Published as a conference paper at COLM 2025

Scalable Zeroth-Order Fine-Tuning for Extremely Large Lan-
guage Models with Limited GPU Memory

Liangyu Wang!, Jie Ren!, Hang Xu!, Junxiao Wang?, Huanyi Xie!,
David E. Keyes!, Di Wang!

King Abdullah University of Science and Technology (KAUST)
2Guangzhou University

{liangyu.wang}@kaust.edu.sa

Abstract

Fine-tuning large pre-trained LLMs generally demands extensive GPU
memory. Traditional first-order optimizers like SGD encounter substantial
difficulties due to increased memory requirements from storing activations
and gradients during both the forward and backward phases as the model
size expands. Alternatively, zeroth-order (ZO) techniques can compute
gradients using just forward operations, eliminating the need to store ac-
tivations. Furthermore, by leveraging CPU capabilities, it’s feasible to
enhance both the memory and processing power available to a single GPU.
We propose a novel framework, ZO2 (Zeroth-Order Offloading), for effi-
cient zeroth-order fine-tuning of LLMs with only limited GPU memory.
Our framework dynamically shifts model parameters between the CPU
and GPU as required, optimizing computation flow and maximizing GPU
usage by minimizing downtime. This integration of parameter adjustments
with ZO’s double forward operations reduces unnecessary data move-
ment, enhancing the fine-tuning efficacy. Additionally, our framework
supports an innovative low-bit precision approach in AMP (Automatic
Mixed Precision) mode to streamline data exchanges between the CPU
and GPU. Employing this approach allows us to fine-tune extraordinarily
large models, such as the OPT-175B with 175 billion parameters, on a mere
18GB GPU. Moreover, our framework achieves these results with almost
no additional time overhead and absolutely no accuracy loss compared
to standard zeroth-order methods. ZO2’s code has been open-sourced in
https://github.com/liangyuwang/zo2.

1 Introduction

As Large Language Models (LLMs) grow in scale—reaching hundreds of billions of pa-
rameters (like OPT-175B (Zhang et al., 2022), Llama 3.1 405B (Dubey et al., 2024))—and
their applications diversify (Pei et al., 2024; Huang et al., 2025; Pei et al., 2025), managing
GPU memory resources effectively becomes crucial. Efficient GPU memory management is
crucial not only because it directly influences model performance and training speed, but
also because GPU memory is both expensive and limited in quantity. However, this creates
a significant challenge in handling ever-larger models within the physical constraints of
current hardware technologies. CPU offloading has become a crucial technique for over-
coming the challenge. It involves transferring computations and data from the GPU to the
CPU, specifically targeting data or parameters that are less frequently accessed (“inactive”).
Specifically, it leverages the typically larger and more cost-effective CPU memory (DDR
SDRAM) compared to the more expensive and less abundant GPU memory (HBM). By
offloading these inactive tensors of the neural network, CPU offloading effectively alleviates
the memory and computational pressures on GPUs. While CPU offloading has been com-
monly applied in inference to manage memory-intensive tasks like KV cache offloading (Ge


https://github.com/liangyuwang/zo2

Published as a conference paper at COLM 2025

et al., 2023; Sheng et al., 2023) and Mixture of Experts (MoE) offloading (Eliseev & Mazur,
2023; Xue et al., 2024), its application in training, especially fine-tuning (Ouyang et al., 2022;
Hu et al., 2022; Shao et al., 2024; Zheng et al., 2025; Wang et al., 2025), remains less explored.

Recently, some works (Rajbhandari et al., 2020; Ren et al., 2021) have tried to introduce CPU
offloading into LLM training. However, they are typically constrained by the capabilities of
first-order optimizers such as SGD and Adaptive Moment Estimation (AdamW) (Loshchilov
& Hutter, 2017), and limited GPU memory, restricting large-scale model scalability on single
GPU systems. In detail, using first-order optimizers introduces two major inefficiencies in
CPU offloading (Section 4.1): (1) Multiple communication operations: During the training
of LLMs, parameters are used not only for computing the loss during the forward pass
but also for gradient computation in the backward pass. This necessitates offloading the
same data (parameter) twice—once for each pass (see Figure 2a for an illustration). Such
redundancy not only doubles the communication volume between the CPU and GPU but
also introduces significant latency and inefficiency due to repetitive data transfers. (2)
Huge data transfer volume per communication operation: Furthermore, both parameters
and activations (hidden states) are required in the backward pass to complete gradient
computations. This means that parameters and activation values must be offloaded during
each forward pass and re-uploaded to the GPU for the backward pass. The result is a
significant increase in the volume of data transferred, which severely impacts training
throughput and efficiency.

On the other hand, compared to first-order optimization methods, zeroth-order (ZO) meth-
ods offer a novel approach to fine-tuning LLMs (Zhang et al., 2024; Malladi et al., 2023;
Gautam et al., 2024). These methods utilize dual-forward passes to estimate parameter
gradients and subsequently update parameters, as illustrated in Figure 2b. This approach
eliminates the traditional reliance on backward passes, thereby streamlining the training
process by significantly reducing the number of computational steps required.

Based on the above observations, we conjecture that ZO'’s architecture is particularly well-
suited for CPU offloading strategies. Intuitively, by eliminating backward passes and
the need to store activation values, it can significantly reduce GPU memory demands
through efficient parameter offloading. However, despite these advantages, ZO training
via CPU offloading introduces new challenges, particularly in the realm of CPU-to-GPU
communication.

One challenge lies in ensuring the alignment of random perturbations used in dual-forward
passes across different transformer blocks. In contrast to the monolithic forward pass in
MeZO, our block-wise execution requires careful management of the random number
generator (RNG) state to preserve gradient correctness. Without this mechanism, ZO
training may suffer from accuracy mismatch.

Another key challenge is designing an efficient communication-computation scheduling
mechanism. First-order offloading systems (Ren et al., 2021; Rajbhandari et al., 2021) and
inference pipelines (Sheng et al., 2023) require intricate and often brittle scheduler logic to
pipeline forward /backward steps with parameter movement. In contrast, we find that the
dual-forward nature of ZO optimization naturally doubles computation time, enabling
the communication to be fully hidden behind computation in most cases. This allows our
dynamic scheduler to be extremely simple yet highly effective, requiring only three CUDA
streams with minimal control logic.

To tackle these challenges, we introduce ZO2 (Zeroth-Order Offloading), a novel framework
specifically designed for zeroth-order fine-tuning of LLMs under tight memory constraints.
Our design (1) preserves the mathematical integrity of MeZO by introducing a robust
RNG state manager, and (2) achieves high throughput via a lightweight dynamic scheduler
that overlaps parameter uploads, dual-forward computations, and offloads. In addition
to the scheduler and RNG state management, ZO2 incorporates several complementary
system optimizations to further enhance throughput and memory efficiency. These include
a reusable memory strategy that eliminates repeated CUDA allocations, a reordering of
parameter update operations to minimize data transfers, and AMP-mode-aware parameter



Published as a conference paper at COLM 2025

compression that reduces communication overhead during mixed-precision training. Our
contributions can be summarized as follows:

* Innovative use of CPU-offloading for ZO methods: We determine that ZO is
inherently more suitable for CPU offloading than first-order optimizers, due to its
forward-only execution and minimal activation dependencies. By combining ZO
with CPU-offloading, ZO2 enables efficient training of models like OPT-175B on a
single 18GB GPU.

e Completely lossless accuracy, high-throughput core design: (1) We introduce an
RNG state manager to ensure accuracy alignment between perturbation and param-
eter update phases during block-wise ZO training. (2) We propose a lightweight
dynamic scheduler that overlaps parameter uploading, dual-forward computation,
and offloading using only three CUDA streams. Compared to other complex sched-
uler logic design, ZO2 achieves simpler and more robust execution with minimal
scheduling complexity.

¢ Complementary system-level optimizations: ZO2 integrates additional key im-
provements to maximize throughput and minimize overhead: (1) Reusable memory
allocation to avoid costly CUDA malloc/free during block transfers (Section D.2).
(2) Efficient parameter update reordering to reduce redundant data transfers by
fusing updates into the forward phase (Section D.3). (3) AMP-mode-aware com-
pression that reduces CPU-GPU communication volume via low-bit representations
like FP16 and FP8 (Section D.4).

