
BioMaze: Benchmarking and Enhancing Large Language Models for
Biological Pathway Reasoning

Anonymous ACL submission

Abstract001

The applications of LLMs in various biological002
domains have been explored recently, but their003
reasoning ability in complex biological path-004
ways remains underexplored, which is crucial005
for predicting biological phenomena, formu-006
lating hypotheses, and designing experiments.007
This work explores the potential of LLMs in008
pathway reasoning. We introduce BioMaze, a009
dataset with 5.1K complex pathway problems010
derived from real research, covering various011
biological contexts including natural dynamic012
changes, disturbances, additional intervention013
conditions, and multi-scale research targets.014
Our evaluation of methods such as CoT and015
graph-augmented reasoning, shows that LLMs016
struggle with pathway reasoning, especially in017
perturbed systems. To address this, we propose018
PATHSEEKER, an LLM agent that enhances019
reasoning through interactive subgraph-based020
navigation, enabling a more effective approach021
to handling the complexities of biological sys-022
tems in a scientifically aligned manner.023

1 Introduction024

Large Language Models (LLMs) have recently025

demonstrated remarkable performance across sci-026

entific domains, including mathematics (Yu et al.,027

2023), chemistry (Liu et al., 2023b; Zhu et al.,028

2022), biology (Hayes et al., 2024; Madani029

et al., 2020; Ma et al., 2023), and materials sci-030

ence (Zheng et al., 2023; Park et al., 2024). In031

biology, LLMs have shown promise in addressing032

complex tasks such as protein design (Valentini033

et al., 2023; Hosseini et al., 2024), drug discov-034

ery (M. Bran et al., 2024; Liu et al., 2023c), clinical035

trial analysis (Singhal et al., 2023; Jin et al., 2023),036

and experiment design (AI4Science and Quantum,037

2023; Roohani et al., 2024).038

Biological systems are composed of complex039

networks called pathways, involving genes, en-040

zymes, substrates, and signaling molecules. In-041

tervention in a single component—such as muta-042

tions or infections—can trigger multi-step cascades 043

affecting other components within the organism. 044

Despite the complex mechanisms in biological sys- 045

tems, deductive reasoning about the events within 046

biological pathways can be carried out based on 047

an understanding of the structure and function of 048

these pathways. For example, based on pathway 049

reasoning, it can be predicted that blocking mus- 050

carinic M3 receptors in taste cells will weaken taste 051

responses in sensory fibers (see Figure 1). 052

Pathway reasoning is essential for biologists to 053

explain phenomena, form hypotheses, design exper- 054

iments, and interpret results, and is a fundamental 055

task in biology with broad applications across mul- 056

tiple disciplines, including systems biology, phar- 057

macology, toxicology, cell biology, pathology, im- 058

munology, and biomedical engineering. The rea- 059

soning case in Figure 1 aid in toxicity analysis, ex- 060

perimental design, and taste disorders treatments. 061

Although LLMs have been explored in various 062

biological applications, little research has focused 063

on how LLMs can understand and reason through 064

the intricate, multi-step processes inherent to com- 065

plex biological systems. Considering the funda- 066

mental role of biological pathway reasoning, the 067

potential applications of LLMs in many areas of 068

biology would be questionable if LLMs cannot ef- 069

fectively perform this task. 070

In this study, we evaluate the reasoning abili- 071

ties of LLMs in biological tasks through the lens 072

of biological pathways. We explore their capabili- 073

ties in key pathway reasoning paradigms, including 074

functional understanding, dynamic changes, reg- 075

ulation, and intervention. To support these stud- 076

ies, we introduce a pathway benchmark, BioMaze, 077

which contains 5.1K high-quality, complex biolog- 078

ical pathway problems derived from real research 079

literature, such as PubMed (Lu, 2011). These prob- 080

lems are carefully curated and reviewed by human 081

experts, covering the context of biological pathway 082

research, including natural dynamic changes, dis- 083
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Question: When muscarinic receptors M3 are blocked in taste cells, what 
is the effect on taste-evoked responses in Receptor cells?

Benchmark Paradigm 1: Internal Knowledge Pathway Reasoning
Chain of Thought 

1. When muscarinic receptors, specifically the M3 subtype, are blocked in Type II taste 
cells.

2. The effect on taste-evoked responses is generally a reduction in the calcium 
mobilization and subsequent signaling pathways that mediate taste perception. 

3. Since ACh acts on these receptors to facilitate calcium influx and other signaling 
events, blocking them would impair the normal excitatory responses to taste stimuli.

Benchmark Paradigm 2: External Knowledge Pathway Reasoning
PathSeeker Call APIs to navigate pathway graph

Pathways 5, 7, and 11 show that acetylcholine activation of CHRM3 increases calcium 
mobilization in Type II taste cells, enhancing CALMH1's role in ATP release and 
activating taste sensory fibers.

Answer: Blocking muscarinic receptors inhibits M3 receptor activation, leading to 
reduced calcium mobilization in Type II taste cells. This decrease in calcium levels 
results in lower ATP release, ultimately diminishing taste-evoked responses.

 Figure 1: Illustration of BioMaze task and reasoning method with or without additional biological pathway graph
data guidance. The task of BioMaze focuses on reasoning about the effects and mechanisms of natural components
or interventions on various downstream targets under different conditions through complex intermediate processes.

turbances and interventions, additional intervention084

conditions, as well as multi-scale research targets,085

such as single factors, interaction processes, and086

macro-level functions.087

Based on BioMaze, we compare various meth-088

ods using LLMs for pathway reasoning, including089

chain-of-thought (CoT) and graph-augmented rea-090

soning approaches (Li et al., 2023a; Sun et al.,091

2023; He et al., 2024). The results demonstrate that092

LLMs struggle with pathway reasoning, particu-093

larly in causal inference scenarios where interven-094

tions and perturbations are introduced into the sys-095

tem. This challenge persists across all LLMs, from096

LLaMA 8B to GPT-4. The pathway knowledge of097

LLMs comes from the biological pathway corpus098

during pre-training, which lacks a structured orga-099

nization, making it difficult to plan reasoning paths100

based on pathway structures. This leads to errors101

such as faulty steps and omissions, and difficulty in102

simulating the events in the pathway during inter-103

ventions. Additionally, current graph-augmented104

reasoning methods lack the ability to efficiently105

leverage pathway graphs during reasoning.106

To address these challenges, we propose a novel107

approach called PATHSEEKER, an LLM agent de-108

signed to emulate the way scientists reason using109

biological pathways. During inference, it interac-110

tively explores biological pathways by efficiently111

navigating global-local subgraphs based on de-112

mand. This interactive process establishes a mutu-113

ally reinforcing relationship between inference and114

pathway browsing, helping LLMs utilize pathway115

data for reasoning. It addresses challenges such116

as interventions and perturbations, long reasoning117

chains, and errors.118

2 Related Work119

Biological Scientific Question Answering Previ-120

ous studies have explored the potential of language121

models in the biological scientific domain (Lu et al., 122

2022; Vilares and Gómez-Rodríguez, 2019; Jin 123

et al., 2021; Pal et al., 2022), such as biological sci- 124

entific reading comprehension (Welbl et al., 2018; 125

Jin et al., 2019) and question-answering (Krithara 126

et al., 2023). A few studies have examined lan- 127

guage models’ ability to complete biological path- 128

ways (Li et al., 2023b; Park et al., 2023; Azam 129

et al., 2024). Different from previous tasks, this 130

work introduces biological pathway reasoning in 131

realistic research scenarios. See Appendix A.12 for 132

a more detailed comparison. 133

Graph-augmented Language Model Several 134

studies have explored augmenting LLMs with 135

graph data. In particular, some works enhance 136

LLMs by encoding graph data as text (Ye et al., 137

2023; Wang et al., 2024; Fatemi et al., 2023), or 138

tuning LLMs specifically for graph-based tasks 139

(Liu et al., 2023a; Tang et al., 2024; He et al., 2024; 140

Zhao et al., 2023; He and Hooi, 2024). Augmented 141

LLMs have been applied to knowledge-based QA 142

(Sun et al., 2023; He et al., 2024; Li et al., 2023a; 143

Jin et al., 2024; Cheng et al., 2024; Edge et al., 144

2024) and graph tasks like property prediction 145

(Wang et al., 2024; He et al., 2023). Some studies 146

leverage graph structures for complex reasoning 147

tasks (Jiang et al., 2023; Besta et al., 2024). Most 148

large graph databases use retrieval mechanisms (He 149

et al., 2024; Li et al., 2023a), while others employ 150

LLMs as interactive agents for navigation (Sun 151

et al., 2023; Jin et al., 2024; Li et al., 2024). This 152

work introduces a more efficient agent-based ap- 153

proach using subgraph navigation and reasoning to 154

improve pathway database exploration. 155

3 Benchmark: BioMaze 156

3.1 Dataset Creation 157

BioMaze is created by generating question-answer 158

pairs from biological pathway research papers, 159
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which are then checked and filtered through a160

combination of automated methods and expert hu-161

man review. The dataset creation process involves162

prompting large language models, with GPT-4 and163

LLaMA3.1-405B (Dubey et al., 2024) being se-164

lected for automatic data processing in this study.165

To gather relevant biological pathway questions166

in realistic scientific research contexts, particularly167

those involving interventions, the data for BioMaze168

is sourced from over 6,000 biological pathway re-169

search papers. We primarily collect reference paper170

for the biological pathways on the KEGG (Kane-171

hisa and Goto, 2000) website from PubMed. We172

only include experimental papers and exclude other173

types, like review papers. These papers are mostly174

on biological pathway research, focusing on prob-175

ing biological pathway mechanisms through care-176

fully designed experimental interventions. This177

ensures that the questions in BioMaze are centered178

around biological pathway reasoning. We shielded179

all this paper information in the KEGG pathway180

graph database to prevent unintended data leakage.181

After extracting detailed experimental observa-182

tions and their contexts, we convert each one into183

either a True/False or open-ended question, depend-184

ing on its content. Each question is paired with185

corresponding labeled answers.186

We then apply multiple data filters and human187

expert reviews to ensure the accuracy and quality188

of the questions. The accuracy of each question189

is validated by comparing it with the content of190

the original paper. Question quality is ensured191

through several filters that remove questions that192

are poorly defined, ask for specific measurement193

values, query more than one fact, are trivial (with194

answers revealed in the question’s context), or are195

unrelated to biological pathways.196

Finally, all questions are filtered by human ex-197

perts based on quality dimensions and their judg-198

ment to ensure overall question quality. The pass-199

ing rate for expert review is approximately 40%.200

After applying all filters, BioMaze contains 5.1k201

high-quality questions. More details are provided202

in Appendix A.2.203

The questions of BioMaze cover a wide range of204

biological domains, as illustrated in Figure 2 (left).205

3.2 Reasoning Type Categories206

To study various research scenarios in biological207

pathways, such as natural dynamic changes, dis-208

turbances and interventions, and additional inter-209

vention conditions, as well as a multi-scale under-210

standing of single factors, action processes, and 211

macroscopic functions, we classify BioMaze tasks 212

from three dimensions, namely inquiry type, extra 213

condition, and investigation target, as shown in Ta- 214

ble 1. More full question cases are in Appendix 215

A.1. The distribution of the three dimensions’ ques- 216

tions is shown in Figure 2 (right). We introduce 217

each category of the dimensions below: 218

Dimension 1: Inquiry Type is the indepen- 219

dent variable studied, which can be either Nor- 220

mal Source, involving the prediction of the ef- 221

fects of natural components in their normal state 222

within a biological pathway, or Perturbed Source, 223

which deals with predicting the effects of exter- 224

nal interventions or treatments—such as muta- 225

tions, infections, or experimentally introduced el- 226

ements—on downstream targets within pathways. 227

Normal Source tasks focus on understanding the 228

fundamental mechanisms and natural dynamics of 229

pathways, while Perturbed Source tasks examine 230

the phenomenon under perturbation. 231

Dimension 2: Extra Condition refers to ad- 232

ditional settings besides the independent variable. 233

This could be the Natural Condition, where no 234

additional treatments are applied, and the pathway 235

operates under the organism’s natural conditions, 236

or the Intervened Condition, which assesses the 237

impact of the inquiry source when the pathway has 238

already been influenced by other factors, such as 239

mutations or interventions. The Intervened Condi- 240

tion challenges the model by requiring it to deduce 241

the system’s behavior under unnatural conditions, 242

thus increasing the reasoning difficulty. 243

Dimension 3: Investigation Target refers to the 244

dependent variable in the question, which could 245

be Single Component as Target, focusing on the 246

effect of the source on a specific component within 247

the pathway; Components Interaction as Target, 248

examining the effect of the source on interactions 249

between components within the pathway; or Func- 250

tion as Target, evaluating the effect of the source 251

on broader biological functions or macro-level phe- 252

nomena. The multi-scale targets address the reason- 253

ing of single components, downstream processes, 254

or organism-wide outcomes. 255

3.3 Pathway Graph Augmentated Reasoning 256

Text-only reasoning methods, such as Chain-of- 257

Thought (CoT), generate reasoning based on the 258

inherent knowledge of LLMs. However, biolog- 259

ical pathways present unique challenges due to 260

their graph-structured nature. Consequently, using 261
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Dimension Category Example (abbreviated) Illustration

Inquiry Type

Normal What is the effect of AMPK activation on SIRT1
activity in mouse skeletal muscle?

