
Generalizing End-To-End Autonomous Driving In
Real-World Environments Using Zero-Shot LLMs

Zeyu Dong†, Yimin Zhu†, Yansong Li‡, Kevin Mahon§, Yu Sun§*

†Stony Brook University, ‡University of Illinois Chicago, §Sunrise Technology Inc.

Abstract: Traditional autonomous driving methods adopt a modular design, de-
composing tasks into sub-tasks, including perception, prediction, planning, and
control. In contrast, end-to-end autonomous driving, directly outputs actions from
raw sensor data avoiding error accumulation. However, training an end-to-end
model requires a comprehensive dataset. Without adequate data, the end-to-end
model exhibits poor generalization capabilities. Recently, large language models
(LLMs) have been applied to enhance the generalization capabilities of end-to-
end driving models. Most studies explore LLMs in an open-loop manner, where
the output actions are compared to those of experts without direct activation in
the real world. Other studies in closed-loop settings examine their results in sim-
ulated environments. In comparison, this paper proposes an efficient architecture
that integrates multimodal LLMs into end-to-end real-world driving models in
a closed-loop setting. The LLM periodically takes raw sensor data to generate
high-level driving instructions. In our architecture, LLMs can effectively guide
the end-to-end model, even at a slower rate than the raw sensor data, because
updates aren’t needed every time frame. This architecture relaxes the trade-off
between the latency and inference quality of the LLM. It also allows us to choose
from a wide variety of LLMs to improve high-level driving instructions and mini-
mize fine-tuning costs. Consequently, our architecture reduces the data collection
requirements because the LLMs do not directly output actions, and we only need
to train a simple imitation learning model to output actions. In our experiments,
the training data for the end-to-end model in a real-world environment consists of
only simple obstacle configurations with one traffic cone, while the test environ-
ment is more complex and contains multiple obstacles placed in various positions.
Experiments show that the proposed architecture enhances the generalization ca-
pabilities of the end-to-end model even without fine-tuning the LLM.

Keywords: End-to-end Autonomous Driving, Large Vision-Language Model,
Generalization

1 Introduction

Traditional autonomous driving methods [1] adopt the module design pattern, that is, the task of
autonomous driving is decomposed into several subtasks: perception [2, 3, 4], prediction [5, 6, 7],
planning [8, 9, 10], and control [11, 12]. In contrast, end-to-end autonomous driving [13] takes raw
sensor data directly and outputs action constraints for real-world inference.

The end-to-end model differs fundamentally from the module design in the context of training, i.e.,
it only requires sensor data labeled by expert actions instead of intermediate labels of the environ-
ment [14, 15, 16] (e.g., lanes, traffic lights, etc.) or other vehicles [17, 18, 19] (e.g., speed, relative
locations, driving patterns, etc.). These intermediate labels are much harder to obtain in practice.

*Corresponding author: yu.sun@sunriseaitech.com

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

End-to-End Model

Tr
ai

ni
ng

 D
at

as
et

ChatGPT Assist Answer

1. The obstacles in the image are a blue recycling bin and
an orange traffic cone.
2. The blue recycling bin is positioned nearer to the left
wall of the hallway, while the orange traffic cone is more
towards the center, slightly leaning right.
3. There is an empty space between the blue recycling bin
and the left wall, and another empty space between the
orange traffic cone and the right wall.
4. The empty space on the right side between the orange
traffic cone and the right wall is larger.
5. The direction of the larger empty space is RIGHT.

recycling bin
traffic cone

empty space
empty space

RIGHT
C

lo
se

d-
lo

op
 E

va
lu

at
io

n

recycling bin

traffic cone

Empty Space

End-to-End Model

Training

Inference

Instruction

Inference

Figure 1: General idea of the architecture. Top left: the training dataset for the end-to-end model. The purple
line represents the trajectories of the car for this route. Top right: an answer generated by ChatGPT-4o using
the image in the bottom right. Bottom left: closed-loop evaluation on unseen scenarios for end-to-end model
without LLMs. Bottom right: evaluation on unseen scenarios with high-level instructions from LLMs. The
LLM still recognizes the new blue trash bin obstacle not included in the training dataset, evaluate viable empty
space, and choose justifiable instructions.

In addition, end-to-end methods can potentially avoid error accumulation [13] caused by cascad-
ing modules in a modular design. End-to-end methods rely on data-driven approaches that require
vast amounts of data to generalize effectively across diverse environment settings. Therefore, many
previous end-to-end models have opted to gather extensive training data from a wide range of envi-
ronments, often collected in simulators [20, 21]. Despite this, challenges persist when scaling from
simple to complex scenarios that involve planning and reasoning, as discussed in Appendix A.

To address this issue, many recent works have explored the combination of language models with
autonomous driving. It has been shown [22, 23] that small language models, for example, Bert
or GPT, lack the generalization capability. In other words, they cannot generate future optimal
trajectories based on the raw data for a new situation they have never encountered. Thus, Large
Language Models (LLMs), especially multimodal LLMs, have been explored in autonomous driv-
ing [22, 23, 24] and have shown extraordinary abilities to understand driving environments and
properly reason about future actions. Multimodal LLMs offer a notable generalization capability
when pre-trained on a mixture of multimodal datasets. Compared to training in datasets designed
for a specific task, multimodal datasets encompass a vast amount of diversity and have been shown
to significantly enhance LLM performance across different tasks [25].

Only a handful of studies have applied LLMs to autonomous driving in a closed-loop manner. Due
to the physical constraints and liability of real-world driving, these researchers have to design, test,
and evaluate driving models in simulated environments that are not sensitive to the issue of the slow
response time of LLMs. Furthermore, these studies require fine-tuning the LLMs using a significant
amount of simulation data, which is impractical in real-world settings. Among these efforts, a direct
approach to adopting LLMs in end-to-end autonomous driving is to employ them as the end-to-end
model [26], that is, the LLM takes human instructions and outputs low-level actions.

An alternative approach uses LLMs to process the raw sensor data directly and generate actions.
Many works explore this setting in an open-loop environment where LLM outputs trajectories [27]
or steering/throttles signals [28]. These outputs are compared with an expert’s trajectory instead of

2

being applied to the real world or simulated environment for feedback control. Other efforts rely on
LLM in autonomous driving and adopt prompt engineering [29, 26, 30] instead of fine-tuning with
LLM to guide the language model to generate the desired outputs.