* Empirical validation at scale: ZO2 is able to fine-tune OPT-175B using just 18GB
of GPU memory, with no additional runtime or accuracy degradation. Our abla-
tion study confirms the contribution of each optimization component to overall
throughput.

¢ Open-source implementation with a clean and extensible API. We release the
full implementation of ZO2 with a lightweight and modular codebase. Our API
(Appendix E) is intentionally designed to be simple and minimal, enabling users to
easily plug ZO2 into existing PyTorch training workflows.

2 Related Work

Zeroth-Order (ZO) Optimization. ZO optimization offers a gradient-free alternative to
first-order (FO) optimization by approximating gradients through function value-based
estimates. These estimates theoretically require only two forward passes but are believed to
be prohibitively slow for optimizing large models. Despite this limitation, ZO methods have
been utilized in deep learning to generate adversarial examples or adjust input embeddings
(Sun et al., 2022a;b), though they have not been widely adopted for direct optimization of
large-scale models (Liu et al., 2020). Several acceleration techniques have been proposed
to address the scaling challenges of ZO optimization and some of them have been used
for LLM fine-tuning. These include using historical data to improve gradient estimators
(Cheng et al., 2021), exploiting gradient structures (Singhal et al., 2023) or sparsity to reduce
the dependence of ZO methods on the size of the problem (Chen et al., 2024; Cai et al.,,
2022; 2021), and reusing intermediate features (Chen et al., 2024) and random perturbation
vectors (Malladi et al., 2023) during the optimization process. These advancements suggest
that ZO optimization could increasingly be applied to more complex and large-scale ML
problems. While previous ZO optimization efforts have primarily targeted algorithmic
improvements for GPU memory efficiency, our approach extends these optimizations to the
system level, enabling more robust memory management and enhanced performance for
large-scale machine learning applications. More related work can be found in Appendix B.

3 Preliminaries on Zeroth-Order Optimization

Zeroth-order (ZO) optimization provides a gradient-free alternative to first-order (FO)
methods, estimating gradients using only function evaluations. In this paper, we focus on



Published as a conference paper at COLM 2025

the Randomized Gradient Estimator (RGE) (Nesterov & Spokoiny, 2017), which forms the
foundation of MeZO (Malladi et al., 2023) and our work.

RGE approximates the gradient VL(0) by evaluating the loss function along a randomly
sampled direction z ~ N (0, I). The projected gradient is defined as:

_ L(6+ez) — L(0—ez)

> € R!, 1)

and the parameter update is given by:
0—0—-n-g2-z (2)
where € is a small smoothing parameter and 7 is the learning rate.

Importantly, ZO methods avoid the need for backward computation and activation storage
by relying solely on dual-forward passes. This forward-only nature, combined with the fact
that g is a scalar, makes ZO highly memory-efficient and well-suited for offloading-based
training. For a full derivation and the complete MeZO algorithm, please refer to Appendix C.

4 Framework Overview

Dual forward \
(Block i, Epoch j) | Set RNG state: S;_; |
Projected

1
( Block 2 ]\Dual forward Set RNG state: S;
' Offload
[Dual forward \. [ Block 1 ]

N [ Perturb Parameters 0 =0+¢z ]
1
i 2 ! [ forward(8, output ) ]-D[output+ ]
[ Block n }\:\[‘ Repeat ] ! [ Block 2 ]

NS

1
1
1
1
Dualifosyardy [ Perturb Parameters 0 =60 —2¢ez ]
1
1
1

1
|

[ Block 1 i Embeddmg ]
1

[LM head] [Blockn] forward(6, out:putl 1) ]-»[output ]

1

1

1

1

1

: 1

S

i ; Get RNG state: S

! Gradient !

. ! CPU Offload \[ Perturb Parameters :6 = 0 + €z ] Timej

Stream

Time CPU Upload GPU Compute

Figure 1: Workflow of the ZO2 framework for fine-tuning LLMs.

4.1 Insight

Our framework, ZO2, exclusively designed for zeroth-order optimizer, incorporates a CPU
offloading strategy optimized for this specific approach. This design leverages the CPU
for storage and the GPU for computation, streamlining parameter offloading in a manner
uniquely suited to the operational characteristics of zeroth-order methods:

(1) As illustrated in Figure 2(a), the first-order optimizer typically requires both forward
and backward passes with opposing workflow directions, and each pass necessitates pa-
rameter availability. Consequently, when parameters offloaded to the CPU are required
for computation on the GPU, communication is necessary twice (forward and backward
passes). In contrast, the zeroth-order optimizer necessitates only two forward passes with
the same workflow direction (Figure 2(b)), allowing parameters to be reused with just one
communication cycle. This modification effectively halves the communication frequency.




Published as a conference paper at COLM 2025

[ [
X wy Xy w, | x Ws ly M -
forward forward [ forward [ | W, | | W, | W,
1 L 1
toss || forward } Xu X, | forward XoX; | forward loss
dx aw, axy | aw, | ax, dw; | ay | W, | | W, | Wy loss' |_9
backward Il backward [ Il backward [ | forward | forward | forward
|
I I L . .

(a) Model using first-order optimizer with (b) Model using zero-order optimizer with only
forward-backward passes workflow dual-forward passes workflow

Figure 2: Motivation. Using linear operator as an example. (a) First-Order Optimizer:
Requires forward and backward passes, storing intermediate activations (Xj, X;) and
incurring repeated CPU-GPU parameter transfers. (b) Zeroth-Order Optimizer: Uses
dual-forward passes with perturbed weights (W;, W/) to estimate gradients. No activation
storage is needed, and each parameter is transferred only once, reducing memory and
communication overhead.

(2) As discussed in Section 5.2, it is essential to overlap communication and compu-
tation tasks. Normally, communication between the CPU and GPU consumes signifi-
cantly more time than GPU computations. The zeroth-order optimizer, with its dual-
forward passes in the same direction, maintains the duration of communication while
increasing computation time. This setup effectively reduces the overall communication
overhead by half and reduce the complexity of the scheduler.

(3) The zeroth-order optimizer does not involve a backward pass, eliminating the need to
store and offload activations. This feature significantly reduces memory requirements.

(4) The gradient calculation in the zeroth-order optimizer is achieved by multiplying a
projected gradient with a Gaussian distribution. The projected gradient is a single value
(Equation 1), and the Gaussian distribution can be generated using a seed. Consequently,
the actual gradient can be computed in-place during parameter updates, eliminating the
need for dedicated storage space for real gradients.

4.2 Z02 Framework Overview

In this part, we first provide an overview and a brief introduction to our ZO2 (Zeroth-Order
Offloading) framework. To better illustrate our idea, we first describe the computation
workflow of the original ZO optimization procedure for LLM fine-tuning. Consider the
architecture of a simple decoder-only LLM, which typically comprises an embedding layer,
N transformer blocks, and a language model (LM) head layer. Our offloading strategy
involves offloading all transformer blocks to the CPU, while retaining the remaining compo-
nents on the GPU. This approach is similarly applicable to more complex LLM architectures
like OPT (Zhang et al., 2022). Initially, input data is loaded from the disk into the CPU and
subsequently transferred to the GPU. Within the GPU, each module—including the embed-
ding layer, transformer blocks, and the language model (LM) head—executes dual-forward
computations sequentially to estimate the projected gradient and update parameters.

The above approach divides the entire model’s dual-forward process, as outlined in the
original ZO workflow (Algorithm 3), into discrete block-level operations. However, this
could potentially introduce an accuracy mismatch. This challenge arises because the core of
the ZO method relies on the uniformity of Gaussian random vectors applied during both the
perturbation and the parameter update phases, which must be consistently synchronized
across all computations (Algorithm 3). To address this, we propose a random number
generator (RNG) state manager (Section 5.1) that meticulously aligns the random vectors.
This management ensures that the random perturbations and the subsequent parameter
updates across different transformer blocks maintain identical stochastic characteristics.