Perturbed
What is the effect of GogB-deficient Salmonella
on NFkappaB activation and proinflammatory re-
sponses in infected mice?

Extra Condition

Natural How does apelin affect TNFalpha inhibition on
brown adipogenesis?

Intervened What is the role of BID in BAX activation in AIF-
mediated necroptosis after MNNG treatment?

Investigation Target

Single What happens to AQP2 upon ADH stimulation?

Interaction How does the influenza protein NS1 affect the acti-
vation of RIG-I by viral ssRNA?

Function
What is the effect of losing 11beta-HSD2 from the
fetus and fetally derived tissues on cerebellum de-
velopment?

Table 1: Task example and causal illustration for each category.
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Figure 2: Dataset biological domain and reasoning type distribution. Left: BioMaze covers six main domains:
metabolism, genetic information processing, environmental information processing, cellular processes, organismal
systems, and human diseases. Right: BioMaze is categorized along three dimensions of reasoning types: inquiry
type, extra condition, and investigation target.

graph-augmented LLM reasoning is a natural ap-262

proach for BioMaze. Providing explicit pathway263

graphs can serve as structural blueprints, enhanc-264

ing reasoning from both knowledge and planning265

perspectives.266

Pathway Graph Database To augment LLMs267

with reasoning in biological pathways, we created a268

pathway graph database based on KEGG, a collec-269

tion of pathway maps on metabolism and various270

cellular and organismal functions widely-used re-271

source among biologists. We compiled all available272

pathway networks and maps from KEGG and in-273

tegrated all of them into a single pathway graph274

database. The statistics for the pathways are in Ap-275

pendix A.4. Each entry in the dataset is provided276

with a detailed description and function corpus.277

Pathway Graph Database API: When278

the language model accesses the pathway279

database, it may need to retrieve relevant280

triples from the pathway graph using APIs like 281

Search_Node, Search_Edge, Search_Triple, and 282

Search_Subgraph (Sun et al., 2023; Li et al., 283

2023a). Our pathway database supports these 284

core retrieval APIs, which are based on detailed 285

descriptions and functional corpora. These APIs 286

are essential for enabling various graph-augmented 287

reasoning methods in LLMs. When the pathway 288

graph S is to be input to the LLM, they are encoded 289

into text o by o = TripleToText(DFSOrder(S)). 290

The details of the API implementations are 291

described in Appendix A.5. 292

4 Method: Pathway Reasoning Agent 293

PATHSEEKER 294

Performances of current graph-augmentation meth- 295

ods are limited by their ineffective utilization of 296

the pathway graph database for reasoning. Inspired 297

by how scientists browse pathway networks during 298
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 Pathway Database
First Iteration

Second Iteration

Third Iteration

Navigate the graph iteration by iteration.

0) YopE | RhoA | Inhibition | Yersinia YopE to RhoA
1) RhoA | ROCK | Activation | Ras signaling pathway
2) YopE | Cdc42 | Inhibition | Yersinia infection
...

6) YopT | Rac1 | Inhibition | Yersinia YopE to ITGA/B-RAC
7) YopT | Rac | Inhibition | YYersinia YopE to ITGA/B-RAC
8) ITGA| RhoG | Indirect effect | ITGA-RHOG-RAC signaling 
...

12) Src | RhoGEF | Activation Phosphorylation | 
ITGA/B-RhoGEF-RhoA signaling 
...

I should start by searching for the subgraph globally 
using the relevant keywords. 
Search_Subgraph([Yersinia, Rho GTPases…])

There might be additional content near path 3, so I will 
check its neighboring...
Search_Neighbor(3, [Yersinia, Rho GTPases…])

Next, I will search around the neighbors of path 8 
using the new query Cytoskeleton Organization...
Search_Neighbor(8, [Yersinia, Cytoskeleton 
Organization...])

Final Answer: I have explored enough pathways and should now conclude the browsing to answer the question. Many Yersinia 
effector proteins, such as YopE and YopT, specifically target Rho family GTPases (like RhoA, Rac1, and Cdc42)…

Question: What would be the potential impact on Yersinia infection if the host cell's Rho GTPases contained a mutation?

Cdc42

WASP

YopE

RhoA

ROCK

YopT

RhoG

Rac1

Rac DOCK
180

ITGA

Src

Src

RhoGEF

Crk

Figure 3: PATHSEEKER allows interactive browsing of the pathway graph database by navigating through subgraphs.
At each step, PATHSEEKER can perform either a global subgraph search or a local search around a previously
explored pathway step. This functionality enables PATHSEEKER to fully leverage the augmented pathway graph
database during biological pathway reasoning.

reasoning, we propose PATHSEEKER, a reasoning299

agent method that can interactively conduct reason-300

ing and take actions to perceive and navigate global301

and local subgraphs, as shown in Figure 3.302

At each step, t, the language agent G can con-303

duct reasoning by natural language thought, and304

takes an action step at, based on problem E (prob-305

lem instructions) and previous observation-action306

trajectory ht = [o1, a1, . . . , ot−1, at−1, ot],307

at = G(E , ht) (1)308

Global and Local Subgraph Navigation309

In addition to the global subgraph retriever310

Search_Subgraph, PATHSEEKER has access311

to an additional neighbor subgraph retriever,312

Neighbor_Subgraph(line_id, query, N),313

which retrieves an optimal connected subgraph314

of target size from the multi-hop neighbors of a315

previously observed pathway step line_id.316

Neighbor_Subgraph(line_id, query, N) =

argmax
S⊆Pid,S is connected ,|S|=N

∑
i∈VS∪ES

score(i, query) (2)317

Here, Pid represents the multi-hop neighbors of318

the triple with line_id. This allows PATHSEEKER319

to navigate the pathway graph database by either320

performing a global search or by exploring the321

multi-hop neighbors of an observed subgraph at322

each step. See Appendix A.6 for cases.323

Graph Encoding In step t, the action taken by324

LLM agent get subgraph St from environment, and325

the subgraph is encoded into text observation ot as326

following:327

Ŝt = DFSOrder (RemoveSeen(St, [S1, . . . , St−1]))

ot = TripleToOrderedText
(
Ŝt,TotalNum ([S1, . . . , St−1])

)
(3)328

Function RemoveSeen eliminates triples from the 329

t-th turn’s subgraph that have been observed in 330

previous turns, ensuring that each triple appears 331

in the LLM’s observations only once when first 332

retrieved. This approach enhances content length 333

efficiency and encourages the LLM to understand 334

the whole navigation history rather than focusing 335

solely on the most recent turn. 336

The function TripleToOrderedText convert or- 337

dered subgraph Ŝt into text in the following format: 338

Line ID) Head | Tail | Relation and Biological Process. 339

These global line IDs indicate the order of each 340

triple across all turns, providing a unique reference 341

for the LLM agent during local searches or reason- 342

ing. For the t-th turn’s subgraph St, the ID starts at 343

the total number of unique triples seen in previous 344

history, given by TotalNum([S1, . . . , St−1]). 345

Final Reasoning As graph data browsing fin-
ishes, the final reasoning is conducted based on all
the navigation history:

ar = G(Er, [o1, . . . , oT ])

Graph Navigation Capacity The combination 346

of global and local subgraph retrieval APIs em- 347

powers LLM agents to explore the entire network 348

flexibly and efficiently. It allows the LLM to guide 349

its exploration by adjusting both keywords and the 350

root of the local subgraph, depending on the in- 351

termediate reasoning, offering stronger expressive- 352

ness than navigation methods like BFS, DFS, and 353

various retrieval methods. 354

5 Experiment 355

5.1 Baseline and Metric 356

We evaluate the reasoning performance of LLMs on 357

BioMaze in both the unaugmented step-by-step rea- 358
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soning and the pathway graph-augmented methods.359

