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ABSTRACT

Learning causal structures from temporal data is fundamental to many practical
tasks, such as physical laws discovery and root causes localization. Real-world
systems often exhibit long-term carry-over effects, where the value of a variable at
the current time can be influenced by distant past values of other variables. These
effects, due to their large temporal span, are challenging to observe or model. Ex-
isting methods typically consider finite lag orders, which may lead to confounding
from early historical data. Moreover, incorporating historical information often
results in computational scalability issues. In this paper, we establish a theoretical
framework for causal discovery in complex temporal scenarios where observational
data exhibit long-term carry-over effect, and propose LEVER, a theoretically guar-
anteed novel causal discovery method for incomplete temporal data. Specifically,
based on the Limited-history Causal Identifiability Theorem, we refine the variable
values at each time step with data at a few preceding steps to mitigate long-term
historical influences. Furthermore, we establish a theoretical connection between
QR decomposition and causal discovery, and design an efficient reinforcement
learning process to determine the optimal variable ordering. Finally, we recover
the causal structure from the R matrix. We evaluate LEVER on both synthetic and
real-world datasets. In static cases, LEVER reduces SHD by 17.29%-40.00% and
improves the F1-score by 5.30%-8.79% compared to the best baseline. In temporal
cases, it achieves a 64% reduction in SHD and a 45% improvement in F1-score.
Additionally, LEVER demonstrates significantly higher precision on real-world
data compared to baseline methods.

1 INTRODUCTION

Temporal causal discovery aims to recover the causal structure from time-series data. By revealing
mechanistic rather than merely correlational dependencies, it provides a principled basis for reliable
prediction (Kuang et al.,2018};\Shen et al.,[2018; |[Kuang et al.,2020; Peters et al.,|2016), counterfactual
reasoning (Swaminathan & Joachims, 2015; |Wu & Wang, [2018; [London & Sandler, [2019), and
root-cause identification (Meng et al., |2020; [Tkram et al.| 2022; [Lin et al., 2024)).

A major challenge to temporal causal discovery is disentangling instantaneous influences from lagged
ones across successive time steps. Many real-world time series exhibit lagged influences that persist
far beyond a few time steps, giving rise to long-term carry-over effects. From the perspective of
historical dependency, the value of a variable at a certain time depends not only on the current
values of its parent variables, but also on their historical traces. Such systems are ubiquitous in both
industrial production and daily life. For example, when an advertisement is launched, it stimulates
consumers’ purchase intentions, thereby driving up product sales in the following period. In this
system, the current product sales are not determined solely by the advertising intensity at a single
moment, but rather by the accumulated effect of advertising over a past period of time.

Our goal is to recover the causal structure, i.e., a directed acyclic graph (DAG) that en-
codes the cause-and-effect relationships, from observational time-series data. Due to the
prolonged duration of the carry-over effects, the influence of early historical data is often
difficult to capture with limited observational data or model. Existing methods typically
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consider finite lag orders (Runge et al. [2019; Runge, 2020; |Castri et al., [2023} Debeire
et al., [2024; |Saggioro et al., [2020; |Sun et al., 2021a; Pamfil et al., [2020; |Granger, [1969).
However, neglecting long-term carry-over effects may lead
to historical values confounding causal discovery. Figure/I]
illustrates a scenario of causal discovery using a model
with a maximum lag order of 2, where observations of vari- X, O O

s '
X[t—3] |X[e—=2] X[t—1] X[t]

ables at different time steps are represented as temporal

nodes. The historical node X5[t — 3] simultaneously in-

fluences X [t] and X3]t]; however, as it is not included in X,

the model, a spurious causal relationship may be inferred Sl 7S

between X [t] and X3[t] (Powell, 2018). Apart from the O ~ 6 =
|\

long-term carry-over effects, the super-exponential num- %3

ber of valid causal structures, reaching 4.2 x 10'® for Unohserved
a graph with 10 nodes, poses an inherent challenge for JUnmodeled Observed / Modeled

causal discovery methods. Prior approaches that tempo-

rally unfold variables with a fixed lag order (Runge etal., Fjgure 1: Historical confounding effect
2019; Rungel [2020; [Debeire et al., [2024) further exacer-

bate the search complexity.

In this paper, we establish a theoretical framework for causal discovery in temporal scenarios with
long-term carry-over effects, and propose LEVER, a novel reinforcement learning (RL)-based causal
discovery method grounded in this foundation. Specifically, we introduce a scoring function that
guarantees causal identifiability in static settings. To address historical confounding in temporal
data, we further establish the Limited-History Causal Identifiability Theorem, showing that refining
observations with limited history suffices for maintaining causal identifiability. Guided by the above
theory, we propose LEVER, which can discover the causal skeleton from incomplete observational
temporal data. First, LEVER refines observations using a limited history to mitigate long-term
confounding effects. It then employs an RL framework to determine the optimal variable ordering,
using the upper-triangular R matrix from a QR decomposition as a compact and efficient state
representation. Finally, the causal structure is recovered directly from the optimal R matrix.

We evaluate LEVER on both synthetic and real-world datasets. In static cases, LEVER reduces
structural Hamming distance (SHD) by 17.29%-40.00% and improves the Fl-score by 5.30%-
8.79% compared to the best baseline. It achieves superior performance while requiring significantly
less runtime and memory compared to baseline methods using the RL framework, demonstrating
the effectiveness of using the R matrix as the state. In temporal cases, LEVER achieves a 64%
reduction in SHD and a 45% improvement in F1-score. Compared to baseline methods for handling
historical information, LEVER’s historical refinement approach effectively addresses long-term carry-
over effects without incurring significant additional overhead. Additionally, LEVER demonstrates
significantly higher precision on real-world data compared to baselines.

Our contributions are summarized below:

* We extend static causal identifiability to temporal scenarios with long-term carry-over effects,
and establish a theoretical connection between causal discovery and QR decomposition.