More recently, Shao et al. [31] (LMDrive), Azarafza et al. [32], and Paul et al. [21] fine-tuned multi-
modal LLMs [33] and introduced the tuned LLMs to end-to-end autonomous driving in a closed-loop
manner. In these approaches, the fine-tuned LLM takes raw sensor data and outputs future trajec-
tories. One challenge of this approach is that the LLM model has a long inference latency, and if
every action of the vehicle needs one LLM inference, it is impossible to use an LLM for real-world
driving. However, slow LLM inference is not an issue for LMDrive because it uses the CARLA
simulation environment. Another potential drawback of fine-tuning an LLM as the controller is
catastrophic forgetting [34], a property that the LLM may fit the new training data and potentially
lose its generalization properties due to fine-tuning.

In this paper, we tackle these issues by liberating the LLM model from direct action controls and
creating an architecture that integrates multimodal LLMs with end-to-end autonomous driving. We
will assess the effectiveness of the proposed method in a closed-loop real-world environment. In our
architecture, the multimodal LLM takes the multimodal sensor data and outputs high-level planning
instructions such as LEFT, RIGHT. An end-to-end model (a neural network) then takes the sensor
data and the instruction and outputs actions such as steering and throttle.

Fig. 1 demonstrates the key idea of our architecture in an environment where the ego vehicle en-
counters obstacles in a corridor. As shown in Fig. 1, the end-to-end model is only trained with an
environment consisting of only a single front obstacle. The ego vehicle learns to steer left or right
to avoid obstacles. The end-to-end model might not recognize additional obstacles in adjacent lo-
cations. In this scenario, LLMs identify new objects and generate instructions by selecting a wide
clearance space to navigate around obstacles. During the evaluation stage, these instructions are
used to guide the end-to-end model even in scenarios outside its training dataset. In this way, we
enhance the generalization and robustness of the end-to-end model with LLMs. See Section 3.1 for
more details about this experiment.

Our architecture employs LLMs without fine-tuning. Instead, we utilize the Chain-of-Thought
(CoT) prompting method developed by Wei et al. [35]. In contrast to the previous work, our LLM
focuses on generating high-level instructions (left, right, middle, etc) instead of individual actions
(steering, throttle, etc). In doing so, we efficiently leverage the inherent abilities of LLMs for sce-
nario understanding and reasoning and avoid the weakness of the LLM on specific calculations and
inference latency. Conversely, generating actions would require fine-tuning the LLM on specific
driving scenarios, resulting in data collection in complex environments. Another advantage of this
design is that the LLM is allowed to run slower than the end-to-end model. The vehicle does not
need to wait for each inference from the LLM to make a single action by caching and applying
the previous LLM command to the end-to-end model before generating the next instruction. The
end-to-end model uses a lightweight neural network that runs on edge devices or smartphones (for
example, an iPhone in our robotic vehicle) and responds in milliseconds, meeting real-world infer-
ence constraints and compensating for the slow response of the LLM.

In summary, we propose an architecture for autonomous driving that combines end-to-end au-
tonomous driving methods with LLMs. This architecture leverages the contextual understanding
of LLMs to provide high-level instructions, enhancing the generalization and robustness of the end-
to-end model. This combined model mimics human drivers who occasionally make deliberate deci-
sions to alter driving patterns while following decisions instinctively with so-called muscle memory
most of the time. The main contributions are as follows.

• We are the first to integrate LLMs with end-to-end autonomous driving and apply it in a
real-world, closed-loop environment.

• Our framework utilizes a hybrid architecture that combines the rapid response capabili-
ties of a small end-to-end model to achieve millisecond latency with the comprehensive

3

capacity of LLM for world understanding and inference, enabling great adaptation at the
in-vehicle edge and embedding devices to new and previously inexperienced environments.

• We only require the LLM to generate high-level instructions rather than low-level actions.
Our experiment confirms that this approach relaxes the need to fine-tune the LLM while
achieving the generalization capability necessary for end-to-end driving.

• Our architecture only requires a small amount of training data for the end-to-end model
that is easy to collect solely from vision-based sensors, such as vehicle-mounted cameras
and smartphones.

Related works: End-to-end autonomous driving: End-to-end autonomous driving [13, 36]
has flourished since NVIDIA first introduced it [37]. Unlike traditional autonomous driving,
end-to-end autonomous driving outputs actions directly from sensor data. There are several methods
for end-to-end autonomous driving, such as the world model [38, 39], multi-sensor fusing [40, 20],
trajectory based control [41, 42], and multi-task/imitation learning [43, 44, 16, 45, 46]. However, the
end-to-end autonomous driving model usually suffers from weak generalization capability. To ad-
dress the issue, recent works [22] have explored the potential of using LLMs in autonomous driving
to improve the generalization capability of the end-to-end model.

LLM for autonomous driving: Most previous works applied LLMs for autonomous driving in an
open-loop manner [27, 28], where the output actions or predicted trajectories are compared with
experts without applying them to an environment. Recently, Shao et al. [31] explored LLM for
autonomous driving in the closed loop. They applied a fine-tuned multimodal LLM that takes the raw
image and outputs actions. The experiment is conducted in a simulated environment. Paul et al. [21]
and Azarafza et al. [32] also developed methods for LLM in a closed-loop manner. However, these
methods require the LLM to generate outputs for every action taken by the ego vehicle, demanding
a quick response from the LLM. The authors tested their methods in simulated environments where
the slow response problem can be overlooked. Instead, our proposed method does not require a
quick response from the LLMs and is vetted in a real driving environment.

2 Methodology

In this study, we develop an autonomous driving system utilizing a car to navigate a hallway, relying
solely on images taken by a monoscopic camera. Our system captures frontal view images with
the onboard camera and preprocesses images before passing them to the driving model to output
the steering and throttle actions to control the car. While traditional end-to-end models often face
generalization challenges inherent in data-driven approaches, LLMs have shown promise in learning
rich representations and contextual understanding from extensive datasets. Inspired by the recent
success of LLMs, we incorporated an LLM as an assistant in our end-to-end framework to mitigate
the generalization problem.

2.1 Proposed architecture

The proposed architecture consists of two components: an end-to-end model and a pretrained LLM
that requires no fine-tuning. The end-to-end model processes front-view images and outputs the
corresponding actions, while the LLM provides high-level instructions based on the given images.
The end-to-end model is trained to respond to the environment efficiently following the high-level
instruction. In Fig. 2, we use ChatGPT-4o [47] as an example, demonstrating how our model
processes images from continuous camera streams and periodically receives high-level instructions
from the LLM at intervals determined by the LLM’s inference speed. Next, we discuss how to train
an end-to-end model and combine it with LLMs.

