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Abstract

We propose A-Crab (Actor-Critic Regularized by
Average Bellman error), a new practical algorithm
for offline reinforcement learning (RL) in com-
plex environments with insufficient data cover-
age. Our algorithm combines the marginalized
importance sampling framework with the actor-
critic paradigm, where the critic returns evalu-
ations of the actor (policy) that are pessimistic
relative to the offline data and have a small aver-
age (importance-weighted) Bellman error. Com-
pared to existing methods, our algorithm simul-
taneously offers a number of advantages: (1) It
is practical and achieves the optimal statistical
rate of 1/v/N—where N is the size of offline
dataset—in converging to the best policy covered
in the offline dataset, even when combined with
general function approximators. (2) It relies on a
weaker average notion of policy coverage (com-
pared to the ¢, single-policy concentrability) that
exploits the structure of policy visitations. (3) It
outperforms the data-collection behavior policy
over a wide range of specific hyperparameters.
We provide both theoretical analysis and experi-
mental results to validate the effectiveness of our
proposed algorithm.

1. Introduction

Offline reinforcement learning (RL) algorithms aim at learn-
ing a good policy based only on historical interaction data.
This paradigm allows for leveraging previously-collected
data in learning policies while avoiding possibly costly and
dangerous trial and errors and finds applications in a wide
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range of domains from precision medicine (Tang et al.,
2022) to robotics (Sinha et al., 2022) to climate (Rolnick
et al., 2022). Despite wide applicability, offline RL has yet
to achieve success stories akin to those observed in online
settings that allow for trials and errors (Mnih et al., 2013;
Silver et al., 2016; Ran et al., 2019; Mirhoseini et al., 2020;
Oh et al., 2020; Fawzi et al., 2022; Degrave et al., 2022).

Enabling offline RL for complex real-world problems re-
quires developing algorithms that first, handle complex
high-dimensional observations and second, have minimal
requirements on the data coverage and “best” exploit the
information available in data. Powerful function approx-
imators such as deep neural networks are observed to be
effective in handling complex environments and deep RL
algorithms have been behind the success stories mentioned
above. This motivates us to investigate provably optimal
offline RL algorithms that can be combined with general
function approximators and have minimal requirements on
the coverage and size of the offline dataset.

In RL theory, the data coverage requirements are often
characterized by concentrability definitions (Munos, 2007;
Scherrer, 2014). For a policy 7, the ratio of the state-action
occupancy distribution d™ of 7 to the dataset distribution
1, denoted by w™ = d™ /u, is used to define concentrabil-
ity. The most widely-used definition is /., concentrability,
defined as the infinite norm of w™, i.e., C7 = [|w™[|oc.
Many earlier works on offline RL require all-policy ¢, con-
centrability (i.e., C7_ is bounded for all candidate policy
7) (Scherrer, 2014; Liu et al., 2019a; Chen & Jiang, 2019;
Jiang, 2019; Wang et al., 2019; Liao et al., 2020; Zhang
et al., 2020a) or stronger assumptions such as a uniform
lower bound on u(als) (Xie & Jiang, 2021). However, such
all-policy concentrability assumptions are often violated in
practical scenarios, and in most cases, only partial dataset
coverage is guaranteed.

To deal with partial data coverage, recent works use con-
servative algorithms, which try to avoid policies not well-
covered by the dataset, to learn a good policy with much
weaker dataset coverage requirements (Kumar et al., 2020;
Jin et al., 2021). In particular, algorithms developed based
on the principle of pessimism in the face of uncertainty are
shown to find the best covered policy (or sometimes they
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require coverage of the optimal policy) (e.g., Rashidine-
jad et al. (2021; 2022); Zhan et al. (2022); Chen & Jiang
(2022)). However, most of these works use /., concen-
trability to characterize the dataset coverage. This could
still be restrictive even if we only require single-policy con-
centrability, since the ¢, definition characterizes coverage
in terms of the worst-case maximum ratio over all states
and actions. Other milder variants of the single-policy con-
centrability coefficient are proposed by Xie et al. (2021);
Uehara & Sun (2021) which consider definitions that exploit
the structure of the function class to reduce the coverage
requirement and involve taking a maximum over the func-
tions in the hypothesis class instead of all states and actions.
However, as we show in Section 2.4, when the function
class is very expressive, these variants will degenerate to ¢
concentrability. Moreover, previous algorithms requiring
milder variants of single-policy concentrability are either
computationally intractable (Xie et al., 2021; Uehara & Sun,
2021) or suffer a suboptimal rate of suboptimality (Cheng
et al., 2022). Therefore, a natural and important question is
raised:

Is there a computationally efficient and statis-
tically optimal algorithm that can be combined
with general function approximators and have
minimal requirements on dataset coverage?