* We propose a causal discovery method for incomplete temporal data, which can quickly and
effectively recover causal structure in the presence of long-term carry-over effects.

* We validate the effectiveness of our method on both synthetic and real-world dataset,
demonstrating that our method outperforms the baselines in both accuracy and resource
efficiency.

2 RELATED WORK

The PC algorithm (Spirtes et al.l 2000) uses conditional independence tests to construct causal
graphs but struggles with high-dimensional data due to combinatorial complexity. GES (Chickering,
2002) employs score-based optimization for efficient DAG learning. NOTEARS (Zheng et al.| 2018)
reformulates causal discovery as continuous optimization with an acyclicity constraint, enhancing
scalability. SCORE (Rolland et al.,[2022a)) leverages the properties of the scoring function to recover
causal structure in O(d) time, where d is the number of variables. However, a key challenge lies
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in estimating the scoring function, which involves solving a nonlinear optimization problem. This
requires multiple iterations to obtain an approximate solution.

RL-based methods model causal discovery as a Markov decision process, using reinforcement
learning to explore the combinatorial space of DAGs. RL (Zhu et al.,|2019) encodes observational
data via a self-attention-based encoder to form the state, and takes the generated adjacency matrix as
the action. Its action space size is O(29%4), leading to high computational costs and convergence
difficulties. CORL (Wang et al.,[2021) reformulates static causal discovery as finding the optimal
topological order, reducing the action space to O(d). Nevertheless, CORL also uses an NN-based
encoder to encode data as the state, incurring substantial computational overhead.

For temporal cases, existing research typically assumes a finite maximum time lag. Granger causal-
ity (Granger, [1969) tests whether the past values of one variable help improve the prediction of
another variable with given maximum time lag. PCMCI (Runge et al2019) and its variants (Rungel
2020; [Debeire et al.| [2024; [Saggioro et al.|[2020; |Castri et al., [2023)) extend PC to temporal settings by
unfolding variables over fixed lags and employ momentary conditional independence tests to identify
lagged causal relationships, yet exacerbate combinatorial complexity. NTS-NOTEARS (Sun et al.|
2021a) and DYNOTEARS (Pamfil et al., [2020) introduce structural vector autoregressive model
assumption with given model order, and solve an optimization problem with an acyclicity constraint.
While these methods can effectively capture short-term lagged relationships, they do not consider the
potential confounding effects arising from long-term carry-over influences.

3 THEOREM GUARANTEE

3.1 NOTATION AND SYSTEM MODEL

Let X [t] € RY denote the vector of observations (i.e., the values of all d variables) at discrete time
step t € N. We assume X [¢] is generated by a time-invariant system with temporal carry-over effects,

t

X[t] = Y X[t—rlg(r) + €(t), (1)

=0

where g(7) € R?*4 is the impulse response matrix at lag 7, and €(¢) € R is structural noise with
i.i.d. entries.

Assumption 1 (Time-invariant skeleton). For every T > 0, the binary support supp(g(7)):={(4,7) |
gij # 0} is identical. That is, all g(T) share the same directed acyclic skeleton G.

Assumption 2 (Stationary lag dependency). Every non-zero entry of g(7) depends only on the lag T,
not the absolute time index t.

Assumptions [I}2] embody temporal ordering and causal invariance, which are standard in many
existing works (Gong et al., 2015; 2017; Malinsky & Spirtes| 2018; [Liu et al., 2023).

Objective. Given the observed time series X [T7:71 + T'], our goal is to recover the causal skeleton G
(i.e., the summary support pattern of g(7)). In the following, we first introduce a scoring function
and demonstrate that minimizing this score recovers the true causal topological order in a static
setting, thereafter establish the static identifiability of the causal skeleton. We then extend the
theoretical framework to partially observed temporal data, thereby aligning the results with our
ultimate objective.

3.2 SCORING TOPOLOGICAL ORDERS

To identify the true causal topological order from all possible candidates, an ideal scoring function
should attain its optimum at the true order. Following this principle, we introduce a scoring function
based on the ordinary least squares (OLS) error.

Formally, let Y € R™*4 consists of m (m > d) i.i.d. observations of d random variables
(X Tyevns Xd) that follow equation |1| under static setting, where g(7) = 0 for all 7 > 0. Let
II be the set of all possible permutations of the d variables, and define K™ as the complete DAG
whose skeleton is a complete graph and topological order is given by 7 € 11.
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Lemma 1. For a set of d variables, there exists a bijection between the set of all possible topological
orders and the set of complete DAGs.

Definition 1 (Scoring function). The score of a topological order T given observations Y is defined
as the total OLS error of fitting each variable j with its former variables in w (denoted as pa™(i)):

2
) @

d
Score(m;Y) = ZHY] =Y. par(j) ﬁj(K’T)‘ )
j=1

where B\j (K™) € RIPa"WIXT gre the OLS coefficients.

Theorem 1. Assume that Y has full column rank. Let Y™ € R™*< be the data matrix whose columns
are permuted according to the given topological order 7. Let Y™ = QR be a QR decomposition of
Y™ with R € R™? upper—triangular and Vi, R; i > 0. Then the score of ™ can be expressed as

d
Score(m;Y) = > R}, 3)
1=1

Theorem 2 (Causal topological order identifiability). Let 7* be a topological order of the true causal
skeleton. For sufficiently large sample size m, the expected score of the true topological order T*
almost surely attains the minimum over all possible topological orders m € 11, i.e.,

E [Score(n*; V)] = HleiﬁlE[Score(ﬂ; Y)]. 4)

3.3 CAUSAL SKELETON RECOVERY

The complete DAG derived from the true causal topological order may include superfluous edges.
We will demonstrate that the true causal graph can be recovered from the topological order through
weight estimation and pruning.