We adopt reasoning method without graph augmen-360

tation Chain-of-Thought (CoT) (Wei et al., 2022;361

Kojima et al., 2022), and methods with pathway362

graph augmentation: Chain-of-Knowledge (CoK)363

(Li et al., 2023a), Think-of-Graph (ToG) (Sun et al.,364

2023), and G-Retriever (He et al., 2024). Details365

of baselines are in Appendix A.7.366

For True/False tasks, we compute accuracy av-367

eraged across the True and False labels to account368

for label imbalance in the dataset. For open-ended369

tasks, the LLM is used to evaluate the accuracy370

of generated answers by comparing them to the371

ground truth and determining whether they are372

correct or incorrect. In this study, we use the373

LLaMA3.1-405B model as the evaluator, with five374

in-context examples. The performance of the eval-375

uator is further analyzed in Appendix A.9.376

5.2 Main Result377

We evaluate PATHSEEKER and baseline methods378

on BioMaze, presenting results in Tables 2 and379

3. The comparison covers task dimensions includ-380

ing signal source, additional conditions, and target.381

The results lead to the following conclusions:382

LLMs struggle with biological pathway rea-383

soning. Pathway reasoning tasks in BioMaze are384

tough for LLMs, with True/False accuracy slightly385

above random. Both CoT and graph-augmented386

reasoning reveal the gap between LLM capabilities387

and the complexity of biological systems.388

Perturbation queries in BioMaze present sig-389

nificant challenges. LLMs perform worse under390

perturbation query settings compared to normal391

queries. This suggests that biological pathway rea-392

soning is more difficult in intervention scenarios,393

as these events are less aligned with the typical394

functioning of biological pathways. This makes395

it harder to directly deduce answers based on pre-396

existing knowledge from pre-training, requiring an397

understanding of the mechanisms and principles of398

biological pathways and deductive reasoning about399

the events occurring under intervention.400

Intervened conditions pose greater reasoning401

challenges. Similar to perturbation scenarios, the402

introduction of intervention conditions disrupts the403

original structure of biological systems, thereby404

increasing the difficulty. These situations demand405

stronger deductive reasoning abilities, as they can-406

not rely solely on the memory of how biological407

pathways function under normal conditions.408

Reasoning target brings diverse challenges409

for reasoning. The Investigation target creates var- 410

ied difficulties, causing inconsistent performance 411

across models and reasoning methods. "Function 412

as target" is the most difficult category. 413

PATHSEEKER can enhance reasoning in bi- 414

ological systems, especially in intervention sce- 415

narios. Regardless of the backbone model, PATH- 416

SEEKER consistently outperforms CoT across most 417

question types and categories, highlighting the 418

value of integrating biological pathways into rea- 419

soning to enhance reasoning in biological sys- 420

tems. Additionally, PATHSEEKER outperforms 421

other graph augmentation methods, demonstrating 422

the effectiveness of its subgraph-based navigation 423

approach. Notably, it reduces the performance gap 424

between natural and intervened/perturbed groups, 425

helping bridge the gap in pathway causal reasoning. 426

5.3 Analysis 427

Backbone Ability for Pathway Reasoning We 428

compare the performance of different backbones in 429

Figure 4. As the model size and capacity increase, 430

overall performance improves, indicating a strong 431

correlation between an LLM’s general reasoning 432

ability and its performance in pathway reasoning. 433

However, a consistent gap remains between the 434

normal/perturbed and natural/intervened settings 435

across different backbones. This underscores the 436

inherent limitations of LLMs in reasoning about 437

causal relationships within biological pathways. 438

Reasoning Difficulty with Steps To explore the 439

relationship between task difficulty and reasoning 440

steps in BioMaze, we prompted LLaMA3.1-405B 441

to explain its reasoning process based on the correct 442

answer and pathway to get the step numbers. 443

Figure 5 shows that Chain-of-Thought (CoT) 444

performance declines as reasoning steps increase, 445

suggesting that more steps lead to higher reason- 446

ing difficulty. This supports our hypothesis that 447

the complexity of the pathways is one factor of 448

challenges in biological pathway reasoning. 449

Notably, PATHSEEKER’s performance remains 450

more consistent across different reasoning step 451

counts. This suggests that augmenting LLMs with 452

biological pathway information can mitigate the 453

challenges of pathway reasoning, particularly when 454

dealing with intricate intermediate processes. 455

Failure Reasons Statistics We analyze failed 456

cases in biological pathway reasoning, covering 457

CoT and PATHSEEKER, and classify the failures 458

into: (1) Unresolved Conclusion (UC) For cases 459

where the model fails to provide a definitive answer, 460
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Method w. Pathway Graph Inquiry Type Extra Condition Investigation Target
Normal Perturbed Natural Intervened Single Interaction Function

GPT-3.5
Vanilla (0 Shot)

✗

57.92 54.60 56.99 54.88 59.91 55.63 56.68
Vanilla (2 Shot) 60.73 55.59 57.40 59.39 60.30 46.43 58.26
CoT (0 Shot) 59.92 61.48 62.74 51.00 57.69 56.75 66.25
CoT (2 Shot) 64.92 56.39 61.46 57.12 60.86 61.01 59.92

ToG

✓

59.60 50.83 53.92 62.50 53.40 60.00 55.21
CoK 60.70 54.07 57.29 56.49 60.19 50.00 58.04
G-Retriever 64.14 59.32 61.55 61.88 61.53 59.00 62.60
PATHSEEKER 63.55 63.93 57.48 62.74 62.85 64.73 68.13

LLaMA3.1 8B
Vanilla (0 Shot)

✗

55.82 56.64 57.21 53.37 57.87 58.31 55.66
Vanilla (2 Shot) 55.92 58.88 60.04 59.20 61.88 60.75 54.14
CoT (0 Shot) 63.01 54.35 59.50 53.90 59.22 62.27 55.68
CoT (2 Shot) 62.47 57.73 60.45 58.15 60.28 59.97 59.47

ToG

✓

58.99 55.31 56.67 58.35 56.79 57.85 57.10
CoK 62.01 52.89 59.41 50.23 57.46 62.57 55.43
G-Retriever 63.43 57.71 56.88 53.90 61.54 60.01 59.10
PATHSEEKER 63.69 60.25 62.30 62.91 61.27 63.19 63.99

Table 2: Accuracy (%) on BioMaze True/False tasks (50% corresponds to the random guessing baseline). The
optimal results are in bold and the suboptimal ones are underlined.

Method w. Pathway Graph Inquiry Type Extra Condition Investigation Target
Normal Perturbed Natural Intervened Single Interaction Function

GPT-3.5
CoT (0 Shot)

✗
65.96 61.49 67.15 43.24 61.57 61.90 66.67

CoT (2 Shot) 65.43 59.08 63.29 56.25 67.76 66.29 53.26

ToG

✓

65.52 59.86 64.71 48.65 66.39 64.00 56.17
CoK 70.27 54.00 63.87 50.00 62.93 67.00 58.18
G-Retriever 65.19 61.54 64.18 53.70 68.72 66.01 55.11
PATHSEEKER 67.51 64.33 66.87 57.59 65.16 67.76 65.79

LLaMA3.1 8B
CoT (0 Shot)

✗
62.79 57.19 61.50 51.16 62.77 62.50 55.31

CoT (2 Shot) 58.09 49.52 55.31 45.11 60.06 60.32 42.61

ToG

✓

52.14 49.48 52.05 43.60 53.33 55.24 45.68
CoK 60.55 55.23 59.12 50.63 61.12 62.50 52.15
G-Retriever 53.83 51.19 53.27 48.10 57.79 55.44 46.52
PATHSEEKER 61.65 60.78 61.30 60.60 64.14 64.43 55.07

Table 3: Accuracy (%, evaluated by LLM) on BioMaze open-ended tasks. The optimal results are in bold and the
suboptimal ones are underlined.
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Figure 4: Comparison of the reasoning abilities of different LLMs for biological pathways. While overall per-
formance improves with larger and more powerful models, a consistent gap exists between normal/perturbed
and natural/intervened settings. This highlights the inherent limitations of LLMs in reasoning about the causal
relationships within biological pathways.
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Task Type PATHSEEKER w.o. RemoveSeen w.o. DFSOrder w.o. TripleToText w.o. Local search w.o. FinalReasoner

True / False 61.87 57.48 58.60 58.32 57.78 56.97
Open-Ended 61.21 58.96 55.82 57.06 57.46 58.25

Table 4: Ablation Study of PATHSEEKER.
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Figure 5: Performance versus reasoning steps. LLMs
face increasing difficulty in reasoning about biologi-
cal systems as task complexity rises and requires more
reasoning steps. In contrast, pathway augmentation sig-
nificantly mitigates the drop of performance for tasks
that involve more steps.

indicating uncertainty or belief that the answer is461

unknown. (2) Incomplete Answer (IA) When the462

response lacks essential details, such as missing463

the requested effects or other key elements. (3)464

Omission in Reasoning (OR) For errors where465

critical pathway steps in the question’s biological466

process are left out, causing the final answer to be467

incorrect. (4) Faulty in Reasoning (FR) When the468

reasoning path is correct, but there are significant469

errors in deducing the events within that pathway.470

We manually classify 200 random samples from471

these error cases to approximate the overall error472

cases, with a professional biology Ph.D. student.473

The results in Figure 6 show that in both True/-474

False and open-ended tasks, the main error in CoT475

reasoning is faulty reasoning, where LLMs cor-476

rectly identify the biological pathway but misin-477

terpret the events within it. Another key error is478

omission, where critical steps or branches of the479

pathway are overlooked. This highlights the chal-480

lenges LLMs face in reasoning about biological481

pathways, due to both knowledge gaps and difficul-482

ties in deductive reasoning.483

PATHSEEKER reduces faulty reasoning by pro-484

viding pathway graphs, improving accuracy. How-485

ever, omissions remain a challenge, often due to486

limitations in the pathway database and browsing487

issues. With pathways available, LLMs are more488

confident and less fail in drawing conclusions.489

Agent #Steps 1-4 4-6 6-8 8-10 ≥10

True / False 0.91 50.14 26.58 12.66 9.70
Open-Ended 1.45 52.44 25.69 13.97 6.46

Table 5: Agent steps distribution (%) of PATHSEEKER
during task completion.
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Figure 6: Error analysis for CoT reasoning and rea-
soning with pathway augmentation (our method PATH-
SEEKER). The primary cause of errors in (CoT) reason-
ing for biological systems is due to both faulty reasoning
and omissions in reasoning. When pathway augmen-
tation is applied, omissions in reasoning become the
predominant issue, but the rate of faulty reasoning is
significantly reduced, thereby improving the overall rea-
soning accuracy of LLMs in biological systems.

Task Type Global Local

True / False 1.47 3.62
Open-Ended 1.57 3.43

Table 6: Average API usage times of PATHSEEKER
during task completion.

5.4 Method Analysis and Ablation Study 490

API Usage and Step Distribution We analyze 491

PATHSEEKER’s agent behavior by reviewing task 492

steps and API usage. Tables 5 and 6 show that most 493

tasks are completed in six or fewer steps, though 494

some require over ten due to missing pathway data. 495

On average, the agent performs 1.5 global searches 496

and over three local navigations per task, indicating 497

frequent subgraph exploration. 498

Ablation Study To evaluate PATHSEEKER’s 499

components, we perform ablation studies, with re- 500

sults for LLaMA3-8B in Table 4. The most im- 501

portant component is FinalReaser; without it, the 502

agent’s answers degrade due to long task history. 503

The local search API is also crucial for efficient 504

graph navigation, and the graph encoding method 505

improves performance, highlighting the value of 506

encoding graph data for sequential models. 507

6 Conclusion 508

In this study, we introduce BioMaze, a benchmark 509

designed to evaluate LLMs’ ability to understand 510

and reason about biological pathways. Extensive 511

evaluations using BioMaze, including CoT and 512

graph-augmented approaches, show that LLMs 513

struggle with understanding pathway mechanisms. 514

We also propose PATHSEEKER, a novel LLM agent 515

that uses interactive subgraph exploration to en- 516

hance biological pathway reasoning. 517

8



Limitations518

The pathway reasoning benchmark, BioMaze, is de-519

rived from biological literature, which may already520

be included in the training data for large language521

models (LLMs). As a result, some questions in522

BioMaze may carry a risk of leakage for LLMs.523

A new, de novo subset will be developed in future524

versions to more accurately evaluate the reasoning525

ability of LLMs.526

The pathway graph database used in this study527

is based on KEGG and can be further expanded by528

incorporating additional databases in future work529

to enhance pathway reasoning capabilities.530
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A Appendix786

