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Abstract—The selective fixed-filter active noise control (SFANC)
method can select suitable pre-trained control filters to attenuate
incoming noises. However, the limited number of pre-trained filters
is insufficient to effectively control various forms of noise, especially
when the incoming noise differs much from the filter-training
noises. To address this limitation and generate more appropriate
control filters, a generative fixed-filter active noise control approach
based on Bayesian filter (GFANC-Bayes) is proposed in this paper.
The GFANC-Bayes method can automatically generate suitable
control filters by combining sub control filters. The combination
weights of sub control filters are predicted via a one-dimensional
convolutional neural network (1D CNN). Based on prior infor-
mation and predicted information, Bayesian filtering technique
is applied to decide the combination weights. By considering the
correlation between adjacent noise frames, the Bayesian filter can
enhance the accuracy and robustness of predicting combination
weights. Simulations on real-world noises indicate that the GFANC-
Bayes method achieves superior noise reduction performance than
SFANC and a faster response time than FxLMS. Moreover, exper-
iments on different acoustic paths demonstrate its robustness and
transferability.

Index Terms—Active noise control, Bayesian filter, convolutional
neural network, deep learning, generative fixed-filter ANC.

I. INTRODUCTION

ACOUSTIC noise problems are becoming more and more
common with the increased number of industrial equip-

ment in our daily lives, such as engines, fans, transformers,
compressors, and other equipment [1], [2]. The attenuation of
low-frequency noises is expensive and not practical for conven-
tional passive noise control methods [3]. In comparison, active
noise control (ANC) involves the electro-acoustic generation of
an anti-noise to suppress unwanted noise. Ideally, the anti-noise
is of equal amplitude and opposite phase to the disturbance,
thus resulting in the cancellation of both signals [4]. Owing to
its compact size and effectiveness in attenuating low-frequency
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Fig. 1. Block diagram of a traditional feedforward ANC system, where
∑

refers to the acoustic suppression.

noises, ANC has been widely used in many commercial prod-
ucts [5], [6], [7], [8] including headphones [9], ventilation duct,
automobiles [10], etc.

Fig. 1 illustrates the block diagram of a single-channel feed-
forward ANC system, which comprises a reference microphone,
a loudspeaker, an error microphone, and a controller. Tradition-
ally, the control filter is updated based on the reference and error
signals, which are respectively sensed by the reference micro-
phone and error microphone [11]. To minimize the error signal,
the coefficients of the control filter can be adjusted through
adaptive algorithms [12]. Among adaptive ANC algorithms,
the filtered-X least mean square (FxLMS) algorithm and its
extensions are commonly used, as they can compensate for
the secondary path delays and achieve a high computational
efficiency [13].

However, conventional adaptive ANC algorithms are suscep-
tible to instability due to imperfect practical factors such as
inappropriate step size, output-saturation distortion, and feed-
back path effect [14], [15], [16]. Furthermore, the slow re-
sponse speed of LMS-based ANC algorithms may negatively
affect customers’ perception of the noise reduction effect [6].
To alleviate these issues, many mature commercial products
have adopted fixed-filter methods, in which the control filter
coefficients are pre-trained and do not require updating based on
error signals [17]. Although fixed-filter ANC can significantly
improve response speed and robustness, it is only suitable for
a specific noise type, resulting in degraded noise reduction
performance for other types of noises [18].

As an improvement over traditional fixed-filter ANC methods,
a selective fixed-filter active noise control (SFANC) method [19]
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based on frequency band matching was proposed to choose
different pre-trained control filters given different noises. Some
crucial parameters of this method, however, can only be deter-
mined through trial and error. To overcome this limitation, deep
learning techniques, particularly convolutional neural networks
(CNNs) [20], [21], have emerged as promising methods to
improve ANC performance. Leveraging the powerful learning
capabilities of deep neural networks, deep learning-based ANC
shows great potential in reducing various types of noise. Zhang
et al. [22], [23] utilized a recurrent network to estimate can-
celling signals for different primary noises and achieve low-
latency noise control.

To enhance the stability and practicality of ANC, Shi et al. [24]
proposed a deep learning-based SFANC algorithm. This SFANC
method selects a suitable pre-trained control filter for the input
noise via CNNs implemented in a co-processor, which can
achieve a rapid response time and good robustness. Also, all
the parameters are learned automatically from the noise dataset
without additional human effort. However, the number of pre-
trained control filters in the SFANC method is limited, which
may result in unsatisfactory noise control performance for some
noises, particularly those that differ much from the filter-training
noises [25].

This paper proposes a generative fixed-filter active noise
control approach with Bayesian filtering (GFANC-Bayes) to
overcome the limitation of SFANC [24] and improve noise
reduction performance. Initially, a pre-trained broadband control
filter is decomposed into multiple sub control filters. During
noise reduction, the co-processor generates a new control filter
for real-time noise cancellation by adaptively combining sub
control filters. A lightweight one-dimensional convolutional
neural network (1D CNN) is developed to automatically predict
the combination weights of sub control filters given the input
noise. The predicted combination weights are then filtered by a
Bayesian filtering module, which exploits the correlation infor-
mation between adjacent noise frames to improve the prediction
accuracy and robustness [26].

Unlike adaptive ANC systems, GFANC-Bayes can avoid
instability and slow convergence since it does not require er-
ror signals to update. The GFANC-Bayes system can achieve
delayless noise reduction through the efficient coordination be-
tween the co-processor and real-time controller. Furthermore, an
adaptive labelling mechanism is proposed to reduce the manual
effort required for labelling the noise dataset. Two types of
combination weights including hard weights and soft weights are
investigated in numerical simulations. The experimental results
on real-recorded noises demonstrate that the GFANC-Bayes
method achieves fast response speeds, low noise reduction er-
rors, and high degrees of robustness.