We answer this question affirmatively by proposing a novel
algorithm named A-Crab (Actor-Critic Regularized by Av-
erage Bellman error). We also discuss more related works
in Appendix A.

1.1. Contributions

In this paper, we build on the adversarially trained actor-
critic (ATAC) algorithm of Cheng et al. (2022) and combine
it with the marginalized importance sampling (MIS) frame-
work (Xie et al., 2019; Chen & Jiang, 2022; Rashidinejad
et al., 2022). In particular, we replace the squared Euclidean
norm of the Bellman-consistency error term in the critic’s ob-
jective of the ATAC algorithm with an importance-weighted
average Bellman error term. We prove that this simple yet
critical modification of the ATAC algorithm enjoys the prop-
erties highlighted below (see Table 1 for comparisons with
previous works).

1. Optimal statistical rate in competing with the best
covered policy: In Theorem 4.1, we prove that our A-Crab
algorithm, which uses average Bellman error, enjoys an
optimal statistical rate of 1/v/N. In contrast, we prove in
Proposition 4.3 that the ATAC algorithm, which uses the
squared Bellman error, fails to achieve the optimal rate in
certain offline learning instances. As Cheng et al. (2022)
explains, the squared Bellman-error regularizer appears to
be the culprit behind the suboptimal rate of ATAC being

concentrability
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Figure 1: An intuitive comparison of C7_, C7 and Cgjjpap
for a fixed policy 7. Note that C7_, C7 are independent of
the function class F, and 0}2 is always smaller thanC’[w.
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CBeliman grows as F gets richer and converges to C7 .

1/N 1/3_ Moreover, our algorithm improves over any policy
covered in the data. This is in contrast to the recent work
Rashidinejad et al. (2022), which proposes an algorithm
based on the MIS framework that achieves the 1/v/N rate
only when the optimal policy (i.e. the policy with the highest
expected rewards) is covered in the data.

2. A weaker notion of data coverage that exploits visita-
tion structure: As we discussed earlier, /., concentrability
notion is used in many prior works (Rashidinejad et al.,
2021; Chen & Jiang, 2022; Ozdaglar et al., 2022; Rashidine-
jad et al., 2022). Our importance-weighted average Bellman
error as well as using Bernstein inequality in the proof relies
on guarantees in terms of an ¢ single-policy concentrability
notion that is weaker than the ¢, variant. In particular, we
have C7 = ||w™||oo and CF, = [|w™||2,,, where || - |2, is
the weighted 2-norm w.r.t. the dataset distribution p. The
latter implies that the coverage coefficient only matters as
much as it is covered by the dataset. Moreover, by the def-
inition of w™, we can obtain that (C7 ) = Eq~ [w™ (s, a)],
which provides another explanation of /5 concentrability
that the coverage coefficient only matters as much as it is
actually visited by the policy. There are also other notions
of single-policy concentrability exploiting function approxi-
mation structures to make the coverage coefficient smaller
(e.g., Ceiman 10 Xie et al. (2021)). However, these notions
degenerate to C_ as the function class gets richer (see
Figure 1 for an intuitive comparison of different notions of
concentrability and Section 2.4 for a rigorous proof).

3. Robust policy improvement: Policy improvement (PI)
refers to the property that an offline RL algorithm (under
a careful choice of specific hyperparameters) can always
improve upon the behavior policy that is used to collect
the data. In particular, robust policy improvement (RPI)
means the PI property holds under a wide range of the
choice of specific hyperparameters (Cheng et al., 2022; Xie
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Table 1: Comparison of provable offline RL algorithms with general function approximation.