From the efficiency perspective, naive implementation with deep learning frameworks like
PyTorch (Paszke et al., 2019) typically manage both communication (via interconnections,
e.g., PCle) and computation tasks with a single CUDA stream, leading to significant ineffi-
ciencies. Specifically, for ZO optimization, the i-th transformer block is uploaded from the
CPU to the GPU (the GPU is designated for computation-intensive tasks using its CUDA and
Tensor Cores, and the CPU memory is used for parameter storage), undergoes dual-forward



Published as a conference paper at COLM 2025

computation, and then is offloaded back to the CPU. The i + 1-th block must wait for the
offloading of the i-th block to finish before its uploading, leading to idle CUDA and Tensor
Cores during communication while the interconnection remains idle during computation.
See Figure 5 for an illustration. Our ZO2 framework implementation achieves the strategic
utilization of CPU and GPU resources (Section 5.2). This approach involves dynamically
offloading model parameters to the CPU and uploading them back to the GPU as needed
for computation. Specifically, for the transformer model structure, each transformer block is
individually uploaded for processing and subsequently offloaded post-computation, thus
balancing communication and computation across blocks. As illustrated in Figure 1, while
the i-th transformer block is being computed, the i + 1-th block is pre-uploaded, and the
i — 1-th block is offloaded simultaneously. This strategic overlapping ensures continuous
and efficient computation, reducing idle times and maximizing GPU utilization. In the
uploading phase of ZO2, transformer blocks are transferred into a reusable memory space
on the GPU, eliminating the extra time typically required for CUDA memory allocation
(Section D.2). Moreover, parameter updates are ingeniously fused with the dual-forward
passes to minimize redundant data transfers, thereby enhancing the overall efficiency of the
model training process (Section D.3).

Algorithm 1 ZO2 Computation with RNG State Manager

Require: Transformer blocks {W;}Y, with number of transformer blocks N, embedding
parameters Embedding, and LM head LMhead, module parameter 6, module forward
function forward, loss function L, training iterations T, perturbation step size €, data
batch B, learning rate 7;, random seed s, random state buffer rsb, last iteration’s random
state [rs, function UpdateParameters and PerturbParameters from Algorithm 3.

1: Initialize g = 0.

2: forj=1,...,Tdo

3 Set random seed s and sample batch B C D

4: Get random state rs = GetRngState(s), and push rs into rsb.

5: if j > 1 then

6: Update last iteration’s random state /rs = PopLeft(rsb)

7 else

8: Irs = None

9: end if
10: outy,out_,rs,lrs = DualForward(Embedding,€,s,rs,lrs, g, B, B)
11: fori=1to N do
12: outy,out_,rs,lrs = DualForward(W;, €, s, s, Irs, g, out, out__)
13: end for
14: outy,out_,rs,lrs = DualForward(LMhead, €,s,rs,Irs, g, out ,out_)

15 {4 = L(outy), {— = L(out_)
16: g+ (04 —1£_-)/(2e¢)
17: end for

18: function DUALFORWARD(9, €, s, rs, Irs, g, input 4, input_)
19: if g != 0 then

20: SetRngState(s, I7s)
21: 0, Irs < UpdateParameters(9, g)
22: end if

23: SetRngState(s, rs), 0 <— PerturbParameters(6, €)
24:  outy « forward(6;input.)

25: SetRngState(s, rs), 6 <— PerturbParameters(6, —2¢)
26:  out_ < forward(6;input_)

27: SetRngState(s, rs), 6 <— PerturbParameters(6, €)
28: rs = GetRngState(s)

29: return out,out_,rs,lrs

30: end function

Our ZO2 framework further integrates a novel low-bit precision technique that efficiently
manages data transfers between the CPU and GPU in the AMP mode (see Figure 4 for



Published as a conference paper at COLM 2025

an illustration). This technique is aligned with AMP protocols by ensuring that high-
bit precision is maintained for parameter updates, while low-bit precision data is used
for computation on the GPU (Section D.4). This dual-precision approach significantly
reduces the communication overhead, optimizing memory usage without compromising
computational accuracy.

In the following section, we will provide implementation challenges and details of our
framework.

5 Design and Implementation Details

51 ZO2 with RNG State Manager

The core principle of ZO algorithms is the uniform application of Gaussian random vector
for each parameter during both the perturbation and update phases. MeZO (Algorithm 3)

accomplishes this by resetting the seed at each iteration to control the state of the random
number generator (RNG), ensuring consistent execution. However, unlike MeZO, ZO2
disaggregates the model’s dual-forward process across different model blocks (Figure 1,
Algorithm 1), which could potentially lead to discrepancies in the RNG states between
perturbation and parameter updates.

To maintain the precision of the MeZO workflow within the ZO2 framework, we metic-
ulously record the RNG states (rng_state) during each module’s dual-forward operation
(Algorithm 1 Line 18-30). Specifically, rng_state is saved prior to executing any parameter
perturbations and before the module forward pass. This ensures that outputs are consis-
tently generated across iterations. Additionally, given that parameters are updated using the
gradient projected from the last iteration (refer to Section D.3), we preserve the last random
state (last_rstate) to accurately replicate the Gaussian perturbations that were applied during
the perturbation process (Algorithm 1 Line 4-9).

This precise synchronization of rng_state and last_rstate across different model blocks in ZO2
guarantees that each parameter update adheres to the same stochastic path as established in
MeZO. Consequently, this methodological rigor ensures the preservation of exact accuracy
throughout the workflow, facilitating reliable and reproducible outcomes in line with the
original algorithmic design.

5.2 Dynamic Scheduler Design for Efficient Overlap

Algorithm 2 ZO2 Dynamic Scheduler

Require: Transformer blocks {W;}Y | with number of transformer blocks N, embedding
parameters Embedding, and LM head LMhead.

Initialize a dynamic scheduler S{-} to control dual-forward computation C(-), upload-
ing U(-), and offloading O(-) operations.

2: Asynchronously launch S{C(Embedding), U(W;)}.
3: fori=1to N —1do

4:  Synchronously wait until U(W;) finished.

5: ifi =1 then
6.
7
8

—_

Asynchronously launch S{C(W;), U(Wi;1) }.

else
: Synchronously wait until C(W;_1) finished.
9: Asynchronously launch S{O(W;_1), C(W;), U(W;11) }.
10: end if
11: end for

12: Synchronously wait until C(Wy_1) and U(Wy) finished.
13: Asynchronously launch S{O(Wy_1),C(Wy)}.

14: Synchronously wait until C(Wy) finished.

15: Asynchronously launch S{O(Wy), C(LMhead)}.




Published as a conference paper at COLM 2025

While Section 5.1 ensures the correctness and precision alignment of zeroth-order updates by
managing random number generator (RNG) states within the DualForward routine (Algo-
rithm 1), this section focuses on improving efficiency by overlapping CPU-GPU communica-
tion with computation. Specifically, we aim to accelerate the core task in Algorithm 1—the
DualForward computation for each transformer block—by overlapping it with parameter
uploads and offloads.

Figure 5 illustrates the evolution from a naive sequential execution (Figure 5a), where all
communication and computation are serialized, to an overlapped execution model (Figure 5b),
which forms the basis of our dynamic scheduler. In this optimized setting, computation of
block i (DualForward(W;)), uploading of block i+1, and offloading of block i —1 are launched
concurrently on three dedicated CUDA streams.

A key enabler of this simplified scheduling design is the dual-forward nature of ZO opti-
mization, which inherently doubles the computation time while leaving the communication
time per block unchanged. This high compute-to-communication ratio makes it much easier
to achieve full overlap, effectively hiding communication delays. This behavior stands
in sharp contrast with traditional first-order offloading training methods (Ren et al., 2021;
Rajbhandari et al., 2021), where scheduling must delicately interleave forward, backward,
and optimizer operations. Similarly, inference frameworks like (Sheng et al., 2023) require
complex runtime stream orchestration. In contrast, ZO2 achieves efficient scheduling with
minimal control logic.

To ensure correctness during asynchronous execution, we enforce two dependency rules:
(1) Intra-block: offload of block i waits for completion of compute, which waits for upload.
(2) Inter-block: each upload/compute/offload task waits for the previous block’s corre-
sponding task. Our actual execution pattern follows the sequence 0(W;_1) — C(W;) —
U(WiL1), as formalized in Algorithm 2. This pattern ensures safety without requiring global
synchronization, thus avoiding pipeline “bubbles”.

