human annotation, including WiRe57 (Léchelle 159

et al., 2019), SAOKE dataset (Sun et al., 2018), 160

and BenchIE dataset (Gashteovski et al., 2021). 161

Knowledge Base (KB) derived datasets are 162

established by aligning triplets in KBs with text 163

in the corpus. Several works (Mintz et al., 2009; 164

Yao et al., 2011) have aligned the New York Times 165

corpus (Sandhaus, 2008) with Freebase (Bollacker 166
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Figure 2: An overview of workflow processes in OpenIE task settings.

et al., 2008) triplets, resulting in several variations167

of the same dataset, NYT-FB. Others are created168

by aligning relations of given entity pairs(ElSahar169

et al., 2018), such as TACRED(Zhang et al., 2017),170

FewRel (Han et al., 2018), T-REx (ElSahar et al.,171

2018), T-REx SPO and T-REx DS (Hu et al., 2020).172

COER (Jia et al., 2018), a large-scale Chinese KB173

dataset, is automatically created by an unsuper-174

vised open extractor.175

Instruction-based datasets transform IE tasks176

into tasks requiring instruction-following, thus har-177

nessing the capabilities of LLMs. Strategies in-178

clude integrating existing IE datasets into a unified-179

format (Wang et al., 2023a; Lu et al., 2022), and de-180

riving others from Wikidata and Wikipedia such as181

INSTRUCTOPENWIKI (Lu et al., 2023), INSTRUC-182

TIE (Gui et al., 2023), and Wikidata-OIE (Wang183

et al., 2022b).184

Overall, KB derived datasets are mostly used in185

ORC task settings, whereas QA derived, crowd-186

sourced, and instruction-based datasets are usually187

used in ORTE and ORSE task settings. We provide188

more detailed descriptions in Appendix C.189

4 Evaluation190

Evaluation metrics for OpenIE models vary by task191

setting. In the ORTE and ORSE settings, models192

are assessed using precision, recall, F1 score, and193

AUC, potentially employing various scoring func-194

tions. In the ORC setting, performance is evaluated195

using B3 (Bagga and Baldwin, 1998), V-measure196

(Rosenberg and Hirschberg, 2007), and ARI (Hu-197

bert and Arabie, 1985).198

To compare the extracted and golden triplets,199

various datasets employ different matching strate-200

gies, typically categorized into token-level and201

Dataset #Tuple Domain

QA Derived
OIE2016 (2016) 10,359 Wiki, Newswire
Re-OIE2016 (2020) NR Wiki, Newswire
CaRB (2019) NR Wiki, Newswire
AW-OIE (2018) 17,165 Wiki, Wikinews
LSOIE-wiki (2021) 56,662 Wiki, Wikinews
LSOIE-sci (2021) 97,550 Science

Crowdsourced
WiRe57 (2019) 343 Wiki, Newswire
SAOKEzh (2018) NR Baidu Baike
BenchIEen (2021) 136,357 Wiki, Newswire
BenchIEde (2021) 82,260 Wiki, Newswire
BenchIEzh (2021) 5,318 Wiki, Newswire

KB Derived
NYT-FB (2008; 2008; 2009; 2011) 39,000 NYT, Freebase
TACRED (2017) 119,474 TAC KBP
FewRel (2018) 70,000 Wiki, Wikidata
T-REx (2018) 11M Wiki, Wikidata

COERzh (2018) 1M Baidu Baike,
Chinese news

Instruction-Based
INSTRUCTOPENWIKI (2023) 19M Wiki, Wikidata
Wikidata-OIE (2022b) 27M Wiki, Wikidata

Table 1: Statistics of popular OpenIE datasets. "NR"
stands for "Not Reported". Non-English datasets are
indicated with superscripts.

Task Setting Evaluation Metrics

ORTE Recall, AUC, F1
ORSE F1
ORC ARI, B3, V-measure

Table 2: Core evaluation metrics of each task setting.

fact-level scorers. Token-level scorers focus on 202

individual tokens to ensure precision and seman- 203

tic accuracy, accommodating linguistic variability 204

(Stanovsky and Dagan, 2016), enhancing concise- 205

ness (Léchelle et al., 2019), and adapting to com- 206

plex model outputs like those from LLMs (Han 207

et al., 2023). Fact-level scorers assess the informa- 208
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tional faithfulness of extractions to ensure reliable209