Algorithm Computation  Any covered policy ~ Coverage assumption Policy improvement  Suboptimality
Xie et al. (2021) Intractable Yes single-policy, CZ.jjman Yes o (ﬁ)
Uehara & Sun (2021) Intractable Yes single-policy, £, and {5 Yes (@) (ﬁ)

. . . 1

Chen & Jiang (2022) Intractable No single-policy, ¢ No (@] (W(Q))
Zhan et al. (2022) Efficient Yes two-policy, /oo Yes O (7175)
Cheng et al. (2022) Efficient Yes single-policy, Cgjiman Yes & Robust (0] ( N} 73 )
Rashidinejad et al. (2022) Efficient No single-policy, £ No o (ﬁ)
Ozdaglar et al. (2022) Efficient No single-policy, /oo No 0 (ﬁ)
A-Crab (this work) Efficient Yes single-policy, o Yes & Robust (0] (%)

et al., 2022). Similar to the ATAC algorithm in Cheng et al.
(2022), our approach enjoys the robust policy improvement
guarantee as shown in Theorem 4.2.

4. Inheriting many other benefits of adversarially-
trained actor-critic: Since our algorithm is based on
ATAC with a different choice of regularizer, it can be easily
implemented as ATAC to be applied to practical scenarios,
and we provide experimental results in Section 6. Also,
our algorithm is robust to model misspecification and does
not require the completeness assumption (Assumption 2
in Cheng et al. (2022)) on the value function class, which
makes it more practical. Moreover, our algorithm can learn
a policy that outperforms any other policies well covered by
the dataset.

2. Background

Notation. We use A(X) to denote the probability simplex
over a set X and use Unif(X’) to denote the uniform dis-
tribution over X'. We denote by || - [|2,, = v/E,[(-)?] the
Euclidean norm weighted by distribution . We use the
notation z < y when there exists constant ¢ > 0 such that
x<cyandz 2 yify <z anddenote x < yif x < y and
y < @ hold simultaneously. We also use standard O(-) nota-
tion to hide constants and use O() to suppress logarithmic
factors.

2.1. Markov decision process

An infinite-horizon discounted MDP is described by a tuple
M = (S, A, P,R,~,p), where S is the state space, A is the
action space, P : Sx.A — A(S) is the transition kernel, R :
S x A — A(]0, 1]) encodes a family of reward distributions
withr : Sx.A — [0, 1] as the expected reward function, vy €
[0,1) is the discount factor and p : S — [0, 1] is the initial
state distribution. We assume .A is finite while allowing S to

be arbitrarily complex. A stationary (stochastic) policy 7 :
S — A(A) specifies a distribution over actions in each state.
Each policy 7 induces a (discounted) occupancy density
over state-action pairs d™ : S x A — [0, 1] defined as
d™(s,a) = (1 =) Y20V Pi(st = s,a; = a;m), where
P.(st = s,a; = a;7) denotes the visitation probability of
state-action pair (s, a) at time step ¢, starting at so ~ p(+)
and following 7. We also write d"(s) = > . , d"(s,a) to
denote the (discounted) state occupancy, and use E[-] as a
shorthand of E(, 4)qr [-] or Eggr[].

The value function of a policy = is the discounted cumulative
reward gained by executing that policy

oo
VT(s)=E Z*ytrt | s =s,at ~m(-|st), VE>0
t=0
starting at state s € S where 1, = R(s;,a;). Simi-

larly, we define () function of a policy as the expected
cumulative reward gained by executing that policy
starting from a state-action pair (s,a), i.e., Q™(s,a) =
E o' | so=s,a0=a,ar ~7(-|s), Vi >0].
We write

J(m) = (1= 7)Esnp[V7(5)] = E(s,a)nar [r(s, a)]

to represent the (normalized) average value of policy 7. We
denote by 7* the optimal policy that maximizes the above
objective and use the shorthand V* := V™ Q" =Q" to
denote the optimal value function and optimal @) function
respectively.