Theorem 3. Let R € R?*¢ be the QR decomposition result of Y™, and the index selector ok represent
the selection of the first k elements. Let W € R*¢ be the estimated weight matrix, where Wi ;
represents the estimated edge weight from variable 1 to variable j if there exists a directed edge from
node i to node j in K™ ; otherwise, W; ; = 0. Then for each variable j, the estimated weights from
its parents to itself can be computed from R as:
—~ 1 _

Whoar(j).g = Bi(K™) = Ro(i 1y oj—1y " Bog-1)5» 1 <J < d. ©)
Theorem 4. There exists a threshold 6 > 0 such that, when all edges in K™ with absolute estimated
weights |W; ;| < 0 are removed, the resulting graph is identical to the true causal graph.

3.4 HISTORICAL CONFOUNDING IN TEMPORAL DATA

The aforementioned theorems establish causal identifiability in static scenarios. However, due to the
carry-over effect in temporal data, these theories may not hold for the original temporal data. To
address this, we propose a refinement scheme that mitigates the historical confounding effect, thereby
extending causal identification theory to temporal settings.

Theorem 5. Regressing X [t] on its complete history { X [t —7|};>1 and taking the residuals preserves
causal identifiability, i.e., the true order minimizes score on these residuals.

In real world, one often has access to only incomplete history. We next show that, under a mild
assumption, a limited history suffices.

Assumption 3 (Linear recurrence of g(7)). There exists h€N and coefficients k1, . . ., ky € R such
that g(1) = kig(t — 1)+ - + kng(t — h) Y7 > h+ 1. A typical example is exponentially
decaying effects, g(17) = kg( — 1).

Theorem 6 (Limited-history Causal Identifiability). Ler Y [t] be the residual obtained by regress-
ing X[t] on X[t —1],..., X[t — h|. Under Assumption 3| the true topological order minimizes
Score(m;Y).
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Figure 2: Overview of LEVER

4 LEVER

We propose LEVER, a method to learn the underlying causal structure from temporal data exhibiting
long-term carry-over effects. Figure [2illustrates the three key stages of LEVER. First, we apply a
sliding window to extract samples from the temporal data and refine the values at the final time step
of each window by regressing them on their preceding steps. Next, we utilize a Deep Q-Network
(DQN) framework to efficiently determine the optimal variable ordering. We define the action at
each decision step as appending the refined data of a specific variable to a data list. We perform
QR decomposition on this data list to obtain the R matrix, which represents the state, and compute
the change in global score as the reward. An episode concludes when all variables are included in
the data list. Finally, we derive the causal weights from the optimal R matrix and prune edges with
weights near zero to obtain the final causal structure.

4.1 HISTORICAL REFINEMENT

For observational data X of length T', we use a sliding window of length w to extract samples. Each

sample comprises a historical observation matrix H € R(*~1)*4 and a target observation x € R%.

By sliding the window with a step size At, we obtain m = | L% | + 1 samples.

In practice, prior knowledge about the properties of the impulse response kernel g(7) is typically
unavailable. Thus, increasing the window size w improves the likelihood of capturing a more
complete structure of historical information. However, since the sample size m decreases as w
increases, an excessively large w may reduce the sample size, potentially compromising the accuracy
of subsequent regression analysis and causal discovery. Therefore, a balance between historical
information completeness and sample size should be considered to select an appropriate w.

We perform regression analysis using recent historical observations to refine the target observation.
For each sample, we flatten its historical observation matrix into a 1 x ((w — 1) - d) vector H' by
concatenating the values of the d variables at each time step. We then regress the target observation x
using the historical observation vector:

d

. _ H/B 2
argmén; (I 15 6)

where x, denotes the r-th variable of the target state, and B, € R(w—1)-dx1

column of the regression coefficient matrix B.

represents the r-th

Let the predicted value be X = H’B. The refined target state is then expressed as:
x=x—x=x- H'B. @)
Theorem|§| ensures that the true topological order achieves the minimal score on the residual x.
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4.2 VARIABLE REORDERING VIA REINFORCEMENT LEARNING

We employ a DQN framework to efficiently determine the optimal variable ordering.

Action. At each decision step, we define the action as appending the refined data of a specific
variable to a data list. Since variables cannot be selected repeatedly, the action space at the ¢-th step is
A:={1,---,d}\TI withasize of (d — i + 1), where I' is the indices of variables in current data list.

State. We define the state as the R matrix obtained from QR decomposition of the data list at
the specific decision step. As established in the preceding theoretical analysis, the R matrix is
uniquely determined by the data list and encapsulates complete information about the causal weights
while being directly correlated with the score. Furthermore, QR decomposition can be performed
stably and efficiently using numerical libraries such as NumPy (Van Der Walt et al., [2011)) with a
computational complexity of O(md2) (Golub & Van Loan, 2013)). Thus, the R matrix serves as a
compact and informative representation of the data list, accelerating the RL learning process and
enhancing performance.

Reward. We compute the immediate reward of an action as the reduction in global score. The global
score is defined as the sum of the residual sum of squares for variables within and outside the data
list. Formally, it is expressed as:

|
GlobalScore = Z R}, + Z RSSr_ 5, ®)
i=1 j¢T

where R; ; is the i-th diagonal element of the R matrix, and RSSr_, ; denotes the residual sum of
squares (RSS) when regressing x; on the data in the data list.

Q-Network. The Q-network maps the input environment state to the action with the highest expected
return. To improve the accuracy of expected return estimation and ensure training stability, we employ
a Double DQN (DDQN) approach (Van Hasselt et al., 2016). Specifically, one Q-network selects
the optimal action, while a separate target Q-network evaluates the expected return for that action,
reducing overestimation biases. Its parameters are updated using a temporal difference learning
approach, with the update rule:

Qs a:0) < Q(s,a:60) + o (r + ymax Qs a's67) = Q(s.a:0)) ©

where s and a denote the current state and action, s’ is the next state, 7 is the reward, « is the learning
rate, -y is the discount factor, 6 represents the Q-network parameters, and 6~ denotes the parameters
of a target network. The target network’s parameters #~ are periodically aligned with 6 using a soft
update mechanism 6~ < A0 + (1 — \)#—, where A € (0, 1) is a hyperparameter controlling the
update rate.