End-to-end model The end-to-end model must make predictions in real time from the inputs of
the image data and the instructions from the LLM. To make the end-to-end model suitable for taking
both images alone and images with high-level instructions as input, we use the network architecture

4

Sensor Input

Instructions

Vision-Language Model

Prompt Input

CoT Prompt:
1. Identify the obstacles.
2. Describe the position of the obstacle.
3. Estimate the space of available paths.
4. Compare the space of paths.
5. Decide the future direction that leads
to a larger space.

End-to-End Model

Vision
Transformer

Left

Right
Middle

Per-class action

Per-class probability

Selection

Figure 2: The proposed architecture inputs sensor data to both the LLM and the end-to-end model. The
end-to-end model outputs actions from sensor images and receives slower, high-level instructions from the
LLM due to its slower inference speed. This setup bridges the gap between fast-moving vehicles and the
contextual insights and slow decisions from the LLM.

High-level Query Sub-queries

Decide the future direction.

1. Identify any obstacle in the image.
2. Describe the position of the obstacles in the hallway.
3. Describe the position of the empty space between the obstacles and the wall along the hallway.
4. Describe which empty space is larger.
5. Output the direction of larger empty space as LEFT, MIDDLE, or RIGHT.

Table 1: CoT query example

and training method similar to Hawke et al. [16] and Shafiullah et al. [48]. In Shafiullah et al. [48],
the action space is clustered into k different categories. Their model takes images as input and uses
MinGPT to predict the categorical probability and the per-category action values.

In our end-to-end model, we employ a pre-trained Vision Transformer (ViT) [49] instead of using
MinGPT as the image backbone. We manually configured the action space categories instead of
using the learned k-means clustering because the action space in our architecture consists only of
steering and throttle. Each category is assigned an LLM instruction. Details on the encoding of the
action space can be found in Appendix B. We train the end-to-end model on the dataset containing
the input images and actions taken by a human expert as labels, as proposed by Hawke et al. [16].
The end-to-end model requires only a minimal dataset including simple scenarios that illustrate the
instructions provided by the LLM. Specifically, the end-to-end model is trained in an environment
that contains only a single cone to avoid, and we use the planning capability of LLM to extend
to more complex scenarios. More details about the training environment and the data collection
process are discussed in Section 3.1.

LLM for zero-shot inference: As discussed earlier, our end-to-end model is lightweight and
trained on limited or simple scenarios, resulting in a lack of generalization capability for more
complex scenarios. To improve the generalization capability of the end-to-end model, an LLM is
adopted to enhance the model’s understanding of intrinsic scenarios by providing high-level instruc-
tions. Instead of fine-tuning the LLM, we utilize the prompt engineering technique CoT [35]. CoT
breaks down complex tasks into sequential intermediate reasoning steps. Table 1 is an example of
subqueries decomposed from a high-level instruction.

With the help of the LLM, the planning capacity to navigate multiple obstacles is integrated into the
end-to-end model. The performance of LLM with and without CoT in our experiment is discussed
in Appendix D.

5

1. Obstacles Identified:
 - A set of four orange traffic cones.
2. Position of Obstacles:
 - The traffic cones are placed in a row across the hallway, located
towards the left half side but not completely blocking the passage.
3. Position of Empty Space:
 - There is some empty space on the left side of the traffic cones
between the cones and the hallway wall.
 - There is a larger empty space on the right side of the traffic cones
between the cones and the hallway wall.
4. Larger Empty Space:
 - The empty space on the right side of the hallway is larger.
5. Direction of Larger Empty Space:
 - RIGHT

ChatGPT Assist Answer

Time t

Steering
Throttle

Steering: 0.172
Throttle: 0.125

t + l

End-to-End
Model

End-to-End
Model

ChatGPT
Assist

Answer
at time

t - l

Direction

ChatGPT
Assist
Answer

Direction

Sensor Input

End-to-End
Model

Steering
Throttle

Steering
Throttle

End-to-End
Model

Sensor Input Sensor Input

...

...

...t - l t + d t + 2d

Sensor Input

...

... ...
Figure 3: A closed-loop pipeline of the proposed architecture using ChatGPT-4o: The LLM takes the front-
view image of the ego car with CoT prompts and generates the instruction. The end-to-end model then takes the
previous LLM-assisted instruction, along with the real-time sensor input, and outputs steering and throttle for
real-time control. The inference time of the end-to-end model and the LLM are denoted as d and l accordingly.
The steering ranges from −1 (leftmost) to 1 (rightmost) and the throttle ranges between 0 to 1.

2.2 Closed-loop inference

The pipeline of our architecture in the closed-loop is demonstrated in Fig. 3 using ChatGPT-4o as an
example. Since inference on the LLM takes longer than the end-to-end model, our end-to-end model
uses the cached instruction from the previous LLM inference while waiting for the next instruction.
This inference pipeline combines the world-knowledge of the LLM into the end-to-end model while
still keeping the whole pipeline from suffering the slow inference speed of the LLM by making a
lightweight end-to-end model that runs fast even on a smartphone.

3 Experiment

Our experiment aims to demonstrate that an LLM, even without fine-tuning, improves the general-
ization capability of an end-to-end model. Inspired by OpenBot [50, 51] and their early implemen-
tation [52], we conducted experiments in a real-world setting on a self-driving robot that integrates
OpenBot on a commercial off-the-shelf RC vehicle with a smartphone as the embedded system on-
board. We chose the iPhone in our hardware implementation because of its excellent support for
PyTorch. The RC car can reach a maximum speed of 24 miles per hour. To avoid any hazard to
people or property, we restricted its speed to less than ten miles per hour. The smartphone onboard
sends action signals to the car that subsequently adjusts its steering and throttle accordingly. The
only sensor in the car is the back camera of the attached phone. The end-to-end model also runs on
the smartphone, enabling it to send low-latency action signals directly to the car.

3.1 Environment setup

To show the generalization property, we use two different environment setups to train the
end-to-end model and test the proposed architecture discussed in Section 2.1.

6

(a) Training environment for
end-to-end model

(b) Testing environment for proposed ar-
chitecture

Figure 4: Training and testing environments.