knowledge extraction, validating semantic and in-210

formation integrity (Sun et al., 2018; Gashteovski211

et al., 2021; Li et al., 2023a) to enhance OpenIE212

evaluations comprehensively. Further details are213

discussed in Appendix D.214

From the perspective of task formulation, token-215

level scorers are better suited for open relation span216

extraction (ORSE), where outputs are succinct, and217

labeling models in open relation triplet extraction218

(ORTE), whose outputs are precise tokens derived219

from the inputs. Conversely, fact-level scorers are220

more appropriate for generative models in ORTE,221

particularly LLMs, whose outputs exhibit diversity222

and necessitate semantic evaluation.223

5 A Chronological Review of Mainstream224

Methods225

The research approaches for Open IE have under-226

gone three significant changes along with techno-227

logical advancements. We categorize these periods228

into three eras: the pre-neural era, dominated by229

rule-based and statistic-based methods; the neural230

model era, primarily based on neural networks; and231

the LLMs era, characterized by the use of LLMs.232

Chronologically, we will discuss the key models233

and methods from each period and explore their234

connections. More details about model implemen-235

tation is provided in Appendix.A236

5.1 Pre-neural Model Era237

In the beginning, OpenIE systems were developed238

to create a universal model capable of extracting239

relation triplets through shallow features, such as240

Part-of-Speech (POS) that do not have lexical infor-241

mation, for instance, characterizing a verb based on242

its context. Traditional machine learning models,243

such as Naive Bayes (Rish et al., 2001) and Con-244

ditional Random Field (Sutton et al., 2012), are245

used to train on shallow features (Yates et al., 2007;246

Wu and Weld, 2010; Zhu et al., 2009). Using only247

lexical features will lead to problems of incoher-248

ent and uninformative relations. Therefore, lexical249

features and syntactic features are used to miti-250

gate such problems (Schmitz et al., 2012; Qiu and251

Zhang, 2014; Mausam, 2016). Later, rule-based252

models take advantage of hand-written patterns and253

rules to match relations (Fader et al., 2011; Akbik254

and Löser, 2012). To extract relations in a fine-255

grained way, clause-based models determine the256

set of clauses and identify clause types before ex-257

tracting relations (Del Corro and Gemulla, 2013; 258

Schmidek and Barbosa, 2014; Angeli et al., 2015). 259

5.2 Neural Model Era 260

Sequence Labeling. RnnOIE (Stanovsky et al., 261

2018) is the first neural method, which formulates 262

ORTE task as a sequence labeling problem where 263

inputs a sequence of tokens {x1, x2, ..., xn} and 264

outputs a sequence of labels {l1, l2, ..., ln} with the 265

same length n as input. RnnOIE uses a Bi-LSTM to 266

process input features, including word embeddings, 267

POS tags, and indicated predicates. A Softmax 268

classifier tags a BIO label for the last layer hidden 269

state of each token, after which relation triplets are 270

constructed. Since one sentence usually contains 271

more than one relation triplet, many approaches 272

propose to avoid encoding and labeling the same 273

input several times (Kolluru et al., 2020a; Bowen 274

et al., 2021; Vasilkovsky et al., 2022). SMiLe- 275

OIE (Dong et al., 2022) improves the model in an 276

information-source view, using GCNs and multi- 277

view learning to incorporate constituency and de- 278

pendency information and aggregating semantic 279

features and syntactic features by concatenating 280

BERT and graph embeddings. 281

The sequence labeling paradigm is characterized 282

by its computational efficiency, especially for large- 283

scale text processing. It yields readily interpretable 284

output, as each token associates itself with a spe- 285

cific role, such as subject, relation, object, spatial 286

information, etc. It is limited by treating tokens 287

in isolation, potentially failing to capture global 288

context and complex relationships that extend be- 289

yond single tokens or cross sentences. Additionally, 290

its output format may not adequately represent the 291

nuanced variability of natural language. 292

Sequence to Sequence Generation. Cui et al. 293

(2018) casts OpenIE as a sequence-to-sequence 294

(S2S) generation problem and proposes NeuralOIE, 295

an encoder-decoder model generating a sequence of 296

relation triplets conditioned by the input sentence. 297

Facing unknown token openness problem, Neu- 298

ralOIE uses the attention-based coping mechanism 299

to enlarge the vocabulary. IMoJIE(Kolluru et al., 300

2020b) is an iterative generative OpenIE model that 301

uses a BERT encoder to keep encoding previous 302

generated relation triplets and generates the next 303

triplet with an LSTM decoder until an "EndOfEx- 304

tractions" token is reached. 305

The S2S paradigm excels in capturing complex 306

relationships, as it considers the broader contextual 307

information. It is adaptable to various languages 308
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OIE16 Re-OIE16 CaRB FewRel TACRED
Representative Approach F1 AUC F1 AUC F1 AUC ARI B3 V ARI B3 V

OLLIE (Schmitz et al., 2012) 38.6 20.2 49.5 31.3 41.1 22.4 - - - - - -
ClausIE (Del Corro and Gemulla, 2013) 58.0 36.4 64.2 46.4 44.9 22.4 - - - - - -
OPENIE4 (Mausam, 2016) 58.8 40.8 68.3 50.9 51.6 29.5 - - - - - -

Pre-Neural (ORTE)
2007 - 2018

PropS (Stanovsky and Dagan, 2016) 54.4 32.0 64.2 43.3 31.9 12.6 - - - - - -

RnnOIE (Stanovsky et al., 2018) 62.0 48.0 - - 49.0 26.1 - - - - - -
OpenIE6 (Kolluru et al., 2020a) - - - - 52.7 33.7 - - - - - -
SpanOIE (Zhan and Zhao, 2020) 69.4 49.1 77.0 65.8 48.5 - - - - - - -
IMoJIE (Kolluru et al., 2020b) - - - - 53.5 33.3 - - - - - -
MacroIE (Bowen et al., 2021) - - - - 54.8 36.3 - - - - - -
DetIELSOIE (Vasilkovsky et al., 2022) - - - - 43.0 27.2 - - - - - -
DetIEIMoJIE (Vasilkovsky et al., 2022) - - - - 52.1 36.7 - - - - - -

Neural Era (ORTE)
2018 - 2022

SMiLe-OIE (Dong et al., 2022) - - - - 53.8 34.9 - - - - - -
Multi2OIE (Ro et al., 2020) - - 83.9 74.6 52.3 32.6 - - - - - -
GEN2OIE (Kolluru et al., 2022) - - - - 54.4 32.3 - - - - - -
GEN2OIE (label-rescore) - - - - 54.5 38.9 - - - - - -
OIE@OIA (Wang et al., 2022d) 71.6 54.3 85.3 76.9 51.1 33.9 - - - - - -
DragonIE (Yu et al., 2022) - - - - 55.1 36.4 - - - - - -
ChunkOIE(SaC-OIA-SP) (Dong et al., 2023) - - - - 53.6 35.5 - - - - - -

Neural Era (ORSE)
2018 - 2022

ChunkOIE(SaC-CoNLL) - - - - 53.2 34.7 - - - - - -
RSN (Wu et al., 2019) - - - - - - 45.3 58.9 70.8 45.9 63.1 64.3
RSN-CV (Wu et al., 2019) - - - - - - 54.2 63.8 72.4 - - -
SelfORE (Hu et al., 2020) - - - - - - 64.7 67.8 78.3 44.7 54.1 61.9
RSN-BERT (Zhao et al., 2021) - - - - - - 53.2 70.9 78.1 75.6 83.4 85.9
RoCORE (Zhao et al., 2021) - - - - - - 70.9 79.6 86 81.2 86 88.8
OHRE (Zhang et al., 2021a) - - - - - - 64.2 70.5 76.7 - - -
MatchPrompt (Wang et al., 2022c) - - - - - - 66.5 72.3 82.2 75.3 83.0 84.5
PromptORE (Genest et al., 2022) - - - - - - 43.4 48.8 71.8 - - -
CaPL (Duan et al., 2022) - - - - - - 79.4 81.9 88.9 82.9 87.3 89.8

Neural Era (ORC)
2018 - 2022

ASCORE (Zhao et al., 2023) - - - - - - 67.6 73.5 83.5 78.1 78 83.1

IELM GPT-2XL (Wang et al., 2022b) - - 35.0 - 22.7 - - - - - - -
GPT-3.5-TURBO ICL (Ling et al., 2023) 65.1 - 67.9 - 52.1 - - - - - - -LLM Era (ORTE)

2022 - ChatGPT n-shot (Qi et al., 2023a) - - - - 55.3 - - - - - - -

Table 3: Performance of OpenIE models. For B3 and V measures, F1 scores are reported. Rows filled with colors
represent models of different task settings: = ORSE, = ORSE, = ORC.

and domains but more demand in datasets and309

training times. The flexible output, while better-310

addressing openness challenges, also poses chal-311

lenges for downstream applications requiring stan-312

dardized output structures.313

Two-Stage Open Relation Extraction. Taking314

advantage of the remarkable representation capabil-315

ity of PLMs such as BERT, many researchers refine316

the model architecture into two stages to achieve317

more effective extractions. Multi2OIE (Ro et al.,318

2020) is a two-stage labeling method. Its first stage319

is to label all predicates upon BERT-embedded320

hidden states instead of locating predicates with321

syntactic features. The second stage is to extract322

the arguments associated with each identified pred-323

icate by using a multi-head attention mechanism.324

The intermediate representation can be other for-325

mats such as chunk sequence (Kolluru et al., 2022)326

and directed acyclic (Yang et al., 2022).327

Various intermediate representations are used to328

enhance the pipeline’s performance. OIE@OIA329

(Wang et al., 2022d) is an adaptable OpenIE sys-330

tem that employs the method of Open Information331

expression (OIX) by parsing sentences into Open332

Information Annotation (OIA) Graphs. It consists333

of two components: an OIA generator that converts334

sentences into OIA graphs and a set of adaptors that335

trained to for versatile extraction formats. By using 336

different intermediate representations, Chunk-OIE 337

(Dong et al., 2023) introduces the Chunk sequence 338

(SaC) as an intermediate representation layer while 339

Yu et al. (2022) introduces directed acyclic graph 340

(DAG) as a minimalist intermediate expression. 341

Open Relation Clustering. The clustering- 342

based approaches are divided into relation represen- 343

tation and clustering. Some studies label clusters: 344

Wang et al. (2022c) and (Genest et al., 2022) in- 345

troduce an unsupervised prompt-based algorithm, 346

MatchPrompt, which clusters sentences by lever- 347

aging representations from masked relation tokens 348

within a prompt template. Its superb performance 349

against traditional unsupervised methods indicates 350

that leveraging the semantic expressive power of 351

pre-trained models is very important. 352

SelfORE (Hu et al., 2020) propose a self- 353

supervised learning method for learning better fea- 354

ture representations for clustering. SelfORE is 355

composed of three sections: (1) encode relation 356

instances by leveraging BERT (Devlin et al., 2019) 357

to obtain relation representations; (2) apply adap- 358

tive clustering based on updated relation represen- 359

tations from (1) to assign each instance to a cluster 360

with high confidence. In this way, pseudo labels are 361

generated. (3) pseudo labels from (2) are used as su- 362
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pervision signals to train the relation classifier and363