2.2. Function approximation

In modern RL, the state space S is usually large or infi-
nite, making the classic tabular RL algorithms not scalable
since their sample complexity depends on the cardinality
of S. Therefore, (general) function approximation is nec-
essary for real-world scenarios with huge state space. In
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this paper, we assume access to three function classes: a
function class F C {f : S X A — [0, Vinax] } that models
the (approximate) Q-functions of policies, a function class
W C{w:8xA—[0,B,]} that represents marginalized
importance weights with respect to data distribution, and
a policy class IT C {7 : § — A(A)} consisting of candi-
date policies. Our framework combines the marginalized
importance sampling framework (e.g., Zhan et al. (2022);
Rashidinejad et al. (2022)) with actor-critic methods (Xie
etal., 2021; Cheng et al., 2022), which improves and selects
among a set of candidate policies by successive computation
of their Q-functions.

For any function f € F and any policy 7 € 11, we denote
f(s,m) = > cam(als)f(s,a) forany s € S and denote
Bellman operator 77 : RS*A — RS*A a5

(Tﬂf)(sv CL) = 7“(8, a) + VES’NP(-\s,a) [f(S/, 77)] (1

Note that solving the fixed point equation (1) for f finds the
Q-function of policy 7.

We make the following assumption on the expressivity of
our function classes.

Assumption 2.1 (Approximate Realizability). Assume
there exists ex > 0, sit. for any policy # € II,
min se 7 MmaXumissivte » || f — 77 f[13,, < €7, where admis-
sible v is defined by v € {d™ |7 € II}.

This assumption is also required for Xie et al. (2021); Cheng
et al. (2022). Note that when || f — 7™ f||2,,, is small for all
admissible v, we have f ~ Q™. Therefore, Assumption 2.1
assumes that for any policy m, Q™ is “approximatly” real-
ized in F. In particular, when ez = 0, Assumption 2.1 is
equivalent to Q™ € F for any 7 € II.

2.3. Offline reinforcement learning

In this paper, we study offline RL where we assume access
only to a previously-collected and fixed dataset of inter-
actions D = {(si,ai,mi,5,) 1Y, where r; ~ R(s;,a;),
st ~ P(- | s;,a;). To streamline the analysis, we assume
that (s;, a;) pairs are generated i.i.d. according to a data dis-
tribution i € A(S x A). We make the common assumption
that the dataset is collected by a behavior policy, i.e., p is
the discounted visitation probability of a behavior policy,
which we also denote by p.. For convenience, we assume the
behavior policy i € II. The goal of offline RL is to learn a
good policy 7 (a policy with a high J(7)) using the offline
dataset. Also, for any function f that takes (s,a,r,s’) as
input, we define the expectation w.r.t. the dataset D (or

'Without loss of generality, we always assume that the all-one
function is contained in V.

empirical expectation) as

ED[f]:% >

(sirai,ri,s;)€ED

f(si;aiarias;)'

Marginalized importance weights. We define the
marginalized importance weights of any policy 7 to be
the ratio between the discounted state-action occupancy
of 7 and the data distribution w™(s,a) = d:((:f)). Such
weights have been defined in prior works on theoretical
RL (Xie & Jiang, 2020; Zhan et al., 2022; Rashidinejad
et al., 2022; Ozdaglar et al., 2022) as well as practical RL
algorithms (Nachum et al., 2019a;b; Zhang et al., 2020b;c;
Lee et al., 2021).

2.4. Coverage of offline dataset

We study offline RL with access to a dataset with partial
coverage. We measure the coverage of policy 7 in the
dataset using the weighted /5 single-policy concentrability
coefficient defined below.

Definition 2.2 (/5 concentrability). Given a policy 7, define
CF, = lw™lly,, = 147 /ully,, -

This definition is much weaker than the all-policy concentra-
bility conventionally used in offline RL (Scherrer, 2014; Liu
et al., 2019a; Chen & Jiang, 2019; Jiang, 2019; Wang et al.,
2019; Liao et al., 2020; Zhang et al., 2020a), which requires
d"((;,;)) to be bounded for all s € S and a € A as
well as all policies 7. The following proposition compares
two variants of single-policy concentrability definition that
appeared in recent works (Rashidinejad et al., 2021; Xie
et al., 2021) with the /5 variant defined in Definition 2.2;
see Appendix A.1 for more discussion on different concen-
trability definitions in prior work. To our knowledge, the ¢5
version of concentrability definition has been only used in
offline RL with all-policy coverage (Farahmand et al., 2010;
Xie & Jiang, 2020). In the context of partial coverage, Ue-
hara & Sun (2021) used ¢5 version in a model-based setting,
but their algorithms are computationally intractable. Recent
works Xie et al. (2021); Cheng et al. (2022) use another
milder version of concentrability than /., and we compare
different concentrability versions in Proposition 2.3. An
intuitive comparison is presented in Figure 1.