Training environment for end-to-end models: The training environment is designed to be as
simple as possible. As shown in Fig. 4a1, a cone is placed directly in front of the ego car. The ego
car can choose to turn left or right to avoid the cone. We manually control the ego car to drive left
or right, storing images at 60 frames per second as input and the corresponding actions as labels to
train the end-to-end model. The training details can be found in Appendix B.

Testing environment for proposed architecture: As shown in Fig. 4b, several cones and trash
bins are placed in a zigzag pattern in front of the ego car. To avoid a collision, the ego car must turn
right first to avoid the cones blocking the hallway’s left. After passing these cones, several more are
placed right in front of the ego car, requiring the car to turn left to avoid a collision. This provides
a challenging testing environment because the model has to reason and plan on what action to take
to avoid the front obstacle without hitting the surrounding obstacles. Such a scenario never appears
in the training dataset. Besides the large and small cones, the environment also includes various
distracting items, such as trash bins and doors. The width of the road also changes, becoming wider
after passing the initial set of cones. This provides a complicated testing environment to challenge
the generalization capability of our proposed architecture.

3.2 LLMs and end-to-end models

We combine several LLMs with the end-to-end model. The LLMs we considered are
LLaVA-LLaMA2-13B [53], LLaVA-LLaMA3-8B [54], MiniGPT-v2 [55], and ChatGPT-4o [47]. The
ChatGPT-4o runs on the OpenAI’s server, while other LLMs run locally with two NVIDIA RTX

A6000 GPUs. The inference time of each model is summarized in Table 2. Note that the infer-
ence time required by ChatGPT-4o is even shorter than the inference time of some of the other
models due to the superior computational resources provided by OpenAI compared to ours. The
end-to-end model we utilized is ViT-B/16 [49]. More details is discussed in Appendix B.

Model Name Inference time (s)

LLaVA-LLaMA2-13B 7.76± 0.56
LLaVA-LLaMA3-8B 5.86± 1.17

ChatGPT-4o 7.09± 2.80
MiniGPT-v2 7.30± 1.24

Table 2: Inference time of each LLM

3.3 Results

We evaluate our architecture based on different LLMs presented in Section 2.1 and Section 3.2 in the
training and testing environments mentioned in Section 3.1. We also perform extended experiments
on other types of obstacles and the experiment details and results can be found in Appendix C. We
repeat 30 experiments in a real-world scenario, and the experiment is counted as “success” if the
vehicle passes around all the cones without hitting any of the cones or the wall. The success rate is
calculated by the number of successful experiments divided by the total number of experiments. The
results of all experiments are summarized in Table 3. The experiments confirmed that the end-to-end

1The figure is only for demonstration; the actual environments are real-world settings, not simulations.

7

model can handle the scenario in its training dataset. However, for a more complicated environment
shown in Fig. 4b, the end-to-end model only has a success rate of 40% because of a lack of training
data on such scenarios. On the other hand, the LLM understands the complex environment and offers
high-level guidance to steer the end-to-end model in the correct direction. Nevertheless, the LLM
does not always generate correct instructions and experiences hallucinations when the environment
is disrupted by rapidly changing lighting conditions. We will address these limitations of our driving
model in Section 3.4.

Model Success Rate (%)

Train Test

LLaVA-LLaMA2-13B + ViT 100 83
ChatGPT-4o + ViT 100 75
MiniGPT-v2 + ViT 100 75

LLaVA-LLaMA3-7B + ViT 100 63
ViT only 100 40

⋆all values are rounded into decimal place.

Table 3: Comparison of different LLM models.

3.4 Limitations

Even LLMs without fine-tuning demonstrate the ability to enhance the generalization capability of
the end-to-end model, but there are still limitations. First, in scenarios with strong backlighting and
reflection in the front image, the LLM struggles to identify the position of obstacles, resulting in
incorrect instructions. This issue arises because the dataset used to train the LLM contains few im-
ages with poor lighting conditions. Appendix D.1 provides examples of these failure cases. Second,
to maximize the ability of the LLM in obstacle identification, the CoT prompt must be designed
specifically for the obstacle avoidance task. A sophisticated prompt design and an LLM with a long
contextual length are required to tackle complex driving tasks.

4 Conclusion

We develop an architecture that combines LLMs with an end-to-end model to improve the gen-
eralization capability of the end-to-end model. The key distinction between our architecture and
previously proposed architectures is that the LLM in our architecture only provides high-level in-
structions rather than direct actions or trajectories. The end-to-end model uses both raw sensor data
and high-level instructions from the LLM. These high-level instructions are received at a slower
rate compared to the raw sensor data, allowing the end-to-end model to output actions even while
the LLM still makes inferences. By integrating LLMs with the end-to-end model, our architecture
relaxes data collection requirements and eliminates the need for rapid responses from LLMs. This
design makes it feasible for real-world applications. Experiments are conducted in a real-world en-
vironment with a self-driving vehicle. The vehicle is equipped solely with the front-view camera as
its sensor. We train the driving model in a simple yet common environment and deploy the model
on the smartphone. The results show that the end-to-end model alone cannot navigate safely in
a complex environment that does not appear in the training data. However, when combined with
LLMs, the end-to-end model navigates the complex environment successfully. Notably, the LLMs
we utilize are not fine-tuned; instead, we employ chain-of-thought prompt engineering techniques
to enhance performance. The results demonstrate that LLMs improve the generalization capability
of the autonomous driving system, enabling it to adapt to more complex environments with sim-
ple training data. However, LLMs still exhibit limitations, such as susceptibility to hallucinations
when the environment changes, such as backlighting and ground reflection. This requires further
investigation and a deeper understanding of LLM behavior.

8

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Office of Nuclear Physics, under Award Num-
ber DE-SC0019518.

References
[1] D. Parekh, N. Poddar, A. Rajpurkar, M. Chahal, N. Kumar, G. P. Joshi, and W. Cho. A Review

on Autonomous Vehicles: Progress, Methods and Challenges. Electronics, 11(14):2162, Jan.
2022. ISSN 2079-9292. doi:10.3390/electronics11142162.

[2] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han. BEVFusion: Multi-Task
Multi-Sensor Fusion with Unified Bird’s-Eye View Representation, June 2022.

[3] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai. BEVFormer: Learning Bird’s-
Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers, July
2022.