This paper is structured as follows. Section II introduces
the construction of sub control filters in the GFANC-Bayes
method. The 1D CNN module and Bayesian filtering module are
described in Sections III and IV, respectively. Section V details
the process of real-time noise control. Section VI presents the
simulation results of the proposed method. The final section
concludes the paper.

II. SUB CONTROL FILTERS IN GFANC-BAYES METHOD

The overall architecture of the proposed GFANC-Bayes
approach is illustrated in Fig. 2. The co-processor operates at
the frame rate and meanwhile the real-time controller operates
at the sampling rate, which is referred to as the delayless
structure. The input noise signal is initially captured by a
reference microphone and then processed by an analog front
end. Given each noise frame, the co-processor can generate
a corresponding control filter by adaptively combining sub
control filters. Thus, the construction of sub control filters is an
essential stage in the GFANC-Bayes approach.

To obtain the sub control filters, we employed a practi-
cal filter decomposition method based on the theory of filter
perfect-reconstruction [27]. Initially, we utilized the target ANC
system to cancel a broadband primary noise x(n), whose fre-
quency band contained the frequency components of interest.
The FxLMS algorithm was adopted to derive the optimal control
filter due to its low computational complexity [28]. The obtained
optimal control filter is the pre-trained broadband control filter,
which is the sole required prior data for the GFANC-Bayes
system.

It is assumed that the pre-trained control filter has N taps,
which is represented as c = [c(0), . . . , c(n), . . . , c(N − 1)]T. c
can be decomposed into a perfect-reconstruction filter bank as
outlined below. Through the discrete Fourier transform (DFT),
its frequency spectrum is derived as

C = FNc = [C(0), . . . , C(k), . . . , C(N − 1)]T, (1)

where FN denotes the DFT matrix. The control filter C can be
divided into M sub control filters as

C =
M∑

m=1

Cm, (2)

in which the frequency spectrum of the m-th sub control filter
can be expressed as

Cm = [Cm(0), . . . , Cm(k), . . . , Cm(N − 1)]Tm ∈ [1,M ].
(3)

When m �= M , the elements in the above vector are obtained
from

Cm(k) =

⎧⎪⎨
⎪⎩
C(k) k ∈ [(m− 1)I + 1,mI]

∪[N −mI,N − 1− (m− 1)I]

0 others;

(4)

Differently, the frequency spectrum of the last sub control
filter (m = M ) is computed as

CM (k) =

{
C(k) k ∈ [(M − 1)I + 1, N − 1− (M − 1)I]

0 others,
(5)

where the bandwidth of sub control filter is I = � N
2M �, where

�·� denotes the floor operation of the argument.
The time-domain representation of the m-th sub control filter

can be expressed as

cm = F−1
N Cm, (6)
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Fig. 2. Block diagram of the proposed GFANC-Bayes approach mainly consists of two modules: the generation of control filters in the co-processor and noise
cancellation in the real-time controller. The configuration of the convolution layer is denoted as: (kernel size, number of channels, stride, padding).

where F−1
N denotes the inverse DFT matrix. The control signal

y(n) of the ANC system is obtained from

y(n) = xT(n)c

= xT(n)F−1
N FNc. (7)

According to (1), y(n) can rewritten to be

y(n) = xT(n)F−1
N C. (8)

Substituting (2) and (6) into (8) yields the control signal
rewritten with the sub control filters cm

y(n) = xT(n)F−1
N

M∑
m=1

Cm

= xT(n)

M∑
m=1

cm. (9)

The above analysis indicates that the control filter c can be
perfectly reconstructed in the time domain by its all sub control
filterscm. Therefore, by decomposing the pre-trained broadband
control filter based on the theory of filter perfect reconstruction,
multiple fixed sub control filters can be obtained. The frequency
responses of the pre-trained broadband control filter and its M
sub control filters are depicted in Fig. 3.

Through the weighted sum of sub control filters, the GFANC-
Bayes method can generate various control filters with respect
to the incoming noises. Compared to SFANC [19] with a fixed
number of pre-trained control filters, GFANC-Bayes is able to
generate a control filter with higher similarity in frequency con-
tent to the primary noise and thus achieve superior noise reduc-
tion performance, as demonstrated in Appendix A. Moreover,
only one pre-trained control filter is required as the prior data in
GFANC-Bayes, significantly reducing the effort for pre-training
control filters.

Fig. 3. Frequency bandwidths of the pre-trained broadband control filter and
its sub control filters in the GFANC-Bayes method.

III. THE PROPOSED ONE-DIMENSIONAL CNN

A lightweight 1D CNN is constructed in the co-processor
to automatically predict the combination weights of sub con-
trol filters for various source noises. All parameters can be
learned from noise data using the data-driven method. Also,
the small size of the 1D CNN enables it to operate on less
powerful co-processors such as mobile phones. In some audio
applications [29], [30], it has been shown that CNNs employing
time-domain waveforms can achieve comparable performance
to those utilizing frequency spectrograms. Directly employing
time-domain waveforms is more practical and convenient than
employing frequency-domain data. Hence, the 1D CNN in
GFANC-Bayes is designed to take the noise waveform as input
and output its corresponding combination weight vector.

The input of the 1D CNN is a normalized one-second-long
noise waveform. The input noise length of the network can be
adjusted given specific application scenarios to achieve a balance
between computational load and noise reduction performance.
The normalization operation is defined as follows:

x̂(n) =
x(n)

max[x(n)]−min[x(n)]
, (10)
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Fig. 4. Examples of hard weights and soft weights used to combine M sub
control filters. Generating the hard weights and soft weights belong to multi-label
classification and regression tasks, respectively.

where max[·] and min[·] represent the maximum and minimum
values of the input vector x(n), respectively. The operation
rescales the input range into (−1, 1) and retains the signal’s
negative part containing phase information, which is important
for ANC applications [31].