We also retain the embedding layer and LM head on the GPU throughout. This not only avoids
unnecessary transfers but also enables uploading of the first transformer block while the
embedding layer is being computed—further improving overlap efficiency. The full scheduler
design section can be seen in Appendix D.1.

6 Experiment

We evaluate ZO2 using the OPT model family (Zhang et al., 2022), ranging from 1.3B to
175B parameters (Table 4), to assess scalability across different model sizes. Our baseline
is MeZO (Malladi et al., 2023), the most memory- and throughput-efficient zeroth-order
optimizer to date. ZO2 builds upon MeZO, aiming to further reduce GPU memory usage
without sacrificing throughput or accuracy. More experimental setups and additional experiments
can be found in Appendix F, G.

6.1 Main Results

Table 1: Main results of ZO2 performance for various model configurations and both FP32
and FP16 modes. Instances of *-” in the table indicate scenarios where the corresponding
method failed to execute due to memory constraints. The values in parentheses (x) represent
the ratio of each measurement compared to the baseline MeZO (first column) configuration.

Model GPU Memory Usage (MB) | Throughput (tokens/sec) T

MeZO (FP32)  ZO2(FP32) MeZO (FP16) ZO2 (FP16) | MeZO (FP32) ZO2(FP32) MeZO (FP16) ZO2 (FP16)
OPT-1.3B 8898 5098(x0.57)  5814(x0.65)  3750(x0.42) 1998 1955(x0.97)  6629(x3.32)  6448(x3.23)
OPT-2.7B 14514 5930(x0.41)  9054(x0.62)  4142(x0.29) 1104 1086(x0.98)  4229(x3.83)  4220(x3.82)
OPT-6.7B 32930 8420(x0.26) 16586(x0.50)  4992(x0.15) 492 485(x0.98) 2349(x4.77) 2270(x4.61)
OPT-13B 58762 10736(x0.18)  29690(x0.51)  6180(x0.11) 266 259(x0.97) 1326(x5.87) 1251(x5.54)
OPT-30B - 15981 63896 8856 - 122 641 514
OPT-66B - 22295 - 12071 - 40 - 273
OPT-175B - 34015 - 18039 - 14 - 37




Published as a conference paper at COLM 2025

The performance results of our experiments are presented in Table 1, where we compare
the GPU memory usage and throughput of the MeZO and ZO2 frameworks, employing
both FP32 and FP16 data formats. The results demonstrate a consistent advantage of ZO2 in
terms of GPU memory utilization across all model sizes, highlighting significant efficiency
improvements, especially in large-scale models like OPT-175B. This efficiency is attributed
to ZO2’s design, which strategically utilizes GPU memory to temporarily store only a limited
number of transformer blocks for computation rather than the entire model. Notably, the
memory savings become more pronounced as the model size increases. For smaller models,
the GPU memory savings are less pronounced due to the significant proportion of memory
allocated for input data, which diminishes the relative impact of the memory optimization.

In terms of throughput, ZO2 maintains a performance comparable to MeZO in most tested
scenarios without any additional time overhead. The instances where ZO2 exhibits a de-
crease in throughput, such as with the OPT-1.3B model in FP32 format, can be primarily
attributed to the dynamics of computation and communication. In these cases, the com-
putation of each transformer block’s dual-forward passes completes quicker than their
corresponding communication tasks, leading to idle times as the dynamic scheduler (dis-
cussed in Section 5.2) synchronizes and waits for these communication tasks to conclude. It
is important to note that our results do not show a consistent pattern where either smaller
or larger models benefit more significantly from the computation-communication overlap,
indicating that the effectiveness of this overlap does not linearly correlate with model size.

6.2 Results on Accuracy Alignment

Table 2: Main results of ZO2 precision on OPT-13B

Method SST-2 (%) RTE (%) CB (%) BoolQ (%) WSC (%) WIC (%) MultiRC (%)
MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1
702 91.4 66.1 67.9 67.6 63.5 61.1 60.1

We evaluate ZO2’s accuracy alignment on the OPT-13B model across seven NLP benchmarks:
SST-2, RTE, CB, BoolQ, WSC, WIC, and MultiRC (Socher et al., 2013; Dagan et al., 2005;
De Marneffe et al., 2019; Clark et al., 2019; Levesque et al., 2012; Pilehvar & Camacho-
Collados, 2018; Khashabi et al., 2018). These tasks span sentiment analysis, entailment,
coreference, QA, and word sense disambiguation, covering diverse aspects of language
understanding.

As shown in Table 2, ZO2 achieves identical precision rates to the baseline MeZO approach
across all evaluated benchmarks. This parity in performance is significant as it not only
validates the effectiveness of our RNG manager but also highlights ZO2’s capability to
maintain model precision while reducing GPU memory usage. Since ZO2 achieves the same
accuracy as MeZO—which has already been extensively compared against FO methods in

its original paper—we omitted redundant FO comparisons to keep the scope focused.

6.3 Ablation Study

Table 3: Throughput (tokens/sec) results to validate proposed features.

Z02 Z02 702

Model MeZO (no scheduler overlap) (no reusable memory) (no efficient update) Z02
OPT-1.3B 1998 1109 (x0.56) 735 (x0.37) 1567 (x0.78) 1955 (x0.97)
OPT-2.7B 1104 573 (x0.52) 422 (x0.38) 849 (x0.77) 1086 (x0.98)
OPT-6.7B 492 225 (x0.46) 184 (x0.37) 373 (x0.76) 485 (x0.98)
OPT-13B 266 105 (x0.39) 103 (x0.39) 198 (x0.74) 259 (x0.97)
OPT-30B - 35 46 81 122
OPT-66B - 22 15 36 40
OPT-175B - 8 5 13 14

In order to discern the individual contributions of key features within the ZO2 framework
to its overall performance, an ablation study was conducted focusing on three critical



Published as a conference paper at COLM 2025

components: the dynamic scheduler (Sec. 5.2), reusable memory (Sec. D.2), and efficient
parameter updating (Sec. D.3). This study focused on throughput, as the three features
were designed to improve it without affecting ZO2’s built-in memory efficiency. Since CPU
offloading already ensures low memory usage, an ablation on memory was unnecessary.
Given the tightly integrated nature of our system, traditional ablation methodologies that
add one feature at a time to a baseline are impractical. Instead, we adopted a reverse ablation
approach where each feature was individually disabled. This allowed us to observe the
decrement in throughput relative to the fully operational framework, thereby highlighting
the significance of each component.

The results, presented in Table 3, provide a clear illustration of how the absence of each
feature impacts the system’s throughput: (1) Horizontal Comparison. Across all models,
the removal of reusable memory results in the most substantial decrease in throughput,
followed by the dynamic scheduler, and finally, the efficient parameter updating. This
order of impact suggests that while all three features are pivotal, the overhead introduced
by CUDA malloc operations, which are eliminated by reusable memory, significantly
outweighs the communication delays between the CPU and GPU, managed by the dynamic
scheduler and efficient parameter updating. For instance, when reusable memory is not
employed, the throughput drops to 37% of the fully optimized framework for the OPT-6.7B
model, highlighting its critical role in enhancing performance. (2) Vertical Comparison. As
the model size increases, the relative importance of the dynamic scheduler and efficient
parameter updating grows more pronounced. This trend is observable from the throughput:
for larger models like OPT-6.7B, the reduction in throughput when the scheduler and
efficient update features are disabled is relatively larger than in small models. This indicates
that as models become larger, the complexities and overheads associated with managing and
optimizing communications between CPU and GPU become more critical to maintaining
performance.

7 Conclusion

In this paper, we presented ZO2, an efficient framework that enables the training of ex-
tremely large language models, such as the OPT-175B, with 18GB GPU memory—a capa-
bility previously unattainable with traditional methods. By effectively integrating CPU
offloading, random number generator manager, high-performance dynamic scheduler, effi-
cient memory management, efficient parameter updating, and AMP support, our framework
reduces GPU memory demands while maintaining high throughput without additional
time costs. These innovations not only lower the bar for teams with limited hardware
resources and advance the democratization of large models, but also open new avenues for
advancing Al technology more efficiently.

Acknowledgment

Di Wang and Liangyu Wang are partially supported by KAUST through awards
BAS/1/1689-01-01, URF/1/5508-01-01, and by the KAUST Center of Excellence for Genera-
tive Al under award number 5940.