[4] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon,
A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov. Scalability in Perception
for Autonomous Driving: Waymo Open Dataset. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2443–2451, Seattle, WA, USA, June 2020.
IEEE. ISBN 978-1-72817-168-5. doi:10.1109/CVPR42600.2020.00252.

[5] S. Shi, L. Jiang, D. Dai, and B. Schiele. Motion Transformer with Global Intention Localiza-
tion and Local Movement Refinement, Mar. 2023.

[6] X. Jia, L. Chen, P. Wu, J. Zeng, J. Yan, H. Li, and Y. Qiao. Towards Capturing the Temporal
Dynamics for Trajectory Prediction: A Coarse-to-Fine Approach. In 6th Annual Conference
on Robot Learning, Aug. 2022.

[7] X. Jia, P. Wu, L. Chen, Y. Liu, H. Li, and J. Yan. HDGT: Heterogeneous Driving Graph
Transformer for Multi-Agent Trajectory Prediction via Scene Encoding, July 2023.

[8] M. Treiber, A. Hennecke, and D. Helbing. Congested Traffic States in Empirical Observations
and Microscopic Simulations. Phys. Rev. E, 62(2):1805–1824, Aug. 2000. ISSN 1063-651X,
1095-3787. doi:10.1103/PhysRevE.62.1805.

[9] Z. Zhu and H. Zhao. A Survey of Deep RL and IL for Autonomous Driving Policy Learning.
IEEE Trans. Intell. Transport. Syst., 23(9):14043–14065, Sept. 2022. ISSN 1524-9050, 1558-
0016. doi:10.1109/TITS.2021.3134702.

[10] D. Dauner, M. Hallgarten, A. Geiger, and K. Chitta. Parting with Misconceptions about
Learning-based Vehicle Motion Planning, Nov. 2023.

[11] A. O. Ly and M. Akhloufi. Learning to Drive by Imitation: An Overview of Deep Behavior
Cloning Methods. IEEE Trans. Intell. Veh., 6(2):195–209, June 2021. ISSN 2379-8904, 2379-
8858. doi:10.1109/TIV.2020.3002505.

[12] M. Bain and C. Sammut. A Framework for Behavioural Cloning, pages 103–129. Oxford
University PressOxford, Jan. 2000. ISBN 978-0-19-853867-7 978-1-383-02650-4. doi:10.
1093/oso/9780198538677.003.0006.

[13] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li. End-to-end Autonomous Driving:
Challenges and Frontiers, Apr. 2024.

[14] A. Petrovskaya and S. Thrun. Model based vehicle tracking for autonomous driving in urban
environments. In Robotics: Science and Systems, volume 2008, pages 1–8, 2008.

9

http://dx.doi.org/10.3390/electronics11142162
http://dx.doi.org/10.1109/CVPR42600.2020.00252
http://dx.doi.org/10.1103/PhysRevE.62.1805
http://dx.doi.org/10.1109/TITS.2021.3134702
http://dx.doi.org/10.1109/TIV.2020.3002505
http://dx.doi.org/10.1093/oso/9780198538677.003.0006
http://dx.doi.org/10.1093/oso/9780198538677.003.0006

[15] M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray. Autonomous driving in urban en-
vironments: Approaches, lessons and challenges. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 368(1928):4649–4672, Oct. 2010.
doi:10.1098/rsta.2010.0110.

[16] J. Hawke, R. Shen, C. Gurau, S. Sharma, D. Reda, N. Nikolov, P. Mazur, S. Micklethwaite,
N. Griffiths, A. Shah, and A. Kendall. Urban Driving with Conditional Imitation Learning,
Dec. 2019.

[17] Y. Li and S. Han. Efficient collaboration with unknown agents: Ignoring similar agents with-
out checking similarity. In Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’24, page 2363–2365, Richland, SC, 2024. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems. ISBN 9798400704864.

[18] N. M. Negash and J. Yang. Driver behavior modeling toward autonomous vehicles: Compre-
hensive review. IEEE Access, 11:22788–22821, 2023. doi:10.1109/ACCESS.2023.3249144.

[19] N. AbuAli and H. Abou-zeid. Driver Behavior Modeling: Developments and Future Direc-
tions. International Journal of Vehicular Technology, 2016:e6952791, Dec. 2016. ISSN 1687-
5702. doi:10.1155/2016/6952791.

[20] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu. Safety-Enhanced Autonomous Driving Using
Interpretable Sensor Fusion Transformer, Dec. 2022.

[21] P. Paul, A. Garg, T. Choudhary, A. K. Singh, and K. M. Krishna. LeGo-Drive: Language-
enhanced Goal-oriented Closed-Loop End-to-End Autonomous Driving, Mar. 2024.

[22] Z. Yang, X. Jia, H. Li, and J. Yan. LLM4Drive: A Survey of Large Language Models for
Autonomous Driving, Dec. 2023.

[23] S. P. Sharan, F. Pittaluga, V. K. B. G, and M. Chandraker. LLM-Assist: Enhancing Closed-
Loop Planning with Language-Based Reasoning, Dec. 2023.

[24] H. Sha, Y. Mu, Y. Jiang, L. Chen, C. Xu, P. Luo, S. E. Li, M. Tomizuka, W. Zhan, and M. Ding.
LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving, Oct.
2023.

[25] C. Cui, Y. Ma, X. Cao, W. Ye, Y. Zhou, K. Liang, J. Chen, J. Lu, Z. Yang, K.-D. Liao, T. Gao,
E. Li, K. Tang, Z. Cao, T. Zhou, A. Liu, X. Yan, S. Mei, J. Cao, Z. Wang, and C. Zheng. A
Survey on Multimodal Large Language Models for Autonomous Driving. In 2024 IEEE/CVF
Winter Conference on Applications of Computer Vision Workshops (WACVW), pages 958–979,
Waikoloa, HI, USA, Jan. 2024. IEEE. ISBN 9798350370287. doi:10.1109/WACVW60836.
2024.00106.

[26] C. Cui, Y. Ma, X. Cao, W. Ye, and Z. Wang. Drive as You Speak: Enabling Human-Like
Interaction with Large Language Models in Autonomous Vehicles, Sept. 2023.

[27] J. Mao, Y. Qian, H. Zhao, and Y. Wang. GPT-Driver: Learning to Drive with GPT, Oct. 2023.

[28] Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K.-Y. K. Wong, Z. Li, and H. Zhao. DriveGPT4:
Interpretable End-to-end Autonomous Driving via Large Language Model, Oct. 2023.