The 1D CNN employs convolutional kernels of varying sizes
to simulate a variety of bandpass filters to effectively extract
features from the noise signal. With the ability to extract features,
we can use the 1D CNN to obtain two types of combination
weights, including hard weights and soft weights, as shown in
Fig. 4. How to obtain the hard and soft weights using the 1D
CNN will be explained below.

A. Hard Weights

The proposed 1D CNN, illustrated in Fig. 2, comprises a
convolutional layer, two residual blocks, multiple pooling layers,
and a fully connected (FC) layer. Each residual block consists
of two convolutional layers, batch normalization, and ReLU
non-linearity. Note that a shortcut connection is utilized to
add the input with the output in each residual block, as the
residual architecture is demonstrated to be easily optimized [32].
Additionally, to fully leverage both global and local informa-
tion, the 1D CNN employs a broad receptive field (RF) in the
first convolutional layer and narrow RFs in the subsequent
layers.

The use of hard weights implies that the combination weights
of sub control filters are binary, which helps to reduce the
computational burden and memory requirements. The gener-
ation of hard weights belongs to a multi-label classification
problem [33], in which a given instance may be associated with
multiple labels. Deep learning approaches have demonstrated
promising performance for multi-label classification [34]. To
complete the multi-label classification task, the proposed 1D
CNN has the following special configurations:
� The number of nodes in the output layer is M , which

matches the number of labels.
� The Sigmoid layer is added to the output layer to perform

element-wise function for all values:

σ(z) =
1

1 + exp(−z)
, (11)

where z refers to the input value, and the output value of
Sigmoid function ranges from 0 to 1.

Fig. 5. Block diagram of adaptive labelling mechanism, in which the LMS
algorithm is used to automatically label the training noise with the weight vector
used for combining sub control filters.

� The Binary Cross Entropy (BCE) loss is used to train the
proposed 1D CNN and expressed as:

L = − 1

M

M∑
m=1

[tm · log pm + (1− tm) · log (1− pm)] ,

(12)
where M denotes the number of labels of an instance. tm
and pm represent the target probabilities and the predicted
probabilities of m-th label, respectively.

� After training, the output values of the 1D CNN are con-
verted to hard weights through rounding, resulting in binary
values of 0 or 1.

B. Soft Weights

Soft weights differ from hard weights in that the weights used
to combine sub control filters are numeric values ranging from 0
to 1. Hence, producing soft weights is a regression task. The most
commonly used loss function for regression, the mean squared
error (MSE) loss function [35], is utilized to train the 1D CNN.
The MSE loss is computed as∑n

i=1 (pi − ti)
2

n
, (13)

where pi and ti denote the predicted value and its target value,
and n represents the total number of samples that are used to
compute MSE.

Following training, the output of the 1D CNN is directly used
as the combination weights of sub control filters without further
processing. In summary, the proposed 1D CNN can be trained
to create hard or soft weights, depending on the labels of the
dataset and the type of loss function during training. Notably,
the generation of hard weights involves a rounding operation,
whereas the generation of soft weights does not.

C. Adaptive Labelling Mechanism

To automatically label the noises used for training network
with its corresponding combination weight vector, we have pro-
posed an adaptive labeling mechanism illustrated in Fig. 5. The
adaptive labelling mechanism simplifies the labelling process,
making it more efficient and practical in actual ANC applica-
tions. If we assume that the input training noise is x(n), the
output signal of the m-th fixed sub control filter is computed as

ym(n) = xT(n)cmm ∈ [1,M ]. (14)
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The control signal yg(n) is subsequently derived from the
weighted sum of all sub control filter outputs:

yg(n) = yT(n)g(n),

y(n) = [y1(n), . . . , ym(n), . . . , yM (n)]T ,

g(n) = [g1(n), . . . , gm(n), . . . , gM (n)]T . (15)

where g(n) refers to the combination weight vector.
Subsequently, the control signal passes through the secondary

path to cancel the disturbance d(n). The error signal is obtained
from

e(n) = d(n)− yg(n) ∗ s(n), (16)

where d(n) and s(n) represent the disturbance collected by the
error microphone and the impulse response of secondary path;
∗ represents the linear convolution.

To minimize the square of (16) through least mean square
(LMS) algorithm [36], the updating formula of the weights is
derived as

g(n+ 1) = g(n) + μy′(n)e(n),

y′(n) = y(n) ∗ s(n), (17)

where μ stands for the step size.
Once (17) converges, the obtained combination weight vector

can be directly treated as the soft weights vector S:

S = [go1, . . . , g
o
m, . . . , goM ]T , (18)

where gom represents the optimal combination weight of m-th
sub control filter. Additionally, the soft weights vector can be
rounded to obtain the hard weights vector H:

H = [h1, . . . , hm, . . . , hM ]T ,

hm =

{
1 gom ≥ 0.5,

0 gom < 0.5,
(19)

The produced weight vectors S and H serve as the soft label
and hard label of the training noise, respectively. With the soft-
labeled and hard-labeled noise datasets, the 1D CNN model can
be trained to predict soft weights and hard weights as illustrated
in Fig. 4.

IV. BAYESIAN FILTERING MODULE

The pre-trained 1D CNN model can automatically output
the combination weights of sub control filters for each frame
noise. Each output value represents the predicted probability
of employing the corresponding sub control filter. Moreover,
its prior probability is provided from previous frames. With
the prior probability and predicted probability, we can obtain
the posterior probability of each sub control filter based on
Bayesian theory [26]. This posterior probability is used as the
decided combination weight of the sub control filter. Below is
an explanation of the Bayesian filtering module.

Fig. 6. Block diagram of Bayesian filtering module, where the combination
weight of m-th sub control filter is decided by the prior weight and predicted
weight based on Bayesian filter. The Z−1 represents a one-frame delay unit to
retain the decided weight as the prior weight for the next frame.

