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Abstract

Syntactically controlled paraphrase generation
is to generate diverse sentences that have the
same semantics as the given original sentence
but conform to the target syntactic structure.
An optimal opportunity to enhance diversity
is to make word substitutions during rephras-
ing based on syntactic control. Existing unsu-
pervised methods have made great progress in
syntactic control, but the generated paraphrases
rarely have substitutions due to the limitation
of training data. In this paper, we propose a Di-
versity syntactically controlled Paraphrase gen-
eration framework (DiPara), in which a novel
training strategy is designed to obtain semantic
sentences as semantic sentences while using the
given sentence as training objects. As diverse
words vary the syntactic structure around them,
we propose a phrase-aware attention mecha-
nism to capture the syntactic structure associ-
ated with the current word. To achieve it, the
linearized triple sequence is introduced to repre-
sent structure singly. Experiment results on two
datasets show that DiPara outperforms strong
baselines, especially diversity (Self-BLEU,) is
improved by 10.18% in ParaNMT-Small.

1 Introduction

Paraphrases are texts that convey the same meaning
but in alternative vocabulary and syntactic struc-
tures (Zhou and Bhat, 2021; Bandel et al., 2022).
Syntactically Controlled Paraphrase Generation
(SCPG) aims to produce diverse paraphrases of
the given sentence by matching the specified target
syntax (Sun et al., 2021; Wan et al., 2023; Zhang
et al., 2023). It has been used in various language
understanding tasks, such as creative generation
(Tian et al., 2021), adversarial example generation
(Iyyer et al., 2018; Qi et al., 2021), and question
generation (Saxena et al., 2021). Unfortunately,
paraphrase pairs are not easily available for many
languages and are expensive to build (Wieting and
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Figure 1: Difference between the supervised and un-
supervised SCPG (i.e., Syntactically Controlled Para-
phrase Generation) during training. ‘sem’ and ‘syn’
mean the semantics and syntax. The yellow and green
ground indicate the inputs and output of the model, re-
spectively.

Gimpel, 2018). Yang et al.(Yang et al., 2021a) first
investigated the problem of unsupervised SCPG,
which learns syntactically controlled paraphrase
generation with non-parallel data, as shown in Fig-
ure 1. Since then, several unsupervised SCPG mod-
els have been reported in the literature and achieved
competitive performance in both syntax control and
semantic maintenance(Huang and Chang, 2021;
Huang et al., 2022).

However, our experiments have shown that ex-
isting unsupervised models perform poorly for the
diversity of generated paraphrases (in Figure 1).
Diverse paraphrasing is critical because trivial
rephrasing with minimal changes may not be help-



ful for applications (Chowdhury et al., 2022). Fur-
thermore, we construct a preliminary experiment
to explore word diversity using Large Language
Models (LLMs), which have remarkable capabili-
ties on semantic understanding(Yang et al., 2022b;
Wan et al., 2023). Surprisingly, the generated para-
phrases are very diverse from both the original and
target sentences. This suggests that LLMs may
have a negative impact on syntax control due to
abundant linguistic knowledge. As a result, it is ex-
tremely challenging to attain both syntactic control
and word diversity for unsupervised SCPG.

To address the above challenge, we propose a
Diversity syntactically controlled Paraphrase gen-
eration framework (DiPara) that produces diverse
paraphrases while conforming to target syntax. As
shown in Figure 2, we employ LLMs to generate
multiple paraphrases with diverse words and deter-
mine the most appropriate semantic sentence by
balancing semantics, syntax, and word. However,
the involvement of diverse words changes the syn-
tactic structure of their neighbors. So, we propose
phrase-aware attention to capture the structure as-
sociated with the current word. Motivated by this,
the linearized triple sequence is designed to singly
represent structures by splitting the content of the
constituent parse tree before syntactic encoding.

In a nutshell, our contributions are as follows:

» We first present an LLM-based word diversity
model to enhance the semantics of the original
sentence by steadily producing diverse para-
phrases performed with word substitutions.

* We propose a linearized triple sequence and
phrase-aware attention mechanism to singly
represent and capture the syntactic structure
associated with the current word, respectively.

* We conduct extensive experiments with two
datasets, and the results show that DiPara out-
performs strong baselines in generating di-
verse paraphrases with target syntax. More-
over, the ablation study demonstrates the ef-
fectiveness of our proposed modules.

2 Related Work

SCPG aims to rewrite a text that conforms to the
target syntax. More recent works typically utilize
the Seq2Seq model (Iyyer et al., 2018) to generate
diverse paraphrases by enhancing semantic encoder
(Yang et al., 2022b), syntactic encoder (Yang et al.,
2022a) or decoder (Kumar et al., 2020; Yang et al.,

2022b). Particularly, some methods improve the
quality of paraphrases by carefully selecting target
syntactic structures (Luo et al., 2023; Zhang et al.,
2023) and syntactic reordering (Goyal and Durrett,
2020; Sun et al., 2021; Yang et al., 2022a). These
methods have made great advances in generating
paraphrases with syntactic control, but they rely on
large paraphrase pairs for training.

Considering paraphrase pairs are not easily avail-
able for many languages, (Yang et al., 2021b) first
proposes unsupervised SCPG, which does not re-
quire any parallel paraphrase data. Since then,
(Huang and Chang, 2021) encodes the semantics
without syntax by removing the position encod-
ing. (Huang et al., 2022) employs abstract meaning
representations to enhance semantic and syntactic
embeddings further. Though these methods alle-
viate the reliance on paraphrase pairs, they still
struggle to generate high-quality paraphrases.

In addition, large pre-trained models have been
used for paraphrase generation. (Chowdhury et al.,
2022) present novelty-controlled paraphrase gener-
ation for different levels of novelty by specialized
prompts. (Wan et al., 2023) propose a novel adap-
tation of prefix-tuning to reduce training costs.