References

HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao Yin. A zeroth-order block coordinate
descent algorithm for huge-scale black-box optimization. In International Conference on
Machine Learning, pp- 1193-1203. PMLR, 2021.

HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang Zhang. Zeroth-order regularized
optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM
Journal on Optimization, 32(2):687-714, 2022.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris,
Jiancheng Liu, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero:

10



Published as a conference paper at COLM 2025

Scaling up zeroth-order optimization for deep model training. In The Twelfth International
Conference on Learning Representations, 2024.

Shuyu Cheng, Guogiang Wu, and Jun Zhu. On the convergence of prior-guided zeroth-
order optimization algorithms. Advances in Neural Information Processing Systems, 34:
14620-14631, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entail-
ment challenge. In Machine learning challenges workshop, pp. 177-190. Springer, 2005.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank:
Investigating projection in naturally occurring discourse. In proceedings of Sinn und
Bedeutung, volume 23, pp. 107-124, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

John C Duchi, Michael I Jordan, Martin ] Wainwright, and Andre Wibisono. Optimal
rates for zero-order convex optimization: The power of two function evaluations. IEEE
Transactions on Information Theory, 61(5):2788-2806, 2015.

Artyom Eliseev and Denis Mazur. Fast inference of mixture-of-experts language models
with offloading. arXiv preprint arXiv:2312.17238, 2023.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha.
Variance-reduced zeroth-order methods for fine-tuning language models. arXiv preprint
arXiv:2404.08080, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model
tells you what to discard: Adaptive kv cache compression for llms. arXiv preprint
arXiv:2310.01801, 2023.

Georgi Gerganov. llama.cpp, 2023. URL https://github.com/ggerganov/11lama.cpp.

Edward ] Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

Haochen Huang, Jiahuan Pei, Mohammad Aliannejadi, Xin Sun, Moonisa Ahsan, Pablo
Cesar, Chuang Yu, Zhaochun Ren, and Junxiao Wang. Fine-grained vision-language
modeling for multimodal training assistants in augmented reality. arXiv preprint
arXiv:2507.05515, 2025.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth.
Looking beyond the surface: A challenge set for reading comprehension over multiple
sentences. In Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
252-262, 2018.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the 29th Symposium on
Operating Systems Principles, pp. 611-626, 2023.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

11


https://github.com/ggerganov/llama.cpp

Published as a conference paper at COLM 2025

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam
Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experi-
ences on accelerating data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding
the difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMINLP), pp. 5747-5763, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Dangi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. Advances in Neural
Information Processing Systems, 36:53038-53075, 2023.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics, 17(2):527-566, 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730-27744, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

Jiahuan Pei, Irene Viola, Haochen Huang, Junxiao Wang, Moonisa Ahsan, Fanghua Ye, Jiang
Yiming, Yao Sai, Di Wang, Zhumin Chen, et al. Autonomous workflow for multimodal
fine-grained training assistants towards mixed reality. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 4051-4066, 2024.

Jiahuan Pei, Fanghua Ye, Xin Sun, Wentao Deng, Koen Hindriks, and Junxiao Wang. Con-
versational education at scale: A multi-llm agent workflow for procedural learning and
pedagogic quality assessment. arXiv preprint arXiv:2507.056528, 2025.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset
for evaluating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121,
2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory
optimizations toward training trillion parameter models. In SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning, 2021. URL
https://arxiv.org/abs/2104.07857.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan
Yang, Minjia Zhang, Dong Li, and Yuxiong He. {Zero-offload }: Democratizing {billion-
scale} model training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp.
551-564, 2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,

Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

12


https://arxiv.org/abs/2104.07857

Published as a conference paper at COLM 2025

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy
Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative
inference of large language models with a single gpu. In International Conference on
Machine Learning, pp. 31094-31116. PMLR, 2023.

Utkarsh Singhal, Brian Cheung, Kartik Chandra, Jonathan Ragan-Kelley, Joshua B Tenen-
baum, Tomaso A Poggio, and Stella X Yu. How to guess a gradient. arXiv preprint
arXiv:2312.04709, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over
a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1631-1642, 2013.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuan-Jing Huang, and Xipeng Qiu.
Bbtv2: Towards a gradient-free future with large language models. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pp. 3916-3930, 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box
tuning for language-model-as-a-service. In International Conference on Machine Learning,
pp. 20841-20855. PMLR, 2022b.

Liangyu Wang, Huanyi Xie, Xinhai Wang, Tianjin Huang, Mengdi Li, and Di Wang. Infinite
sampling: Efficient and stable grouped 1l training for large language models. arXiv
preprint arXiv:2506.22950, 2025.

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Activation-aware
expert offloading for efficient moe serving. arXiv preprint arXiv:2401.14361, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Ly, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-
Yu Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization
for memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

13



Published as a conference paper at COLM 2025

A More Figures, Algorithms, and Tables

68

70 . AdamW
63 m SGD
60 57 s MeZO
= 702

o

3 50

Q

240

(2]

D

>

£30

IS

()

=20 18
10
0 X X X X X

OPT-6.7B OPT-13B OPT-30B OPT-175B

Figure 3: Single GPU memory usage comparison for training LLMs across different optimiz-
ers (AdamW, SGD, MeZO, and ZO2 (Zeroth-Order Offload)) and model sizes (OPT-6.7B,
OPT-13B, OPT-30B, OPT-175B). The ‘X’ indicates that training was not feasible due to
excessive memory demand.

Stream

. Communica tion )
Data Copy & Upcast
Upload with
low bit
Update with
estimated gradient
Upcast
AMP Autocast

[ oru 3 P—— [ rihena ]

Embedding

Compress
to low bit

with low bit

mN NN

Time

Figure 4: Workflow of the ZO2 framework (AMP mode) for fine-tuning LLMs.

,,,,,,,,,,,,,,

@ @ Task %

Upload @i

W0 W 0 G @~ —— @ c,.,...m@i
(a) ZO2 without overlap. 0 @ oy ” _’___@_3

(b) ZO2 with overlap.

Figure 5: Sequential Task Execution in the Naive ZO2 Framework Depicting Non-
overlapping Dual-Forward Passes and Associated Inefficiencies

14



Published as a conference paper at COLM 2025

Algorithm 3 MeZO (Malladi et al., 2023)

Require: Model parameters 6 € RY, loss function L : RY — R, training iterations T,
perturbation step size €, data batch B, learning rate 7;
1: forj=1,...,Tdo
2: Set random seed s and sample batch B C D
3 6 < PerturbParameters(6, €)
4: EJF — L(G, B)
5: Reset RNG with seed s
6: 6 < PerturbParameters(6, —2¢)
7 {_ < L(6;B)
8: Reset RNG with seed s
9: 6 < PerturbParameters(6, €)
10 g+ (04 —1£-)/(2e¢)
11: Reset RNG with seed s
12: 60 < UpdateParameters(6, g)
13: end for

14: function UPDATEPARAMETERS(6, g)
15: for each 6; € 6, where 6; € R% do

16: zi ~ N(0,1) € R
17: Ql-e@,'—m~g~zi
18: end for
19: return 0

20: end function

21: function PERTURBPARAMETERS(6, €)
22: for each 6; € 6, where §; € R% do

23: zi ~ N(0,1) € R
24: 0; + 6; + ez;

25: end for

26: return 0

27: end function

Table 4: OPT model family configs in experiments.