A. Processing Within Bayesian Filtering

The Bayesian filtering module is depicted in Fig. 6. For
i-th frame of noise xi(n), it is assumed that the combination
weight of m-th sub control filter is denoted as gm. In the
following analysis, we use fm = 1 to indicate the use of the
m-th sub control filter, otherwise fm = 0. For the m-th sub
control filter, the predicted combination weight can be denoted
as pθ[xi(n) | fm = 1], which is automatically obtained by the
1D CNN. Meanwhile, the prior combination weight p−[fm = 1]
has been provided by the previous frame data. Initially, the prior
combination weight is set to 0.5 for the first frame data. With
the predicted weight and prior weight, the combination weight
of the m-th sub control filter is decided based on the Bayesian
filter:

gm = p[fm = 1|xi(n)] =

pθ[xi(n)|fm = 1]p−(fm = 1)

pθ[xi(n)|fm = 1]p−(fm = 1)+pθ[xi(n)|fm=0]p−(fm=0)
,

(20)

where pθ[xi(n)|fm = 0] and p−(fm = 0) are obtained from

pθ[xi(n)|fm = 0] = 1− pθ[xi(n)|fm = 1],

p−(fm = 0) = 1− p−(fm = 1). (21)

The pseudo-code for determining the combination weights of
sub control filters is detailed in Table I. As shown in Table I,
the prior weight vector is iteratively updated by the decided
combination of sub control filters for each frame noise. In the
Bayesian filtering module, previous information is also utilized
to decide the combination weights in addition to the current
information obtained by the current frame [24], [37]. Due to
exploiting both the prior and predicted information, the predic-
tion accuracy of the combination weights can be improved by
the Bayesian filtering module [38]. Furthermore, the following
section analyzes the effect of the Bayesian filtering module from
a theoretical standpoint.

B. Theoretical Analysis of Bayesian Filtering

The accuracy of predicting the combination weights of sub
control filters in GFANC-Bayes can be improved by using
Bayesian filtering technology. Formally, the accuracy improve-
ment can be theoretically analyzed as follows. For simplicity,
we assume that the input signal of the 1D CNN is a scalar x.
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TABLE I
PSEUDO-CODE OF DECIDING THE COMBINATION WEIGHTS OF SUB CONTROL

FILTERS

For the analysis of the Bayesian filtering module, we have first
introduced a prior probability distribution p−(f), which is a
Gaussian distribution as

p−(f) =
1√
2πσ0

e
− (f−μ0)2

2σ2
0 . (22)

where μ0 and σ2
0 represent its mean and variance, respectively.

fm denotes the discrete state of the random variable value f and
can be represented as{

fm = 1 f ≥ μ0,

fm = 0 f < μ0.
(23)

The predicted combination weight by the 1D CNN is also
assumed to be a Gaussian distribution as

pθ(x|f) = 1√
2πσ1

e
− (x−f)2

2σ2
1 , (24)

where f and σ2
1 denote its mean and variance, respectively.

From (22), (23), and (24), we can derive the multiplication of
pθ(x|fm = 1) and p−(fm = 1) as

pθ(x|fm = 1)p−(fm = 1) =

∫ ∞

μ0

pθ(x|f)p−(f)df. (25)

In this case, f has a range of [μ0,∞). Then, we divide the
range into K intervals and apply the mean value theorem [39]
to (25). It can be rewritten as

pθ(x|fm = 1)p−(fm = 1) =

K∑
k=1

pθ(x|ξk)p−(ξk)ε, (26)

where ξk ∈ (ak, ak + ε) and a1 = μ0. ak and ε refer to the left
endpoint and length of the k-th interval, respectively. Mean-
while, we can get

pθ(x|fm = 1)p−(fm = 1) + pθ(x|fm = 0)p−(fm = 0)

=

∫ ∞

μ0

pθ(x|f)p−(f)df +

∫ μ0

−∞
pθ(x|f)p−(f)df

=

∫
pθ(x|f)p−(f)df. (27)

Substituting (26) and (27) into the Bayesian (20) yields the
decided combination weight gm:

gm = p(fm = 1|x)

=
pθ(x|fm = 1)p−(fm = 1)

pθ(x|fm = 1)p−(fm = 1) + pθ(x|fm = 0)p−(fm = 0)

=

K∑
k=1

ε

[
pθ(x|ξk)p−(ξk)∫
pθ(x|f)p−(f)df

]

= ε

K∑
k=1

p (ξk|x) . (28)

Due to p(ξk|x) � N
(

μ0σ
2
1+xσ2

0

σ2
0+σ2

1
,

σ2
0σ

2
1

σ2
0+σ2

1

)
derived in Ap-

pendix B, the distribution of gm can be represented as

gm � N

(
μ0σ

2
1 + xσ2

0

σ2
0 + σ2

1

Kε,
σ2
0σ

2
1

σ2
0 + σ2

1

Kε2
)
. (29)

If there is no Bayesian filtering module in the GFANC-Bayes
system, the decided combination weight gm will be the same as
those output by the 1D CNN. In this case, gm can be derived as

gm = pθ(x|fm = 1) = ε
K∑

k=1

pθ(x|ξk). (30)

Since the variance of pθ(x|ξk) isσ2
1 given in (24), the variance

of gm can be derived as

D(gm) = σ2
1Kε2. (31)

Comparing the variances of the two normal distributions (29)
and (31), we can found as

σ2
0σ

2
1

σ2
0 + σ2

1

Kε2 =
1

1 +
σ2
1

σ2
0

σ2
1Kε2 < σ2

1Kε2. (32)

The comparison demonstrates that using the Bayesian filtering
module to decide the combination weight brings about a lower
variance compared to not using it. On the basis of this finding, it
is suggested that the integration of the Bayesian filtering module
can improve the accuracy of the prediction of the combination
weights of sub control filters, and can generate more appropriate
control filters. Additionally, using Bayesian filtering technology
to decide the combination weights can improve the robustness
of the system by reducing the impact of random variations from
incoming noises.