A.1 Dataset Case Illustration787

Dimension 1: Inquiry Type788

Category 1: Normal Source789

Question: In the context of YopT-induced cleav-790

age of Rho GTPases, is carboxyl methylation a791

necessary post-translational modification for the792

cysteine protease activity of YopT to occur?793

Answer: No794

Question: In U2OS-hGR osteosarcoma cells,795

does the glucocorticoid receptor (GR)-dependent796

mRNA expression of ladinin 1 require the presence797

of both Mediator subunits MED1 and MED14 for798

transcriptional regulation in response to dexametha-799

sone treatment?800

Answer: Yes801

Question: In pancreatic acinar cells, How does802

the sensitivity to nicotinic acid adenine dinu-803

cleotide phosphate (NAADP) compare to the sen-804

sitivity to cyclic adenosine 5’-diphosphate-ribose805

(cADPR) and inositol trisphosphate (InsP3) in806

terms of triggering Ca2+ release?807

Answer: Pancreatic acinar cells are significantly808

more sensitive to NAADP than to either cyclic809

adenosine 5’-diphosphate-ribose (cADPR) or in-810

ositol trisphosphate (InsP3).811

Question: In the context of Mycobacterium tu-812

berculosis signal transduction, what is the effect813

of TrcS-phosphate and calcium ions (Ca2+) on the814

transphosphorylation of the response regulator pro-815

tein TrcR?816

Answer: TrcS-phosphate and Ca2+ are required817

for the transphosphorylation of TrcR.818

Category 2: Perturbed Source819

Question: In the context of human papillo-820

mavirus type 16 (HPV16) E7 gene product’s role in821

cellular transformation, can a transcriptionally in-822

active c-Jun deletion mutant that retains E7 binding823

capability interfere with the E7-induced transforma-824

tion of rat embryo fibroblasts when co-expressed825

with an activated ras oncogene?826

Answer: Yes827

Question: In HTLV-1-infected T-cell lines, does828

the application of short interfering RNA (siRNA)829

targeting JunD result in an increase in matrix830

metalloproteinase-7 (MMP-7) mRNA expression?831

Answer: No832

Question: In the context of opioid withdrawal,833

how does blocking A1-adenosine receptors with834

8-cyclopentyl-1, 3-dipropylxantine affect the re-835

sponse to mu-opioid receptor activation on the am-836

plitude of GABAB-mediated IPSPs in slices taken 837

from morphine-treated guinea pigs? 838

Answer: Blocking A1-adenosine receptors with 839

8-cyclopentyl-1, 3-dipropylxantine allows mu- 840

opioid receptor activation to inhibit the IPSP at 841

all concentrations and increases the maximal inhi- 842

bition in withdrawn slices. 843

Question: In 3T3-L1 adipocytes, What is the 844

effect of platelet-derived growth factor treatment 845

on the tyrosine phosphorylation of APS? 846

Answer: Platelet-derived growth factor treat- 847

ment results in no APS phosphorylation. 848

Dimension 2: Extra Condition 849

Category 1: Natural Condition 850

Question: In the context of Kaposi’s sarcoma- 851

associated herpesvirus (KSHV) infection, can viral 852

interleukin-6 (vIL-6) induce the up-regulation of 853

DNA methyltransferase 1 (DNMT1) in endothe- 854

lial cells independently of signal transducer and 855

activator of transcription 3 (STAT3) activation? 856

Answer: No 857

Question: In BJAB cells, does the expression of 858

the K5 protein, encoded by the Kaposi’s sarcoma- 859

associated herpesvirus (KSHV), lead to a reduction 860

in the surface expression of intercellular adhesion 861

molecule 1 (ICAM-1)? 862

Answer: Yes 863

Question: In human hepatoma HuH-7 cells, 864

What is the effect of transient expression of the 865

Hepatitis C virus (HCV) core protein on the trans- 866

activation ability of the cellular putative RNA heli- 867

case CAP-Rf? 868

Answer: Transient expression of HCV core pro- 869

tein in human hepatoma HuH-7 cells potentiates 870

the trans-activation effect of CAP-Rf on gene ex- 871

pression. 872

Question: In Caenorhabditis elegans, What is the 873

effect of being heterozygous for the cet-1 gene on 874

body length compared to wild-type and null mutant 875

individuals? 876

Answer: Heterozygotes for cet-1 display body 877

lengths ranging between null mutant and wild type. 878

Category 2: Intervened Condition 879

Question: In the Edar signalling pathway, can 880

NF-kappaB activation still be induced by Edar- 881

associated death domain (Edaradd) in the pres- 882

ence of dominant negative forms of TNF-receptor- 883

associated factor 6 (TRAF6)? 884

Answer: No 885

Question: In mice treated with the angiotensin- 886

converting enzyme inhibitor ramipril, do those lack- 887

ing the specific PACAP receptor (PAC1-/-) exhibit 888
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lower plasma renin concentrations compared to889

their wild-type littermates?890

Answer: Yes891

Question: In human lung cancer cell lines with892

methylated retinoic acid receptor-beta (RARbeta)893

P2 promoter, What is the effect of demethylation by894

5-aza-2’-deoxycytidine on the expression of RAR-895

beta2 and RARbeta4 isoforms?896

Answer: Demethylation by exposure to 5-aza-2’-897

deoxycytidine restores the expression of RARbeta2898

and RARbeta4 in methylated tumor lines.899

Question: In the context of hematopoietic pro-900

genitor cell proliferation, What is the effect of Flt3901

ligand (FL) on progenitor cells from mice deficient902

in the signal transducer and activator of transcrip-903

tion 5a (Stat5a)?904

Answer: Flt3 ligand (FL) does not act on pro-905

genitors from marrows of Stat5a(-/-) mice.906

Dimension 3: Investigation Target907

Category 1: Single Component as Target908

Question: In MELN cells, which are derived909

from MCF-7 breast cancer cells and stably ex-910

press estrogen receptor alpha (ERalpha), does ex-911

posure to mono-n-butyl ester phthalic acid result912

in an increase in vascular endothelial growth factor913

(VEGF) secretion?914

Answer: No915

Question: In the context of non-alcoholic fatty916

liver disease (NAFLD) induced by a choline-917

deficient, ethionine-supplemented (CDE) diet in918

C57BL/6J mice, is the protein level of peroxisome-919

proliferator-activated receptor-gamma coactivator920

1alpha (PGC1alpha) decreased in comparison to921

control livers?922

Answer: Yes923

Question: In the context of Mycobacterium tu-924

berculosis signal transduction, what is the effect925

of TrcS-phosphate and calcium ions (Ca2+) on the926

transphosphorylation of the response regulator pro-927

tein TrcR?928

Answer: TrcS-phosphate and Ca2+ are required929

for the transphosphorylation of TrcR.930

Question: In the context of myeloma cells, What931

is the effect of elevated heparanase expression on932

the expression levels of urokinase-type plasmino-933

gen activator (uPA) and the uPA receptor?934

Answer: Elevation in heparanase expression in935

myeloma cells increases urokinase-type plasmino-936

gen activator (uPA) and uPA receptor expression937

levels.938

Category 2: Components Interaction as Tar-939

get940

Question: In the context of growth hormone- 941

releasing hormone (GHRH) stimulation of growth 942

hormone (GH) gene expression in anterior pituitary 943

somatotrophs, does the CBP-Pit-1 pathway, which 944

involves the interaction between CREB binding 945

protein (CBP) and the pituitary-specific transcrip- 946

tion factor Pit-1, require the presence of cAMP- 947

response element binding protein (CREB) to medi- 948

ate its effects on the human GH promoter? 949

Answer: No 950

Question: In the context of mitophagy, does the 951

ubiquitin-binding protein RABGEF1 play a role 952

in recruiting the downstream Rab GTPases, RAB5 953

and RAB7A, to damaged mitochondria that have 954

been ubiquitinated by Parkin? 955

Answer: Yes 956

Question: In human lung cancer cells treated 957

with the nitrosamine 4-(methylnitrosamino)-1-(3- 958

pyridyl)-1-butanone (NNK), What is the role of 959

Bcl2 phosphorylation at Ser(70) in the interaction 960

between Bcl2 and c-Myc oncogenic proteins? 961

Answer: Phosphorylation of Bcl2 at Ser(70) pro- 962

motes a direct interaction between Bcl2 and c-Myc, 963

enhancing the half-life of the c-Myc protein. 964

Question: In cells infected with Epstein-Barr 965

virus (EBV), How does the BGLF4 protein kinase 966

affect the recruitment of active interferon regula- 967

tory factor 3 (IRF3) to the IRF3-responsive element 968

containing the interferon-beta (IFN-beta) promoter 969

region? 970

Answer: BGLF4 reduces the amount of active 971

IRF3 recruited to the IRF3-responsive element con- 972

taining the IFN-beta promoter region. 973

Category 3: Function as Target 974

Question: In human hepatoma cells (Huh-7) and 975

normal human hepatocytes (Hc) infected with an 976

adenovirus expressing a mutated form of Ikappa- 977

Balpha (Ad5IkappaB), does pretreatment with N,N- 978

dimethylsphingosine (DMS), an inhibitor of sph- 979

ingosine kinase (SphK), lead to an increase in the 980

number of apoptotic cells induced by tumor necro- 981

sis factor-alpha (TNF-alpha) stimulation? 982

Answer: Yes 983

Question: In Escherichia coli, do mutants lack- 984

ing acyl-acyl carrier protein (acyl-ACP) synthetase 985

activity (aas mutants) retain the ability to in- 986

corporate exogenous fatty acids into the major 987

outer membrane lipoprotein through an acyl-CoA- 988

independent pathway? 989

Answer: No 990

Question: In the context of myocytes expressing 991

adiponectin receptor 1 (AdipoR1), What is the ef- 992
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fect of adiponectin on extracellular calcium (Ca2+)993

influx?994

Answer: Adiponectin induces extracellular995

Ca(2+) influx by adiponectin receptor 1 (AdipoR1)996

in myocytes.997

Question: In the context of lung inflamma-998

tion resolution, What is the role of cholesterol999

25-hydroxylase (Ch25h) in alveolar macrophages1000

(AM) during the resolution phase of inflammation?1001

Answer: Ch25h is induced in macrophages upon1002

their encounter with apoptotic cells and is required1003

for LXR-dependent prevention of AM lipid over-1004

load, induction of Mertk, efferocytic resolution of1005

airway neutrophilia, and induction of TGF-beta.1006

A.2 Data Creation and Filter Pipeline1007

The overall dataset creation pipeline is shown in1008

Figure 7.1009

To ensure question quality, we employ a two-1010

step process. First, we create and filter questions1011

using an advanced language model ( GPT-4 and1012

LLaMa 3.1-405B) to assess their relevance and1013

clarity. Subsequently, each question undergoes a1014

final quality check by human experts.1015

The well-define filter removes questions that are1016

poorly defined, unpredictable (e.g., asking for spe-1017

cific measurement values), or require more than1018

one prediction, and the nontrivial filter removes the1019

data that answers revealed in the question’s context.1020

To validate the answer quality, we require the1021

LLM to answer the questions based on the original1022

paper’s content. The model is explicitly instructed1023

to respond with Undetermined if it cannot confi-1024

dently generate an answer. Each question is tested1025

five times, and only questions that are consistently1026

answered correctly (i.e., aligned with the intended1027

label) and not marked as Undetermined in any of1028

the trials are retained. This process helps elim-1029

inate questions with incorrect labels, ambiguous1030

phrasing, or poor structure.1031

In the final stage, human experts perform the1032

quality check to further refine the questions, ex-1033

cluding data that are poorly defined, overly com-1034

plex (e.g., asking for multiple facts), incorrectly1035

labeled, or of any other low quality, ensuring the1036

dataset’s overall reliability and usability. Approxi-1037

mately 60% of the data is filtered out at this stage.1038

A.3 Question key words Distribution1039

We present the distribution of question keywords1040

in Figure 8. While these keywords do not directly1041

correspond to the three main categories we primar- 1042

ily use, they offer an additional perspective on the 1043

dataset. Below are explanations of the keywords: 1044

General Influence Inquiry: Can x influence y or 1045

not? 1046

Activation Inquiry: Can x activate y? 1047

Inhibition Inquiry: Can x inhibit y? 1048

Dependency Inquiry: Is y dependent on x? 1049

Induction Question: Can x induce y? 1050

Relief Inquiry: Can x relieve y? 1051

Mechanism Question: Does x influence y via a 1052

specific mechanism? 1053

Exclusive Mechanism Question: Is a specific 1054

mechanism the only mechanism for process z? 1055

Significance Inquiry: Will x cause a significan- 1056

t/insignificant phenomenon y? 1057

Baseline Comparison Question: Is x different 1058

from the baseline? 1059

Experimental Observation Question: Will a spe- 1060

cific detailed phenomenon be observed in the ex- 1061

periment? 1062

Physiological Observation Question: Will a spe- 1063

cific phenomenon be observed in the body? 1064

A.4 Pathway Graph Database Statistics 1065

Table 7: Data statistic of our pathway network database.

Entries Edges Involved biological process
8939 15131 2265

A.5 Implementation of Subgraph Retriever 1066

Since the connectivity of the pathway graph is 1067

crucial for enhancing reasoning in biological sys- 1068

tems, we developed the retrieval API designed 1069

to find the optimal connected subgraph S∗ = 1070

Search_Subgraph(query, N), where S∗ is the re- 1071

trieved subgraph, query represents the query con- 1072

tent, such as keywords, and N is the target size. 1073

The goal is to match a given target size as closely 1074

as possible while maximizing the matching score. 1075

This is formulated as a optimization problem: 1076

S∗ = Search_Subgraph(query, N)

= argmax
S⊆P,
|S|=N,

S is connected

∑
i∈VS∪ES

score(i, query) (4) 1077

Here, the overall pathway network is denoted by 1078

P , with VS and ES representing the node and edge 1079

sets of subgraph S. 1080
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Figure 7: Dataset BioMaze creation pipeline.
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Figure 8: Dataset key words distribution.