During training, we track the episode with the highest cumulative reward and record the corresponding
optimal R matrix R*.

4.3 STRUCTURE RECOVERY
We compute the causal weights A using R* according to Equation 5}
—1 .
Whar(j).5 = Ro(jfl),o(jfl) “Ro(j-1),55 1<j<d

We then prune edges with weights near zero to obtain a sparse causal structure. The impact of
thresholding is illustrated in Figure [6]

5 EXPERIMENTS

Implementation. We evaluate LEVER on synthetic datasets, encompassing both static and temporal
scenarios, as well as a real-world dataset, comparing its performance against eight classical and
state-of-the-art baselines. All experiments are conducted on a system equipped with an Apple M1
Pro chip and 16 GB of unified memory, running macOS Ventura 13.0. The software environment
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Table 1: Performance on static datasets

Graph Metrics PC NOTEARS RL CORL SCORE LEVER

F1 0.4574 0.7308 0.3809 0.5930 0.8179  0.8899,579%
G(10,20) FPR 0.0949 0.0208 0.0580 0.0206 0.0329  0.0123y40.96%
SHD 19.00 8.00 18.33 12.00 6.67 4.00y40.00%

FI 05528  0.7898 03770 0.5228 0.7918  0.8337,530%
G(20,40)  FPR  0.0395  0.0062 00193 0.0072 0.0207 0.0090
SHD  32.00 13.54 3400 2585 1550  11.60y14200

*Note: Black bold text indicates the best results among the baselines, and red subscripts show the percentage
improvement of our method compared to the best baseline results.

utilizes Python 3.10.2 for scripting and PyTorch 2.5.1 as the primary deep learning framework.
Implementation and configuration details are provided in the Appendix.

Metrics. We use Recall, False Positive Rate (FPR), F1-score and Structural Hamming distance (SHD)
to evaluate the performance of causal discovery methods from multiple perspectives.

Baselines. The static causal discovery baselines include PC (Spirtes et al.,|2000), NOTEARS (Zheng
et al.,[2018)), RL (Zhu et al., [2019), CORL (Wang et al., 2021), and SCORE (Rolland et al.| [2022a)).
The temporal causal discovery baselines include Granger (Granger, [1969), PCMCI (Runge et al.,
2019), and NTS-NOTEARS (Sun et al., 2021a). We run baselines with multiple hyper-parameter
settings, and report the results with best performance. The chosen hyper-parameters are presented in
the Appendix.

5.1 SYNTHETIC STUDY
5.1.1 STATIC CASES

For static data, we generate the ground truth causal graphs with the Erdos-Renyi model. We denote
the graphs with d nodes and m edges as G(d, m). We generate 500 i.i.d. samples for each graph
using the structural equation X; = >, p, ;) Xj - Aj; + €, where Pa(i) represents the topological
parents of variable 7 in the graph, A;; is the weight of the directed edge from variable j to variable
i, and ¢; is an independent random variable following a standard normal distribution. To ensure
experimental reliability, we generate at least three datasets with different structures for each graph
setting and report the average performance.

It worth noting that although our primary focus is causal discovery on temporal data, static data can
be considered a special case of temporal data, enabling comparison with a broader range of related
work. Moreover, the performance of LEVER on static data validates the effectiveness of our RL
module.

Results. Table[I] shows that LEVER achieves higher F1-scores and lower SHD compared to all
baselines, demonstrating superior accuracy in causal structure recovery. Specifically, LEVER
improves the Fl-score by 5.30%-8.79% over the best-performing baseline and reduces SHD by
17.29%-40.00% relative to the lowest SHD among the baselines.

Additionally, we compare the efficiency of LEVER with other RL-based causal discovery methods,
namely RL and CORL. Owing to LEVER’s action space of only O(d) at each step and its efficient
representation of raw data using the R matrix instead of a neural-network-based encoder, LEVER
achieves superior efficiency in both time and memory usage. On the graph with 20 nodes, LEVER
requires 0.25 seconds per episode, while RL and CORL require 19.45 seconds and 1.71 seconds,
respectively. Furthermore, LEVER maintains a low peak memory usage of 10.36 MB, compared to
24.40 MB for RL and 64.68 MB for CORL (with input and hidden dimensions both set to 64).

5.1.2 TEMPORAL CASES

For temporal data with long-term carry-over effect, we generate the ground truth skeleton and
instantaneous influence weights with the same settings as static dataset, and have the influence
weights decay over lag time. We consider three types of decaying schemes, exponential, linear and
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Figure 4: Performance on temporal datasets

complicated (specified later). We generate the original data with equation [I] for 2000 time steps, and
use the data of last 1000 time steps, during which the system has been operating stably. At least three
datasets are generated for each setting, and we report the average performance.

Results. Figure [3]visualizes the results of LEVER recovering causal relationships from temporal
data with carry-over effects. It shows that LEVER can reconstruct the structure and weights of the
ground truth causal graph with high accuracy. Figure[]illustrates the performance comparing with
baselines. LEVER achieves a 64%-88% reduction in SHD and a 45%-101% improvement in F1-score
comparing with the best baseline. Notably, NTS-NOTEARS and PCMCI, temporal extensions of
NOTEARS and PC, incorporate limited lag-order temporal effects by unfolding variables across
multiple time steps. This increases the number of nodes in the causal graph, significantly raising
the time complexity. Under 10-node graph settings, the runtime of NOTEARS and PC on temporal
data increases by 203 and 69 times compared to static data, respectively. In contrast, LEVER, which
refines observations using historical data, incurs only an additional 0.0017 seconds of runtime.