[29] L. Wen, D. Fu, X. Li, X. Cai, T. Ma, P. Cai, M. Dou, B. Shi, L. He, and Y. Qiao. DiLu:
A Knowledge-Driven Approach to Autonomous Driving with Large Language Models, Feb.
2024.

[30] D. Fu, X. Li, L. Wen, M. Dou, P. Cai, B. Shi, and Y. Qiao. Drive Like a Human: Rethinking
Autonomous Driving with Large Language Models, July 2023.

10

http://dx.doi.org/10.1098/rsta.2010.0110
http://dx.doi.org/10.1109/ACCESS.2023.3249144
http://dx.doi.org/10.1155/2016/6952791
http://dx.doi.org/10.1109/WACVW60836.2024.00106
http://dx.doi.org/10.1109/WACVW60836.2024.00106

[31] H. Shao, Y. Hu, L. Wang, S. L. Waslander, Y. Liu, and H. Li. LMDrive: Closed-Loop End-to-
End Driving with Large Language Models, Dec. 2023.

[32] M. Azarafza, M. Nayyeri, C. Steinmetz, S. Staab, and A. Rettberg. Hybrid Reasoning Based
on Large Language Models for Autonomous Car Driving, Mar. 2024.

[33] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual Instruction Tuning, Dec. 2023.

[34] Y. Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, and Y. Zhang. An Empirical Study of Catastrophic
Forgetting in Large Language Models During Continual Fine-tuning, Apr. 2024.

[35] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou.
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Jan. 2023.

[36] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning of driving models from large-
scale video datasets. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[37] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to End Learning
for Self-Driving Cars, Apr. 2016.

[38] W. Zheng, W. Chen, Y. Huang, B. Zhang, Y. Duan, and J. Lu. OccWorld: Learning a 3D
Occupancy World Model for Autonomous Driving, Nov. 2023.

[39] Q. Li, X. Jia, S. Wang, and J. Yan. Think2Drive: Efficient Reinforcement Learning by Thinking
in Latent World Model for Quasi-Realistic Autonomous Driving (in CARLA-v2), July 2024.

[40] R. Zhu, P. Huang, E. Ohn-Bar, and V. Saligrama. Learning to Drive Anywhere, Sept. 2023.

[41] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao. Trajectory-guided Control Prediction for
End-to-end Autonomous Driving: A Simple yet Strong Baseline, Oct. 2022.

[42] X. Jia, P. Wu, L. Chen, J. Xie, C. He, J. Yan, and H. Li. Think Twice before Driving: Towards
Scalable Decoders for End-to-End Autonomous Driving, May 2023.

[43] Y. Hou, Z. Ma, C. Liu, and C. C. Loy. Learning to Steer by Mimicking Features from Hetero-
geneous Auxiliary Networks, Nov. 2018.

[44] V. De Silva, X. Wang, D. Aladagli, A. Kondoz, and E. Ekmekcioglu. An Agent-Based Mod-
elling Framework for Driving Policy Learning in Connected and Autonomous Vehicles. In
K. Arai, S. Kapoor, and R. Bhatia, editors, Intelligent Systems and Applications, volume 869,
pages 113–125. Springer International Publishing, Cham, 2019. ISBN 978-3-030-01056-0
978-3-030-01057-7. doi:10.1007/978-3-030-01057-7 10.

[45] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end Driving via
Conditional Imitation Learning, Mar. 2018.

[46] X. Jia, Y. Gao, L. Chen, J. Yan, P. L. Liu, and H. Li. DriveAdapter: Breaking the Coupling
Barrier of Perception and Planning in End-to-End Autonomous Driving, Aug. 2023.

[47] O. et al. GPT-4 Technical Report, Mar. 2024.

[48] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto. Behavior Transformers:
Cloning k modes with one stone, Oct. 2022. URL http://arxiv.org/abs/2206.11251.
arXiv:2206.11251 [cs].

[49] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale, June 2021. URL
http://arxiv.org/abs/2010.11929. arXiv:2010.11929 [cs].

11

http://dx.doi.org/10.1007/978-3-030-01057-7_10
http://arxiv.org/abs/2206.11251
http://arxiv.org/abs/2010.11929

[50] M. Müller and V. Koltun. Openbot: Turning smartphones into robots. In Proceedings of the
International Conference on Robotics and Automation (ICRA), 2021.

[51] M. Müller, S. Brahmbhatt, A. Deka, Q. Leboutet, D. Hafner, and V. Koltun. Openbot-fleet:
A system for collective learning with real robots. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), 2024.

[52] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via
conditional imitation learning. In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4693–4700, 2018. doi:10.1109/ICRA.2018.8460487.

[53] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning, 2023.

[54] W. Wang. Llava-llama-3-8b: A reproduction towards llava-3 based on llama-3-8b llm back-
bone, 2024.

[55] J. Chen, D. Zhu, X. Shen, X. Li, Z. Liu, P. Zhang, R. Krishnamoorthi, V. Chandra, Y. Xiong,
and M. Elhoseiny. MiniGPT-v2: Large language model as a unified interface for vision-
language multi-task learning, Nov. 2023.

12

http://dx.doi.org/10.1109/ICRA.2018.8460487

A Limitations of end-to-end network on extending to new scenarios

Training an end-to-end model requires a massive amount of data to enable the model to adapt to new
environment settings, such as varying objects on the road, weather and lighting conditions, road
textures, and colors. Without a sufficient and diversified dataset, it faces challenges when extending
from simple to complex scenarios (not shown in the training dataset) that involve planning and
reasoning. In this section, we illustrate this limitation using a simple yet representative experiment.

In the experiment, we consider a three-lane driving scenario, where the lanes are designated as left,
middle, and right. We create different scenarios by placing obstacles in one or more lanes, denoted
as to Salamar

, where al, am, and ar represent the presence of an obstacle in the left, middle, and
right lanes, respectively (with 1 indicating an obstacle and 0 indicating no obstacle). The training
dataset is collected in the scenario S010, which represents an obstacle in the middle lane. In this
scenario, the car is trained to navigate around the obstacle by using either the left or right lane. We
then evaluate the model on scenarios S010, S110, and S011.

Scenario Success rate (%)

S010 100
S110 44
S011 78

Table 4: Experiment results on out of sample scenarios.