V. DELAYLESS NOISE CANCELLATION

For each frame noise,M sub control filters are summed based
on the obtained combination weights to produce a corresponding
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control filter w(n):

w(n) =

M∑
m=1

gmcm(n), (33)

where n denotes the time index, and gm represents the combi-
nation weight of m-th sub control filter cm(n).

The generated control filter is subsequently provided to the
real-time controller for noise control. The reference signal is
processed by the generated control filter to obtain the control
signal:

y(n) = xT(n)w(n). (34)

The control signal filtered by the secondary path is used to obtain
the anti-noise wave for suppressing the disturbance d(n) in the
listening environment. After noise reduction, the error signal
picked up by the error sensor is given by

e(n) = d(n)− y(n) ∗ s(n), (35)

where s(n) is the impulse response of the secondary path, ∗
represents linear convolution operation. In particular, unlike
traditional adaptive ANC algorithms, GFANC-Bayes does not
require the error signal to update its control filter, which mini-
mizes the risk of divergence and increases its robustness.

Overall, the proposed GFANC-Bayes method is a novel ap-
proach to generate different control filters and achieve delayless
noise control. The delayless noise reduction process of the
GFANC-Bayes method can be summarized as follows:

1) The co-processor utilizes the 1D CNN to predict the
combination weights, which are filtered by the Bayesian
filtering module. Following this, a new control filter is
generated by combining sub control filters using the com-
bination weights.

2) To achieve delayless noise control, the co-processor op-
erates at the frame rate while the real-time controller
performs at the sample rate in parallel.

3) When the input noise frame changes, the generated control
filter is adjusted accordingly, and the updated version is
transmitted to the real-time controller.

This approach allows for the utilization of a high-performance
co-processor (e.g., a laptop), operating at the frame rate to
execute the 1D CNN. Concurrently, online noise control is
carried out at the sampling rate on a less powerful processor. The
GFANC-Bayes approach can generate suitable control filters
given the input noises and achieve delayless noise control, mak-
ing it a highly promising solution for practical ANC applications.

VI. NUMERICAL SIMULATION RESULTS

In this section, a series of numerical simulations are con-
ducted to assess the efficacy of the GFANC-Bayes approach in
comparison to the SFANC and FxLMS algorithms.

A. Experimental Setup

In the simulations, the pre-trained broadband control filter is
decomposed into 15 sub control filters. The control filter has
1,024 taps, and the sampling rate is set to 16 kHz. Notably,

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT NETWORKS

the primary and secondary paths utilized in simulation B-F are
synthetic bandpass filters with a frequency range of 20-7,980 Hz,
whereas the final experiment is conducted on real acoustic paths.
The performance evaluations of GFANC-Bayes are conducted
using real-recorded dynamic noises: an aircraft noise with a
frequency range of 50 to 8,000 Hz and a traffic noise with
a frequency range of 40 to 1,200 Hz. Notably, these noises
from the real world are not included in the training dataset.
In addition, two additional primary noises were generated by
cascading and mixing the aircraft and traffic noises in the time
domain.

B. Effectiveness of the Proposed 1D CNN

1) Training of the Network: For training the network, a syn-
thetic noise dataset is divided into 3 subsets: 80,000 noise tracks
for training, 2,000 noise tracks for validation, and the remaining
2,000 noise tracks for testing. The synthetic noises are generated
by filtering white noise through various band-pass filters with
randomly chosen centre frequencies and bandwidths. Each noise
track in the dataset has a 1-second duration. These noise tracks
are seen as the reference signal and labelled with soft weights
and hard weights by the adaptive labelling mechanism illustrated
in Fig. 5. Additional noise (as described in Appendix A) is added
to the reference signal to change its SNR as 30 dB.

During network training, the Adam algorithm was used for
optimization. The number of training epochs was set as 50. The
starting learning rate was 0.01, and it decreased by a factor of 5
after every five epochs. To prevent gradients from exploding or
vanishing, Glorot initialization [43] was employed to initialize
the CNN’s parameters. Moreover, all network parameters were
constrained to L2 regularization with a coefficient of 0.0001.

2) Testing of the Network: The generation of hard weights
used to combine 15 sub control filters is a multi-label classifica-
tion task. In the multi-label classification task, the proposed 1D
CNN is compared against the M3, M5, M11, M18, and M34-res
1D networks [29]. As baselines, some lightweight 2D networks
such as ShuffleNet v2 [40], Mobilenet v2 [41], and Attention
Network [42] are also employed. The performance of these net-
works in the GFANC-Bayes approach is shown in Table II, where
testing accuracy refers to the accuracy of predicting the hard
weights for the testing noises. A noise instance is considered
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Fig. 7. (a)–(c): Error signals of different ANC algorithms, (d): Comparison of
the averaged noise reduction level in each second, on the aircraft noise.

correctly classified only if all of its hard weights are correctly
predicted.

On the test dataset, the proposed 1D CNN achieves the
greatest prediction accuracy of 97.20%, indicating that it can
effectively extract noise features to provide suitable hard weights
for the input noises. A higher accuracy suggests that a more
suitable control filter can be generated by combining sub con-
trol filters using the predicted hard weights. Therefore, the
GFANC-Bayes system can generate more suitable control filters
with the proposed 1D CNN compared to using other networks.
Meanwhile, the proposed 1D network is lightweight, with only
0.21 M parameters, making it possible to be implemented on
co-processors such as low-cost mobile devices. Furthermore,
compared to using frequency-domain data in 2D networks,
using time-domain waveform directly in 1D networks is more
convenient and practical [30].