Deep Dive. We further investigate the impact of window size on algorithm accuracy relative to the
theoretical minimum window size h + 1, which ensures complete elimination of historical effects.
We generate two groups of datasets with complicated decay types, where g(7) is linearly expressed
by 10 and 20 preceding entries. Figure [5|presents heatmaps of ¢g(7) with different 7, illustrating
that the actual carry-over effects persist over much longer duration than h. We evaluate LEVER’s
Receiver Operating Characteristic (ROC) curves under various window sizes. To isolate the effect
of sample size, we use 500 samples for training under each window size configuration. As shown
in Figure[6] when the window size is insufficient, the algorithm exhibits suboptimal performance.
Increasing the window size effectively improves accuracy. However, when the window size exceeds
h + 1, further increases yield less improvement in algorithm performance.

5.2 REAL-WORLD STUDY

The wt_walks_v1 dataset (Gamella et al.,|2025bjal) contains temporal data derived from controlled
experiments conducted in a wind-tunnel chamber. The ground truth graph comprises 16 nodes and 26
edges, representing the inherent dependencies among key variables within the wind-tunnel chamber.
These variables include actuator settings (e.g., fan inputs and hatch position, denoted as H), sensor
parameters (e.g., fan loads Li,, Loy), and sensor measurements (e.g., barometric pressures pdw, Pup,

Pamba ]Dint)-

We take the last 1000 observations for stability consideration. Figure [7]presents the ground truth
dependency among variables and the recovered causal structures of LEVER and two baselines.
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Figure 7: Recovered causal structures on real-world dataset.

Edges in black represent the recovered relations, edges in gray represent the undetected relations and
edges in blue represent the relationships incorrectly inferred by the model. Quantitatively, LEVER
achieves a SHD of 22 and an F1-score of 0.5769, outperforming PCMCI (SHD = 35, F1 = 0.3636),
NTS-NOTEARS (SHD = 37, F1 = 0.3019), and Granger causality (SHD =48, F1 =0.2941). We do
not visualize the result of the Granger causality method due to the excessive number of false positive
edges it generates, which makes the causal graph overly cluttered and difficult to interpret.

6 LIMITATIONS

Our theory is built upon the linear time-invariant (LTI) assumption, which limits the theoretical
guarantees of our approach in nonlinear scenarios. In future work, we will extend the LEVER
framework to accommodate nonlinear relationships, thereby broadening its scope and applicability.
Additionally, the assumption for using a few historical observations to completely eliminate long-term
historical effects is that g(7) can be linearly represented by g(7 — 1), -+, g(7 — h). In future work,
we will explore more relaxed conditions and quantify the impact of the long-term carry-over effect
on causal discovery when these conditions are not fully satisfied.

7 CONCLUSION

In this work, we propose a causal discovery algorithm from temporal data with long-term carry-over
effects. Our approach refines observations at each time step with data from a few preceding steps to
mitigate long-term historical influences. We employ a reinforcement learning framework based on
QR decomposition to determine the optimal variable ordering and the corresponding R matrix, from
which we recover the causal structure in polynomial time. Experimental results show that our method
outperforms baselines on both synthetic and real-world datasets.
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8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code have been made publicly available in an anonymous repository to facilitate replication and
verification (the link is provided in Appendix A.2.1). The real-world dataset is publicly available
on (Gamella et al.|[2025bga). The experimental setup, including training steps, model configurations,
and hardware details, is described in detail in the paper (see Section 5 and Appendix A.2). We have
also provided a full description of LEVER to assist others in reproducing our experiments. We believe
these measures will enable other researchers to reproduce our work and further advance the field.
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A APPENDIX

A.1 PROOFS FOR THEOREM GUARANTEE
A.1.1 PROOF OF LEMMA[I]

proof. LetV ={1,---  d} be the variable set. Let I denote the set of all possible topological orders
of V, and K denote the set of all complete DAGs on V.

Construct a map f : II — K as follows. For a topological order 7 = (71, --- ,mq) € IL, let f(m)
be the directed graph on V' that has, for every pair i < j, the directed edge m; — 7;. Clearly every
unordered pair of vertices receives exactly one oriented edge, so the underlying skeleton of f () is
a complete graph. Because all edges point from earlier to later vertices in 7, no directed cycle can
exist; hence f(7) € K.

Define a mapping ¢ : K — II such that, for any complete DAG K € K, g(K) denotes the topological
order of the nodes in K. Clearly g(K) € II. In addition, we can prove that any complete DAG K
has a unique topological order. Take any two distinct vertices u, v. In a complete DAG exactly one of
the edges u — v or v — w is present. If u — v, then in every topological order u must precede v;
otherwise v must precede u. Thus the relative order of u and v is fixed. Since this holds for every
unordered pair, the full order of V' is uniquely determined.

Finally, we verify that f and g are mutual inverses:
* For any 7 € II, the graph f(7) was constructed by orienting each pair from earlier to later
in 7. The unique topological order of this graph is 7 itself, hence g(f (7)) = =.
 For any K € K, its unique topological order m = ¢g(K) dictates that for every pair {u, v}

the orientation in K matches the orientation in (). Hence f(g(K)) = K.

Therefore, f and g are inverse bijections, completing the proof.

12
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A.1.2 PROOF OF THEOREM[I]

proof. Since performing QR decomposition on the reordered data matrix Y™ is equivalent to applying
Gram-Schmidt orthogonalization with order = = (71, - - - , m4), the j-th diagonal element of the R
matrix represent the norm of the orthogonal projection of Y.”; onto the complement of span(Y.™ (j—l))'

Let S = span(Y, (j_l)), and S+ represent the complement of S. Then,
2 2 ~ NTE:
B2 = projss (Y35) = || V25 = Yy By ()| = [Yem, = Yopan iy By (67
Therefore, by definition, we have

Score(m;Y) Z R

A.1.3 PROOF OF THEOREM[Z]

proof. Let B € R%*? be the true weight matrix, where B; ; represents the true edge weight from
variable ¢ to variable j if there exists a directed edge from node 7 to node j in K™; otherwise, B; ; = 0.