Model Size Layers Heads Dimension Sequence Length

1.3B 24 32 2048

2.7B 32 32 2560

6.7B 32 32 4096

13B 40 40 5120 2048
30B 48 56 7168

66B 64 72 9216
175B 96 96 12288

15



Published as a conference paper at COLM 2025

B More Related Work

CPU Offloading for LLMs. With recent advancements in LLMs, several approaches have
emerged to offload data to CPU memory, mitigating GPU memory limitations. One such
method is vLLM (Kwon et al., 2023), which utilizes Paged Attention to dynamically manage
the key-value (KV) cache at a granular block level. Portions of the KV cache can be temporar-
ily swapped out of GPU memory to accommodate new requests. Llama.cpp (Gerganov,
2023) addresses oversized LLMs inference by using static layer partitioning. It stores certain
contiguous layers in CPU memory while keeping others in GPU memory. During computa-
tion, the CPU handles the layers in its memory, followed by the GPU computing its assigned
layers. FlexGen (Sheng et al., 2023), a GPU-centric inter-layer pipeline LLMs inference
method, seeks to improve throughput by pinning some model weights in GPU memory
for each layer. During inference, it overlaps GPU processing of the current layer with data
loading for the next. DeepSpeed (Rajbhandari et al., 2020) introduces a technique to offload
the first-order optimizer state to the CPU, significantly reducing GPU memory requirements
during training. Zero-offload (Ren et al., 2021) extends the DeepSpeed approach by not only
offloading data to the CPU but also engaging the CPU in computational tasks. Despite these
advancements, the predominant focus of previous research has been on optimizing LLM
inference or first-order optimization through strategic CPU-GPU data transfers. Our work,
in contrast, introduces a novel approach by implementing CPU offloading specifically for
zeroth-order optimization and fine-tuning of LLMs.

C Full Preliminaries on ZO and ZO-SGD

ZO optimization offers a gradient-free alternative to first-order (FO) optimization by ap-
proximating gradients through function value-based estimates. There are different ZO
optimizers for estimating the gradient. To better illustrate our framework, in this paper,
we focus on the randomized gradient estimator (RGE) proposed by (Nesterov & Spokoiny,
2017), which approximates the FO gradient using finite differences of function values
along randomly chosen direction vectors and has been used widely in the ZO optimization
literature. Our idea can be applied to other ZO optimizers.

Given a loss function L(-) and a model with parameter § € R, the RGE employed by MeZO

(Malladi et al., 2023), referred to as VL(6), is to approximate VL(#) and is expressed using
central difference: .
VL(9) = gz € RY, (3)
_ L(0+ez)—L(O—ez)
N 2e
where z is a random direction vector drawn from the standard Gaussian distribution A/ (0, 1),
and € > 0 is a small perturbation step size, also known as the smoothing parameter.
g represents the projected gradient computed using the model’s dual-forward passes.
Notably, ¢ € R! is just a scalar value and requires minimal memory space. The rationale
behind RGE stems from the concept of the directional derivative (Duchi et al., 2015). As
€ approaches 0, the directional derivative provides us an unbiased gradient estimator of
V£ (x). Thus, the RGE Vf(x) can be interpreted as an approximation of the FO gradient
V f(x) using the directional derivative (Zhang et al., 2024). Zeroth-order stochastic gradient
descent (ZO-SGD) follows a similar algorithmic framework to its first-order counterpart,
SGD, but updates the parameters with the estimated gradient Vf(x) via zeroth order

(function value) information for the descent direction. The parameters update of ZO-SGD is
defined by:

eR!, 4)

0=0-1n-3-2 ®)
where 7 is the learning rate. It is important to note that the variable z in Equation 2 should
be identical to the z in Equation 1.

Specifically, the entire MeZO workflow is shown by Algorithm 3. The process initializes
with parameters 6 and iterates over a predetermined number of steps T. Each iteration
samples a batch B from dataset D and employs a perturbation strategy. Parameters ¢ are

16



Published as a conference paper at COLM 2025

first perturbed positively to compute loss £, followed by a negative perturbation of 2¢ to
compute /_. Parameters are then reset to their original state for gradient estimation. The
gradient is approximated by the difference (¢4 — ¢_)/(2¢), representing the directional
derivative along perturbed parameters. This projected gradient, combined with random
Gaussian noise z, updates each parameter 6;, optimizing the loss function.

D More ZO2 Implementation Details

D.1 Specific Dynamic Scheduler Design for Efficient Overlap

Figure 5a offers a schematic representation of the sequential, non-overlapping task execution
within the basic ZO2 framework, particularly highlighting the inefficiencies of dual-forward
passes without task overlap. Initially, input data is transferred from the CPU to the GPU,
beginning with input processing through the embedding layer. Following this, each trans-
former block—ranging from Block 1 to Block n—undergoes a distinct cycle: upload to the
GPU, execution of dual-forward computations, and subsequent offload back to the CPU
upon completion of computations.

This linear processing sequence reveals a critical inefficiency: the GPU must idle while
awaiting each block’s offload back to the CPU, delaying the upload and processing of the
subsequent block. This causes significant downtime for the GPU during offloads and for the
CPU during uploads, as each must wait for the other’s task completion before proceeding.
The depicted lack of overlap between computation (green arrows) and communication (blue
arrows) tasks pinpoints a crucial area for enhancement. Implementing an overlapped or
asynchronous task management strategy, like Figure 5b, could markedly improve system
efficiency and throughput, potentially reducing training times and optimizing the use of
both CPU and GPU resources.

To overlap the data loading and computation process, we propose a dynamic scheduler,
utilizing the asynchronous execution on different CUDA streams. Specifically, our scheduler
includes three CUDA streams (Figure 1), which are utilized to control the i-th transformer
block’s computation, the i 4 1-th block’s uploading, and the i — 1-th block’s offloading
can occur concurrently. This design minimizes data transfer conflicts and maximizes GPU
utilization by keeping computational and communication channels active.

However, designing this dynamic scheduler presents challenges when communication tasks
outlast computation tasks, leading to potential errors. For example, if the upload of the
i-th block is incomplete when its computation begins, this can lead to errors, as the GPU
computes with an incomplete set of parameters. Similarly, if the computation of the i-th
block is still ongoing when its offloading begins, it can also result in errors because the
computation is disrupted by the removal of necessary data. An intuitive solution is to
perform a global synchronization directly after initiating U(W;,1), C(W;), and O(W;_1)
asynchronously. However, this approach is likely to introduce delays, or “bubbles,” due
to the varying execution speeds of the three tasks. To mitigate these issues, we establish
two critical dependency relationships: (1) The offloading task of the i-th block is contingent
upon the completion of its computation task, which, in turn, depends on the completion
of its uploading task. (2) Each task must wait for the preceding task of the same type to
complete; hence, the i-th task cannot commence until the i — 1-st task has concluded. To
efficiently manage task execution, we use an asynchronous task launch sequence: O(W;_1),
C(W;), and U(W;1). Here, O(W;_1) synchronously awaits the completion of both C(W;_1)
and O(W;_,). Similarly, C(W;) will not start until both U(W;) and C(W;_1) have finished.
Lastly, U(W; 1) must wait for the completion of U (W;), ensuring orderly and error-free task
progression.

A significant advantage of our framework is that the dual-forward mechanism doubles the
computation time, while the communication time per block remains unchanged. This
enhancement substantially increases the likelihood of complete overlap between communi-
cation and computation tasks, especially since communication between the CPU and GPU is
generally slower than computation on the GPU. Our following evaluations (Section 6) show
that with ZO’s unique dual-forward passes, which extend computation times compared

17



Published as a conference paper at COLM 2025

with the single forward pass, communication delays are no longer the primary bottleneck in
most scenarios.

Moreover, special attention needs to be given to the embedding parameters and the LM
head, as they represent the beginning and end of the model, respectively. By consistently
maintaining both the embedding and LM head on the GPU, we circumvent the overhead
linked to frequent transfers. For the embedding layer, simultaneous uploading of input
data and embedding parameters could compete for interconnection bandwidth. Moreover,
keeping the embedding layer on the GPU enables the pre-uploading of the first transformer
block, effectively overlapping with the computations of the embedding layer. Meanwhile,
continuously keeping the LM head on the GPU removes delays associated with its offload-
ing—since no subsequent block computations overlap with this offloading—and facilitates
weight sharing with the embedding layer, as noted in some conditions (Radford et al., 2019),
thus consolidating related computations and enhancing operational efficiency. The detailed
scheduler design to apply ZO2 on LLMs is shown in Algorithm 2.

D.2 Efficient Memory Management via Reusable One Block Space on GPU

We adopt the strategy by (Ren et al., 2021) to optimize memory management by pre-
allocating a reusable transformer block of memory on the GPU, eliminating the overhead of
repeated memory allocations and deallocations during data transfers between the CPU and
GPU. This memory is dynamically reassigned to each transformer block in sequence, speed-
ing up data transfers and stabilizing GPU memory usage, thereby enhancing computational
efficiency.