In this work, we focus on the diversity of gener-
ated paraphrases and propose enhanced semantic
encoding to capture subtle variations across words.

3 Approach

3.1 Problem Statement

Given a sentence x; = {z},z?,...,7"} and the
target syntax s;, Syntactically Controlled Para-
phrase Generation (SCPG) is defined to generate a
diverse paraphrase p; = {p},p?,...,p"} that con-
veys the same meaning of given sentence x; while
conforming to the target syntax s;, where n and
m are the length of given sentence and generated
paraphrase, respectively.

For the unsupervised SCPG, the training set D =
{xl}gll has only input sentence x;. Therefore, the
model requires reconstructing the sentence x; using
only the given sentence x; and its syntax s/, without
annotated paraphrase pairs. As shown in Figure 2,
the model aims to generate the same text as the
input sentence “over the course of 6 years, we have
lived in 15 cities.".

3.2 Enhanced Semantic Encoding

To facilitate diversity learning, we first promote
LLM to obtain semantic sentences with the same
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Figure 2: The overall architecture of our proposed method. It consists of an LLM-based word diversity module for
semantic encoding, linearized triple sequences, and a phrase-aware attention mechanism for syntactic control.

semantic and diverse words as the original sentence
for training. It assumes that LLMs can generate
text with the same semantics and diverse words
since they have been pre-trained on the large-scale
corpus. Then, to ensure the quality of semantic
sentences, we divide the process into two steps:
semantic sentence generation and selection.

Semantic Sentence Generation. To exploit
the potential of LLMs in generating diverse para-
phrases, we first generate multiple candidate se-
mantic sentences by constructing the instruction,
consisting of the task description, a few demonstra-
tions, and an original sentence.

Formally, given the task description of di-
verse semantic sentence generation /, we man-
ually design k sentence pairs (x1,y;) with di-
verse words as demonstrations, formalized as
Dy, = {(z1,91), (@1,91), - -, (x, yx) }. The orig-
inal sentence x is also fed into LLMs, generating
its corresponding semantic sentences y.

LLMs(I,Dg,x) =y

To ensure diversity, we highlight the diversity
and quantity requirements in the task description.
Manually designed sentence pairs are as diverse as
possible while maintaining semantics.

Semantic Sentence Selection. To relieve the
poor quality of paraphrases due to performance in-
stability, we select the optimum semantic sentence
by considering multiple metrics. Specifically, we
first set the semantic threshold since the low self-
BLEU value may be word diversity or the wrong
word. Then, they are ranked from calculated di-
versity and syntactic matching scores, respectively.
We select the semantic sentence with high seman-
tic and diversity scores but low syntax matching
values. Low syntax matching reduces the syntactic
impact during semantic encoding and increases the
diversity of training samples.

In addition, the contextualized semantic embed-
ding zg.., is obtained by feeding the semantic sen-
tence y; into the semantic encoder, formalized as:

Zsem = Encsem (yzla ,%27 (23 yznl) (1)

where n' represents the length of sentence ;.

3.3 Multi-level Syntactic Encoding

To capture the syntactic structure associated with
the current word, we propose the multi-level syntac-
tic encoding module, which consists of two stages:
linearized triple sequence and syntax encoder.



Step 1: Linearized Triple Sequence. Follow-
ing previous works (Yang et al., 2021b), we use
the constituency parse tree (without leaf nodes) to
provide syntactic information obtained by the Stan-
ford CoreNLP (Manning et al., 2014), as shown in
Figure 2.

Given the original sentence z, we first obtain
its constituency parse tree T, by the Stanford
CoreNLP. Then, linearized triplet sequence is used
to split it into content sequence Syn, structure se-
quences P_Syn and P_Parent, formalized as:

Syn ={n;,i=1,2,...,N}
P_Syn={p;,i=1,2,...,N,p;, € [1,N]}

P_Parent = {pa;,i =1,...,N,pa; € [0, N —m]}

where m is the number of POS tags and n; is the
syntactic node in Ty,. p; and pa; indicate the
absolute position of each element and its parent
node, which are encoded in a depth-first manner.
Therefore, it satisfies that:

* If n; is the parent node of n;, then p; = pa;;
* If n; and n; are sibling nodes, then pa; = pa;.

Compared with the existing bracketed formats
(Iyyer et al., 2018; Yang et al., 2021b), linearized
triple sequence has the following advantages:
Firstly, the constituency parse tree could be recon-
structed more easily with P_Syn and P_Parent.
Secondly, it provides structural information more
directly through absolute positional coding. More
importantly, it reduces the average length of se-
quences from 160 (Li et al., 2020) to 80.

Step 2: Syntax Encoder. Considering that the
attention range of syntactic nodes gradually ex-
pands as the number of layers, we employ a tree
transformer to encode linearized triplet sequence.

For each node n;, we first obtain the node embed-
ding n; € R? and positional embedding p; € RY,
where d is the embedding dimension. The contex-
tual matrix M € RV*V is designed to focus on
siblings and parent-child nodes, formalized as:

- J 1, if pa; = pa; or pa;;y = pji;
mj = .
0, otherwise
At each layer, we compute the hidden state h;
of each node in a tree-structure manner.

h;;nc = Encsyn(ni + Pi, M'L)

Further, multi-head attention mechanism is utilized
to get the contextual representation of the syntactic
sequence. Finally, we obtain syntactic representa-
tion z,y,, from the last layer of syntax encoder.

3.4 Phrase-aware Attention

Inspired by the observation that syntactic differ-
ences between two paraphrases are invariably re-
flected in the structure of phrases, we design a
phrase-aware attention module to learn the impor-
tance distributions of syntactic nodes for each word
adaptively.

Monotonic Attention. Since the Part-Of-
Speech (POS) tagging of each word is determin-
istic and monotonic, we first obtain likelihood 1,
that a syntactic node n; would be the POS tag of
the target word by computing the correlation 7
between syntactic representation 2y, and hidden
states h{eS .

i = VT tanh(W}" " h{G+ W7 2 0 +5™")

syn
l; = softmax(r; + €)

where V', W/, WS’Z;;" and b,,,,,, are learnable
weights. € obeys the standard normal distribution.