the ratio

Proposition 2.3 (Comparing concentrability definitions).
Define the {, single-policy concentrability (Rashidinejad
etal., 2021) as

Ci. = 11d"/nll

and the Bellman-consistent single-policy concentrabil-
ity (Xie et al., 2021) as

If =T f13,4n
Cﬂ-, =maxX -—————5—-
Bellman FeFr ||f . Tﬂfllap
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Then, it always holds (C’é;)2 < Cp., Cp < Cf_ and

there exist offline RL instances where (C7)? < Cg
T ™
Cﬁg < CBellman'

A proof for Proposition 2.3 is presented in Appendix B. It is
easy to show that the /5 variant is bounded by ¢, variant of
concentrability as the former requires E 4~ [w™ (s, a)] to be
bounded while the latter requires w™ (s, a) to be bounded
for any s € S and a € A. Example 1 provides a concrete
example that C') is bounded by a constant while C  could
be arbitrarily large.

Example 1 (Arbitrarily large /., concentrability with a con-
stant /o concentrability). Consider the simplest two-arm
bandit settings, where the dataset distribution is

plar) =1—€,  pfag) =€
for an arbitrarily small € > 0. Let 7 be a policy s.t.

m(a1) = d"(a1) =1 — ¢, m(as) = d"(az) = e.

Then one can calculate that w™(a;) = =% < 1 and
w™ (az) = L. Therefore, Cp, < /2 while Cp. = 1 can be

arbitrarily large.

Furthermore, the Bellman-consistent variant can exploit the
structure in the Q-function class F for a smaller concentra-
bility coefficient. However, in situations where the class
F is highly expressive, Cgy,,, could be close to Cf _ and

thus possibly larger than C7, .

Finally, we make a boundedness assumption on our
marginalized importance weight function class W in terms
of /5 concentrability and a single-policy realizability as-
sumption.

Assumption 2.4 (Boundedness in /> norm of V). Assume
lwll2,. < Cy, forallw € W.

Assumption 2.5 (Single-policy realizability of w™). As-
sume w™ € W for some policy w € II that we aim to
compete with.

The definition of Cg‘z is similar to Xie & Jiang (2020) but
they need w™ € W for all = € II, which is much stronger
than our single-policy realizability assumption for W.

3. Actor-Critic Regularized by Average
Bellman Error

In this section, we introduce our main algorithm named A-
Crab (Actor-Critic Regularized by Average Bellman error,
Algorithm 1), and compare it with the previous ATAC al-
gorithm (Cheng et al., 2022). In Section 4, we will provide
theoretical guarantees of A-Crab and discuss its advantages.

3.1. From Actor-Critic to A-Crab

Our algorithm design builds upon the actor-critic method,
in which we iteratively evaluate a policy and improve the
policy based on the evaluation. Consider the following
actor-critic example:

7" € argmax  r f" (0, 7),
T e argminfef]E“[((f - Tﬂf)(s,a))Q],

where we assume s is the fixed initial state in this exam-
ple and recall that f(s,7) = >, ,7(al|s)f(s,a). Here,
the policy is evaluated by the function that minimizes the
squared Bellman error. However, insufficient data coverage
may lead the critic to give an unreliable evaluation of the
policy. To address this, the critic can compute a Bellman-
consistent pessimistic evaluation of 7 (Xie et al., 2021),
which picks the most pessimistic f € F that approximately
satisfies the Bellman equation. Introducing a hyperparam-
eter § > 0 to tradeoff between pessimism and Bellman
consistency yields the following actor-critic update:

7" € argmax cp f7 (s0,7),
f € argmingex f(so,m) + BEL[((f = T7f)(s,a))*].

Cheng et al. (2022) argue that instead of the above absolute
pessimism, a relative pessimism approach of optimizing the
performance of 7 relative to the behavior policy, results
in an algorithm that improves over the behavior policy for
any 8 > 0 (i.e., robust policy improvement). Incorporat-
ing relative pessimism in the update rule gives the ATAC
algorithm (Cheng et al., 2022):

7 € argmax, B 7 (s,m) — 17 (5, )],
[T €argmin; 2K, [f(s,m) — f(s,a)]
+ BEL[((f = T F)(s,a))?).