update the encoder in (1). Repeat (2) until converge.364

Based on similar self-supervised approaches, many365

works propose to reduce irrelevant information in366

relation representation (Zhao et al., 2021), create367

pseudo labels (Duan et al., 2022), and introduce368

human intervention during training to address the369

challenge of poorly clustered samples (Zhao et al.,370

2023). During relation clustering, using complete371

input (sentence) representations as relation repre-372

sentations often leads to a significant decline in373

clustering performance when multiple relations ex-374

ist within a single input. Semi-supervised learning375

has shown the best results. However, the effective-376

ness largely depends on the quality of the annotated377

data.378

Apart from labeled data, knowledge bases also379

benefit OpenIE by generating positive and negative380

instances. OHRE (Zhang et al., 2021b) proposes a381

top-down hierarchy expansion algorithm to cluster382

and label relation instances based on the distance383

between the KB hierarchical structure. Existing384

relations are labeled with KB elements, and novel385

relations are labeled as children relations of exist-386

ing ones. Using a structured KB can determine the387

broad category of a cluster’s relations, partially ad-388

dressing cluster labeling issues. The KB structure389

can also define relation boundaries during cluster-390

ing. However, errors in the KB can affect clustering391

accuracy, and building a high-quality KB still re-392

quires significant human effort.393

5.3 Large Language Models Era394

The recent evolution and emergence of Large Lan-395

guage Models (LLMs), such as GPT-4 (OpenAI,396

2024), ChatGPT (OpenAI, 2023), and Llama 2397

(Touvron et al., 2023), have significantly advanced398

the field of NLP. Their remarkable capabilities in399

text understanding, generation, and generalization400

have led to a surge of interest in generative IE meth-401

ods (Qi et al., 2023b; Xu et al., 2023b). Recent402

studies have employed LLMs for OpenIE tasks by403

transforming input text through specific instruc-404

tions or schemas. This approach facilitates tasks405

such as triplet extraction and relation classification406

under the structured language generation frame-407

work. It allows for a versatile task configuration408

where diverse forms of input text can be processed409

to generate structured relational triplets uniformly.410

Zero-Shot. Wang et al. (2022b) propose IELM,411

a benchmark for assessing the zero-shot perfor-412

mance of GPT-2 (Radford et al., 2019) by encod-413

ing entity pairs in the input and extracting relations 414

associated with each entity pair. On large-scale 415

evaluation on various OpenIE benchmark tasks, re- 416

search has shown that the zero-shot performance of 417

leading LLMs, such as ChatGPT, still falls short of 418

the state-of-the-art supervised methods (Han et al., 419

2023; Qi et al., 2023b), specifically on more chal- 420

lenging tasks (Li et al., 2023a). This shortfall is 421

partly because LLMs struggle to distinguish irrele- 422

vant context from long-tail target types and relevant 423

relations (Ling et al., 2023; Han et al., 2023). 424

Fine-Tuning and Few-Shot. Consequently, ef- 425

forts have been made to fine-tune pre-trained LLMs 426

or employ in-context learning prompting strategies 427

to utilize and enhance the instruction-following 428

ability of LLMs. For example, Lu et al. (2023) 429

addresses open-world information extraction, in- 430

cluding unrestricted entity and relation detection, 431

as an instruction-following generative task, and 432

develops PIVOINE, a fine-tuned information ex- 433

traction LLM that generates comprehensive entity 434

profiles in JSON format. To minimize the need for 435

extensive fine-tuning of LLMs, Ling et al. (2023) 436

proposes various in-context learning strategies for 437

performing relation triplet generation to improve 438

the instruction-following ability of LLMs, and in- 439

troduces an uncertainty quantification module to 440

increase the confidence in the generated answers. 441

Qi et al. (2023a) proposes to construct a consistent 442

reasoning environment by mitigating the distribu- 443

tional discrepancy between test samples and LLMs. 444

This strategy aims to improve the few-shot reason- 445

ing capability of LLMs on specific OpenIE tasks. 446

6 Discussion 447

This section reviews the diverse sources of informa- 448

tion used by OpenIE models and discusses current 449

limitations and future prospects, offering a compre- 450

hensive overview of the field’s evolving trajectory. 451

6.1 Co-Evolution of OpenIE: Task Settings 452

and Model Capabilities 453

In this section, we unveil the connection between 454

task settings and model capabilities in handling 455

various features and information, demonstrating 456

the intertwined development of both aspects. 457

Input-based information refers to features ex- 458

plicitly or implicitly present in the input unstruc- 459

tured text. Early OpenIE models extensively uti- 460

lized explicit information such as shallow syntactic 461

information, including part of speech (POS) tags 462
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and noun-phrase (NP) chunks (Banko et al., 2007;463