Then, the importance distribution at the current
moment o is constrained by it at the former mo-
ment a_1, formalized as:

oy =1 - Cprod(1 —1;) - Csum (cp#(f_zt))

where Cprod(-) and Csum(-) are defined as:

-1
Cprod(x) = [1, T, X1X2, .« v s H‘.zll :L‘,L}
1=

||
Csum(x) = [1:1, x1+ To,. .., Zi:l xl}.

Cross-phrase Attention. After locating the
POS tag of the target word, we learn [ distance
matrixes D € RV*Y to determine levels of other
syntactic nodes centered on the POS tag. The el-
ement déj means the probability that n; and n;
belong to the [-level phrase, obtained as follows:

-1

1l
dl] _Cij _Cij

where d}j = m;;, | > 1and céj is computed as:

¢ =min (1 E N_lcl*1 X My
ij ’ L1 ik kj

Differently, dé ; indicates the distance between node
1 and node j is exactly equal to [, while céj indi-
cates it is less than or equal to [. Based on this,
the importance distribution of syntactic nodes at
different levels is computed as follows:

B = Zizléi x d!



where §' is trainable parameters.

Inter-phrase Attention. Considering the vary-
ing effects of syntactic nodes on the target word,
even in the same phrase, we employ self-attention
to capture semantic correlations between these
nodes.

(quzsyn) (W}znzsyn)T )
Vd
where W™, and W™ are learnable weights.

Combining «, B and «, it forms phrase-level
attention vector n € RV*V, formalized as:

~ = Softmax (

n=oax(B+7) 2

Finally, the syntactic structure associated with the

to .
target word zg,,, is represented as:

¢ N N t
P— E L Zsun s
syn i=1 j:lnw synj

The final training objective of DiPara is to re-
construct the source sentence x by feeding the se-
mantic embedding 2z, and syntactic embedding
Zsyn into the transformer decoder. Therefore, we
minimize the following cross-entropy loss:

|D|
. Zi:l IOgP(%m t, yl:tfl)
4 Experiments

4.1 Datasets

Following previous work (Kumar et al., 2020), we
evaluate DiPara on ParaNMT-Small and QQP-Pos.

e ParaNMT-Small. ParaNMT-Small (Chen
et al., 2019) contains 500k paraphrase pairs
for training, 500 and 800 manually labeled
paraphrase pairs for validation and testing. It
is a subset of the ParaNMT-50M dataset (Wi-
eting and Gimpel, 2018), constructed automat-
ically by back-translating original English sen-
tences. We produce 200k semantic enhanced
paraphrase pairs during training and integrate
them into the remaining data.

* QQP-Pos contains about 140K training pairs
and 3K/3K pairs for testing/validation from
the Quora Question Pairs (QQP) dataset !.
Again, 7k enhanced paraphrase pairs are to
be produced.

"https://www.kaggle.com/competitions/quora-question-
pairs/

4.2 Evaluation Metrics

We evaluated three aspects using various evaluation
metrics, including diversity, semantics, and syntax.

Diversity Metrics. We conducted the metric
with words and phrases. In terms of words, we
used Self-BLEU;, i.e., BLEU-1 (Papineni et al.,
2002) between the input and generated paraphrase,
to assess the capability of models in generating
fresh words. Self-BLEU, (Chowdhury et al., 2022)
is calculated to account for n-gram overlaps. Low
Self-BLEU implies high diversity.

Semantic Metrics. We employed Reference-
BLEU;, to evaluate the literal similarity between
generated paraphrases and references. Further, we
encoded the ground truth and generated paraphrase
by Sentence-BERT (Reimers and Gurevych, 2019)
and then accessed their semantic similarity through
cosine value.

Syntactic Metrics. We used the Exact Syntactic
Match (ESM) and tree edit distance (TED) against
the parse tree of the reference, following previous
works(Yang et al., 2021a; Zhang et al., 2023).

In addition, iBLEU (Sun and Zhou, 2012) is
calculated to evaluate the overall quality of para-
phrases, calculated by iBLEU = « Reference-
BLEU; —(1 — «) Self-BLEU,, where « is set 0.8
following (Zhang et al., 2023).

4.3 Baselines

We evaluate our method by comparing its perfor-
mance with the following three kinds of models:

* To get a better sense of the natural diversity
and semantic fidelity of the dataset, compared
with the basic model: Copying, simply copy-
ing the original text; Ground Truth, using
the ground truths as predictions themselves.

* To demonstrate the ability of syntactic control,
compared with SCPG models: supervised
methods, Transformer (Vaswani et al., 2017),
SOW-REAP (Goyal and Durrett, 2020), AE-
SOP (Sun et al., 2021) and SI-SCP (Yang
et al., 2022a). And unsupervised methods,
including SIVAE (Zhang et al., 2019), SUP
(Yang et al., 2021a) and SynPG (Huang and
Chang, 2021). Details of model descriptions
are shown in Appendix B.