C. Comparison of Soft Weights and Hard Weights

As discussed in Section III, the proposed 1D CNN trained
with different methods can provide hard weights or soft weights.
Also, the noise dataset with its labels of hard weights and soft
weights is used to train the 1D CNN model for providing hard
weights and soft weights, respectively. In this section, we con-
duct experiments to compare the noise reduction performance
of using hard weights and soft weights to combine sub control
filters in GFANC-Bayes.

Fig. 7 depicts the noise reduction effects of GFANC-Bayes
with hard and soft weights on the real-recorded aircraft noise.
The averaged noise reduction level is calculated every second.
According to the results, the proposed GFANC-Bayes method
with hard weights and soft weights can respond rapidly and
achieve good noise reduction performance on the aircraft noise.
Especially, using soft weights instead of hard weights to com-
bine sub control filters yields superior results. Taking 1s-2 s

Fig. 8. Noise reduction performance of the GFANC method using soft weights
with and without Bayesian filtering module, on the cascaded noise of aircraft
and traffic noises.

as an example, the GFANC-Bayes algorithm with soft weights
outperforms that with hard weights by around 5 dB in terms of
averaged noise reduction level.

The choice between hard and soft weights depends on the par-
ticular objectives for noise reduction. Hard weights excel in com-
putational efficiency due to their reliance on binary operations,
but their noise reduction performance may be limited in certain
situations. In contrast, soft weights offer a more nuanced degree
of noise control at the cost of increased computational demands.
Therefore, if the main goal is maximum noise reduction, opting
for soft weights is advisable. Conversely, hard weights may be
the preferred choice if computational efficiency is prioritized. In
the following simulations, we opt for soft weights to combine
sub control filters to achieve a higher level of noise reduction.

D. Effectiveness of Bayesian Filtering Module

The Bayesian filtering module is utilized to determine the
combination weights of sub control filters based on both prior
weights and predicted weights. To ascertain the effectiveness of
the Bayesian filtering module, we compared the noise attenua-
tion results obtained by the GFANC method with and without
the Bayesian filtering module. The cascaded noise of aircraft
and traffic noises is used as the primary noise.

In Fig. 8, it is observed that the GFANC method with Bayesian
filtering module can effectively track and attenuate different
parts of the cascaded noise. Especially, during the transition
period from one noise to the other (i.e. 10s-11 s), the GFANC
method with Bayesian filtering significantly outperforms that
without Bayesian filtering. This may be due to inaccurate 1D
CNN predictions in the sudden transition from aircraft noise
to traffic noise. The Bayesian filtering module can mitigate
false predictions stemming from the 1D CNN, which plays an
important role in improving robustness during noise control.
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Fig. 9. Spectrogram of error signal obtained (a) without ANC, (b) by the
GFANC-Bayes algorithm using soft weights, (c) by the SFANC algorithm,
(d) by the FxLMS algorithm, on the traffic noise.

In terms of power spectral density (PSD), the GFANC method
with Bayesian filtering shows superiority in reducing low-
frequency noise components (20–2,700 Hz) compared to that
without Bayesian filtering. The improvement is primarily at-
tributed to the Bayesian filtering module’s utilization of both pre-
vious and predicted information. This allows for more accurate
and robust prediction of the combination weights of sub control
filters. As a result, the GFANC method with Bayesian filtering
can generate more suitable control filters, thereby achieving
better noise reduction performance.

E. Comparison With the SFANC Method

The number of pre-trained control filters is limited in
SFANC [44], which may result in unsatisfied noise control
performance for some noises. In comparison, the GFANC-Bayes
algorithm is able to generate different control filters for different
input noises. To validate the superiority of GFANC-Bayes over
SFANC, we conducted some comparison experiments on the
traffic noise. The spectrograms of the noise signal attenuated by
different ANC algorithms are presented in Fig. 9.

According to Fig. 9, it is found that the traffic noise is a
broadband low-frequency noise, and most components of the
traffic noise can be effectively attenuated when the GFANC-
Bayes algorithm is used. However, SFANC is less effective at
removing traffic noise components above 1,000 Hz. The reason
is that SFANC can only choose control filters from a limited
number of candidates, which may lead to unsuitable filters for
some noise signals. In contrast, the GFANC-Bayes method is
capable of generating more appropriate control filters to deal
with different parts of the input noise. Also, we can observe that
the FxLMS algorithm responds much slower in cancelling the
traffic noise than GFANC-Bayes and SFANC.

Additionally, on the traffic noise, we examined the robustness
of GFANC-Bayes and SFANC when dealing with a varying
primary path that changes every 10 seconds. The primary path
is mixed with additional white noises to adjust its power ratios

Fig. 10. Error signals (a)–(c) and Averaged noise reduction level in each
second (d), when using different ANC algorithms to attenuate the traffic noise
on the varying primary path.

(power of the primary path vector to that of noise) to be 50 dB
in the second 10 seconds and 30 dB in the last 10 seconds.
The performance of GFANC-Bayes and SFANC on the varying
primary path are shown in Fig. 10. Although the variations of
the primary path degrade the performance of GFANC-Bayes and
SFANC, they still perform noise cancellation to some extent. The
result shows the robustness of GFANC-Bayes and SFANC on
the slight variations of the primary path.

F. Comparison With the FxLMS Algorithm

In Fig. 7, the GFANC-Bayes approaches with hard weights
and soft weights are compared to the FxLMS algorithm with a
step size of 0.0001. It is found that GFANC-Bayes with hard
weights or soft weights consistently outperforms the FxLMS
algorithm. Noticeably, the GFANC-Bayes approach can respond
to the noise much faster and achieve lower errors than the FxLMS
algorithm. In the initial stage, GFANC-Bayes with soft weights
achieves an averaged noise reduction level of 13 dB in 1s-2 s,
whereas the FxLMS algorithm only obtains 2 dB. The averaged
noise reduction level during 9s-10 s achieved by GFANC-Bayes
with soft weights and GFANC-Bayes with hard weights are
approximately 12 dB and 9 dB greater than that of FxLMS,
respectively.