Wu and Weld, 2010; Fader et al., 2011). This ap-464

proach is reliable, yet it does not capture all rela-465

tion types (Stanovsky et al., 2018), leading to the466

increasing use of deep dependency information,467

which reveals word dependencies within sentences468

(Vo and Bagheri, 2018; Elsahar et al., 2017). Subse-469

quent OpenIE models have emphasized the use of470

semantic information to grasp literal meanings and471

linguistic structures, thereby enhancing the expres-472

sion of relations despite the risk of over-specificity473

(Vashishth et al., 2018; Wu et al., 2018). Recent474

models, including pre-trained language models,475

combine syntactic and semantic information to im-476

prove accuracy (Hwang and Lee, 2020; Ni et al.,477

2021). Further details in Appendix E.1.478

External information supplements OpenIE sys-479

tems to enhance model performance. Early sys-480

tems employ expert rules, including heuristic rules481

that integrate domain knowledge and assist in error482

tracing and resolution, based on syntactic analy-483

ses like POS-tagging (Chiticariu et al., 2013; Fader484

et al., 2011). Following this, the integration of485

hierarchical information from knowledge bases486

(KBs) advances knowledge representation learn-487

ing. This integration provides structured hierar-488

chies and detailed factual knowledge, supporting489

more organized relation extraction and data aug-490

mentation (Xie et al., 2016; Zhang et al., 2021b;491

Fangchao et al., 2021). With the developments of492

LLMs recently, the pre-trained knowledge within493

these models is utilized, encapsulating extensive re-494

lational data (Jiang et al., 2020; Petroni et al., 2020)495

and enabling efficient retrieval with well-designed496

instructions. The strong generalization capabilities497

of LLM-based approaches allow them to embrace498

open-world knowledge, making them more robust499

and adaptable to various tasks and real-world appli-500

cations. Further details in Appendix E.2.501

6.2 Transforming OpenIE: The Impact of502

LLMs503

When comparing the performance of LLMs with504

pre-LLM approaches, we see that LLMs have505

significantly advanced the task of OpenIE, of-506

ten outperforming traditional methods. Zero-shot507

LLMs have achieved impressive and state-of-the-508

art (SOTA) results in various scenarios when evalu-509

ated on classic metrics such as token-level scorers510

(Li et al., 2023a; Wang et al., 2022b). However,511

these models struggle with long-tail and more chal-512

lenging tasks (Gao et al., 2023). A major chal-513

lenge for LLMs, compared to pre-LLM approaches 514

like sequence tagging, is the issue of hallucina- 515

tion, which frequently occurs in various natural 516

language generation tasks (Ji et al., 2023), mak- 517

ing faithfulness and reliability significant concerns. 518

Traditional generative-based approaches from the 519

pre-LLM era also suffer from errors such as re- 520

dundant and incorrect extractions (Schneider et al., 521

2017; Zhou et al., 2022), known as intrinsic hallu- 522

cination. In contrast, LLM-based methods face the 523

risk of both intrinsic hallucination and generating 524

information unsupported by the original context or 525

additional references, known as extrinsic halluci- 526

nation (Zhu et al., 2023; Ren et al., 2023; Li et al., 527

2023a). Despite these challenges, few-shot learn- 528

ing and fine-tuning can help mitigate issues related 529

to long-tail challenges and hallucination to some 530

extent. Additionally, until fundamental improve- 531

ments in LLMs fully address these shortcomings, 532

incorporating traditional approaches as supplemen- 533

tary supervisors when using LLM-based methods 534

could potentially enhance reliability. 535

We also observe trends in developing universal 536

paradigms for tackling various IE tasks. Re- 537

cent advancements and the robust generalization 538

capabilities of LLMs have led to the exploration 539

of universal frameworks designed to address all 540

IE tasks (UIE). These frameworks aim to lever- 541

age the shared capabilities inherent in IE, while 542

also uncovering and learning from the dependen- 543

cies between various tasks (Xu et al., 2023b). This 544

approach marks a significant shift from focusing 545

on isolated subtasks, such as OpenIE, to a more 546

integrated methodology that seeks a comprehen- 547

sive understanding of the domain. The prevailing 548

trajectory in developing universal IE frameworks is 549

to establish unified, structured schemas, either nat- 550

ural language-based (Wang et al., 2022a; Lu et al., 551

2022; Lou et al., 2023) or code-based (Li et al., 552

2023d; Guo et al., 2023b; Sainz et al., 2023), to 553

transform various IE tasks into a uniform task of 554

structural information extraction while preserving 555

the flexibility to adapt to the unique aspects of dif- 556

ferent tasks. More details on these approaches are 557

provided in Appendix B. 558

Is OpenIE research going to its ends? LLMs 559

bridge the gap between standard IE and Ope- 560

nIE. LLMs are naturally suited for OpenIE, even 561

under zero-shot scenarios, as they address both 562

standard IE and OpenIE within the same task set- 563

ting. In this setting, schemas and templates are 564

designed to extract desired structural information. 565
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The primary difference is that standard IE schemas566

include more restrictions to limit the set of relations567

and entities. The flexibility and strong performance568

of LLMs in tackling various IE tasks through zero-569

shot and few-shot prompting, without requiring570

model updates, is attributed to their robust gen-571

eralization ability acquired through pre-training.572

With this generalization capability, addressing both573

standard IE and OpenIE may not require funda-574

mentally different methods; the main distinction575

lies in schema design. This significantly blurs the576

boundaries between standard IE and OpenIE. In the577

future, OpenIE might be viewed as a more complex578

and challenging scenario within IE tasks, rather579

than being distinctly separate from standard IE.580

Though we refrain from making a definitive conclu-581

sion, we can foresee OpenIE potentially merging582

into the broader scope of standard IE.583

6.3 Future Directions584

Although we see the momentum of blurred gaps585

between OpenIE and standard IE with the impact586

of LLM, the fundamental task itself remains. Then587

how can traditional OpenIE research inspire IE588

research in the LLM era? Following we discuss589

future directions draw from reflections on a chrono-590

logical perspective.591

OpenIE datasets are growing but remain small592

and narrow in scope. Insights from traditional Ope-593

nIE research suggest that future expansions are594

needed to include more languages, domains, and595

broader sources. LLMs offer the opportunity to596

improve this through their capabilities in synthe-597

sizing and augmenting data. While synthesized598

datasets have been extensively explored within the599

domain of standard IE (Zhang et al., 2023a; Xu600

et al., 2023a), with researchers claiming that the601

proposed methods can be adapted for OpenIE (Josi-602

foski et al., 2023), there is a notable gap regarding603

comprehensive studies on synthesized datasets for604

OpenIE. Addressing this gap could facilitate the605

creation of cross-domain datasets and the integra-606

tion of existing datasets and tasks.607

As discussed in Section 6.2, LLMs enable the ex-608

ploration of various IE tasks with universal frame-609

works (UIE). Despite advances, most LLM-based610

UIE systems focus on standard IE tasks and of-611

ten overlook OpenIE, a complex challenge within612

the IE spectrum. LLMs are inherently suited for613

OpenIE due to their extensive pre-trained knowl-614

edge. Therefore, the primary challenge of LLMs615

lies not in extracting relational information but in616

accurately interpreting and following task-specific 617

instructions, as well as mitigating hallucination. In- 618

tegrating traditional approaches into LLM-based 619

frameworks might address these current shortcom- 620

ings of LLMs. Additionally, these approaches can 621

provide insights for developing more robust, faith- 622

ful, and reliable fundamental LLMs. 623

More comprehensive automatic metrics are 624

needed to evaluate LLM-based approaches. As 625

discussed in Sections 2 and 4, task settings and 626

corresponding evaluation metrics develop hand-in- 627

hand. Now the changes brought by LLM calls 628

for a more holistic and update-to-date evaluation 629

metrics. The changes brought by LLMs call for 630

more holistic and up-to-date evaluation metrics. 631

Current efforts explore different options, as noted 632

in Section 4 and Appendix D, but aspects such as 633

faithfulness still rely heavily on human evaluation 634

and lack a commonly accepted metric. Developing 635

new, comprehensive automatic evaluation methods 636

that capture nuanced aspects of OpenIE output, 637

such as semantic coherence, factual accuracy, and 638

information completeness, will lead to more robust 639

and reliable LLM-based OpenIE systems. These 640

metrics can address the unique challenges posed 641

by LLMs, including their propensity for generating 642

diverse and open-ended outputs. 643

Latency, cost, and distillation. Reviewing the 644

development of models for OpenIE, we see the 645

trend that recent development in LLMs introduce 646

a more expensive system with higher latency, es- 647

pecially using close sourced LLMs such as GPT. 648

Although the rapid iteration of models shows cuts 649

on cost and latency, more effective solutions could 650

be possible with knowledge distillation from LLMs 651

onto specialized SLMs, revisiting the prior neural 652

model era we discussed. 653

7 Conclusion 654

We systematically survey the development of Ope- 655

nIE from a chronological perspective, highlight- 656

ing historical trends in task settings and model de- 657

velopment. We draw important connections and 658

derive lessons from the influence of technology 659

on task settings, examining the advantages and 660

disadvantages of both past and present methods. 661

Furthermore, we explore the increasingly blurred 662

distinctions between OpenIE and standard IE. For 663

researchers in LLMs, past work should not be over- 664

looked; instead, it should serve as a valuable re- 665

source for future inquiries. 666
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Limitations667

Our survey primarily concentrates on the chrono-668

logical evolution of OpenIE technologies and their669

alignment with significant milestones in NLP de-670

velopment. Consequently, we have not covered671

multi-domain and multi-lingual datasets or method-672

ologies extensively. While we do address some673

non-English datasets, specifically Mandarin, and674

briefly mention multilingual models in Appendix A675

and model applications across various domains in676

Appendix B.3, these discussions are not the focal677

point of our analysis. This limitation is intentional678

in order to maintain a clear focus on the historical679

progression of the field rather than the breadth of680

dataset diversity or the adaptability of methodolo-681

gies across languages and domains.682

Another potential limitation is our survey’s em-683

phasis on the macro aspects of the OpenIE field684

rather than detailed, micro-level analysis of specific685

methodologies. As outlined in Section 1, many ex-686

isting surveys already cover methodologies and687

models from the pre-LLM era, and we felt that re-688

dundant elaboration on these would not add signifi-689

cant value. Post-LLM, despite substantial research690

leveraging LLMs for standard IE tasks, there is still691

a scarcity of studies specifically applying LLMs692

to OpenIE tasks. This scarcity has constrained our693

ability to conduct an in-depth survey focused ex-694

clusively on LLM methodologies within OpenIE.695

Nonetheless, from the existing work on LLMs in696

standard IE and UIE, detailed in Appendix B, we697

observe emerging trends that warrant a macro-level698

analysis. Our approach of integrating and review-699

ing the field through a historical lens is essential to700

provide a comprehensive view, enabling a clearer701

understanding of the task and aiding in the devel-702

opment of a more defined future roadmap.703
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A Open IE Methodologies in Details1350