The optimization problem is hard to solve di-1081

rectly for huge graph databse. Inspire by (He et al.,1082

2024) that convert optimal subgraph problem into1083

a Prize-Collecting Steiner Tree (PCST) problem,1084

we solve the problem as a bi-level optimization as1085

follows:1086

S(Ce) = argmax
S⊆P,

S is connected

∑
i∈VS∪ES

score(i, query)− |ES | × Ce

C∗
e = argmin

Ce

||S(Ce)| −N |

(5)1087

Then

Search_Subgraph(query, N) = S(C∗
e )

The inner optimization problem, a Prize- 1088

Collecting Steiner Tree (PCST) problem, seeks to 1089

identify a connected subgraph that maximizes the 1090

total score of its nodes and edges while minimizing 1091

the edge costs, as utilized in (He et al., 2024). The 1092

outer optimization problem minimizes the differ- 1093

ence between the optimal subgraph size and the 1094

target size. In practice, we apply a fast-solving 1095

method for the inner problem proposed by (Hegde 1096

et al., 2015) and employ a binary root search algo- 1097

rithm for the outer problem. 1098

Graph-to-Text Encoder For retrieved results 1099

which is a list of triples (e.g., the output of 1100
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Search_Triple or Search_Subgraph), the result S1101

is encoded into text o using the following process:1102

o = TripleToText(DFSOrder(S)) (6)1103

Function DFSOrder arranges the triples in depth-1104

first search (DFS) order. Unlike other methods,1105

such as relevance scoring, DFS order more closely1106

aligns with the reasoning process through the sub-1107

graph, reflecting the natural progression of biolog-1108

ical functions. The ordered subgraph Ŝ is con-1109

verted into text format for the LLM by encod-1110

ing each triple as a string in the following format:1111

Head | Tail | Relation and Biological Process.1112
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A.6 PATHSEEKER Case 1113

Please explore pathways to find relevant information regarding the 1114

following question: Worldwide , one of the most prevalent forms of 1115

chronic disease is alcoholic fatty liver , which may progress to more 1116

severe forms of liver injury. Chronic ethanol exposure is thought to 1117

cause enhanced hepatic lipogenesis and impaired fatty acid 1118

oxidation. Adiponectin is an adipose -derived hormone that has been 1119

associated with the development of alcoholic liver steatosis in 1120

rodent models. Does adiponectin have a protective role against 1121

alcoholic liver steatosis? 1122

Action: Thought: To find information regarding the role of 1123

adiponectin in protecting against alcoholic liver steatosis , I can 1124

use the search_biopathway_subgraph_global tool to explore relevant 1125

biological pathways. I should convert all the question content into 1126

keywords to enhance retrieval quality. Action: 1127

search_biopathway_subgraph_global (['Adiponectin , 1128

adipose -derived hormone , associated with the development of 1129

alcoholic liver steatosis in rodent models , protective role 1130

against alcoholic liver steatosis , chronic ethanol exposure , 1131

enhanced hepatic lipogenesis , impaired fatty acid oxidation , 1132

liver injury ']) 1133

End Action 1134

State: 0) C00469: Ethanol; Ethyl alcohol; Methylcarbinol | 406999: 1135

microRNA 217 MIR217 MIRN217 mir -217 | PCrel indirect effect 1136

activation | hsa04936: Alcoholic liver disease 1137

1) 406999: microRNA 217 MIR217 MIRN217 mir -217 | 23411: sirtuin 1 1138

SIRT1 SIR2 SIR2L1 SIR2alpha | PPrel inhibition indirect effect | 1139

hsa04936: Alcoholic liver disease 1140

2) 406999: microRNA 217 MIR217 MIRN217 mir -217 | 29896 6434: TRA2A 1141

AWMS1 HSU53209 | PPrel inhibition indirect effect | hsa04936: 1142

Alcoholic liver disease 1143

3) 29896 6434: TRA2A AWMS1 HSU53209 | 23175 64900 9663: LPIN1 PAP1 | 1144

PPrel activation | hsa04936: Alcoholic liver disease 1145

4) 23175 64900 9663: LPIN1 PAP1 | 6720: sterol regulatory element 1146

binding transcription factor 1 SREBF1 HMD IFAP2 SREBP1 bHLHd1 | 1147

PPrel inhibition | hsa04936: Alcoholic liver disease 1148

5) 6720: sterol regulatory element binding transcription factor 1 1149

SREBF1 HMD IFAP2 SREBP1 bHLHd1 | 6319 79966: SCD FADS5 MSTP008 SCD1 1150

SCDOS hSCD1 | GErel expression | hsa04152: AMPK signaling pathway 1151

hsa04936: Alcoholic liver disease 1152

6) 6720: sterol regulatory element binding transcription factor 1 1153

SREBF1 HMD IFAP2 SREBP1 bHLHd1 | 23175 64900 9663: LPIN1 PAP1 | 1154

GErel expression | hsa04936: Alcoholic liver disease 1155

7) C00469: Ethanol; Ethyl alcohol; Methylcarbinol | 51094 79602: 1156

ADIPOR1 ACDCR1 CGI -45 CGI45 PAQR1 TESBP1A | PCrel inhibition 1157

indirect effect | hsa04936: Alcoholic liver disease 1158

8) C00469: Ethanol; Ethyl alcohol; Methylcarbinol | 51422 53632 5562 1159

5563 5564 5565 5571: PRKAG2 AAKG AAKG2 CMH6 H91620p WPWS | PCrel 1160

inhibition indirect effect | hsa04936: Alcoholic liver disease 1161
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9) C00469: Ethanol; Ethyl alcohol; Methylcarbinol | 50507: NADPH1162

oxidase 4 NOX4 KOX KOX -1 RENOX | PCrel activation | hsa04936:1163

Alcoholic liver disease1164

10) 50507: NADPH oxidase 4 NOX4 KOX KOX -1 RENOX | C22381: Reactive1165

oxygen species; ROS | PCrel activation | hsa04936: Alcoholic liver1166

disease1167

11) C22381: Reactive oxygen species; ROS | 51422 53632 5562 55631168

5564 5565 5571: PRKAG2 AAKG AAKG2 CMH6 H91620p WPWS | PCrel1169

inhibition indirect effect | hsa04936: Alcoholic liver disease1170

12) C22381: Reactive oxygen species; ROS | 10000 207 208: AKT3 MPPH1171

MPPH2 PKB -GAMMA PKBG PRKBG RAC -PK-gamma RAC -gamma STK -2 | PCrel1172

inhibition | hsa04936: Alcoholic liver disease1173

13) 10000 207 208: AKT3 MPPH MPPH2 PKB -GAMMA PKBG PRKBG RAC -PK-gamma1174

RAC -gamma STK -2 | 1499: catenin beta 1 CTNNB1 CTNNB EVR7 MRD191175

NEDSDV armadillo | PPrel activation phosphorylation | hsa04936:1176

Alcoholic liver disease1177

14) C22381: Reactive oxygen species; ROS | 5606 5608: MAP2K3 MAPKK31178

MEK3 MKK3 PRKMK3 SAPKK -2 SAPKK2 | PCrel activation | hsa04936:1179

Alcoholic liver disease1180

15) C00469: Ethanol; Ethyl alcohol; Methylcarbinol | 712 713 714:1181

C1QA C1QD1 | PCrel activation | hsa04936: Alcoholic liver disease1182

16) C00469: Ethanol; Ethyl alcohol; Methylcarbinol | 3605:1183

interleukin 17A IL17A CTLA -8 CTLA8 IL -17 IL -17A IL17 ILA17 | PCrel1184

indirect effect activation | hsa04936: Alcoholic liver disease1185

17) C00084: Acetaldehyde; Ethanal | 51422 53632 5562 5563 5564 55651186

5571: PRKAG2 AAKG AAKG2 CMH6 H91620p WPWS | PCrel inhibition1187

indirect effect | hsa04936: Alcoholic liver disease1188

18) 9370: adiponectin C1Q and collagen domain containing ADIPOQ ACDC1189

ACRP30 ADIPQTL1 ADPN APM -1 APM1 GBP28 | 51094 79602: ADIPOR1 ACDCR11190

CGI -45 CGI45 PAQR1 TESBP1A | PPrel activate activation | hsa04152:1191

AMPK signaling pathway hsa04211: Longevity regulating pathway1192

hsa04936: Alcoholic liver disease hsa04920: Adipocytokine signaling1193

pathway N01788: ADIPOQ -ADIPOR signaling pathway1194

19) 7132: TNF receptor superfamily member 1A TNFRSF1A CD120a FPF1195

TBP1 TNF -R TNF -R-I TNF -R55 TNFAR TNFR1 TNFR55 TNFR60 p55 p55 -R p60 |1196

6720: sterol regulatory element binding transcription factor 11197

SREBF1 HMD IFAP2 SREBP1 bHLHd1 | PPrel indirect effect activation |1198

hsa04936: Alcoholic liver disease1199

Action: Thought: I have gathered a large number of pathways related1200

to the question. To better understand the role of adiponectin in1201

protecting against alcoholic liver steatosis , I will check the1202

neighboring pathways of Pathway 18, which is directly related to1203

adiponectin. I will use the function1204

search_biopathway_triple_N_hop_subgraph with history_line_id set to1205

18. The keywords are the same as previously used.1206

Action:1207

search_biopathway_triple_N_hop_subgraph (18, ['Adiponectin ,1208

adipose -derived hormone , associated with the development of1209

alcoholic liver steatosis in rodent models , protective role1210

against alcoholic liver steatosis , chronic ethanol exposure ,1211

enhanced hepatic lipogenesis , impaired fatty acid oxidation ,1212
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liver injury ']) 1213