We also adopt the strategy outlined by Li et al. (2020), leveraging communication buckets to
enhance the throughput of block communications. Specifically, we concatenate parameter
fragments within blocks into contiguous memory buckets, thus improving communication
efficiency.

D.3 Efficient Parameter Update Strategy

X Wo, Wy . Wy-1j Dual-
/ Dual-forward Dual-forward Dual-forward loss { Wors ]\

|
Wojn i Wi [ Projected ‘
Dual-forward Dual-forward Dual-forward Grad g; M [ Wo, |

Dual-forward | ; :

(a) Model parameter updates without the effi- (b) Model parameter updates with the efficient

cient strategy. strategy.

Figure 6: Comparison of model parameters updates without/with efficient strategy. (a)
illustrates the process where, at the j-th iteration, the model computes the projected gradient
gj using the dual-forward method and subsequently updates the model parameters. (b)
demonstrates that at the j-th iteration, the model first updates the parameters using the
previously saved projected gradient g; 1, and then performs the dual-forward pass to
compute the new projected gradient g;.

In the ZO2 framework, the parameter update strategy is meticulously designed to precede
the dual-forward computations of each transformer block. Traditionally, each transformer
block is subjected to two distinct data transfer phases (Figure 6a, two green dotted boxes
for each block): one for the dual-forward computations and another for applying gradient
updates. This requirement stems from the fact that the (approximated) gradients are
obtained only after completing the dual-forward computations for all blocks. For the first-
order methods, the same offloading strategy requires parameters to be uploaded for the
computation phase, offloaded upon completion, and then re-uploaded and offloaded again
for the parameter update phase, given that the gradient dimensions match those of the
parameters. This iterative process effectively doubles the communication load and extends
the duration of training.

However, compared to the interdependence of dual-forward calculations across blocks, the
parameter update process remains independent for each block, allowing us to reorder the
operations. Once blocks are updated with the last iteration’s gradients, only a single upload

18



Published as a conference paper at COLM 2025

and offload cycle is necessary for each block. This streamlined approach is only feasible in
the ZO framework because, unlike first-order methods where the gradient dimensions are
identical to those of the parameters, the projected gradient from ZO is only a scaler and
can be persistently stored on the GPU. By implementing preemptive parameter updates,
the framework significantly curtails the number of data transfers required per iteration
(Figure 6b, one dotted box for each block). This adjustment not only halves the usage of
interconnection bandwidth but also enhances the efficiency of the training process, thereby
streamlining operations and reducing overhead.

D.4 Z02in AMP Mode

Figure 4 illustrates the workflow of the ZO2 framework under AMP mode, which employs
reduced precision formats to accelerate the training of LLMs. AMP leverages formats such
as Tensor Float Point 32 (TF32), which provides higher computational throughput compared
to Float Point 32 (FP32). AMP represents a compromise between FP32 and FP16, retaining
the data storage format of 32 bits while offering computational speeds comparable to FP16.
This adaptation allows for faster computation while maintaining the same communication
speed as a purely FP32 workflow, which can complicate the computation-communication
overlap. Therefore, a specialized framework must be designed to manage these unique
challenges effectively. This acceleration is critical for enhancing training efficiency but
introduces challenges in maintaining effective computation-communication overlap, as the
data transfer still utilizes the FP32 format.

To address this, the ZO2 framework incorporates a compression mechanism where pa-
rameters are compressed to low-bit formats during offloading from GPU to CPU. This
compression significantly reduces the data volume, enabling quicker transfers and mitigat-
ing bandwidth limitations. The current compression settings include bfloat16 and float16,
which reduce the data size by 50%, and more aggressive reductions like float8, which
compress to 25% of the original size.

Upon uploading these compressed parameters back to the GPU, they are decompressed
and restored to FP32 for high-precision parameter updates. Subsequent computations,
particularly the dual-forward passes, are then performed using the TF32 format to exploit
the computational speed.

E Codebase
import torch
from torch.optim import AdamwW from zo2 import zOConfig, zo_hf_init
from transformers import OPTForCausallM
# Model and optimizer init
# Model init zo_config = ZOConfig(method="mezo-sgd", zo2=True, offloading_device='cpu’
model = OPTForCausallM.from_pretrained("facebook/opt-2.7b") working_device=‘cuda:@’, lr=le-5)
model.to("cuda") with zo_hf_init(zo_config)
from transformers import OPTForCausallM
# Optimizer init model = OPTForCausallM.from_pretrained("facebook/opt-2.7b")
optimizer = AdamW(model.parameters(), lr=le-5) model.zo_init(zo_config)
# Training loop # Training loop
for i in range(max_training_step): for i in range(max_training_step)
# Train # Train
training_input_ids, training_labels = ... # get training data batch training_input_ids, training_labels = ... # get training data batch
model.train() model.zo_train()
optimizer.zero_grad() loss = model(input_ids=training_input_ids, labels=training_labels
output = model(input_ids=training_input_ids, labels=training_labels
output. loss.backward() # Evaluate
optimizer.step() eval_input_ids, eval_labels = ... # get eval data batch
model.zo_eval()
# Evaluate output = model(input_ids=eval_input_ids, labels=eval_labels)
eval_input_ids, eval_labels = ... # get eval data batch
model.eval() # Final training update
with torch.no_grad(): model.opt.zo_update(model)
output = model(input_ids=eval_input_ids, labels=eval_labels)
(a) PyTorch first-order optimizer training. (b) ZO2 training.

Figure 7: Comparison of model training API with PyTorch first-order optimizer and with
Z702.

19



Published as a conference paper at COLM 2025

Z02 is encapsulated in approximately 5,500 lines of Python code, designed for ease of
use, paralleling standard PyTorch training paradigms. The framework facilitates seamless
integration and customization, enabling both researchers and practitioners to adapt it to
diverse requirements efficiently. Figure 6 provides an illustrative example that demonstrates
the API’s similarity to conventional PyTorch usage, underscoring the user-friendly nature
of ZO2.

F Full Experimental Setup

The experimental evaluation of our framework was conducted using the PyTorch deep
learning library, integrated with NVIDIA CUDA streams to optimize parallel computation
tasks. We selected the Open Pre-trained Transformer (OPT) (Zhang et al., 2022) model family
(Table 4) as the subject of our experiments due to its open-source availability, widespread
adoption in the research community, and diverse range of model sizes, ranging from 1.3
billion to 175 billion parameters, which allows for a comprehensive assessment of our
framework’s performance across varying scales of model complexity.

In our evaluation, MeZO (memory-efficient zerothorder optimizer) (Malladi et al., 2023)
serves as the baseline method, as it is the most memory-throughput efficient ZO method cur-
rently. Our framework builds upon MeZO, reducing GPU memory usage while maintaining
throughput and precision. All performance, including measurements of GPU memory
usage and throughput, were conducted using the Stanford Sentiment Treebank (SST-2)
Socher et al. (2013). The tests were performed on a system equipped with an NVIDIA A100
GPU with 80GB of memory and an AMD Milan CPU, operating under Python version 3.11,
PyTorch 2.4.0, and CUDA 12.1. Our experiments further employed hyperparameters such
as a learning rate of 1 x 1077, a batch size of 1, 100 training steps, and a sequence length of
2048, to rigorously test the framework under controlled conditions.

G More Experiments

G.1 Evaluation of AMP Mode

Table 5: Throughput (tokens/sec) results to validate AMP Mode. AMP auto-cast with FP16
(top) and BF16 (below).

Model Z02 702 702 702
(non-compress) (FP16) (BF16) (FP8)
OPT-1.3B 4827 4770 (x0.988) 4760 (x0.986) 4802 (x0.995)
OPT-2.7B 2811 2974 (x1.058) 2974 (x1.058) 2997 (x1.066)
OPT-6.7B 1271 1641 (x1.291) 1641 (x1.291) 1662 (x1.308)
OPT-13B 561 930 (x1.658) 930 (x1.658) 951 (x1.695)
OPT-30B 286 416 (x1.455) 416 (x1.455) 425 (x1.486)
OPT-66B 127 192 (x1.512) 192 (x1.512) 198 (x1.559)
OPT-175B 43 65 (x1.512) 65 (x1.512) 68 (x1.584)
OPT-1.3B 4565 4430 (x0.970) 4430 (x0.970) 4463 (x0.978)
OPT-2.7B 2778 2816 (x1.014) 2816 (x1.014) 2818 (x1.014)
OPT-6.7B 1273 1594 (x1.252) 1594 (x1.252) 1612 (x1.266)
OPT-13B 678 910 (x1.342) 910 (x1.342) 924 (x1.363)
OPT-30B 285 407 (x1.428) 407 (x1.428) 415 (x1.456)
OPT-66B 127 188 (x1.480) 188 (x1.480) 194 (x1.528)
OPT-175B 43 64 (x1.488) 64 (x1.488) 67 (x1.565)

The efficiency of the AMP mode is shown in Table 5, where we evaluate the throughput
using two AMP auto-cast computational data formats: FP16 and BF16. Additionally, we
investigate the impact of various compression formats (FP16, BF16, and FP8) on communi-
cation and computation performance as detailed in Section D.4.