A Chronological Overview of Open IE methods are1351

summarized in Figure 3.1352

A.1 Open Relation Triplet Extraction1353

A.1.1 Labeling1354

OpenIE6 (Kolluru et al., 2020a) adopts a novel Iter-1355

ative Grid Labeling (IGL) architecture, with which1356

OpenIE is modeled as a 2-D grid labeling problem.1357

Each extraction corresponds to one row in the grid.1358

Iterative assignments of labels assist the model in1359

capturing dependencies among extractions without1360

re-encoding.1361

Owing to the outstanding performance of PLMs,1362

many researchers extend the sequence labeling task1363

to other problems. MacroIE(Bowen et al., 2021)1364

reformulates the OpenIE as a non-parametric pro-1365

cess of finding maximal cliques from the graph. It1366

uses a non-autoregressive framework to mitigate1367

the issue of enforced order and error accumula-1368

tion during extraction. DetIE (Vasilkovsky et al.,1369

2022) casts the task to a direct set prediction prob-1370

lem. This encoder-only model extracts a predefined1371

number of possible triplets (proposals) by gener-1372

ating multiple labeled sequences in parallel, and1373

its order-agnostic loss based on bipartite matching1374

ensures the predictions are unique.1375

A.2 Open Relation Span Extraction1376

GEN2OIE (Kolluru et al., 2022) extends to a gener-1377

ative paradigm operating in two stages. It first gen-1378

erates all possible relations from input sentences.1379

Then, it produces extractions for each generated1380

relation. This generative approach allows for over-1381

lapping relations and multiple extractions with the1382

same relation.1383

Jia et al. (2022) propose a hybrid neural net-1384

work model (HNN4ORT) for open relation tagging.1385

The model employs the Ordered Neurons LSTM1386

(Shen et al., 2019) to encode potential syntactic1387

information for capturing associations among ar-1388

guments and relations. It also adopts a novel Dual1389

Aware Mechanism, integrating Local-aware Atten-1390

tion and Global-aware Convolution. QuORE (Yang1391

et al., 2022) is a framework to extract single/multi-1392

span relations and detect non-existent relationships,1393

given an argument tuple and its context. The1394

model uses a manually defined template to map1395

the argument tuple into a query. It concatenates1396

and encodes the query together with the context1397

to generate sequence embedding, with which this1398

framework dynamically determines a sub-module 1399

(Single-span Extraction or Query-based Sequence 1400

Labeling) to label the potential relation(s) in the 1401

context. 1402

Inspired by OIA, Chunk-OIE (Dong et al., 2023) 1403

introduces the concept of Sentence as Chunk se- 1404

quence (SaC) as an intermediate representation 1405

layer, utilizing chunking to divide sentences into 1406

related non-overlapping phrases. Yu et al. (2022) 1407

introduce directed acyclic graph (DAG) as a min- 1408

imalist expression of open fact in order to reduce 1409

the extraction complexity and improves the gener- 1410

alization behavior. They propose DragonIE which 1411

leverages the sequential priors to reduce the com- 1412

plexity of function space (edge number and type) 1413

in the previous graph-based model from quadratic 1414

to linear, while avoiding auto-regressive extraction 1415

in sequence-based models. 1416

A.3 Open Relation Clustering 1417

Lechevrel et al. (2017) select core dependency 1418

phrases to capture the semantics of the relations 1419

between entities. The design rules are based on the 1420

length of the dependency phrase in the dependency 1421

path, which sometimes contains more than one de- 1422

pendency phrase that uses all terms and brings in 1423

irrelevant information. Each relation instance is 1424

clustered on the basis of the semantics of core de- 1425

pendency phrases. Finally, clusters are named by 1426

the core dependency phrase most similar to the 1427

center vector of the cluster. 1428

Instead of directly cutting less irrelevant infor- 1429

mation, Elsahar et al. (2017) propose a more re- 1430

silient approach based on the shortest dependency 1431

path. The model generates representations of rela- 1432

tion instances by assigning a higher weight to word 1433

embedding of terms in the dependency path and 1434

then reduces feature dimensions by PCA (Shen, 1435

2009). Although the model ignores noisy terms 1436

in the dependency path, re-weighting is a forward- 1437

looking idea resembling the subsequent attention 1438

mechanism. 1439

The key idea of Fangchao et al. (2021) is based 1440

on blocking backdoor paths from a causal view 1441

(Pearl, 2000). The intervened context is generated 1442

by a generative PLM, while entities are intervened 1443

by placing them with three-level hierarchical en- 1444

tities in KB. Model parameters are optimized by 1445

those intervened instances via contrastive learning. 1446

The learned model encodes each instance into its 1447

representations, before using clustering algorithms. 1448
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Figure 3: Chronological overview of Open IE methods.

A.4 Neural Model Era: Other Settings1449

Translation. Wang et al. (2021) cast information1450

extraction tasks into a text-to-triplet translation1451

problem. They introduce DEEPEX, a framework1452

that translates NP-chunked sentences to relational1453

triplets in a zero-shot setting. This translation pro-1454

cess consists of two steps: generating a set of can-1455

didate triplets and ranking them.1456

Multilingual. MILIE (Kotnis et al., 2022) is an1457

integrated model of a rule-based system and a neu-1458

ral system, which extracts triplet slots iteratively1459

from simple to complex, conditioning on preced-1460

ing extractions. The iterative nature guarantees the1461

model to perform well in a multilingual setting.1462

Multi2OIE (Ro et al., 2020) also has a multilingual1463

version based on multilingual-BERT, which makes1464

it able to deal with various languages. Differently,1465

LOREM (Harting et al., 2020) trains two types of1466

models, language-individual models, and language-1467

consistent models and incorporates multilingual,1468

aligned word embeddings to enhance model perfor-1469

mance.1470

B LLMs for IE in general1471

In Section 5.3, we begin by reviewing the work1472

that utilizes LLMs to address OpenIE. Here, we1473

1). broaden our scope to introduce some emerg-1474

ing trends and paradigms in universal information1475

extraction. For an in-depth exploration of how1476

LLMs are applied to closed relation extraction and1477

other IE tasks, we refer readers to the survey by1478

Xu et al. (2023b) for comprehensive details. More-1479

over, we 2). further expand our discussion to ex-1480

plore research that integrates LLMs into IE system1481

pipelines, beyond merely using them for direct IE1482

task solution. We 3). also includes an discussion of1483

current trends in IE dataset using LLMs that shed1484

light on the future of datasets on openIE. 1485

We believe this broader perspective provides 1486

readers with a comprehensive understanding of cur- 1487

rent trends and future directions in OpenIE and 1488

generic IE in the LLM era, enhancing their grasp 1489

of the field’s evolving dynamics. 1490

B.1 Universal Information Extraction 1491

Recent advancements and the robust generalization 1492

capabilities of LLMs have led to the exploration 1493

of universal frameworks designed to tackle all IE 1494

tasks (UIE). These frameworks aim to harness the 1495

shared capabilities inherent in IE, while also un- 1496

covering and learning from the dependencies that 1497

exist between various tasks (Xu et al., 2023b). This 1498

approach marks a significant shift from focusing 1499

on isolated subtasks such as OpenIE to a more in- 1500

tegrated methodology that seeks to understand a 1501

more integrated and comprehensive understanding 1502

of the domain. 1503

Natural Language-Based Schema. A prevail- 1504

ing trend in developing universal IE frameworks is 1505

to establish a unified, structured natural language 1506

schema for diverse subtasks, designed for schema- 1507

prompting LLMs. For instance, Wang et al. (2022a) 1508

introduce DeepStruct, which reformulates various 1509

IE tasks as triplet generation tasks, using general- 1510

ized task-specific prefixes in prompts and pretrain- 1511

ing LLMs to comprehend text structures. Lu et al. 1512

(2022) propose UIE, encoding different extraction 1513

structures uniformly through a structured extrac- 1514

tion language and adaptively generating specific 1515

extractions with a schema-based prompt strategy. 1516

Similarly, Lou et al. (2023) present USM, encod- 1517

ing different schemas and input texts together to 1518

enable structuring and conceptualizing, aiming for 1519

a single model that addresses all tasks. Building 1520

on UIE and USM, Wang et al. (2023a) introduce 1521
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InstructUIE, which models various IE tasks uni-1522