End Action 1214

State: 20) C00219: Arachidonate; Arachidonic acid; 1215

(5 Z8Z11Z14Z)-Icosatetraenoic acid; cis -581114 - Eicosatetraenoic acid; 1216

5Z8Z11Z14Z -Eicosatetraenoic acid; | 2180 2181 2182 23205 23305 1217

51703: ACSL1 ACS1 FACL1 FACL2 LACS LACS1 LACS2 | pathway bind to | 1218

hsa04216: Ferroptosis N01590: Arachidonate/Adrenic acid metabolism 1219

21) 2180 2181 2182 23205 23305 51703 81616: ACSL1 ACS1 FACL1 FACL2 1220

LACS LACS1 LACS2 | C00162: Fatty acid | PCrel | hsa04920: 1221

Adipocytokine signaling pathway 1222

22) 1376: carnitine palmitoyltransferase 2 CPT2 CPT1 CPTASE IIAE4 | 1223

51 8310: ACOX1 ACOX AOX MITCH PALMCOX SCOX | ECrel compound | 1224

hsa00071: Fatty acid degradation 1225

23) 1376: carnitine palmitoyltransferase 2 CPT2 CPT1 CPTASE IIAE4 | 1226

126129 1374 1375: CPT1C CATL1 CPT1 -B CPT1P CPTI -B CPTIC SPG73 | 1227

ECrel compound | hsa00071: Fatty acid degradation 1228

24) 126129 1374 1375: CPT1C CATL1 CPT1 -B CPT1P CPTI -B CPTIC SPG73 | 1229

2180 2181 2182 23205 23305 51703 81616: ACSL1 ACS1 FACL1 FACL2 LACS 1230

LACS1 LACS2 | ECrel compound | hsa00071: Fatty acid degradation 1231

hsa04920: Adipocytokine signaling pathway 1232

25) 4217: mitogen -activated protein kinase kinase kinase 5 MAP3K5 1233

ASK1 MAPKKK5 MEKK5 | 5609 6416: MAP2K7 JNKK2 MAPKK7 MEK MEK_7 MKK7 1234

PRKMK7 SAPKK -4 SAPKK4 | PPrel activate activation phosphorylation | 1235

hsa05418: Fluid shear stress and atherosclerosis hsa04668: TNF 1236

signaling pathway hsa04936: Alcoholic liver disease hsa05208: 1237

Chemical carcinogenesis - reactive oxygen species N01407: Metals to 1238

JNK signaling pathway 1239

26) 5609 6416: MAP2K7 JNKK2 MAPKK7 MEK MEK_7 MKK7 PRKMK7 SAPKK -4 1240

SAPKK4 | 5599 5601 5602: MAPK8 JNK JNK -46 JNK1 JNK1A2 JNK21B1 /2 1241

PRKM8 | PPrel activate activation phosphorylation | hsa05418: Fluid 1242

shear stress and atherosclerosis hsa05135: Yersinia infection 1243

hsa05417: Lipid and atherosclerosis hsa05167: Kaposi 1244

sarcoma -associated herpesvirus infection hsa04620: Toll -like 1245

receptor signaling pathway hsa04668: TNF signaling pathway 1246

27) 5599 5601 5602: MAPK8 JNK JNK -46 JNK1 JNK1A2 JNK21B1 /2 PRKM8 1247

SAPK1 SAPK1c | 3667 8471 8660: IRS1 HIRS -1 | PPrel inhibition 1248

phosphorylation | hsa04910: Insulin signaling pathway hsa05010: 1249

Alzheimer disease hsa04930: Type II diabetes mellitus hsa04920: 1250

Adipocytokine signaling pathway 1251

28) 5599 5601 5602: MAPK8 JNK JNK -46 JNK1 JNK1A2 JNK21B1 /2 PRKM8 1252

SAPK1 SAPK1c | C00162: Fatty acid | PCrel | hsa04930: Type II 1253

diabetes mellitus 1254

29) 4790 5970: NFKB1 CVID12 EBP -1 KBF1 NF-kB NF-kB1 NF-kappa -B1 1255

NF-kappaB NF-kappabeta NFKB -p105 | 2919 2920 2921: CXCL1 FSP GRO1 1256

GROa MGSA MGSA -a NAP -3 SCYB1 | PPrel activation expression | 1257

hsa04621: NOD -like receptor signaling pathway hsa05167: Kaposi 1258

sarcoma -associated herpesvirus infection hsa05417: Lipid and 1259

atherosclerosis hsa05120: Epithelial cell signaling in Helicobacter 1260

pylori infection hsa04936: Alcoholic liver disease 1261

30) 4790 5970: NFKB1 CVID12 EBP -1 KBF1 NF-kB NF-kB1 NF-kappa -B1 1262

NF-kappaB NF-kappabeta NFKB -p105 NFKB -p50 | 4792: NFKB inhibitor 1263
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alpha NFKBIA EDAID2 IKBA MAD -3 NFKBI | PPrel missing interaction1264

dissociation | hsa05215: Prostate cancer hsa05167: Kaposi1265

sarcoma -associated herpesvirus infection hsa05161: Hepatitis B1266

hsa05220: Chronic myeloid leukemia hsa05160: Hepatitis C hsa04936:1267

Alcoholic liver disease hsa04657: IL -17 signaling pathway1268

31) 4790 5970: NFKB1 CVID12 EBP -1 KBF1 NF-kB NF-kB1 NF-kappa -B11269

NF-kappaB NF-kappabeta NFKB -p105 NFKB -p50 NFkappaB | 9021:1270

suppressor of cytokine signaling 3 SOCS3 ATOD4 CIS3 Cish3 SOCS -31271

SSI -3 SSI3 | GErel expression | hsa04920: Adipocytokine signaling1272

pathway1273

32) 9021: suppressor of cytokine signaling 3 SOCS3 ATOD4 CIS3 Cish31274

SOCS -3 SSI -3 SSI3 | 3667 8471 8660: IRS1 HIRS -1 | PPrel inhibition |1275

hsa04920: Adipocytokine signaling pathway1276

33) 51094 79602: ADIPOR1 ACDCR1 CGI -45 CGI45 PAQR1 TESBP1A | C00076:1277

Calcium cation; Ca2+; Calcium (2+); Calcium ion | PCrel indirect1278

effect activation | hsa04152: AMPK signaling pathway hsa04936:1279

Alcoholic liver disease1280

34) C00076: Calcium cation; Ca2+; Calcium (2+); Calcium ion | 10645:1281

calcium/calmodulin dependent protein kinase kinase 2 CAMKK2 CAMKK1282

CAMKKB | PCrel activation | hsa04152: AMPK signaling pathway1283

hsa04211: Longevity regulating pathway hsa04936: Alcoholic liver1284

disease hsa04920: Adipocytokine signaling pathway1285

35) 10645: calcium/calmodulin dependent protein kinase kinase 21286

CAMKK2 CAMKK CAMKKB | 51422 53632 5562 5563 5564 5565 5571: PRKAG21287

AAKG AAKG2 CMH6 H91620p WPWS | PPrel activation phosphorylation |1288

hsa04152: AMPK signaling pathway hsa04921: Oxytocin signaling1289

pathway hsa04211: Longevity regulating pathway hsa04936: Alcoholic1290

liver disease hsa04920: Adipocytokine signaling pathway1291

36) 51094 79602: ADIPOR1 ACDCR1 CGI -45 CGI45 PAQR1 TESBP1A | 5465:1292

peroxisome proliferator activated receptor alpha PPARA NR1C1 PPAR1293

PPAR -alpha PPARalpha hPPAR | PPrel indirect effect activation |1294

hsa04920: Adipocytokine signaling pathway1295

37) 5465: peroxisome proliferator activated receptor alpha PPARA1296

NR1C1 PPAR PPAR -alpha PPARalpha hPPAR | 126129 1374 1375: CPT1C1297

CATL1 CPT1 -B CPT1P CPTI -B CPTIC SPG73 | GErel expression | hsa04920:1298

Adipocytokine signaling pathway1299

38) 5465: peroxisome proliferator activated receptor alpha PPARA1300

NR1C1 PPAR PPAR -alpha PPARalpha hPPAR | C00638: Long -chain fatty1301

acid; Higher fatty acid | PCrel | hsa04920: Adipocytokine signaling1302

pathway1303

Action: Thought: I have gathered a large number of pathways related1304

to the question. To better understand the role of adiponectin in1305

protecting against alcoholic liver steatosis , I will check the1306

neighboring pathways of Pathway 18, which is directly related to1307

adiponectin. I will use the function1308

search_biopathway_triple_N_hop_subgraph with history_line_id set to1309

18. The keywords are the same as previously used.1310

Action:1311

search_biopathway_triple_N_hop_subgraph (18, ['Adiponectin ,1312

adipose -derived hormone , associated with the development of1313

alcoholic liver steatosis in rodent models , protective role1314
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against alcoholic liver steatosis , chronic ethanol exposure , 1315

enhanced hepatic lipogenesis , impaired fatty acid oxidation , 1316

liver injury ']) 1317

End Action 1318

State: No new pathways were found besides those previously seen. 1319

Action: Thought: Since no new pathways were found , I will finish the 1320

exploration. 1321

Answer: 1322

Finished. 1323

State: You finished the task. 1324

A.7 Baseline Details 1325

Chain-of-Thought (CoT) (Wei et al., 2022; Kojima et al., 2022) prompting encourages language models 1326

to generate step-by-step reasoning to solve tasks. We adopt CoT as the unaugmented standard method for 1327

LLM reasoning. 1328

Chain-of-Knowledge (CoK) (Li et al., 2023a) enhances chain-of-thought reasoning through knowledge 1329

verification, enabling language models to handle knowledge-intensive tasks. CoK first generates reasoning 1330

using chain-of-thought processes, then employs knowledge triples to verify the accuracy of the reasoning. 1331

While the reasoning of CoK is primarily driven by the language model, graph-based information is used 1332

for fact verification. 1333

Think-of-Graph (ToG) (Sun et al., 2023) is an interactive reasoning method designed to actively 1334

navigate knowledge graphs for question solving. It primarily uses large language models to prune 1335

knowledge graph edges, thereby enabling efficient knowledge acquisition from complex graphs. The 1336

reasoning process in ToG is guided by graph navigation. 1337

G-Retriever (He et al., 2024) is a graph retriever-augmented generation method that retrieves relevant 1338

subgraphs from a database and generates answers based on the retrieved subgraphs. While the original 1339

model in their work uses a graph encoder to encode graph data as a separate modality, in this work, we 1340

directly implement the graph-to-text encoder for improved versatility and better comparability with other 1341

methods. 1342

A.8 Failure Reason Category Cases 1343

We classify the error reason of biological pathway reasoning into four types: (1) Unresolved Conclusion 1344

For cases where the model fails to provide a definitive answer, indicating uncertainty or belief that the 1345

answer is unknown. (2) Incomplete Answer When the response lacks essential details, such as missing 1346

the requested effects or other key elements. (3) Omission in Reasoning For errors where critical pathway 1347

steps in the question’s biological process are left out, causing the final answer to be incorrect. (4) Faulty 1348

in Reasoning When the reasoning path is correct, but there are significant errors in deducing the events 1349

within that pathway. 1350

In this subsection, we provide examples of each failure reason type. The ’Question’ and ’Answer’ 1351

represent the input question and its labeled correct answer. The ’Wrong Answer by Model’ refers to the 1352

incorrect response generated by the model. Additionally, we include a ’Reference Reasoning Process’, 1353

which outlines the reasoning process leading to the correct final answer by LLaMA3.1 405B. This helps 1354

readers understand how errors occur during the reasoning process. 1355

For the error types ’Omission in Reasoning’ and ’Faulty Reasoning,’ we present cases for both CoT 1356

and PathSeeker individually. These examples demonstrate how LLM reasoning fails either on its own or 1357

when augmented with a pathway graph. 1358

Category 1: Unresolved Conclusion 1359
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"Question": "A large fraction of pediatric pre-B acute lymphoblastoid leukemias (ALL) consistently
contain a t(1;19) chromosomal translocation, resulting in the production of a chimeric transcription
factor containing the N-terminal transactivation domain of E2A fused to the C-terminal DNA-
binding homeodomain of Pbx1. What is the effect of the E2A-Pbx1 fusion protein on the expression
of the novel WNT gene, WNT-16, in pre-B ALL cells?",
"Answer": "The E2A-Pbx1 fusion protein activates the expression of WNT-16 in pre-B ALL
cells.",

"Wrong Answer by Model": "The E2A-Pbx1 fusion protein in pediatric pre-B acute lymphoblastic
leukemias (ALL) with the t(1;19) chromosomal translocation is known to have oncogenic properties
and can affect gene expression. In the case of the novel WNT gene, WNT-16, the E2A-Pbx1 fusion
protein may have an effect on its expression in pre-B ALL cells. However, the specific effect of
the fusion protein on WNT-16 expression would depend on the regulatory elements present in the
WNT-16 gene and the transcriptional activity of the fusion protein. Further investigation would be
needed to determine the exact effect of the E2A-Pbx1 fusion protein on WNT-16 expression in
pre-B ALL cells.",

"Reference Reasoning Process": "To determine the effect of the E2A-Pbx1 fusion protein on the
expression of the novel WNT gene, WNT-16, in pre-B ALL cells, we can analyze the provided
pathways for transcriptional regulation. The pathways indicate that both E2A (6929) and Pbx1 are
transcription factors and that their fusion can lead to transcriptional activation of target genes.
Pathways 0 and 13 demonstrate that the E2A-Pbx1 fusion protein can cause the expression of
WNT-16. The fusion of E2A and Pbx1 results in a chimeric transcription factor that retains the
transactivation domain of E2A and the DNA-binding homeodomain of Pbx1.
Considering this information, it can be inferred that the E2A-Pbx1 fusion protein leads to increased
expression of the novel WNT gene, WNT-16, in pre-B ALL cells. The fusion of E2A and Pbx1
results in a transcription factor that activates the expression of WNT-16, potentially contributing to
the development or progression of pre-B ALL.