* Models based on ChatGPT: using GPT-3.5-
Turbo as the model to generate paraphrases
based on the combination of the original sen-
tence and target syntax; ChatGPT (Few-



Self- Self- Reference- . Sentence-
Model BLEU; (|) BLEU; () BLEU, (1 i-BLEU(H)  pror e ESM(1) TED(})
ParaNMT-Small
Copying/Ground Truth 100/41.77 100 /9.96 9.96/100  -12.03/78.01 79.27/100 36.88/100 11.80/0
Supervised Methods
SOW-REAP (Goyal and Durrett, 2020) > 65.03 24.89 27.00 16.62 67.77 - -
AESOP (Sun et al., 2021) > 45.49 11.69 20.44 14.01 71.87 77.38 6.74
SI-SCP (Yang et al., 2022a) > 46.23 13.02 27.81 19.64 76.92 88.87 5.70
Unsupervised Methods
SIVAE (Zhang et al., 2019) - 20.90 12.80 6.06 70.80 82.60 -
SUP (Yang et al., 2021a) - 20.70 33.10 22.34 74.70 89.20 -
SynPG (Huang and Chang, 2021) - 18.84 32.20 21.99 76.49 88.37 -
DiPara (w/o EP) 42.21 10.83 30.51 22.24 77.30 92.13 5.54
ChatGPT (Zero-shot) 40.24 9.18 10.56 6.61 77.98 42.50 13.76
ChatGPT (Few-shot) 44.27 21.12 13.78 6.80 79.04 43.75 11.12
DiPara (Ours) 37.26 8.66 33.51 25.08 78.11 92.96 5.23
QQP-Pos

Copying/Ground Truth 100/42.76  100/14.25  14.25/100  -8.6/77.15  84.07/100 37.30/100 14.00/0
Supervised Methods
SOW-REAP (Goyal and Durrett, 2020) > 66.19 25.78 36.55 24.08 66.13 - -
AESOP (Sun et al., 2021) > 62.05 39.84 43.41 26.76 83.89 80.86 535
SI-SCP (Yang et al., 2022a) > 45.57 19.10 48.83 35.24 88.11 81.43 5.20
Unsupervised Methods
SIVAE (Zhang et al., 2019) - 29.00 32.60 20.28 76.00 81.7 -
SUP (Yang et al., 2021a) - 32.70 43.70 28.42 80.90 87.50 -
SynPG (Huang and Chang, 2021) - 19.15 33.20 22.73 73.84 81.50 -
DiPara (w/o EP) 42.05 14.78 44.55 32.68 87.53 85.86 4.98
ChatGPT (Zero-shot) 47.31 17.39 11.18 5.47 89.20 34.62 17.93
ChatGPT (Few-shot) 46.59 20.59 12.23 5.67 95.01 29.13 15.61
DiPara (Ours) 3941 12.84 48.85 36.51 88.37 87.93 4.79

Table 1: Performance of syntactically controlled paraphrase generation. ‘EP’ refers to “Enhanced Paraphrase pairs"
generated by ChatGPT. ‘>’ is calculated from the trained model, publicly available in the original paper.

Shot), choosing three paraphrase pairs as
demonstrations according to the correspond-
ing formatting. Details of the instance format-
ting are shown in Appendix A (see Table 6).

4.4 Main Results

Table 1 summarizes the experimental results on
ParaNMT-Small and QQP-Pos. We observe that
DiPara achieves the best performance among all
SCPG methods in terms of diversity and syntactic
control without using parallel paraphrase pairs.

* DiPara achieves the best results on all three
evaluation metrics of diversity, even compared
with ChatGPT. It indicates that DiPara effec-
tively generates diverse paraphrases by train-
ing enhanced paraphrase pairs with abundant
word or phrase substitutions.

For syntactic control, DiPara achieves the
state-of-the-art ESM scores of 92.96 on
ParaNMT-Small and 87.93 on QQP-Pos. In
addition, it also improves 0.83 points and 2.07
points using enhanced paraphrase pairs. It in-
dicates that diversity paraphrase pairs are also
beneficial for improving syntactic control.

* In addition, DiPara is optimized in almost all
the metrics on the semantic and is only weaker
than the large language model ChatGPT on
the Sentence-BERT metric. This suggests that
the DiPara model can maintain semantics ex-
cellently during paraphrase generation.

In conclusion, DiPara greatly improved the per-
formance of syntactically controlled paraphrase
generation while balancing quality and diversity.

4.5 Human Evaluation

We further conduct the human evaluation on gener-
ated paraphrases, following previous work (Iyyer
et al., 2018; Yang et al., 2021b; Zhang et al., 2023).
Specifically, we randomly sample 100 generated
paraphrases from the ParaNMT test set. Three
annotators are then asked to rate them from two
aspects: the overall quality and diversity against
the original sentence. For the overall quality, 0
means it is not a paraphrase at all, 1 means it is
a paraphrase with some grammatical errors and 2
means it is a grammatically correct paraphrase. For
the diversity, 0 means it is almost identical to the
original sentence, 1 means it is a paraphrase with
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Figure 3: Attention scores of syntactic nodes for generating each words.

Model Quality (1) Diversity (1) ESM-H (1)
SynPG 1.01 0.73 89.0
ChatGPT 1.89 1.44 80.0
DiPara (Ours) 1.47 1.53 96.0

Table 2: Human evaluation on ParaNMT dataset.

some new words, and 2 means it has a different
syntax and words. We also let annotators evaluate
syntactic controllability (ESM-H): the percentage
of generated sentences that follow the given syntax.

Table 2 shows the results of human evaluation,
which are somewhat consistent with the automatic
metrics. BiPare is superior in producing diverse
paraphrases with both new words and different syn-
taxes, which tend to follow the given target syntax.

5 Analysis

In this section, we conduct fine-grained analysis
regarding the improvements contributed by each
module: LLM-based word diversity and phrase-
aware attention.

5.1 LLM-based Word Diversity Analysis

As shown in Table 1, enhanced paraphrase pairs
are effective for improving the capability of gen-
erating diverse paraphrases. Specifically, remov-
ing EP severely decreases by 4.95 points and 2.17
points in terms of Self-BLEU; and Self-BLEU,
on the ParaNMT-Small, respectively. Furthermore,
as shown in Table 3, we compared differences be-
tween the original sentence and paraphrases to pro-
vide a visible look at the diversity. Paraphrases are

from the ground truth of training set, and seman-
tic sentences are generated by the the LLM-based
word diversity module. It is obvious that semantic
sentences have greater diversity than the ground
truth. For example, the ground truth only has little
new words (i.e.,, ‘can’ and ‘increase’), but there
are several diverse words in the semantic sentence,
such as ‘what’, ‘best’, ‘increase’, and so on. In ad-
dition, we also conducted the ablation study, which
verified the effectiveness of LLM-based word di-
versity module. Details of experimental results and
analysis are in Appendix D (see Table 7).