formly with descriptive natural language instruc-1523

tions for instruction tuning, exploiting inter-task1524

dependencies.1525

Code-Based Schema. Despite their empirical1526

success, natural language-based approaches face1527

challenges in generating outputs for IE tasks due1528

to the distinct syntax and structure that differ from1529

the training data of LLMs (Bi et al., 2024). In re-1530

sponse to these limitations and leveraging recent1531

advancements in Code-LLMs (Chen et al., 2021),1532

researchers have begun to utilize Code-LLMs for1533

structure generation tasks (Wang et al., 2022e),1534

as code, a formalized language, adeptly describes1535

structural knowledge across various schemas uni-1536

versally (Guo et al., 2023b). For instance, Li et al.1537

(2023d) present CodeIE, which translates struc-1538

tured prediction tasks such as NER and RE into1539

code generation, employing Python functions to1540

create task-specific schemas and using few-shot1541

learning to instruct Code-LLMs. Guo et al. (2023b)1542

introduce Code4UIE, utilizing Python classes to1543

define task-specific schemas for diverse structural1544

knowledge universally. Similarly, Sainz et al.1545

(2023) propose GoLLIE, which employs Python1546

classes to encode IE tasks and, in addition, inte-1547

grates task-specific guidelines as docstrings, en-1548

hancing the robustness of fine-tuned Code-LLMs1549

to schemas not encountered during training.1550

B.2 Role of LLMs in IE System1551

In addition to directly addressing IE tasks, LLMs1552

have shown utility as specific components within1553

IE system pipelines, including data synthesis for IE1554

model training and knowledge retrieval for down-1555

stream IE tasks.1556

Data Synthesis. A prominent application of1557

LLMs in IE systems is the synthesis of high-quality1558

training data, as data curation through human anno-1559

tation is time-consuming and labor-intensive. One1560

approach employs LLMs as annotators within a1561

learning loop (Zhang et al., 2023b), while another1562

strategy involves using LLMs to inversely generate1563

natural language text from structured data inputs1564

(Josifoski et al., 2023; Ma et al., 2023), thereby1565

producing large-scale, high-quality training data1566

for IE tasks.1567

Knowledge Retrieval. Another research direc-1568

tion exploits the capability of LLMs, developed1569

through pre-training, as implicit knowledge bases1570

to generate or retrieve relevant context for down-1571

stream IE tasks. For instance, Li et al. (2023b,1572

2024) employ LLMs to generate auxiliary knowl- 1573

edge improving multimodal IE tasks. Amalvy et al. 1574

(2023) demonstrate that pre-trained LLMs possess 1575

inherent knowledge of the datasets they work on, 1576

and use these models to generate a context retrieval 1577

dataset, enhancing NER performance on long doc- 1578

uments. 1579

B.3 IE in Different Domains 1580

The development of Information Extraction (IE) 1581

has seen significant advancements across various 1582

domains, including Multimodal IE, Medical Infor- 1583

mation Extraction, and the application of Code 1584

Models for IE tasks. These developments have 1585

been particularly enhanced by the integration of 1586

Large Language Models (LLMs), which have im- 1587

proved downstream task performance through their 1588

use in model architecture and as tools for annota- 1589

tion and training guidance. 1590

Medical Information Extraction has greatly 1591

benefited from the use of LLMs as efficient tools 1592

for annotation, as highlighted in research by Goel 1593

et al. (2023); Meoni et al. (2023). These applica- 1594

tions enhance data quality and contribute to the 1595

overall improvement of model performance. 1596

Multimodal IE tasks, such as Multimodal 1597

Named Entity Recognition (MNER) and Multi- 1598

modal Relation Extraction (MRE), have advanced 1599

through frameworks that capitalize on the capabil- 1600

ities of LLMs in IE. Cai et al. (2023) propsed to 1601

use in-context learning (ICL) ability in ChatGPT 1602

to help Few-Shot MNER by employing in-context 1603

learning to convert visual data into text and select 1604

relevant examples for effective entity recognition. 1605

Li et al. (2023c) tackles MNER on social media 1606

by efficient usage of generated knowledge and im- 1607

proved generalization, which utilizes ChatGPT as 1608

an implicit knowledge base for generating auxiliary 1609

knowledge to aid entity prediction. Chen and Feng 1610

(2023) distill the reasoning ability of LLMs by us- 1611

ing "chain of thought" (CoT) to elicit reasoning 1612

capability from LLMs across multiple dimensions 1613

to improve MNER and MRE. 1614

Code generative LLMs have found application 1615

in performing IE tasks such as Universal Infor- 1616

mation Extraction (UIE) (Li et al., 2023d; Guo 1617

et al., 2023a), Event Structure Prediction (Wang 1618

et al., 2023b), and Generative Knowledge Graph 1619

(Bi et al., 2024), where researchers convert the 1620

structured output in the form of code instead of nat- 1621

ural language, and utilize generative LLMs of code 1622

(Code-LLMs) by designing code-style prompts and 1623
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formulating these IE tasks as code generation tasks.1624