By definition, we have Y =Y - B + ¢, where € € R™*4 ig the structural noise with i.i.d. entries.
Since K™ is acyclic, det(I — B) = 1.

Define T = (I — B)~!,and ¥ = ¢*T " T. Then we have
dety = o2? . det(T") - det(T) = o2%.

Let cx(m) = Var(Yr, |Yr, -, Yro_,)s and Op(m) = c’“g—(f) > 0. Let X = LDL" be the

LDL decomposition of 3, then based on the properties of Schur complement, we have D =
diag(cy (), -+, cq(m)). Therefore,

f[ detE |

For correct order 7 = 7*, equations ¢ (1) = 02,5 (7) = 1,2221 dr(m) = d holds for every
ke{l1,---,d}. Clearly,
d
_ det® tE
H e}

For incorrect order 7/, since not all of {Jx(7")} are equal to 1, it follows from the AM-GM inequality
that Y7 6,.() > d.

By definition, the score of topological order 7 given m > d independent observations Y can be
expressed as Scorep, (m;Y) = 9_ RSS'™. Then,

—k+1  Rss(”
m cp(m)(m—k+1)

d
1
EScorem(ﬂ; Y) = o? Z mn O ().
k=1

According to the properties of Bartlett decomposition,

RSS(™ 1

2
(M (m—k+1)  m—Fk+ 1XmktD

where x2, _, |, is a chi-squared random variable with m — k + 1 degrees of freedom, i.e., the sum of
squares of m — k 4 1 independent standard normal variables.
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For each fixed k, the following equation holds for sufficiently large m:

m—k-+1

1 1
Z Zlg,i == ]E[Zlg,l] =1,
i=1

7)(2 —_
m—k+1" " T k1

where 7}, ; Lid, N(0,1).

— 1, we have

Furthermore, since 7=%+1

m m— 00

d
1
—Score,, (m;Y) —=2 o2 Z O (7).
k=1

a.s. .
Therefore, for correct order m*, %Scorem(ﬂ'*;Y) —% s o¢2%d. For any incorrect order 7/,
g m— 00

5. d
LScore,, (7';Y) ﬁ) 023, 0k(n) > o?d.

As aresult, the differential A,,, = Score,,(7';Y) — Score,, (7; Y) satisfies:
A d
=2 e(n) =02 <Z S (') — d) > 0.
k=1

Thus,
Ay =c(r)ym +o(m) a.s.

A.1.4 PROOF OF THEOREM[3]

proof. Since ,/B\j (K™) are the OLS coefficients of fitting Y. ; on Y. .~ (), it can be presented as

Bi(K™) = (Y]

,pa™

—1yT
(])Ypdﬂ(])) 1)/:7pa"(j))/:,j
LetY™ = Q - R, then Y:,,Tj = Q- R. ;. Therefore,
Whar(j),; = Bi(K™)
=((Q Rio(j-1))" - (Q-Rio—1)) "+ (@ Rioij—1)) " - (@ R.;)
= (Rloj-nQ QReoj-1)) 'Rl Q QR

Since columns in @ are normalized and mutually orthogonal, we have QT Q = I. In addition, R is
upper-triangular. Then,

Whar (). = (Rlo(i-1) Reo(g-1) T Rio(jo1) Rusj
T ~1pT
= (RO(j—l),o(j—l)RO(j—l)VO(j—l)) Ro(j—l),o(j—l)RO(j—l),j
_ p1 T “1pT
= Ro(_1),0-1) (Bo(i-1),00-1) " Ro(j-1),0(-1)Ro(-1).5

-1
= Ro(jfl),o(jfl)Ro(j—l)vj

A.1.5 PROOF OF THEOREM[4]

proof. Let 7 be the topological order of the true causal graph. Let {pa” (j)} be the parents set of
variable j in the complete DAG K™ (consisting with the notation in Definition|1), and {pa”™ (j)} be
the parents set of variable j in the true graph. Then for all j € {1,--- ,d}, {pa” ()} C {pa™ (4)}.
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Denote 3;(K™ ) as the real coefficients, then @-(K ™) are unbiased estimators of 3;(K™ ), i.e.,

E[3;(K™ )] = B;(K™ ), B;(K™) 2222 8,(K™"). Therefore, for any positive real number 4,
there exists an arbitrarily small w € (0,/2) and an myq such that, for all m > my,

Pr (v, j, 1B;(K™ )i = B(K™ il < w) > c.
Moreover, for any ¢ < 1, such an mg exists.

Denote A > 0 as the minimum absolute value over all non-zero values in 3;(K™ ). Let § = A,
then when Vk, 5, |3;(K™ ) — 8;(K™ )| < w happens, all zero elements in 3;(K™ )i (k € Q°)
satisfy |3;(K™ )| < w, and all non-zero elements in 3;(K™ )i (k € Q) satisfy |3;(K™ )i| €
(185 (K™ )i| = w, |B; (K™ )i| + w).

Since w < §/2, we have Vk; € Q0 ky € Q, |B; (K™ )i, | < 1B (K™ )i, -

Thus, there exists a threshold 6 > 0 such that, when all edges in K ™ with absolute estimated weights
smaller than 6 are removed, the resulting graph is identical to the true causal graph.

O

A.1.6 PROOF OF THEOREM 3]

Proof. By definition, X [t] is generated by the structural equation:

t

X[t = 3 X[t — Tlg(r) + (),

7=0

where g(7) € R%* is the impulse response matrix at lag 7, and £(¢) € R? is the structural noise
vector with i.i.d. entries, following distribution N'(0,5?). The causal graph G is defined as the
support pattern of the matrix g(7).