1360

Figure 9: The Unresolved Conclusion error occurs when the model cannot provide a definitive answer, indicating
uncertainty or the belief that the answer is unknown. In this case, the model is unable to determine the specific
effect of the fusion protein on WNT-16 expression.

Category 2: Incomplete Answer1361

"Question": "Continual efferocytic clearance of apoptotic cells (ACs) by macrophages is crucial for
injury resolution. The process of continual efferocytosis is enhanced by linking the metabolism of
engulfed cargo from initial efferocytic events to subsequent rounds. How is continual efferocytosis
enhanced in macrophages?",
"Answer": "Continual efferocytosis is enhanced in macrophages by the metabolism of apoptotic
cell-derived arginine and ornithine to putrescine by macrophage arginase 1 (Arg1) and ornithine
decarboxylase (ODC).",

"Wrong Answer by Model": "Continual efferocytosis is enhanced in macrophages through the
process of metabolic reprogramming. When macrophages engulf apoptotic cells (ACs), they
not only clear the ACs but also metabolize the engulfed cargo. This metabolic reprogramming
involves the activation of specific metabolic pathways, such as glycolysis and fatty acid oxidation,
to generate energy and metabolites necessary for the efficient clearance of ACs. By linking the
metabolism of engulfed cargo from initial efferocytic events to subsequent rounds, macrophages
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can sustain their energy requirements and maintain the high phagocytic capacity needed for
continual efferocytosis. This enhanced metabolic activity allows macrophages to efficiently clear
ACs and promote injury resolution.",

"Reference Reasoning Process": "To determine how continual efferocytosis is enhanced in
macrophages, we can analyze the provided pathways for the key steps involved in efferocytic
clearance of apoptotic cells (ACs) and how they link to subsequent rounds.
The process starts with the engulfment of apoptotic cells. This involves the recognition of
phosphatidylserine on the surface of apoptotic cells by receptors such as AGER (Pathway 0). This
recognition leads to the activation of signaling pathways, including the activation of Rac family
small GTPase 1 (RAC1), which is crucial for the engulfment process (Pathway 1).
Following engulfment, the metabolism of engulfed cargo plays a critical role in enhancing continual
efferocytosis. Specifically, the pathway involving the solute carrier family 66 member 1 (SLC66A1)
and the metabolism of L-Arginine (Pathway 6) leads to the production of ornithine. Ornithine
then binds to ARG1 (Pathway 7), leading to the production of urea and more ornithine (Pathway
8). This process enhances continual efferocytosis by providing the necessary components for
subsequent rounds of efferocytic clearance.
Moreover, the pathway involving the metabolism of ornithine to putrescine (Pathway 9) and then
the activation of RAC1 by putrescine (Pathway 11) further supports the enhancement of continual
efferocytosis. This is because RAC1 activation is crucial for the engulfment process, and its
activation by putrescine ensures that the macrophage remains capable of engulfing subsequent
apoptotic cells.
Therefore, based on the pathways provided, continual efferocytosis in macrophages is enhanced by
the metabolism of engulfed cargo, specifically through the arginine and ornithine pathways, which
ultimately lead to the activation of key signaling molecules such as RAC1 that are necessary for
the efferocytic clearance of apoptotic cells.",
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Figure 10: The Incomplete Answer error occurs when the response lacks essential details, such as missing the
requested effects or other key elements. In this case, the model’s response suggests that continual efferocytosis
is enhanced in macrophages through metabolic reprogramming but fails to mention the metabolism of apoptotic
cell-derived arginine and ornithine to putrescine, which is a key part of the labeled answer.

Category 3: Omission in Reasoning 1364

Omission in Reasoning of CoT 1365

"Question": "BAMBI (BMP and activin membrane-bound inhibitor) is known to negatively regulate
the signaling activity of transforming growth factor-beta, activin, and BMP, and has been identified
as a target of beta-catenin in colorectal and hepatocellular tumor cells. The canonical Wnt/beta-
catenin pathway plays a crucial role in regulating embryogenesis and tumorigenesis by promoting
cell proliferation. Does BAMBI enhance or inhibit Wnt-promoted cell cycle progression?",
"Answer": "BAMBI increases Wnt-promoted cell cycle progression.",

"Wrong Answer by Model": "BAMBI inhibits Wnt-promoted cell cycle progression. The canonical
Wnt/beta-catenin pathway promotes cell proliferation, and BAMBI has been identified as a target of
beta-catenin. BAMBI negatively regulates the signaling activity of transforming growth factor-beta,
activin, and BMP, which are involved in cell cycle regulation. Therefore, BAMBI acts as a negative
regulator of the Wnt pathway and inhibits Wnt-promoted cell cycle progression.",

"Reference Reasoning Process": "To determine whether BAMBI enhances or inhibits Wnt-
1366
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promoted cell cycle progression, we need to analyze its interactions with key components of
the Wnt signaling pathway.
From pathways 10, 11, and 12, we can see that BAMBI (BMP and activin membrane-bound
inhibitor) interacts with LRP6, FZD10, and DVL1, which are all crucial components of the Wnt
signaling pathway. These interactions are described as "activation" and "binding/association,"
which suggests that BAMBI may be enhancing the activity of these components.
However, it’s also known that BAMBI is a negative regulator of the TGF-beta and BMP signaling
pathways, which can intersect with the Wnt signaling pathway.
Considering the complexity of these interactions and the multiple pathways involved, we need to
look for more direct evidence of BAMBI’s effect on Wnt-promoted cell cycle progression.
Given the information provided, it seems that BAMBI’s interactions with the Wnt signaling
pathway are more likely to be enhancing or modulating rather than inhibiting. However, without
more direct evidence, it’s difficult to make a definitive conclusion.
Therefore, based on the available information, it appears that BAMBI may enhance Wnt-promoted
cell cycle progression, but further research is needed to confirm this conclusion.",
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Figure 11: Omission in Reasoning refers to errors where critical steps in the biological pathway described in the
question are omitted, leading to an incorrect final answer. In this case, the model’s reasoning process only considered
that BAMBI has been identified as a target of beta-catenin but overlooked the pathway in which BAMBI interacts
with LRP6, FZD10, and DVL1, all of which are crucial components of the Wnt signaling pathway. As a result, the
reasoning led to an incorrect conclusion.

Omission in Reasoning of PathSeeker1368

"Question": "Angiotensin II (Ang II) is an octapeptide that plays a crucial role in the cardiovascular
system, and its formation and degradation are tightly regulated. To investigate the role of mast cell
proteases in Ang II production, ex vivo cultures of peritoneal cells from mouse strains lacking mast
cell heparin or mouse mast cell protease 4 (mMCP-4) were used. What is the effect of heparin
deficiency on the formation and degradation of Ang II in these peritoneal cell cultures?",
"Answer": "The formation and degradation of Ang II are strongly reduced in heparin-deficient
peritoneal cells.",

"Wrong Answer by Model": "Based on the provided pathways, the effect of heparin deficiency
on the formation and degradation of Ang II in peritoneal cell cultures can be inferred. Heparin is
known to play a role in the regulation of Ang II production.
Pathway 0 indicates that carboxypeptidase A3 (CPA3) is involved in the degradation of Ang II. This
suggests that heparin deficiency may lead to a decrease in the degradation of Ang II, potentially
resulting in increased levels of Ang II.
Pathway 1 shows that angiotensin I converting enzyme (ACE) is responsible for the formation of
Ang II. However, this pathway does not directly provide information about the effect of heparin
deficiency on Ang II formation.
Considering the information from pathways 0 and 1, it can be inferred that heparin deficiency
may primarily affect the degradation of Ang II rather than its formation. Without heparin, the
degradation of Ang II by carboxypeptidase A3 may be impaired, leading to increased levels of
Ang II in the peritoneal cell cultures.",

"Reference Reasoning Process": "To determine the effect of heparin deficiency on the formation
and degradation of Ang II in peritoneal cell cultures, we can analyze the provided pathways for the
role of mast cell proteases in Ang II production.
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The pathways provided do not directly mention heparin or its deficiency. However, we can infer
the potential effects of heparin deficiency by understanding the role of mast cell proteases in Ang
II production.
Pathway 1 shows the conversion of Angiotensin I to Angiotensin III. Pathway 2 demonstrates
the binding of Angiotensin I to angiotensin I converting enzyme (ACE), which is involved in the
conversion of Angiotensin I to Angiotensin II. Pathway 3 shows the activation of angiotensin II
receptor type 2 by Angiotensin II. Pathway 4 demonstrates the activation of AGTR1 and AGTR2
receptors by Angiotensin II. Pathway 5 shows the activation of angiotensin II receptor type 2 by
Angiotensin A.
Considering the information provided by these pathways, we can infer that heparin deficiency may
affect the activity of mast cell proteases, such as mouse mast cell protease 4 (mMCP-4), which
are involved in the conversion of Angiotensin I to Angiotensin II. Heparin is a cofactor for the
activation of mast cell proteases, and its deficiency may lead to reduced activity of these proteases.
Therefore, the effect of heparin deficiency on the formation and degradation of Ang II in peritoneal
cell cultures may be a reduction in the conversion of Angiotensin I to Angiotensin II, leading to
decreased levels of Angiotensin II.",
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Figure 12: Omission in Reasoning refers to errors where critical steps in the biological pathway involved in the
question are omitted, leading to an incorrect final answer. In this case, the model’s reasoning process considered
the pathway involving the degradation of Ang II but missed the more important pathway of the conversion of
Angiotensin I to Angiotensin II. This resulted in reasoning that led to an incorrect conclusion.

Category 4: Faulty in Reasoning 1371

Faulty in Reasoning of CoT 1372

"Question": "Enteropathogenic Escherichia coli (EPEC) is a major causative agent of infant
diarrhoea in developing countries, and the EspF effector protein is injected from EPEC into host
cells via a type III secretion system, disrupting host intestinal barrier function and initiating the
mitochondrial death pathway. To clarify the manner in which EspF affects host cells, eukaryotic
EspF-binding proteins were identified using affinity purification, and Abcf2, a protein of unknown
function and member of the ABC-transporter family, was found to bind EspF. What is the effect of
knocking down Abcf2 expression on EspF-induced caspase cleavage?",
"Answer": "Knocking down Abcf2 expression increases EspF-induced caspase 9 and caspase 3
cleavage.",

"Wrong Answer by Model": "The effect of knocking down Abcf2 expression on EspF-induced
caspase cleavage is likely to decrease or inhibit caspase cleavage. Abcf2, as a binding protein of
EspF, may play a role in the signaling pathway that leads to caspase activation and subsequent
cleavage. By knocking down Abcf2 expression, the interaction between EspF and Abcf2 is
disrupted, potentially preventing or reducing the activation of caspases and subsequent cleavage.
This suggests that Abcf2 is involved in the EspF-induced mitochondrial death pathway and its
knockdown may have a protective effect against the disruption of host intestinal barrier function
caused by EPEC infection.",

"Reference Reasoning Process": "To determine the effect of knocking down Abcf2 expression
on EspF-induced caspase cleavage, we should analyze the provided pathways for the interactions
between EspF, Abcf2, and caspase.
Pathway 0 provides information that EspF binds Abcf2, and this interaction inhibits Abcf2.
Additionally, pathway 2 reveals that Abcf2 inhibits caspase 9, which is involved in the intrinsic
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apoptotic pathway.
When EspF binds Abcf2, it inhibits Abcf2’s function. Since Abcf2 normally inhibits caspase 9, the
inhibition of Abcf2 by EspF would lead to an increase in caspase 9 activity.
If Abcf2 expression is knocked down, its inhibitory effect on caspase 9 would be reduced. As a
result, caspase 9 activity would increase, similar to the effect of EspF binding Abcf2.
Therefore, knocking down Abcf2 expression would enhance EspF-induced caspase cleavage. The
reduction in Abcf2’s inhibitory effect on caspase 9 would amplify the pro-apoptotic signal, leading
to increased caspase cleavage.
In summary, the effect of knocking down Abcf2 expression on EspF-induced caspase cleavage
would be an increase in caspase cleavage due to the reduced inhibitory effect of Abcf2 on caspase
9.",
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Figure 13: Faulty Reasoning occurs when the reasoning path is correct, but there are significant errors in deducing
the events within that pathway. In this case, the model’s reasoning step proposes that EspF binds to Abcf2 and
activates it, which is incorrect, as it actually inhibits Abcf2. As a result, the reasoning leads to an incorrect
conclusion.