Finally, we introduce the importance weights w(s, a) and
change the squared Bellman regularizer to an importance-
weighted average Bellman error to arrive at:

7 € argmax L, (7, f™),
mell

. 2
s.t. fTe arg?ggﬁu(ﬂ,f) + BEL(, f),

where

‘Cﬂ(ﬂ'nf) :Eﬂ[f(&ﬂ') —f(S,CL)], 3)
4, ) = mass [Bufus,0)(f ~ T H)(s,0). @

Maximization over w in the importance-weighted average
Bellman regularizer in (4) ensures that the Bellman error is
small when averaged over measure y - w for any w € W,
which turns out to be sufficient to control the suboptimality
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of the learned policy as the performance difference decom-
position Lemma 5.1 shows. 2

Squared Bellman error v.s. importance-weighted
average Bellman error. Unlike our approach, the
ATAC algorithm in Cheng et al. (2022) uses squared
Bellman error, wherein direct empirical approxima-
tion leads to overestimating the regularization term.?
To obtain an unbiased empirical estimator, Cheng
et al. (2022) uses Ep [(f(s,a) —r —~f(s',7m))*] —
minge 7 Ep [(g(s,a) —r — vf(s',m))?] as the empirical
estimator which subtracts the overestimation. Yet, as we
later see in Proposition 4.3, even with this correction, ATAC
fails to achieve the optimal statistical rate of 1/v/N in cer-
tain offline learning instances. In contrast, the importance-
weighted average Bellman error in our algorithm is unbiased
(as it involves no non-linearity). This makes our theoretical
analysis much simpler and leads to achieving an optimal
statistical rate of 1/v/N as shown in Theorem 4.1.

3.2. Main algorithms

Since we do not have direct access to the dataset distribution
u, our algorithm instead solves an empirical version of (2),
which can be formalized as

€ argmax Lp(m, f7),
well

5
st. fTe arg%igﬁp(ﬂ', )+ BEp(m, f), ©)
where
ED(W, f) = ED[f(sv,/T) - f(sa a)]v (6)
Ep(m, f) = max [Ep[w(s, a)(f(s,a) —r =~ f (s, m)]I.
@)

Similar to Cheng et al. (2022), we view program (5) as a
Stackelberg game and solve it using a no-regret oracle as
shown in Algorithm 1. At each step k, the critic minimizes
the objective defined by (7) w.r.t. 7, and 7 is generated
by a no-regret policy optimization oracle, given below.

Definition 3.1 (No-regret policy optimization oracle). An
algorithm PO is defined as a no-regret policy optimiza-
tion oracle if for any (adversarial) sequence of functions
fisfo,..., fx € F where f, : S x A = [0, Vinax, Vk €
[K], the policy sequence 71,7, ..., Tk produced by PO

2Such importance-weighted minimax formulations of Bellman
error have been used in prior work on off-policy evaluation (Uehara
et al., 2020) and offline RL with all-policy coverage (Xie & Jiang,
2020).

3This is closely related to the infamous double-sampling issue;
see Section 3.1 in Chen & Jiang (2019) for a detailed discussion.

Algorithm 1 Actor-Critic Regularized by Average Bellman
error (A-CRAB)

1: Input: Dataset D = {(s;,a;,7;,s.)},, value func-
tion class F, importance weight function class W, no-
regret policy optimization oracle PO (Definition 3.1).

2: Initialization: 7y : uniform policy, /3: hyperparameter.

fork=1,2,..., K do

4 fr < argminger Lp (i, f) + BED (k. f), where

Lp and Ep are defined in (6), (7)

5:  wgt1 < PO(mg, fx, D).

end for

7: Output: 7 = Unif <{7Tk}kK:1)-

w

A

satisfies that for any policy 7 € II, it holds that
1K
o 2 2 D Exlfils,m) = fiuls,m)] = o(L).
k=1

Among the well-known instances of the above no-regret pol-
icy optimization oracle is natural policy gradient (Kakade,
2001) of the form mgy1(als) o mx(als)exp(nfi(s,a))

withn = 21‘(;% |AI‘( (Even-Dar et al., 2009; Agarwal et al.,
2021; Xie et al., 2021; Cheng et al., 2022). A detailed
discussion of the above policy optimization oracle can be
found in Cheng et al. (2022). Utilizing the no-regret ora-
cle in solving the Stackelberg optimization problem in (5)

yields Algorithm 1.