Rewriting the equation above yields:

T=1
9(1)
9(2)
X[t)(I —g(0)) = [X[t =1, X[t —=2],.... X[0]] | . | +<() (10)
g(t)

Thus, we obtain:
X[t] = [X[t = 1], X[t = 2],..., X[0]]3 + () (I — 9(0)) ",
where (3 collects the lagged coefficient matrices.

Since £(¢)(I—g(0)) ! is independent of the regressors [X [t—1], ..., X[0]], the residual of regressing
X [t] onto its past values is:

rlt] = e(t)(I —g(0))~",
which can be transformed to the standard expression of the structural equation, i.e.,

rlt] = r(tlg(0) + €(t)
Then Theorem [2]and Theorem [ can guarantee its identifiability. O
A.1.7 PROOF OF THEOREMI[{]
Proof. Let S = [X[t — h], X[t —h+1],..., X[t — 1]] be the h most recent historical observations,
and let U = [X[0], X[1],..., X[t — h — 1]] be the earlier historical observations.
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Define the dependency weight vectors:

s o
By = 9(:—)’ Bg— g(:—)7
g(h+1) g(1)

where @y and g represent the dependency weights of U and .S, respectively.

By Equation X [t] is expressed as a linear combination of historical observations and structural
noise:
X[t] = Uy (I — g(0)™" + 8Ps(I — g(0)) ™" +e(t)(I — g(0) ™.
Define:
W =(I-g(0)~",

so that:

X[t =UPyW + SOW + €(t)W.
If the earlier observations U are unavailable or not modeled, regressing X [¢] only on S, the residual
is:

rlt]" = (I - Ps)X[t]
= (I — Ps)(UcI)UW + S@SW + G(ﬁ)W)
— (I — P)UBGW + (I — Ps)S®sW + (I — Ps)e(t)W,
where Pg = S(STS)71S7 is the orthogonal projection matrix, and I is the identity matrix. Since:
(I —Ps)S=S8-5(8ST8)"1sTs =0,
the residual simplifies to:
T[t]+ = - Ps)UPyW + (I — Ps)e(t)W. (11
Define:
g(i+t—h)
Fi =
g(i+1)
By Assumption[3] forall 7 > h + 1,
9(7) = krg(r — 1) + -+ + kng(T — h),

implying:
Ip=Fkilh 1+ koo + -+ knlo,
and by definition, &;; = I['y,.

Since:

we have:

X[t = (Z X[t —7]g(7) +e(t)> w.
Given (I — Ps)S = 0, it follows that: )
(I —Ps)[X[t—h],X[t—h+1],...,X[t—1]] =0,

yielding:
(I - Ps)X[t —h] =0, (12)
(I—-Ps)X[t—h+1]=0, (13)
(I - Ps)X[t—1]=0. (14)
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Unfolding X[t — h] in Equation[12}

(I — Ps) (ZXt h— 1] ()+e(th)>wo.

Since U = [X]0], X[1],..., X[t — h — 1]], this becomes:

(I — Ps)(UFO + E(t - h))W =0.
As W is invertible, we obtain:

(I — Ps)(Uro + é(t - h)) =0.
Similarly, unfolding X[t — h + 1] in Equation|13}
(I —Ps)(Ul'1 + X[t —hlg(l) +e(t—h+1))=0.

Using Equation[12} (I — Ps)X [t — h] = 0, this simplifies to:

(I—-Ps)(UT1+€e(t—h+1))=0.
Generalizing fori = 1,..., h:

(I — Ps)(UT; +¢€(t —h+1)) =0. (15)
Substitute Equation|15|into Equation Since ¢y =T, and 'y, = Zh_ kql'n—q, we have:

(I — Ps)USyW = (I — Ps)UT,(I — g(0))™' = (I — Ps)U <Zk Ty q>
Using Equation[15] (I — Ps)UT,_q = —(I — Ps)e(t — q), so:
h
(I = Ps)UDyW = —(I — Pg) > kge(t — q)W.
q=1
Thus, Equation ﬂ;fl becomes:

h
r[]t = —(I = Ps) Y kge(t — )W + (I — Ps)e(t)W.

Rewrite:
r[1* (1 - 9(0) = —( - Ps) (Zket—q +e<>>.
Define:
eft] = (I — Ps) (Zketq +e()>~
Then:

e[t = r[t]"g(0) — eft].
Compute the expected squared norm of e[t]:

T
E[|le]t (Zket— +e(t)> (I — Ps)T(I — Ps) (Zket— ())

Since I — Pg is symmetric and idempotent, and (¢ ) ,€(t — h) are independent, we have:

Eflet]|3] = E [e(t)"(I — Ps)e +Zk2E e(t — )" (I = Ps)e(t — q)]

(1 + Z k2> — 8)oly, (16)

R9%4 g the 1dent1ty matrix, m is the number of samples, and s = hd is the number of

where I; €
columns in S.

Equation [16|indicates that all columns of e[t] have the same variance. Thus, the proof method from
Theorem [2]can be applied to show that the true causal graph achieves the minimal score on r[t]*. [
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A.2 EXPERIMENT DETAILS

A.2.1 LEVER IMPLEMENTATION

Table 2: Q-Network hyper-parameters

Parameter Name Value  Description

window 5 Size of the sliding window used for processing sequential
data.

sliding_step 1 Step size for advancing the sliding window.

buffer_size 10000  Capacity of the replay buffer for storing experience tuples.

minimal_size 200 Minimum number of experiences in the replay buffer re-
quired to start updating the Q-Network.

batch_size 64 Number of experience samples drawn from the replay
buffer for each Q-Network update.