20



Published as a conference paper at COLM 2025

Across all models tested, a clear trend emerges: lower-bit compression formats consistently
yield higher throughput. Notably, there is no significant difference in throughput between
the 16-bit formats, FP16 and BF16, suggesting that the compression efficiency rather than
the specific format type is the crucial factor in enhancing communication speed.

In most scenarios (specifically for the OPT models greater than 2.7B), employing low-bit
compression results in superior throughput, underscoring the benefits of reducing data
transfer volumes. However, exceptions are observed, such as with the OPT-1.3B model,
where non-compressed data slightly outperforms the compressed formats. This outcome is
attributed to the system being computation-bound rather than communication-bound. In
such contexts, the additional computational demands imposed by the compression process
do not sufficiently offset the benefits of reduced data transfer times, thereby introducing an
overhead that detracts from the overall system efficiency.

G.2 Analysis of More Experimental Settings

Table 6: Different batch-size analysis.

Model  Batch-size Memory Usage (MB)  Throughput (tokens/sec)

MeZO 702 | MeZO ZO2
OPT-1.3B 8898 5098 (x0.57) | 1998 1955 (x0.97)
OPT-2.7B 1 14514 5930 (x0.41) | 1104 1086 (x0.98)
OPT-6.7B 32930 8420 (x0.26) | 492 485 (x0.98)
OPT-13B 58762 10736 (x0.18) | 266 259 (x0.97)
OPT-1.3B 11733 8481 (x0.72) | 2126 2105 (x0.99)
OPT-2.7B 2 18373 9312 (x0.50) | 1204 1193 (x0.99)
OPT-6.7B 34943 9683 (x0.27) | 561 556 (x0.99)
OPT-13B 61919 12315 (x0.19) | 297 294 (x0.99)
OPT-1.3B 16067 12887 (x0.80) | 2309 2296 (x0.99)
OPT-2.7B 4 23731 14211 (x0.59) | 1268 1262 (x0.99)
OPT-6.7B 43683 17233 (x0.39) | 589 587 (x0.99)
OPT-13B 72159 19591 (x0.27) | 312 311 (x0.99)
OPT-1.3B 27529 22775 (x0.82) | 2358 2348 (x0.99)
OPT-2.7B 8 37113 23639 (x0.63) | 1297 1294 (x0.99)
OPT-6.7B 57541 26207 (x0.45) | 604 602 (x0.99)
OPT-13B - 31399 - 320

Differential Batch-size and Sequence Length Analysis. This analysis explores the impact
of varying batch sizes and sequence lengths on the performance of the ZO2 compared to
the MeZO baseline. Tables 6 and 7 present the memory usage and throughput metrics
for different configurations of the OPT models, ranging from 1.3B to 13B parameters.
Table 6 shows the results for different batch-sizes. As batch size increases, there is a
consistent trend where ZO2 maintains throughput equivalency with MeZO across all model
sizes, despite significant reductions in memory usage. Even at higher batch sizes, ZO2
demonstrates robust performance, showing almost no decrease in throughput relative to its
MeZO counterpart. For example, in the OPT-1.3B model at a batch size of 8, the throughput
remains constant at 2348 tokens/sec, maintaining operational efficiency irrespective of the
increased computational load.

Table 7 illustrates the impact of sequence length on throughput. Similar to the batch-
size analysis, increasing the sequence length does not compromise the throughput of
Z02, maintaining parity with the MeZO model across varying lengths. Notably, even
at a sequence length of 8192 for the OPT-1.3B model, ZO2 sustains a throughput of 1279
tokens/sec, effectively handling larger input sizes without a drop in performance.

The analyses confirm that ZO2 effectively manages larger batch sizes and sequence lengths
without sacrificing throughput. This resilience is crucial for practical deployments where
varying input sizes and batch configurations are common, underscoring the scalability and
robustness of the ZO2 approach in diverse operational environments.

21



Published as a conference paper at COLM 2025

Table 7: Different sequence length analysis.

Memory Usage (MB) Throughput (tokens/sec)

Model  Length

MeZO 702 | MeZO ZO2
OPT-1.3B 8665 4471 (x0.51) | 1901 1830 (x0.96)
OPT-27B 1024 14465 5389 (x0.37) | 1051 1013 (x0.96)
OPT-6.7B 31379 8405 (x0.26) | 439 426 (x0.97)
OPT-13B 56183 10717 (x0.19) | 244 243 (x0.99)
OPT-1.3B 8898 5098 (x0.57) | 1998 1955 (x0.97)
OPT-2.7B 2048 14514 5930 (x0.41) | 1104 1086 (x0.98)
OPT-6.7B 32930 8420 (x0.26) | 492 485 (x0.98)
OPT-13B 58762 10736 (x0.18) | 266 259 (x0.97)
OPT-1.3B 11379 7581 (x0.67) | 1707 1692 (x0.99)
OPT-27B 4096 19655 9023 (x0.45) | 1008 1001 (x0.99)
OPT-6.7B 38047 11763 (x0.30) | 509 505 (x0.99)
OPT-13B 64519 14915 (x0.23) | 275 272 (x0.99)
OPT-1.3B 32499 20507 (x0.63) | 1282 1279 (x0.99)
OPT-27B 8192 38127 21351 (x0.55) | 786 784 (x0.99)
OPT-6.7B 54495 24115 (x0.44) | 446 445 (x0.99)
OPT-13B - 30355 - 246

G.3 Evaluation on Qwen3 Models

To evaluate the generalizability of ZO2 beyond the OPT family, we conduct experiments
on Qwen3 (Yang et al., 2025). Compared to MeZO, ZO2 achieves significant GPU memory
reduction with only a slight drop in throughput. This confirms that our framework remains
highly efficient, even when applied to different LLM architectures. This further supports
the adaptability of ZO2 across diverse model families.

Table 8: Results of ZO2 performance for various Qwen3 models and FP16 modes. The
values in parentheses (x) represent the ratio of each measurement compared to the baseline
MeZO (first column) configuration.

Model GPU Memory Usage (MB) | | Throughput (tokens/sec) 1

MeZO (FP16) ZO2 (FP16) | MeZO (FP16) ZO2 (FP16)

Qwen3-1.7B 9329 8649(x0.92) 8320 6873(x0.82)
Qwen3-4B 14357 9287(x0.64) 3955 3600(x0.91)
Qwen3-8B 22995 10403(x0.45) 2391 1827(x0.76)
Qwen3-14B 36877 13033(x0.35) 1421 1114(x0.78)
Qwen3-32B 71195 13691(x0.19) 668 500(x0.74)

22



	Introduction
	Related Work
	Preliminaries on Zeroth-Order Optimization
	Framework Overview
	Insight
	ZO2 Framework Overview

	Design and Implementation Details
	ZO2 with RNG State Manager
	Dynamic Scheduler Design for Efficient Overlap

	Experiment
	Main Results
	Results on Accuracy Alignment
	Ablation Study

	Conclusion
	More Figures, Algorithms, and Tables
	More Related Work
	Full Preliminaries on ZO and ZO-SGD
	More ZO2 Implementation Details
	Specific Dynamic Scheduler Design for Efficient Overlap
	Efficient Memory Management via Reusable One Block Space on GPU
	Efficient Parameter Update Strategy
	ZO2 in AMP Mode

	Codebase
	Full Experimental Setup
	More Experiments
	Evaluation of AMP Mode
	Analysis of More Experimental Settings
	Evaluation on Qwen3 Models