As shown in the experiment result in Table 4, the end-to-end model is not able to reliably extend to
even a slightly modified scenario. Although it is possible to include more scenarios like S110 and
S011 in the training dataset, there will always be edge cases that remain unaccounted for. This is
why we introduce the VLM to provide a “world model” that enhances the planning and reasoning
capabilities of the end-to-end model, enabling it to generalize from simple to complex scenarios by
decomposing complex behaviors into a set of atomic actions.

B End-to-end network details

This section includes the implementation details of the end-to-end model discussed in Section 2.1.
The end-to-end model is a neural network. The neural network takes the image and instructions
from the LLM and outputs the steering and throttle actions. The input image is the front view of
the car and is taken by the ultra-wide camera of the iPhone 15 Pro mounted on the car. The field
of view of the camera is 101 degrees, and the raw image size is 640 × 480. The image is further
cropped with a rectangular area [top, bottom, left, right] = [140, 330, 130, 510] and is resized
to 320× 160 before being sent to the end-to-end model. The input instruction is a set of commands
{LEFT, MIDDLE, RIGHT}, indicating which direction the car should go to avoid the front obstacles if
the input image indicates there are any. Also, to simplify the response to the LLM, we ignore any
cases and recognize STRAIGHT as MIDDLE.

B.1 Neural network architecture

The image backbone for the end-to-end model is the pretrained ViT-B/16 model provided by Doso-
vitskiy et al. [49]. The model is modified according to Shafiullah et al. [48] to include two prediction
heads: one outputs the per-class action values, and the other outputs the classification probability.
The per-class action-value output V is a matrix of size 3 × 2, where each row indicates one of the
three commands in the instruction set, the first column is the steering value, and the second column
is the throttle value. The classification probability output p is the probability density for each class.

13

B.2 Dataset collection

The dataset consists of 60 different routes. Each route consists of a sequence of action pairs
(image, steering, throttle) with an average length of 100. To train the end-to-end model to
take the three different instructions LEFT, RIGHT, and MIDDLE, we collected three different types of
routes in the training environments illustrated in Fig. 4a: the first and the second are to pass around
the obstacle from the right and left, respectively, and the third is collected when there are no obsta-
cles in the front and the car goes straight. Each route is labeled by its route type. We will discuss in
the next subsection how these data are used to train the end-to-end network for different instruction
outputs.

B.3 Training the end-to-end model

As discussed in Section B.1 and Section B.2, the neural network outputs three different actions,
and the dataset also contains different types of route behaviors. In other words, each sample in the
dataset is considered the tuple D = (Ximg, ys, yt, yc), where Ximg is the input image, ys is the
steering value range [−1, 1], yt is the throttle value range [0, 1], and yc is the route label selected
from the set {1, 2, 3}, representing the three instructions. The neural network can be written as
(V, p) = f(w;Ximg), where V is a matrix of 3 × 2 representing the per-class action-value output,
p is a vector of 3 representing the probability distribution of each class, and w is the weight of the
neural network. Then the end-to-end model is trained with the supervised learning method with the
loss function defined as

L(w;D) = (Vyc,0 − ys)
2 + (Vyc,1 − yt)

2 − k log pyc ,

where w is the hyper-parameter to weight the loss of the action value and the cross-entropy loss of
the classification.

B.4 Evaluation

We evaluate the end-to-end model in real-world, real-time, and closed-loop conditions. We conduct
experiments with and without LLM assistance instructions. When high-level instructions and images
are used as input, the prediction probability head is discarded, and the LLM provides the steering
and throttle values. When only images are used as input, the actual instruction is sampled from the
predicted probability head.

C Extended experiment: moving obstacles

We extend our experiment to more complex scenarios where moving obstacles (e.g. cars, pedestri-
ans) are present. The settings for training and testing are similar to Fig. 4a and Fig. 4b. Instead of
placing cones in the left or right lane, the obstacle is replaced with moving pedestrians or moving
cars. We performed 10 repeated experiments on these testing scenarios, using both an online VLM
(ChatGPT-4o) and a local VLM (LLaVa-LLaMA2). The success rates for each scenario are shown
in Table 5.

VLM Scenario 1 (Car) Scneario 2 (Ped) Scenario 3 (Car+Ped)

ChatGPT-4o 50% 60% 33%
LLaVA-LLaMA2 100% 80% 55%

Table 5: Comparison of different LLM models with moving obstacles.

D Prompt engineering and results

This section compares the performance across different prompting techniques. Table 6 shows the
query context using naive prompting and CoT prompting. We use two different types of query

14

Prompt Type Context

Naive The image shows a toy car drives through a hallway that might have obstacles.
Please output the future direction of the car as LEFT, MIDDLE, or RIGHT.

CoT A toy car drives through a hallway that might have obstacles.
Please answer the following 5 questions step by step:
1. Identify any obstacle in the image.
2. Describe the position of the obstacles in the hallway.
3. Describe the position of empty space between the obstacles and the hallway wall.
4. Describe which empty space is larger.
5. Output the direction of larger empty space as LEFT, MIDDLE, or RIGHT.

Table 6: Prompt content for naive, CoT

images where the car should go left or right to avoid the obstacles. Fig. 5a and Fig. 5b show
examples of query images. Tables 7 - 10 are sample responses for Fig. 5a. Tables 11 - 14 are
sample responses for Fig. 5b.

(a) Ground truth instruction: LEFT. (b) Ground truth instruction: RIGHT.

(c) Example of images with backlighting and reflections.

Figure 5: Example images.

D.1 Limitations

This section discusses the case where the LLM might fail. Fig. 5c shows an example image where
the image contains intensive backlight and reflects light from the ground. In that case, the LLM
may fail to generate the correct answer. Table 15 shows a sample output for Fig. 5c using LLaVA-
LLaMA2.

15

Prompt Type Response

Naive Based on the image, the toy car appears to be moving towards the right side of
the hallway.

CoT 1. There are orange traffic cones in the hallway, which are obstacles.
2. The traffic cones are positioned in the middle of the hallway, creating a
pathway on either side.
3. The empty space between the obstacles and the hallway wall is on both sides
of the cones, with the space on the left side being larger than the space on the
right side.
4. The car should drive on the right side of the obstacle, as the space on the
right is smaller and would be more challenging to navigate.
5. The car should drive on the left side of the obstacle, as the space on the left
is larger and would provide a smoother path.