5.2 Phrase-aware Attention Analysis

To have a clear view of the role that phrase-aware
attention plays in DiPara, we visualize the attention
scores of each syntactic node with respect to words
in the sentence “over the course of 6 years, we
have lived in 15 cities.", as shown in Figure 3. For
the target word ‘lived’, the phrase-aware attention
highlights 1-level syntactic nodes ‘VP’, ‘PP’ and
even 2-level nodes ‘VBP’, ‘IN’, rather than just on
its POS tag ‘VBN’. This aligns well with our design
motivation, which adaptively captures the syntactic
structure associated with the target word.

To further demonstrate the effectiveness of three
components of phrase-level attention, we visualize
the syntactic attention scores using only one atten-
tion mechanism. Specifically, monotonic attention
enables the model to locate only the corresponding
POS tag with each target word, as shown in Fig-
ure 3(a). It may be because POS tags are monotonic



Dataset Original sentence Ground Truth Semantic Sentence
aren’t you going to dress? you’re not going to dress? Will you not attire yourself?
ParaNMT- | alone and cut off from civili- . . .
. , mr.queen spent his last 5 years For his final five years, Mr.Queen lived in
Small zation, that’s how mr.queen RN . . .
. alone, cut off from civilization. | isolation and removed from society.
spent his last five years.
how do i get more traffic on | how can i increase the traffic on | What is the best way to increase traffic on
my website? my website? my website?
QQP-Pos how do you solve stoichiom- | how do you solve a stoichiom- What is the method for solving stoichiom-
etry problems when given an | etry problem relating to excess | etry problems when there is an excess of
excess product or reactant? reactants? either product or reactant?

Table 3: Lexical variability between semantic sentences generated by LLM-based Word Diversity and the ground

truth for an original sentence in training sets.

and deterministic, such as “have lived in" match
‘VBP’ ‘VBN’ and ‘IN’, respectively. Then, it is ob-
served that the importance is increased for syntactic
nodes, which are closer to the target word after us-
ing the cross-phrase component. Moreover, when
at the same distance from the POS tag, they are
mostly assigned same weight, such as ‘VP and PP’
equally, ‘VP, VBP, IN and NP’ also have the same
attention value for the target word ‘lived’, as shown
in Figure 3(b). It demonstrates that cross-phrase
attention could effectively control syntactic struc-
ture in terms of levels. Furthermore, inter-phrase
attention focused more on learning the importance
of different syntactic nodes within the same level,
as shown in Figure 3(c). For example, ‘VP, VBP,
IN and NP’ belong to the same level for the POS
tag ‘VBN’, but they are all calculated with different
attention values. In addition, the performance is
decreased after gradually removing three attention,
which also verifies the necessity of three compo-
nents, detailed in Appendix D (see Table 7).

6 Applications on Downstream Tasks

To further test the performance of DiPara in down-
stream tasks, we apply it to augment data for few-
shot learning in text classification tasks. Specif-
ically, we select SST-2, MRPC, and QQP classi-
fication tasks from GLUE (Wang et al., 2019) as
evaluation benchmarks. Then, we randomly sam-
ple 500 instances from the training set and fine-tune
roberta-base(Liu et al., 2019) to obtain a baseline
classifier as a few-shot baseline. In addition, we
utilize different paraphrase generation models to
generate the paraphrases for the training set sepa-
rately. The augmented data from the training set
is used to train the classifier along with the orig-
inal instances. We adopt the Accuracy metric to
evaluate the model classification performance.
The results in Table 4 show that our method
provides the greatest improvement to the baseline

Methods MRPC QQP SST-2
few-shot baseline 80.44  68.38 67.83
+ ChatGPT 8249  71.07 69.52
+ DiPara(w/o EP) 83.30  70.51 68.92
+ DiPara(Ours) 86.69 74.06 70.33

Table 4: Performance of downstream tasks (i.e., MRPC,
QQP, and SST-2) after adding paraphrases with different
methods to the original baseline for data augmentation.

compared to other methods. Specifically, the data
augmentation of the DiPara model greatly improves
the performance of the three classification tasks
even before the training of enhanced paraphrase
pairs. Meanwhile, ChatGPT’s data augmentation
method also achieved excellent results. Neverthe-
less, our DiPara model further improves the final
performance after being enhanced with diverse,
high-quality data. In conclusion, our DiPara per-
forms best under all strategies, which shows that
our approach can effectively enhance the applica-
tion value of SCPG models in downstream tasks.

7 Conclusion

In this paper, we have presented DiPara, a novel
framework that can effectively generate diverse
paraphrases conforming to the target syntax by ac-
quiring semantic sentences with diverse words and
treating the given sentence as an objective. Ex-
periments demonstrate that DiPara achieves the
best performance in diversity and syntactic control
across different datasets. We believe that DiPara
opens up a new horizon for generating tasks (e.g.,
machine translation) that balance quality and di-
versity. It also provides an alternative to improve
the diversity of enhanced data in many downstream
tasks (e.g., question generation). In the future, we
will consider merging SCPG models into large lan-
guage models to enhance their generality and con-
trollability by local fine-tuning.



Limitations

We will discuss the limitations of our work from
the following two aspects:

Limited Paraphrase Pairs and Costs. Since
DiPara requires calling the API of large language
model, it is potentially expensive compared to us-
ing other unsupervised PCPG models. Then, due
to the budget limit, we only enhanced the diversity
of a small portion of the dataset and evaluated it
in English. However, it is interesting and meaning-
ful to explore other languages as well, especially
low-resource languages.