Ir 0.002  Learning rate for optimizing the Q-Network during train-
ing.

hidden_dim 16 Number of units in the hidden layers of the Q-Network.

gamma 0.9 Discount factor determining the weight of future rewards
in the Q-Network.

target_update 2 Frequency at which the target network’s weights are up-
dated to match the online Q-Network’s weights.

epsilon_start 1 Initial exploration rate for Boltzmann exploration strategy.

epsilon_end 0.01 Final exploration rate for Boltzmann exploration strategy.

Q-Network Structure and Training Hyper-parameters. The Q-Network model consists of a
normalized multi-layer perceptron with two hidden layers and ReLU activations. The input is first
processed by a Normalization layer, then passed through two linear layers (with ReLU activation
between them) followed by dropout. The final output layer maps the hidden representation back to
the original input dimension. The mask is applied to the output to ensure that variables already in the
data list are not selected again.

The values and description of hyper-parameters used in LEVER implementa-
tion are presented in Table [2] Our full implementation is publicly available at
https://anonymous.4open.science/r/submit_TemporalCausalRL-BAOS.

In addition, we evaluate all values in the output weight matrix as potential thresholds and select the
one that yields the minimum SHD. The selected thresholds are presented in Table [3]

Table 3: LEVER selected thresholds

node_ct decay_type threshold

10 exp 0.1398
10 linear 0.1720
20 exp 0.1279
20 linear 0.4627
30 exp 0.1372
30 linear 0.1223
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A.2.2 BASELINES IMPLEMENTATION

We implement PC, GES, NOTEARS, RL, and CORL using the gcastle |gcal library and
PCMCI using the tigramite |tig| library.  Granger causality tests are performed with the
grangercausalitytests function from the statsmodels sta| package. For SCORE and NTS-
NOTEARS, we use the original code provided by the authors Rolland et al.| (2022b)); |Sun et al.
(2021b). We run baselines with multiple hyper-parameter settings, and report the results with best
performance.

For the PC algorithm, we set the confidence level to @ = 0.05 and use the Fisher-Z test as the
conditional independence test.

For NOTEARS, we set the regularization parameter A\; = 0.1 and the maximum number of iterations
to 1000. For each graph, we evaluate all values in the output matrix as potential thresholds and
select the one that minimizes the Structural Hamming Distance (SHD). The selected thresholds are
summarized in Table 4

Table 4: NOTEARS selected thresholds

node_ct version threshold \ node_ct version threshold

10 vl 0.0105 | 20 v6 0.0668
10 v2 0.2268 | 20 V7 0.1565
10 v3 0.0019 | 20 v8 0.1196
20 vl 0.0374 | 20 v9 0.0370
20 v2 0.0748 | 20 v10 0.0370
20 v3 0.0484 | 20 vll 0.1265
20 v4 0.1032 | 20 v12 0.0703
20 v5 0.0684

For RL, we set the number of training epochs to nb_epoch = 500, the encoder input dimension to
input_dimension = 64, the encoder hidden dimension to hidden_dim = 64, the decoder hidden
dimension to decoder_hidden_dim = 16, and the number of attention heads in the self-attention
transformer to num_heads = 16.

For CORL, we configure the batch size as batch_size = 128, the encoder input dimension as
input_dim = 128, the embedding dimension as embed_dim = 128, and the maximum number of
iterations as ¢teration = 100.

For SCORE, we select the values of the regularization terms 7 and 7y, as well as the pruning
threshold cutof f, for each graph by minimizing the SHD. The selected values are reported in Table[3]

Table 5: SCORE selected hyper-parameters

node_ct version eta_G eta_H cutoff \ node_ct version eta_ G eta_H cutoff

10 vl 0.05 0.0005 0.05 | 20 v6 0.001 0.1 0.01
10 v2 0.001  0.001 0.01 | 20 v7 0.001  0.0005 0.01
10 v3 0.001 0.0001 0.01 |20 v8 0.01 0.1 0.01
20 vl 0.001 0.1 0.01 | 20 v9 0.005 0.1 0.01
20 v2 0.005 0.002 0.01 |20 v10 0.005 0.1 0.01
20 v3 0.001  0.001 0.01 | 20 vll 0.001  0.001 0.01
20 v4 0.001 0.1 0.01 | 20 v12 0.01 0.001 0.01
20 v5 0.001  0.002 0.01

For PCMCI, we use Partial Correlation test, and set the maximum time lag to 7_max = 4 to ensure
the window size is consistent with our method, and set the confidence level to o« = 0.01.

For Granger, we set the maximum time lag to maxlag = 4 for the same reason, and use a
significance threshold of p_thresh = 0.01.
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For NTS-NOTEARS, we set the regularization coefficients to A; = 0.005 and A2 = 0.01, and select
the threshold that minimizes the SHD. The selected values are reported in Table [f]

Table 6: NTS-NOTEARS selected thresholds

node_ct decay_type threshold

10 exp 0.1940
10 linear 0.1668
20 exp 0.1902
20 linear 0.1315
30 exp 0.1826
30 linear 0.1362

A.2.3 EXTRA RESULTS UNDER ASSUMPTION VIOLATION

We evaluate LEVER on several modified temporal datasets where the values of three randomly
selected causal dependencies are set to zero, except at lags of 3/5/10/25. The results in Table
show that the accuracy of our method does not decrease significantly even when the data violate
the assumption. That is because the assumptions provide the necessary conditions for the theory
to hold, yet certain scenarios outside these assumptions may also support the theory. Furthermore,
operations such as pruning enhance our method’s robustness in scenarios that deviate from the stated
assumptions. These results support the generalization of our method to realistic cases.

Table 7: Results under assumption violation

Dataset SHD F1

Standard 4 0.8947
Modified (lag=3) 5 0.8718
Modified (lag=5) 5 0.8718
Modified (lag=10) 3 0.9231
Modified (lag=25) 6 0.8421

B LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper.

It is important to note that the LLLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.
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