Additionally, Fig. 10 illustrates the performances of GFANC-
Bayes and FxLMS algorithms in response to the varying primary
path. Despite its adaptive capabilities, the FxLMS algorithm
exhibits a slow convergence speed on the varying primary path.
Conversely, the control filters generated by the GFANC-Bayes
method can rapidly attenuate the noise. Furthermore, the FxLMS
algorithm relies on error signals to update control filters, result-
ing in a risk of divergence. Differently, the absence of feedback
error signals in the GFANC-Bayes method helps prevent insta-
bility. Our prior work [37] showed that an effective combination
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Fig. 11. Frequency spectrum comparison of the pre-trained broadband control
filters on different acoustic paths.

TABLE III
NMSE (IN DB) RESULTS OF THE GFANC-BAYES AND SFANC METHODS

of fixed-filter algorithms and adaptive algorithms contributes to
improving overall noise reduction performance.

G. Noise Cancellation on Measured Acoustic Paths

In the above simulations, the primary and secondary paths
are synthetic bandpass filters due to the ease of adjustment.
The acoustic paths used during evaluation are the same as those
used during training. However, the acoustic paths in realistic
applications are likely to be different from those used in training.
In this simulation, to assess the transferability of GFANC-Bayes,
we used the real acoustic paths measured from the vent of a noise
chamber, as illustrated in Appendix C.

Firstly, the GFANC-Bayes and SFANC systems trained on
synthetic acoustic paths are transferred into the measured acous-
tic paths. In GFANC-Bayes, we need to obtain the corresponding
broadband control filter on the measured acoustic paths and
decompose it into 15 sub control filters. The broadband control
filters pre-trained on different acoustic paths are quite different,
as illustrated in Fig. 11. In SFANC [44], we need to obtain
15 pre-trained control filters on the measured acoustic paths.
Noticeably, the trained CNNs in the GFANC-Bayes and SFANC
systems remain unchanged.

The performances of GFANC-Bayes and SFANC in terms
of normalized mean squared error (NMSE) are summarized in
Table III. NMSE in dB is defined as

NMSE = 10 log10

∑L
n=1 e

2(n)∑L
n=1 d

2(n)
, (36)

where L denotes the length of the signal vector. Table III shows
that GFANC-Bayes and SFANC can attenuate real-world noises
on different acoustic paths, but GFANC-Bayes consistently out-
performs SFANC by a large margin.

Fig. 12. Noise reduction results of the GFANC-Bayes method used on
(a) synthetic acoustic paths and (b) measured acoustic paths, where the primary
noise is the mixed noise of aircraft and traffic noises.

Additionally, the error signals of GFANC-Bayes on different
acoustic paths are presented in Fig. 12. The primary noise
is formed by mixing aircraft and traffic noises. According to
Fig. 12, GFANC-Bayes used on real acoustic paths has a slight
performance degradation compared to that used on synthetic
acoustic paths. Therefore, the simulations validate the effective-
ness and transferability of the GFANC-Bayes method on real
acoustic paths. Furthermore, using the trained GFANC-Bayes
system in a new environment only requires the corresponding
broadband control filter, making the method easy to implement
in a variety of practical scenes.

VII. CONCLUSION

In this paper, we propose the GFANC-Bayes method to gener-
ate appropriate control filters for different primary noises. The
co-processor utilizes the 1D CNN to predict the combination
weights of sub control filters for each noise frame. The Bayesian
filtering module is then employed to decide the combination
weights based on prior and predicted weights. After that, a
new control filter is generated by combining sub control filters
and sent to the real-time controller operating at the sampling
rate. Due to the efficient collaboration between the co-processor
and real-time controller, the GFANC-Bayes method can achieve
delayless noise reduction.

In the simulations of real-world noises, the efficacy of the pro-
posed 1D CNN and Bayesian filtering module is demonstrated.
Due to the flexible generation of control filters, the GFANC-
Bayes method reduces the traffic noise by approximately 10 dB
more than the SFANC method. Also, it has a faster response time
than the FxLMS algorithm because adaptive updating is avoided.
Additionally, the GFANC-Bayes method shows good robustness
and transferability when dealing with different acoustic paths.
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These results imply that the GFANC-Bayes approach has the
potential to be a practical noise reduction method.

APPENDIX A
IMPROVEMENT OF GFANC OVER SFANC

Based on the work of SFANC [19], it is suggested that a pre-
trained control filter can be chosen by considering the similarity
of spectral content between the training noise and the actual
primary noise. The spectral content, which encompasses the
central frequency and bandwidth in the frequency domain, plays
a crucial role. In a single-channel feedforward ANC system, as
depicted in Fig. 1, P (ω), S(ω), and W (ω) correspond to the
transfer functions of the primary path, the secondary path, and
the control filter, respectively. For simplicity, it is assumed that
the reference signal is directly obtained from the noise source.