Subject to Evaluation Metrics. Diversity is
rarely evaluated automatically because it is variable
and ambiguous. Following previous work (Chowd-
hury et al., 2022), we also use Self-BLEU as evalu-
ation metrics. However, experimental results show
that high Self-BLEU means that generated para-
phrases may be diverse or may be completely ir-
relevant. Therefore, we evaluated only parts of
the data that ensure semantics. Nonetheless, it is
imperative and meaningful to design an effective
diversity metric.

Finally, we expect these limitations to be ad-
dressed in future work.
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A Large Language Models

In this section, we discuss the effect of prompting
design on the SCPG task.

Task Description. Through preliminary experi-
ments, we observe that the task description has a
minimal effect on generating paraphrases in para-
phrase generation and syntactically controlled para-
phrase generation. The reason could be that LLMs
have already developed a mature ability to gen-
erate paraphrases in the process of training with
large-scale data. Therefore, LLMs already perform
well even without adding specific task descriptions.
However, both tasks still have their own focus, as
shown in Table 5. Finally, we apply the task de-
scription by manual design to highlight the diver-
sity of paraphrase generation.

Instruction-formatted Design. The quality of
instruction instances has an important impact on
the performance of the model. Therefore, we se-
lected two potential methods to proceed with the
formatted instance construction for comparison, in-
cluding ChatGPT (Zero-Shot) and ChatGPT (Few-
Shot). Details of the instruction-formatted instance
are as shown in Table 6.

B Baselines

We evaluate the ability of our method on diversity,
semantic fidelity and syntactic control, compared
with the following supervised SCPG methods:

* Transformer. (Vaswani et al., 2017), the syn-
tactic encoder and semantic encoder both use
the Transformer Encoder architecture and the
decoder uses the Transformer Decoder archi-
tecture;

* SOW-REAP (Goyal and Durrett, 2020), a
transformer-based encoder-decoder model,
that uses syntactic rearrangement to enrich
paraphrase variety while maintaining sentence
quality;

e AESOP (Sun et al., 2021), a model that
integrates pretrained language models with
retrieval-based target syntactic parse selection
module, that controls paraphrase generation
with carefully chosen target syntactic struc-
tures;

* SI-SCP (Yang et al., 2022a), a model based
on attention network, that designs a tree trans-
former to capture parent-child and sibling re-
lation.
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In addition, we also compared with unsupervised
SCPG methods:

* SIVAE (Zhang et al., 2019), designing a
syntax-infused variational autoencoder utiliz-
ing additional syntax information to improve
the quality of sentence generation and para-
phrase generation.

* SUP (Yang et al.,, 2021a), a model that
presents a syntactically-informed unsuper-
vised paraphrasing framework based on the
conditional variational auto-encoder and uses
the two-stage method to train the model.

* SynPG (Huang and Chang, 2021), treating
the source sentence as a bag of words to de-
couple its semantics and syntax. Because its
pre-trained model > was trained based on 21
million data, far more than ours, we retrained
the model using our training dataset with all
the parameters being set to the default value
in the original papers.

C Implementation Details

All sentences in the datasets are parsed as con-
stituency parse using Stanford CoreNLP (Manning
et al., 2014). We used the scheduled Adam op-
timizer (Kingma and Ba, 2015) for optimization,
and the learning rate was set to 2.0 for all exper-
iments. We set the hidden state size to 300 (i.e.,
d), filter size to 1024, and head number to 4. The
number of layers of the semantic encoder, syntax
encoder, and sentence decoder were set to 4, 3, and
4, respectively. The batch size was set to 128. We
used BPE tokens pre-trained with 30000 iterations.
All hyperparameter tuning was based on the BLEU
score on the validation set.

During the process of evaluating diversity, we
found that not only diversity is a factor of impact
on the self-BLEU, but another possible factor is the
generation of some irrelevant words. It seriously
affects the authority of our evaluation. In addition,
we first evaluate the semantic fidelity. Then, the top
30% paraphrases are selected to calculate the diver-
sity metrics, and experimental results showed that
these paraphrases are higher than 87 on Sentence-
BERT for all SCGP models.

D Ablation Study

To investigate the effectiveness of each module in
the proposed method, we design several ablated

*https://github.com/uclanlp/synpg



Task

Task Descriptions

Paraphrase Generation

Given a sentence, please generate a paraphrase that has the same content
but different words as the given sentence (Manually Design).

The task of paraphrase generation aims at rephrasing a given text while
retaining its meaning (Chowdhury et al., 2022).

Paraphrase generation is a key technology of automatically generating a
restatement for a given text (Yang et al., 2021a).

Syntactic Controlled
Paraphrase Generation

Give an original sentence and a target syntax. Please generate a diverse
paraphrase sentence that is semantically consistent with the original
sentence and conforms to the target syntax (Manually Design).

Given an input sentence and a target syntax specification, an SCPG model
aims to generate paraphrases that satisfy the specific syntax requirement
(Wan et al., 2023).

Syntactically controlled paraphrase generation approaches aim to control
the format of generated paraphrases by taking into account additional
parse specifications as the inputs (Huang et al., 2022).

Table 5: Task descriptions of paraphrase generation, syntactic controlled paraphrase generation. They are obtained
from manual design and the definition of typical papers. Bolded words indicate key features of the task definition.

Prompt ID

Prompt Template

ChatGPT (Zero-Shot)

Task description

Give an original sentence and a target syntax, please generate a paraphrase
sentence that is semantically consistent with the original sentence and
conforms to the target syntax.

Original sentence: a huge black wolfish dog squatted down beside him .
Target syntax: (ROOT (SINV (PP (IN) (NP (PRP) (NN))) (VP (VBD))
(NP (DT) (1) (4J) JJ) (NN)) (1))

Output

Please generate a paraphrase:

ChatGPT (Few-Shot)

Task description

Give an original sentence and a target syntax, please generate a paraphrase
sentence that is semantically consistent with the original sentence and
conforms to the target syntax.

Demonstrations
Original sentence: as shown by evidence , serious deficiencies exist in
security systems .