Leveraging LLMs across different domains has1625

not only broadened the scope of IE applications but1626

also significantly improved the effectiveness and1627

efficiency of extraction tasks.1628

C Datasets1629

Question Answering (QA) derived datasets are1630

converted from other crowdsourced QA datasets.1631

OIE2016 (Stanovsky and Dagan, 2016) is one of1632

the most popular OpenIE benchmarks, which lever-1633

ages QA-SRL (He et al., 2015) annotations. AW-1634

OIE (Stanovsky et al., 2018) extends the OIE20161635

training set with extractions from QAMR dataset1636

(Michael et al., 2017). The OIE2016 and AW-OIE1637

datasets are the first datasets used for supervised1638

OpenIE. However, because of its coarse-grained1639

generation method, OIE2016 has some problem-1640

atic annotations and extractions. On the basis of1641

OIE2016, Re-OIE2016 (Zhan and Zhao, 2020)1642

and CaRB (Bhardwaj et al., 2019) re-annotate1643

part of the dataset. LSOIE (Solawetz and Larson,1644

2021) is created by converting QA-SRL 2.0 dataset1645

(FitzGerald et al., 2018) to a large-scale OpenIE1646

dataset, which claims 20 times larger than the next1647

largest human-annotated OpenIE dataset.1648

Crowdsourced datasets are created from direct1649

human annotation, including WiRe57 (Léchelle1650

et al., 2019), SAOKE dataset (Sun et al., 2018),1651

and BenchIE dataset (Gashteovski et al., 2021).1652

WiRe57 is created based on a small corpus con-1653

taining 57 sentences from 5 documents by two1654

annotators following a pipeline. SAOKE dataset1655

is generated from Baidu Baike, a free online Chi-1656

nese encyclopedia, like Wikipedia, containing a1657

single/multi-span relation and binary/polyadic ar-1658

guments in a tuple. It is built in a predefined format,1659

which assures its completeness, accurateness, atom-1660

icity, and compactness.1661

Knowledge Base (KB) derived datasets are1662

established by aligning triplets in KBs with text1663

in the corpus. Several works (Mintz et al., 2009;1664

Yao et al., 2011) have aligned the New York Times1665

corpus (Sandhaus, 2008) with Freebase (Bollacker1666

et al., 2008) triplets, resulting in several variations1667

of the same dataset, NYT-FB. FewRel (Han et al.,1668

2018) is created by aligning relations of given en-1669

tity pairs in Wikipedia sentences with distant su-1670

pervision, and then filtered by human annotators.1671

ElSahar et al. (2018) propose a pipeline to align1672

Wikipedia corpus with Wikidata (Vrandečić, 2012)1673

and generate T-REx. By filtering triplets and select- 1674

ing sentences, Hu et al. (2020) create T-REx SPO 1675

and T-REx DS. In addition, COER (Jia et al., 2018), 1676

a large-scale Chinese knowledge base dataset, is 1677

automatically created by an unsupervised open ex- 1678

tractor from diverse and heterogeneous web text, 1679

including encyclopedia and news. Overall, KB 1680

derived datasets are mostly used in open relation 1681

clustering task setting, illustrated in Section 5.2, 1682

whereas QA derived and crowdsourced datasets are 1683

usually used in open relational triplet extraction 1684

(Section 5.2) and open relation span extraction task 1685

settings (Section 5.2). 1686

Instruction-based datasets transform IE tasks 1687

into tasks requiring instruction-following, thus har- 1688

nessing the capabilities of LLMs. One strategy 1689

involves integrating various existing IE datasets 1690

into a unified-format benchmark dataset with 1691

specifically designed instructions (Wang et al., 1692

2023a; Lu et al., 2022). Alternatively, instruction- 1693

based IE datasets such as INSTRUCTOPENWIKI 1694

(Lu et al., 2023) and INSTRUCTIE (Gui et al., 1695

2023), or structured IE datasets like Wikidata-OIE 1696

(Wang et al., 2022b)—derived from Wikidata and 1697

Wikipedia—are created. The first method primarily 1698

focuses on ClosedIE tasks, while the second offers 1699

more flexibility in generating OpenIE datasets (Lu 1700

et al., 2023; Wang et al., 2022b). 1701

Synthesized datasets using LLMs on IE ex- 1702

pands significantly compared to previous ones 1703

in both the size of the datasets and data qual- 1704

ities. While the methodologies for synthesiz- 1705

ing these datasets have been extensively explored 1706

within the domain of closed Information Extraction 1707

(ClosedIE) (Zhang et al., 2023a; Xu et al., 2023a), 1708

where researchers claims the proposed methods 1709

can be adapted for OpenIE setting (Josifoski et al., 1710

2023), there remains a notable gap in the literature 1711

regarding comprehensive studies on synthesized 1712

datasets for OpenIE. 1713

D Evaluation 1714

Token-level Scorers. To allow some flexibility 1715

(e.g., omissions of prepositions or auxiliaries), if 1716

automated extraction of the model and the gold 1717

triplet agree on the grammatical head of all of 1718

their elements (predicate and arguments), OIE2016 1719

(Stanovsky and Dagan, 2016) takes it as matched. 1720

Léchelle et al. (2019) penalize the verbosity of au- 1721

tomated extractions as well as the omission of parts 1722

of a gold triplet by computing precision and re- 1723
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call at token-level in WiRe57. Their precision is1724

the proportion of extracted words that are found1725

in the gold triplet, while recall is the proportion of1726

reference words found in extractions. To improve1727

token-level scorers, CaRB (Bhardwaj et al., 2019)1728

computes precision and recall pairwise by creating1729

an all-pair matching table, with each column as1730

extracted triplet and each row as gold triplet. When1731

assessing LLM extracted spans, Han et al. (2023)1732

report the ratio of invalid responses, which include1733

incorrect formats and content not aligned with task-1734

specific prompts. As generative models, LLMs aim1735

to mimic human-like responses and often generate1736

longer text than the gold standard annotations.1737

Fact-level Scorers. SAOKE (Sun et al., 2018)1738

measures to what extent gold triplets and extracted1739

triplets imply the same facts and then calculates1740

precision and recall. BenchIE (Gashteovski et al.,1741

2021) introduces fact synset: a set of all possi-1742

ble extractions (i.e., different surface forms) for a1743

given fact type (e.g., VP-mediated facts) that are1744

instances of the same fact. It takes the informa-1745

tional equivalence of extractions into account by1746

exactly matching extracted triplets with the gold1747

fact synsets. In assessing outputs from LLMs, Li1748

et al. (2023a) have ChatGPT provide justifications1749

for its predictions and use domain expert annota-1750

tion to verify their faithfulness relative to the input.1751

E Source of Information1752

Section ?? provides a brief overview of the sources1753

of information utilized in OpenIE models. This1754

section offers a detailed discussion of each specific1755

information source.1756

E.1 Input-based Information1757

Shallow syntactic information such as part of1758

speech (POS) tags and noun-phrase (NP) chunks1759

abstract input sentences into patterns. It is per-1760

vasively used in the early work of OpenIE as an1761

essential model feature (Banko et al., 2007; Wu and1762

Weld, 2010; Fader et al., 2011). In rule-based mod-1763

els, those patterns directly determine whether the1764

input text contains certain relations or not (Xavier1765

et al., 2013; A and A, 2013). Shallow syntactic1766

information is reliable because there is a clear rela-1767

tionship between the relation type and the syntactic1768

information in English (Banko et al., 2007). How-1769

ever, merely using shallow syntactic information1770

can not discover all relation types. Subsequent1771

work uses shallow syntactic information as part of1772

the input and incorporates additional features to 1773

enhance the model performance (Stanovsky et al., 1774

2018). 1775

Deep dependency information shows the de- 1776

pendency between words in a sentence, which can 1777

be used directly to find relations (Vo and Bagheri, 1778

2018). But because dependency analysis is more 1779

complex and time-consuming than shallow syn- 1780

tactic analysis, such information source was not 1781

popular in early OpenIE studies. It was the second 1782

generation of OpenIE models that brought depen- 1783

dency parsing to great attention. Right now, depen- 1784

dency information is still used as part of the model 1785

input, though with less popularity and sometimes 1786

not directly. Elsahar et al. (2017) make use of the 1787

dependency path to give higher weight to words be- 1788

tween two named entities, in which way the model 1789

only uses dependency information as a supplement 1790

and relies more on the semantic meaning to extract 1791

information. 1792

Semantic information captures not only linguis- 1793

tic structures of sentences but literal meanings of 1794

phrases, which can express more diverse and fit- 1795

ting relations compared to syntactic patterns. How- 1796

ever, semantic information can also be too spe- 1797

cific and hence lead to the canonicalizing problem 1798

(Galárraga et al., 2014; Vashishth et al., 2018; Wu 1799

et al., 2018). The second generation of OpenIE 1800

models has tried to use semantic information via 1801

semantic role labeling, for example EXAMPLAR 1802

(Mesquita et al., 2013), or via dependency parsing, 1803

for instance OLLIE (Schmitz et al., 2012). There 1804

were also attempts to use WordNet output to com- 1805

prise semantic information (Liu and Yang, 2012). 1806

The third generation of OpenIE models typically 1807

use the word and sentence representations obtained 1808

from pre-trained language models (Kolluru et al., 1809

2020b; Hwang and Lee, 2020; Xinwei and Hui, 1810

2020). These representations contain both syntac- 1811

tic and semantic information (Jawahar et al., 2019). 1812

Meanwhile, some OpenIE models use word embed- 1813

dings from word embedders such as GloVe, ELMo, 1814

and Word2Vec to capture semantic information (Ni 1815

et al., 2021). 1816

E.2 External Knowledge 1817

Expert rules are knowledge imported in the form 1818

of heuristic rules. It is easy for rule-based Ope- 1819

nIE systems to incorporate domain knowledge as 1820

well as to trace and fix errors (Chiticariu et al., 1821

2013). Heuristic rules can be employed to avoid 1822

incoherent extractions (Fader et al., 2011). For ex- 1823
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ample, verb words between two entities are likely1824