In the offline pre-training stage of SFANC, a series of primary
noises are utilized to obtain corresponding optimal control fil-
ters. Formally, a broadband training signal X0(ω) is input as a
reference signal

X0(ω) = T0(ω) · Rect
(
ω−ω0

2B0

)
, (A.1)

where T0(ω) refers to a conjugate symmetric function with
respect to frequency ω [45]. ω0 and B0 represent the central
frequency and bandwidth in the frequency domain, respectively.
The rectangular function Rect(·) is given by

Rect

(
ω − ω0

2B0

)
=

{
1 |ω| ∈ [ω0 −B0, ω0 +B0]

0 otherwise.
(A.2)

According to [19], the optimal control filter for the training
signal can be expressed by

W 0
opt(ω) =

P (ω)

S(ω)
· Rect

(
ω − ω0

2B0

)
. (A.3)

At the online control stage, the incoming primary noise as-
sumed to be a broadband noise with the central frequency ω1

and bandwidth B1 can be formulated as

X1(ω) = T1(ω) · Rect
(
ω − ω1

2B1

)
, (A.4)

where T1(ω) is a conjugate symmetric function with respect to
frequency ω. The rectangular function is given by

Rect

(
ω − ω1

2B1

)
=

{
1 |ω| ∈ [ω1 −B1, ω1 +B1]

0 otherwise.
(A.5)

Using the FxLMS algorithm, the optimal control filter for the
primary noise can be derived as

W 1
opt(ω) =

P (ω)

S(ω)
· Rect

(
ω − ω1

2B1

)
. (A.6)

In practice, apart from the primary noise x1(n), quantization
noises, measurement noises, or electronic component interfer-
ence may also exist in the ANC system. Considering the addi-
tional noise, the reference signal can be expressed as

x(n) = x1(n) + v(n) (A.7)

where v(n) means a white Gaussian noise v(n) ∼ N(0, N0/2).
If the pre-trained control filter W 0

opt is used to attenuate the
primary noise, the error signal can be derived as

e(n) = d1(n)− [x1(n) + v(n)] ∗ w0
opt(n) ∗ s(n), (A.8)

where d1(k) is the disturbance. To simplify the analysis, we
assume that ω0 = ω1 and B1 ≤ B0. Under this situation, the
mean square error (MSE) of the error signal is expressed by

E
[
e2(k)

]
=

1

2π

∫ π

−π

Se(ω)mindω +
N0

2π
(B0 −B1) , (A.9)

where Se(ω)min is the power spectral density (PSD) of the error
signal when using the optimal control filter W 1

opt(ω).
Therefore, it is concluded that if the input primary noise

has the same central frequency and bandwidth as the training
noise, using SFANC algorithm [19] can achieve the same noise
reduction level as FxLMS algorithm. That is to say ω0 = ω1 and
B0 = B1. However, as described in [19], the number of B0 is
limited in SFANC algorithm:

B0 ∈ {Bs
1, . . . , B

s
i , . . . , B

s
15}i ∈ [1, 15], (A.10)

where Bs
i represents the available bandwidth of the training

noises in SFANC. Although pre-training more control filters in
SFANC can potentially increase the number of Bs

i , the number
ofBs

i is still limited. Hence, there is a possibility that there might
not be a matching B0 for a given B1 in SFANC.

To overcome the limitation of SFANC, we use the weighted
sum of M sub-bandwidths Bg

m to generate arbitrary bandwidth
B0 in the proposed GFANC method:

B0 =

M∑
m=1

gmBg
m, (A.11)

where gm means the corresponding combination weight of Bg
m.

In summary, the number of B0 is limited in SFANC, but it is
unlimited in the proposed GFANC method. A more suitable B0

can be automatically generated in the GFANC method to be
matched with B1 so that better noise control performance can
be obtained.

APPENDIX B
DERIVATION OF THE POSTERIOR PROBABILITY p(ξk|x)

Given the (28), the posterior probability p(ξk|x) is computed
as

p (ξk|x) = pθ(x|ξk)p−(ξk)∫
pθ(x|f)p−(f)df . (B.1)

Also, according to (22) and (24), pθ(x|ξk) and p−(ξk) are
computed as

pθ(x|ξk) = 1√
2πσ1

exp

[
− (x− ξk)

2

2σ2
1

]
,

p−(ξk) =
1√
2πσ0

exp

[
− (ξk − μ0)

2

2σ2
0

]
. (B.2)
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Fig. 13. The impulse responses, magnitude responses, and phase responses of
the primary and secondary paths measured from the vent of a noise chamber.

Hence, the product of pθ(x|ξk) and p−(ξk) can be expressed as

pθ(x|ξk)p−(ξk) = 1

2πσ0σ1
exp

[
− (x− ξk)

2

2σ2
1

− (ξk − μ0)
2

2σ2
0

]

=
1

2πσ0σ1
exp

[
− (ξk − x)2

2σ2
1

− (ξk − μ0)
2

2σ2
0

]

= S · 1√
2πσ

exp

[
− (ξk − u)2

2σ2

]
, (B.3)

where

u =
μ0σ

2
1 + xσ2

0

σ2
0 + σ2

1

, σ2 =
σ2
0σ

2
1

σ2
0 + σ2

1

, (B.4)

and

S =
1√

2π(σ2
0 + σ2

1)
exp

[
− (x− μ0)

2

2(σ2
0 + σ2

1)

]
. (B.5)

Similarly, the product of pθ(x|f) and p−(f) is given by

pθ(x|f)p−(f) = S · 1√
2πσ

exp

[
− (f − u)2

2σ2

]
. (B.6)

Thus, the integration in (B.1) can be derived as∫
pθ(x|f)p−(f)df =

∫
S · 1√

2πσ
exp

[
− (f − u)2

2σ2

]
df = S.

(B.7)

Therefore, the posterior probability p(ξk|x) is computed as

p(ξk|x) = pθ(x|ξk)p−(ξk)∫
pθ(x|f)p−(f)df

=
S · 1√

2πσ
exp

[
− (ξk−u)2

2σ2

]
S

=
1√
2πσ

exp

[
− (ξk − u)2

2σ2

]
, (B.8)

it is demonstrated that p(ξk|x) � N(u, σ2), namely p(ξk|x) �
N(

μ0σ
2
1+xσ2

0

σ2
0+σ2

1
,

σ2
0σ

2
1

σ2
0+σ2

1
) [46].

APPENDIX C
MEASURED ACOUSTIC PATHS

See Fig. 13.
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