Target syntax: (ROOT (S (NP (NP (NN)) (VP (VBG) (NP (EX)))) (VP
(VBP) (NP (NP (JJ) (NNS)) (PP (IN) (NP (DT) (NN) (NNS))))) (.)))
Paraphrase sentence: Evidence confirming there are serious deficiencies in
the security systems .

Original sentence: a huge black wolfish dog squatted down beside him .
Target syntax: (ROOT (SINV (PP (IN) (NP (PRP) (NN))) (VP (VBD))
(NP (DT) (JJ) 4J) AJ) (NN)) (.)))

Output

Please generate a paraphrase:

Table 6: An illustration of instance formatting and four different methods for constructing the instruction-formatted
instances. The bolded font is just used to illustrate rather than as an input.
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Self- Self- Reference- . Sentence-
Model BLEU,()) BLEU,() BLEU4(N) BLEU(T) ~prep  ESM(1)  TED()
Baseline 47.52 14.96 25.95 17.77 75.27 89.38 8.27
Baseline + Word Diversity 41.75 10.29 27.51 19.95 76.27 89.87 8.06
Baseline + Linearization 45.57 12.90 27.81 19.72 76.40 90.86 7.66
Baseline + Word Diversity + Linearization 38.80 9.27 30.31 22.28 77.23 90.75 6.57
Baseline + Word Diversity + Phrase-aware Attn 39.17 9.97 29.83 21.87 76.97 91.50 6.40
Baseline + Linearization + Phrase-aware Attn 42.21 10.83 31.91 23.36 77.30 92.13 5.94
DiPara (Ours) 37.26 8.66 33.51 25.08 78.11 92.96 5.23
w/o Monotonic Attention 37.72 8.75 32.04 23.88 77.60 93.29 5.38
w/o Cross-phrase Attention 38.24 9.04 33.03 24.62 77.92 93.21 5.67
w/o Inter-phrase Attention 37.40 8.62 32.71 24.44 78.09 92.01 5.85

Table 7:

versions of our model. The main differences be-
tween the variants and our proposed approach are
displayed in Table 7. Specifically,

e Baseline. The network removes our pro-
posed modules, LLM-based word diversity,
linearized triple sequence and phrase-aware
attention. It consists of a semantic encoder, a
syntactic encoder and a decoder.

Baseline + Word Diversity. This variant adds
the LLLM-based word diversity module into
the Baseline, which can generate augmented
paraphrases with diverse words to enhance the
semantics of the given sentence. By compar-
ing it with the Baseline, we can evaluate the
effectiveness of augmenting paraphrases with
ChatGPT.

Baseline + Linearization. This variant adds
the linearized triple sequence module into the
Baseline, which is used to separate syntactic
contents and structures to keep the integrity
of the input syntax structure. By comparing it
with the Baseline, we can evaluate the effect
of linearized triple sequence.

Baseline + Word Diversity + Linearization.
This variant incorporates both LLM-based
word diversity and linearized triple sequence
modules into the Baseline. By comparing it
with the Baseline, we can evaluate the overall
effect of our multi-level syntactic encoding.

Baseline + Word Diversity + Phrase-aware
Attn / Baseline + Linearization + Phrase-
aware Attn. These variants further add the
phrase-aware attention module to the Base-
line + Word Diversity / Baseline + Lineariza-
tion, respectively. By comparing them with
Baseline + Word Diversity and Baseline + Lin-
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Ablation study on the ParaNMT.

earization, we can evaluate the effect of the
phrase-aware attention module.

The upper section of Table 7 shows the ablation
study results on the test set in the paraNMT dataset.
From the table, we can conclude the following
observations:

1) as expected, among all the variants, Baseline
gets the worst performance, and our method im-
proves the base model by a large margin.

2) Compared with the Baseline, Baseline + Word
Diversity can obtain improved performances on
three diversity metrics without a drop in semantic
fidelity and syntactic control. The results show
that ChatGPT-based augmented data helps generate
high-quality paraphrased sentences with diversity.

3) Compared with the Baseline, the performance
of Baseline + Linearization is improved by 1.13
points and 1.48 points in Sentence-BERT and ESM,
which indicates that combining the tree transformer
encoder and the linearized triple sequence can cap-
ture richer syntactic structure information than the
single-sequence processing approach.

4) Moreover, a comparison between the Base-
line + Word Diversity / Baseline + Linearization
and the Baseline + Word Diversity + Linearization
illustrates that jointly using word diversity and lin-
earization can obtain a clear improvement on all
metrics.

5) We can observe that the Baseline + Word
Diversity + Phrase-aware Attn / Baseline + Lin-
earization + Phrase-aware Attn have further im-
provements to Baseline + Word Diversity / Baseline
+ Linearization, demonstrating the effectiveness of
our phrase-aware attention.

Ablation study of phrase-level attention. We
also conducted the ablation study to verify the ne-
cessity of three components of phrase-level atten-
tion.

¢ w/o Monotonic Attention. This variant re-



moves the monotonic attention from phrase-
aware attention. By comparing it with Di-
Para, we can explore the effectiveness of the
monotonic attention mechanism to capture the
target syntactic structure.

w/o Cross-phrase Attention. This variant re-
moves the cross-phrase attention from phrase-
aware attention. By comparing it with Di-
Para, we can investigate the effect of the cross-
phrase attention module for syntactic nodes at
different levels.

w/o Inter-phrase Attention. This variant re-
moves the inter-phrase attention from phrase-
aware attention. By comparing it with DiPara,
we can investigate the learning ability of the
inter-phrase attention module for different syn-
tactic nodes within the same level.