Table 7: Response of prompts for Fig. 5a by LLaVA-LLaMA2

Prompt Type Response

Naive Based on the image, the toy car is currently in the middle of the hallway. It
is not possible to determine the exact direction the car will take without more
information or a clearer view of the obstacles in the hallway.

CoT 1. Yes, there is a cone in the hallway.
2. The cone is located in the middle of the hallway.
3. The empty space between the cone and the hallway wall is larger on the
right side.
4. The car should drive on the left side of the cone.

Table 8: Response of prompts for Fig. 5a by LLaVA-LLaMA3

Prompt Type Response

Naive RIGHT.

CoT 1. There are two obstacles in the hallway, one on the left and one on the right.
2. The obstacles are positioned parallel to each other and are spaced about 3
feet apart.
3. The empty space between the obstacles and the hallway wall is approxi-
mately 6 feet long.
4. The empty space on the left side of the obstacles is larger than the empty
space on the right side.
5. The car should drive on the left side of the obstacles to avoid hitting them.

Table 9: Response of prompts for Fig. 5a by MiniGPT-v2

16

Prompt Type Response

Naive The future direction of the toy car should be to the LEFT. The hallway ahead
is obstructed by traffic cones which requires the car to navigate around them.

CoT Step 1: Identify any obstacle in the image
- The image shows multiple red traffic cones as obstacles in the hallway.
Step 2: Describe the position of the obstacles in the hallway
- The traffic cones are positioned in the middle and slightly to the right of the
hallway.
Step 3: Describe the position of empty space between the obstacles and the
hallway wall
- There is empty space both on the left side and the right side of the obstacles.
The left side is between the obstacles and the left wall, and the right side is
between the obstacles and the right wall.
Step 4: Describe which empty space is larger
- The empty space on the left side between the obstacles and the left wall is
larger compared to the space on the right side.
Step 5: Output which side of the obstacle the car should drive as LEFT, MID-
DLE, or RIGHT
- The car should drive on the LEFT side of the obstacles.

Table 10: Response of prompts for Fig. 5a by ChatGPT-4o

Prompt Type Response

Naive Based on the image, the toy car appears to be moving towards the right side of
the hallway.

CoT 1. There are orange traffic cones in the hallway, which are obstacles.
2. The traffic cones are positioned in a line along the hallway, with the first
cone closer to the camera and the last cone further away.
3. The empty space between the cones and the hallway wall is larger on the
right side of the image.
4. The empty space on the left side of the image is smaller.
5. The car should drive on the right side of the obstacle, which is the side with
the larger empty space.

Table 11: Response of prompts for Fig. 5b by LLaVA-LLaMA2

Prompt Type Response

Naive Based on the image, the toy car is currently in the middle of the hallway, and
there are no visible obstacles in the immediate path. Therefore, the future
direction of the car is likely to be straight ahead.

CoT 1. Yes, there are orange and white cones in the hallway.
2. The cones are lined up in a row, with one cone placed in the middle of the
hallway and two cones placed on either side of the hallway.
3. The empty space between the cones and the hallway wall is larger on the
right side of the hallway.
4. The car should drive through the larger empty space on the right side of the
hallway.
5. The car should drive through the larger empty space on the right side of the
hallway.

Table 12: Response of prompts for Fig. 5b by LLaVA-LLaMA3

17

Prompt Type Response

Naive RIGHT.

CoT 1. There are two orange cones in the hallway.
2. The obstacles are placed in a zigzag pattern.
3. The empty space between the obstacles and the wall is approximately 10
feet long.
4. The left side of the obstacle is closer to the wall.
5. The car should drive on the right side of the obstacle.

Table 13: Response of prompts for Fig. 5b by MiniGPT-v2

Prompt Type Instruction

Naive To avoid the obstacles (traffic cones) in the hallway, the toy car should move to
the LEFT, as it is the most clear path available.

CoT 1. **Identify any obstacle in the image:**
- The obstacles are orange traffic cones placed in the hallway.
2. **Describe the position of the obstacles in the hallway:**
- The traffic cones are positioned almost in the middle of the hallway but to-
wards the left side slightly.
3. **Describe the position of empty space between the obstacles and the hall-
way wall:**
- There is a significant empty space on the right side of the hallway next to the
traffic cones.
- There is a smaller empty space between the traffic cones and the left wall of
the hallway.
4. **Describe which empty space is larger:**
- The empty space on the right side of the traffic cones is larger than the empty
space on the left side.
5. **Output which side of the obstacle the car should drive as LEFT, MIDDLE,
or RIGHT:**
- The car should drive on the RIGHT side of the obstacle.

Table 14: Response of prompts for Fig. 5b by ChatGPT-4o

18

Prompt Type Instruction

Naive The image shows the toy car approaching three traffic cones placed in the mid-
dle of the hallway, partially blocking the middle path. Given the position of the
obstacles, the future direction of the car should be RIGHT.

CoT To analyze the provided image of a toy car driving through a hallway with
obstacles, let’s address the questions step by step:
1. **Identify any obstacle in the image:**
- The obstacle in the hallway is a set of three orange traffic cones placed in a
row.
2. **Describe the position of the obstacles in the hallway:**
- The traffic cones are positioned in the center of the hallway, forming a barrier
that extends across the middle part of the hallway’s width.
3. **Describe the position of the empty space between the obstacles and the
hallway wall:**
- There is empty space to the left and right of the traffic cones. The left side of
the hallway (from the perspective of the toy car) has some space between the
cones and the wall with trash/recycling bins. The right side also has space, but
there are bins near the wall as well.
4. **Describe which empty space is larger:**
- The right side of the obstacle appears to have a slightly larger empty space
compared to the left side. The right side’s space seems more unobstructed,
especially considering the positioning of the bins which seem to be slightly
farther apart or away from the wall, giving a bit more clearance.
5. **Output which side of the obstacle the car should drive as LEFT, MIDDLE,
or RIGHT:**
- The car should drive to the RIGHT side of the obstacles where there is more
room.
So, the output is: **RIGHT**.

Table 15: Response of prompts for Fig. 5c by ChatGPT-4o

19

	Introduction
	Methodology
	Proposed architecture
	Closed-loop inference

	Experiment
	Environment setup
	LLMs and end-to-end models
	Results
	Limitations

	Conclusion
	Limitations of end-to-end network on extending to new scenarios
	End-to-end network details
	Neural network architecture
	Dataset collection
	Training the end-to-end model
	Evaluation

	Extended experiment: moving obstacles
	Prompt engineering and results
	Limitations