to be the relation. Thus, to alleviate incoherence,1825

a rule can be defined: If there are multiple possi-1826

ble matches for a single verb, the shortest possible1827

match is chosen. Based on patterns generated from1828

POS-tagging, dependency parse, and other syntac-1829

tic analyses, different rules can be created.1830

Hierarchical information that implicitly exists1831

in languages, which can be explicitly exhibited1832

by knowledge bases, benefits knowledge repre-1833

sentation learning (Wang et al., 2014; Lin et al.,1834

2015; Hu et al., 2015; Xie et al., 2016). In addition,1835

KBs contain fine-grained factual knowledge that1836

provides background information and hierarchical1837

structures needed for relation extraction. Com-1838

pared to traditional clustering, KB can provide1839

hierarchical information that helps represent and1840

cluster relations in a more organized way (Zhang1841

et al., 2021b) and hierarchical factual knowl-1842

edge for data augmentation (Fangchao et al., 2021).1843

1844

Pre-trained knowledge of language models,1845

particularly LLMs, exhibit substantial potential1846

to encapsulate relational knowledge (Jiang et al.,1847

2020; Petroni et al., 2020). Unlike smaller mod-1848

els, which require learning from input and external1849

knowledge in a bottom-up manner, LLMs hold ex-1850

tensive, ready-to-use knowledge from pre-training.1851

Consequently, recent efforts aim to direct LLMs1852

to concentrate solely on pertinent knowledge for1853

specific IE tasks.1854

F Table of Traditional OpenIE Models1855

21



Model Method Source of Information
Task

Setting
Dataset Evaluation (Result)

TEXTRUNNER

(Banko et al., 2007)
Dependency Parser, NP Chunker,
CRF, Naive Bayes Classifier

syntactic, dependency 4.1 400 Web Average Error Rate (12%)

WOE
(Wu and Weld, 2010)

TEXTRUNNER,
Self-supervised Learning

syntactic, dependency 4.1
300 news

300 Wikipedia
300 Web

Precision-Recall Curve

REVERB

(Fader et al., 2011)
Syntactic Constraints,
Lexical Contraints, CRF

syntactic, dependency 4.1 500 Web
Precision-Recall Curve,
AUC (1.3*WOEparse, 2*TEXTRUNNER)

OLLIE

(Schmitz et al., 2012)
REVERB, Bootstrap,
Open Pattern Learning

syntactic, dependency 4.1
300 news (from WOE)

300 Wikipedia (from WOE)
300 biology

Precision-Yield Curve,
AUC (1.9*WOEparse, 2.7*REVERB)

OPENIE4
(Mausam, 2016)

SRLIE (Christensen et al., 2011),
RELNOUN (Pal et al., 2016)

syntactic, dependency 4.1 Not Reported
Precision-Yield Curve,
AUC (1.32*OLLIE, 4*REVERB)

ClausIE
(Del Corro and Gemulla, 2013)

Dependency Parser,
Clause-based Model

syntactic, dependency 4.1
500 Web (from REVERB)

200 Wikipedia
200 news

Precision-Yield Curve,
# of correct extractions / # of extractions

RnnOIE
(Stanovsky et al., 2018)

Bi-LSTM, Softmax word emb, POS emb 4.1

OIE2016 AUC (48), F1 (62)
WEB AUC (47), F1 (67)
NYT AUC (25), F1 (35)

PENN AUC (26), F1 (44)
NeuralOIE

(Cui et al., 2018)
LSTM, Copy Attention word emb 4.1 OIE2016 AUC (27)

IMoJIE
(Kolluru et al., 2020b)

BERT, LSTM, CopyAttention word emb 4.1 CaRB AUC (33.3), F1 (53.5)

SpanOIE
(Zhan and Zhao, 2020)

Bi-LSTM,
Span-consistent Greedy Search

word emb, POS emb,
dependency relation emb

4.1
OIE2016 AUC (48.9), F1 (68.65)

Re-OIE2016 AUC (65.9), F1 (78.50)
Multi2OIE

(Ro et al., 2020)
BERT, Multihead Attention

word emb, position emb,
avg vector of predicates

4.1
Re-OIE2016 AUC (74.6), F1 (83.9)

CaRB AUC (32.6), F1 (52.3)
OpenIE6

(Kolluru et al., 2020a)
Iterative Grid Labeling,
BERT, Self-attention

word emb,
dependency feature

4.1 CaRB AUC (33.7), F1 (52.7)

HNN4ORT
(Jia et al., 2022)

ON-LSTM, CNN, Attention
word emb, POS emb,
argument emb,
local/global features

4.2
Wikipedia F1 (79.8)

NYT F1 (74.5)
Reverb F1 (81.7)

UORE
(Elsahar et al., 2017)

Re-weight Word Emb,
TF-IDF, PCA, HAC

word emb,
dependency

4.3 NYT-FB F1 (41.6)

RSN
(Wu et al., 2019)

Relational Siamese Network,
CNN, HAC, Louvain

word emb 4.3 FewRel B3: P (48.9) R (77.5) F1 (59.9)

SelfORE
(Hu et al., 2020)

Bootstrapping Self-supervision,
BERT, K-means,
Adaptive Clustering

word emb

4.3
NYT+FB

ARI (40.3),
B3: P (49.1) R (47.3) F1 (51.1),
V: F1 (46.6) Hom (45.7) Comp (47.6)

T-REx SPO
ARI (33.7),
B3: P (41.0) R (39.4) F1 (42.8),
V: F1 (41.4) Hom (40.3) Comp (42.5)

T-REx DS
ARI (20.1),
B3: P (32.9) R (29.7) F1 (36.8),
V: F1 (32.4) Hom (30.1) Comp (35.1)

OHRE
(Zhang et al., 2021b)

CNN, Virtual Adversarial Training,
Reconstruction Loss,
Dynamic Hierarchical Triplet Loss,
Louvain

word emb,
hierarchical information

4.3

FewRel Hierarchy
ARI (64.2),
B3: P (64.5) R (77.7) F1 (70.5),
V: F1 (76.7) Hom (73.8) Comp (79.9)

NYT-FB Hierarchy
ARI (31.9),
B3: P (31.4) R (72.3) F1 (43.8),
V: F1 (60.0) Hom (49.9) Comp (75.3)

ElementORE
(Fangchao et al., 2021)

BERT, T5 (Raffel et al., 2020),
Structure Causal Model, K-means

word emb,
hierarchical information

4.3

T-REx SPO
ARI (36.6 ),
B3: P (46.7) R (43.4) F1 (45.0),
V: F1 (45.3) Hom (45.4) Comp (45.2)

T-REx DS
ARI (25.0),
B3: P (40.2) R (45.9) F1 (42.9),
V: F1 (47.3) Hom (46.9) Comp (47.8)

RoCORE
(Zhao et al., 2021)

Relation-oriented Representation,
BERT, K-means

word emb 4.3 FewRel
ARI (70.9),
B3: P (75.2) R (84.6) F1 (79.6),
V: F1 (86.0) Hom (83.8) Comp (88.3)

DEEPEX

(Wang et al., 2021)
BERT, Attention, Beam Search,
Contrastive Pre-training

NP chunks,
word emb, triplet emb

4.4

OIE2016 AUC (58.6), F1 (72.6)
WEB AUC (82.4), F1 (91.2)
NYT AUC (72.5), F1 (85.5)

PENN AUC (81.5), F1 (88.5)

Table 4: Milestone and representative models of pre-LLM era. ("V" denotes "V-measure", and "emb" stands for
"embedding".)
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