Faulty in Reasoning of PathSeeker1375

"Question": "Bacterial pathogens often manipulate host immune pathways to establish acute and
chronic infection, and many Gram-negative bacteria do this by secreting effector proteins through
a type III secretion system that alter the host response to the pathogen. In the case of Salmonella,
the phage-encoded GogB effector protein targets the host SCF E3 type ubiquitin ligase through
an interaction with Skp1 and the human F-box only 22 (FBXO22) protein. What is the effect of
GogB-deficient Salmonella on tissue damage and colonization in the gut during long-term chronic
infections?",
"Answer": "GogB-deficient Salmonella cause extensive tissue damage and enhanced colonization
in the gut during long-term chronic infections.",

"Wrong Answer by Model": "Based on the provided pathways, the effect of GogB-deficient
Salmonella on tissue damage and colonization in the gut during long-term chronic infections can
be inferred.
Pathway 0 indicates that the GogB effector protein targets the host SCF E3 type ubiquitin ligase
through an interaction with Skp1 and the human F-box only 22 (FBXO22) protein. This pathway
is associated with Salmonella infection.
Pathways 1 and 2 provide information about other type III secretion system effectors (SseK1 and
SseK3) and their interactions with TNF-NFKB signaling pathways. These pathways are also linked
to Salmonella infection.
Pathway 3 shows the involvement of tumor necrosis factor (TNF) and its receptor TNFRSF1A in
various signaling pathways, including Salmonella infection.
Pathway 4 indicates the activation of NFKB, a transcription factor involved in inflammation and
immune responses, by TNF. This pathway is associated with Salmonella infection.
Pathways 5 and 6 provide information about the activation and inhibition of NFKB inhibitor alpha
(NFKBIA) and its interaction with NFKB. These pathways are also linked to Salmonella infection.
Pathway 7 shows the activation of MAPK8 (JNK) and its phosphorylation by FOS, which is
associated with Salmonella infection.
Based on the provided pathways, it can be inferred that GogB-deficient Salmonella would have a
reduced ability to manipulate host immune pathways and alter the host response to the pathogen.
This could result in decreased tissue damage and colonization in the gut during long-term chronic
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infections. However, the specific effects on tissue damage and colonization would require further
investigation.",

"Reference Reasoning Process": "Based on the pathways provided, the effect of GogB-deficient
Salmonella on tissue damage and colonization in the gut during long-term chronic infections can
be inferred.
GogB is a phage-encoded effector protein that targets the host SCF E3 type ubiquitin ligase through
an interaction with Skp1 and the human F-box only 22 (FBXO22) protein (Pathway 0). This
interaction inhibits the NF-kappaB signaling pathway, which is a crucial pathway involved in
inflammation and immune response.
In the absence of GogB, the inhibition of the NF-kappaB signaling pathway is lifted, leading to an
increase in the production of pro-inflammatory cytokines, such as TNF-alpha (Pathway 3). This
increase in inflammation can lead to tissue damage and exacerbate the symptoms of the infection.
Furthermore, the NF-kappaB signaling pathway is also involved in the regulation of apoptosis
(programmed cell death). The inhibition of this pathway by GogB can lead to a decrease in
apoptosis, allowing the infected cells to survive and potentially leading to persistent infection
(Pathway 6).
Additionally, GogB-deficient Salmonella may also have altered interactions with other host proteins,
such as SifA, PipB2, and SopD2, which are involved in regulating microtubule dynamics and
transport (Pathways 7, 9, and 10). These altered interactions can affect the ability of Salmonella to
colonize and persist in the gut.
Overall, the loss of GogB in Salmonella is likely to lead to increased tissue damage and inflamma-
tion during long-term chronic infections, as well as altered interactions with host proteins that can
affect the ability of the bacteria to colonize and persist in the gut.
In conclusion, the effect of GogB-deficient Salmonella on tissue damage and colonization in the gut
during long-term chronic infections is likely to be an increase in tissue damage and inflammation,
as well as altered interactions with host proteins that can affect the ability of the bacteria to colonize
and persist in the gut.",
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Figure 14: Faulty Reasoning occurs when the reasoning path is correct, but there are significant errors in deducing
the events within that pathway. In this case, the model reasoned along the NF-kappaB signaling pathway but failed to
deduce that a GogB deficiency leads to an increase in inflammation. Consequently, the final conclusion is incorrect.
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A.9 Uncertainty Measure1378

Uncertainty We investigate whether graph aug-1379

mentation can reduce the uncertainty in model re-1380

sponses. We measure this uncertainty in the dis-1381

criminant task by calculating five times the entropy1382

of the final results, as shown in Figure 15. Notably,1383

graph augmentation reduces prediction uncertainty1384

for LLaMA3-8B but not for GPT-3.5. This dis-1385

crepancy may arise because GPT-3.5 tends to have1386

fewer hallucinations, whereas LLaMA3-8B may1387

exhibit overconfidence in some generations where1388

it is uncertain.1389

1390

A.10 Evaluation of the Evaluator Quality1391

As the generation task involves LLMs as evalua-1392

tors, we assess the quality of the evaluation method1393

by comparing the result with the human manual an-1394

notation score. The accuracy of LLaMA3.1 405B1395

with human annotation is 96%, while the inconsis-1396

tency lines in the case that the answer is close to1397

the ground truth but the expression is general and1398

missing details.1399

A.11 Introduction of Pathway1400

Understanding biological systems is inher-1401

ently complex due to the numerous interacting1402

molecules, processes, and environmental factors1403

involved. These systems operate with intricate1404

interactions that result in non-linear, multi-layered,1405

and dynamic behaviors. To address this complexity,1406

biological researchers use pathway graphs as1407

structured blueprints to simplify these systems into1408

organized structures that consist of basic interac-1409

tions. The linear reactions, cyclical relationships,1410

or the local network of pathways offer snapshots1411

of how a system behaves under specific conditions1412

and enable researchers to predict how changes in1413

one molecule or interaction can affect the entire1414

system. Pathway graphs also provide a structured,1415

static representation of dynamic processes, helping1416

researchers understand the sequence of events even1417

as the system changes over time.1418

A.12 Detailed Related Work1419

Biological Scientific Question Answering Pre-1420

vious studies have explored the potential of lan-1421

guage models in the biological scientific domain.1422

MEDHOP (Welbl et al., 2018) and PubMedQA1423

(Jin et al., 2019) investigated biological scientific1424

question answering in the form of reading compre-1425

hension. BioASQ-QA (Krithara et al., 2023) pro-1426

posed a realistic question-answering benchmark for 1427

the actual information needs of biomedical experts. 1428

Beyond textual QA, several works have also stud- 1429

ied multimodal scientific ability (Lu et al., 2022). 1430

Additionally, other studies have explored biomedi- 1431

cal domain tasks (Vilares and Gómez-Rodríguez, 1432

2019; Jin et al., 2021; Pal et al., 2022). Most ex- 1433

isting tasks in the biological sciences concentrate 1434

on knowledge probing, assessing how well mod- 1435

els understand biological information. In contrast, 1436

our work, BioMaze, is the first to focus on models’ 1437

reasoning abilities within the biological scientific 1438

domain, specifically targeting phenomena observed 1439

in experiments about biological pathways. 1440

A few studies have examined language models’ 1441

ability to understand biological pathways. Chat- 1442

pathway (Li et al., 2023b) and (Azam et al., 2024) 1443

specifically investigated language models’ capac- 1444

ity for completing biological pathways. However, 1445

these studies mainly focus on probing biological 1446

pathway knowledge, i.e., determining whether lan- 1447

guage models possess the relevant pathway infor- 1448

mation. In contrast, this work introduces a novel 1449

task that employs pathway models for practical 1450

biological pathway phenomenon reasoning, bridg- 1451

ing the gap between pathway network knowledge 1452

and its implications. We compare this work with 1453

previous biological datasets in Table 8. 1454

Table 8: Comparison of previous biological scientific
question answering tasks and BioMaze.

Domain Question Form Task Types

MEDHOP (Welbl et al., 2018) Scientific Choice Multi-hop reading comprehension
PubMedQA (Jin et al., 2019) Scientific True/False Reading comprehension
HEAD-QA (Vilares and Gómez-Rodríguez, 2019) Healthcare Choice Knowledge probing and reasoning
MedQA (Jin et al., 2021) Medical Choice Reading comprehension
MedMCQA (Pal et al., 2022) Medical Choice Knowledge probing and reasoning
BioASQ-QA (Krithara et al., 2023) Scientific True/False and Open-Ended Knowledege probing
ChatPathway (Li et al., 2023b) Pathway and biochemical Open-Ended Knowledge probing
(Azam et al., 2024) Pathway and gene Choice Knowledge probing
BioMaze (Ours) Pathway for the scientific True/False and Open-Ended Reasoning in biological pathway

Graph-augmented Language Model Several 1455

studies have explored augmenting large language 1456

models (LLMs) with graph data. In particular, 1457

some works enhance LLMs by encoding graph 1458

data as text (Ye et al., 2023; Wang et al., 2024; 1459

Fatemi et al., 2023), or tuning LLMs specifically 1460

for graph-based tasks (Liu et al., 2023a; Tang et al., 1461

2024; He et al., 2024; Zhao et al., 2023; He and 1462

Hooi, 2024). By augmenting LLMs with graph 1463

data, they have been applied to knowledge-based 1464

QA (Sun et al., 2023; He et al., 2024; Li et al., 1465

2023a; Jin et al., 2024; Cheng et al., 2024), and to 1466

graph-oriented tasks like graph property prediction 1467

(Wang et al., 2024; He et al., 2023). A few other 1468

studies leverage graph structures during LLM rea- 1469

soning to tackle complex tasks (Jiang et al., 2023; 1470
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Figure 15: Uncertainty measured by entropy.

Besta et al., 2024).1471

Unlike tasks in previous works, this study ad-1472

dresses whether reasoning in biological systems1473

can be enhanced by pathway graphs, which act as1474

a structured blueprint for reasoning about the sys-1475

tem’s states. It is not sufficient to simply identify1476

the correct paths in the pathway graph to find the1477

answer. Instead, it is necessary to perform deduc-1478

tive reasoning about the events that occur when the1479

system is intervened upon under specific conditions1480

and to predict the resulting states and mechanisms1481

of the intervened system.1482

For large graph databases, most works enable1483

LLMs to access graph data through retrieval mech-1484

anisms (He et al., 2024; Li et al., 2023a), while1485

a few studies have explored using LLMs as in-1486

teractive agents (Yao et al., 2023; Shinn et al.,1487

2023; Zhao et al., 2024) to navigate and explore1488

vast graph databases (Sun et al., 2023; Jin et al.,1489

2024). In this work, we introduce an agent-based1490

interactive graph exploration approach using sub-1491

graph navigation-based browsing, which is more1492

efficient and offers enhanced navigation capabili-1493

ties for pathway database.1494
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