As shown in Table 7, the result of the model
w/o inter-phrase attention declined under both the
Sentence-BERT and ESM, especially under ESM
by 0.95 points, which is caused there is no dis-
tinction between different syntactic nodes within
the same level phrase without this module. Com-
pared with the model w/o inter-phrase attention,
the performance of the model w/o cross-phrase
attention decreased by 0.19 points under Sentence-
BERT and the performance of the diversity dropped
by 0.84, 0.42 points under Self-BLEU; and Self-
BLEU, respectively. The result shows that ignor-
ing the impact of different levels of syntactic struc-
ture on the target words leads to poorer perfor-
mance of the models in terms of semantics and
diversity. The performance of the model w/o mono-
tonic attention dropped under both the Sentence-
BERT and diversity, which indicates that the mono-
tonic attention mechanism has an important impact
on improving the semantics and diversity of the
generated paraphrases.

E Qualitative Analysis

We show a typical case on the ParaNMT-Small,
which consists of the given sentence, target syn-
tax and generated paraphrases by different mod-
els, as well as their corresponding constituency
phrase. Moreover, models include baseline super-
vised SCPG models, ChatGPT-based models and
DiPara, as shown in Table 8.

From an overall perspective, DiPara is able to
balance diversity and syntactic control, though each
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model generated different results. Moreover, base-
line SCPG models are good at syntactic control,
while ChatGPT-based models are better at seman-
tic restructuring.

Compared with the baseline SCPG models, our
model not only generates a diverse paraphrase but
also has excellent performance syntactic control.
As shown in the last line of Table 8, DiPara gener-
ates the paraphrase “We have stayed in fifteen cities
during six years.", different from the ground truth.
But it is more diverse compared to the original sen-
tence, while matching the target syntax exactly. It
is challenging to generate diverse paraphrases for
the baseline model. For example, the paraphrase
“i lived in fifteen cities for six years." generated by
AESOP has a near match in syntax. Unfortunately,
there is only one keyword substitution, replacing
‘we’ with ‘1, leading to semantics being broken.

ChatGPT-based models always generate some-
what diverse paraphrases while maintaining seman-
tics. In addition, if the instruction excludes demon-
stration examples, it almost remains the syntax of
the original sentence without being controlled by
the target syntax at all, as shown in Table 8. How-
ever, if the instruction contains demonstration ex-
amples, the diversity of generated paraphrases de-
creases, even though the performance of syntactic
control improves. For example, it generates the
paraphrase “During a span of 6 years, we have
resided in a total of 15 different cities." before
demonstrations are added and generates “We have
lived in 15 cities over the span of 6 years" afterward.
Moreover, it has little effect on generating para-
phrases whether demonstrations are added without
inputting the target syntax.

In conclusion, DiPara can effectively generate
diverse paraphrases conforming to the target syn-
tax, which is attributed to the ability to balance
semantics, syntax, and diversity.



Models

Sentence

Constituency Phrase

Given Sentence

over the course of 6 years ,
we ’'ve lived in 15 cities .

(ROOT (S (PP (IN) (NP (NP (DT) (NN)) (PP (IN)
(NP (CD) (NNS))))) () (NP (PRP)) (VP (VBP)
(VP (VBN) (PP (IN) (NP (CD) (NNS))))) (.)))

we have lived in fifteen

(ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)

Ground Truth | 2 O i years. E;}; g;l)))gg;)cm (NNS)) (PP (IN) (NP (CD)
. N (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)
SOW-REAP Zvveervtiilzzi;:els Cles | pp (IN) (NP (NP (CD) (NNS)) (PP (IN) (NP
' (DT) (NN )
. B (ROOT (S (NP (PRP)) (VP (VBD)
AESOP ;hve.d in fifleen cities | pp ) (NP (CD) (NNS)) (PP (IN) (NP (CD)
OF SR yeals (NNS))) (.)))
- been Tivine (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)
SI-SCP ‘1”56 Vt eef“ vins (VP (VBG (PP (IN) (NP (CD) (NNS)) (PP (IN)
CHIES TOTSIR YERIS -1 (NP (CD) (NNS))))) ()))
During a span of 6 years, | ROOT © (PP (IN) (NP (DT) (NN) (PP (IN) (NP
span ot > | (CD) (NNS)))) () (NP (PRP)) (VP (VBP) (VP
ChatGPT w. S wfell;azf:ﬁfemdi:d.ltl'latotal (VBN) (PP (IN) (NP (NP (DT) (NN)) (PP (IN)
OF 1> Grierent eies. (NP (CD) (1) (NNS))))) (.)))
ChatGPT w. S ‘We have lived in 15 cities (ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN) (PP

+ Few-Shot ICL

over the span of 6 years.

(IN) (NP (CD) (NNS)) (PP (IN) (NP (DT) (NN))
(PP (IN) (NP (CD) (NNS)))))) ()

Throughout a span of 6 (ROOT (S (PP (IN) (NP (NP (DT) (NN)) (PP (IN)
ChatGPT w/o S | years, we have resided in | (NP (CD) (NNS)))) (.) (NP (PRP)) (VP (VBP)

15 different cities. (VP (VBN) (PP (IN) (NP (CD) (JJ) (NNS))))) (.)))

During 6 years, there are | (ROOT & (PP (IN) (NP(CD) (NNS)) () (NP (EX
ChatGPT w/o S ’ )) (VP (VBP) (NP (CD) (NNS) (SBAR (WHNP

+ Few-Shot ICL

15 cities that we have
spent time in.

(WDT)) (S (NP (PRP)) (VP (VBP) (VP (VBN)
(NP (NN)) (PP (IN))IC))

DiPara (Ours)

We have stayed in fifteen
cities during six years.

(ROOT (S (NP (PRP)) (VP (VBP) (VP (VBN)
(PP (IN) (NP (CD) (NNS)) (PP (IN) (NP (CD)
(NNS))))) ()

Table 8: An example of SCPG. Paraphrases are generated by baseline SCPG models, ChatGPT-based models and
DiPara, with their constituency phrases on the right of the sentences. Blue fonts indicate the input. Magenta and
grey fonts represent different words from the original sentence and different syntax from the target constituent
phrase, respectively.
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