A remark on critic’s optimization problem. In our
algorithm, for any given m, the critic needs to solve
a minyeF Max,cyy optimization problem, whereas in
ATAC (Cheng et al., 2022), the critic needs to solve a
min ye 7 maxye 7 problem. Since we only assume single-
policy realizability for the class YV (Assumption 2.5) but
assume all-policy realizability for 7 (Assumption 2.1) (and
Cheng et al. (2022) even requires the Bellman-completeness
assumption over F which is much stronger), in general,
the cardinality of VW could be much smaller than F, which
makes the optimization region of the critic’s optimization
problem in our algorithm F x WV smaller than F X F in
ATAC.

4. Theoretical Analysis

In this section, we show the theoretical guarantee of our
main algorithm (Algorithm 1), which is statistically optimal
in terms of V.

4.1. Performance guarantee of the A-Crab algorithm

We first formally present our main theorem, which pro-
vides a theoretical guarantee of our A-Crab algorithm (Al-
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gorithm 1). A proof sketch is provided in Section 5 and the
complete proof is deferred to Appendix C.3.

Theorem 4.1 (Main theorem). Under Assumptions 2.1
and 2.4 and let m € 1l be any policy satisfying Assump-
tion 2.5, then with probability at least 1 — 6,

J(ﬂ—) - J(’/’_T) S 0] (Estat + CZQ\/ 6]-‘) -+ 6;;”,

where

. [log(|FII[W| /o
xvmaxc&\/ BEIN
+ Vinax Bu log (| FITI[W/9)
N ;

and 7 is returned by Algorithm 1 with the choice of B = 2.

Below we discuss the advantages of our approach as shown
in the above theorem.

Optimal statistical rate and computational efficiency.
When ez = 0 (i.e., there is no model misspecification),
and when m = 7* is one of the optimal policies, the output
policy 7 achieves O(1/v/N) suboptimality rate which is
optimal in IV dependence (as long as K is large enough).
This improves the O(1/N'/3) rate of the previous algo-
rithm (Cheng et al., 2022). Note that the algorithm of Xie
et al. (2021) can also achieve the optimal O(1/v/N) rate
but their algorithm involves hard constraints of squared
{5 Bellman error and thus is computationally intractable.
Cheng et al. (2022) convert the hard constraints to a reg-
ularizer, making the algorithm computationally tractable
while degenerating the statistical rate. Our algorithm is both
statistically optimal and computationally efficient, which
improves upon both Xie et al. (2021); Cheng et al. (2022)
simultaneously.

Competing with any policy. Another advantage of our al-
gorithm is that it can compete with any policy 7 € II as long
as w™ = d” /u is contained in W. In particular, the impor-
tance ratio of the behavior policy w" = d"/u = p/p =1
is always contained in W, which implies that our algorithm
satisfies robust policy improvement (see Theorem 4.2 for
details).

Robustness to model misspecification. Theorem 4.1 also
shows that our algorithm is robust to model misspecifica-
tion on realizability assumption. Note that our algorithm
does not need a completeness assumption, while Xie et al.
(2021); Cheng et al. (2022) both require the (approximate)
completeness assumption.

Removal of the completeness assumption on 7. Com-
pared to our algorithm, Cheng et al. (2022) additionally need
a completeness assumption on F, which requires that for
any f € F and 7 € 11, it approximately holds that 7™ f €
F. They need this completeness assumption because

they use the estimator Ep [(f(s,a) —r —yf(s',m))?] —
minger Ep [(g(s,a) —r —yf(s',7))?] to address the
over-estimation issue caused by their squared ¢ Bellman
error regularizer, and to make this estimator accurate, they
need minge 7 Ep [(g(s,a) —r — v f(s',7))?] to be small,
which can be implied by the (approximate) completeness
assumption. In our algorithm, thanks to the nice property of
the weighted average Bellman error regularizer which can
be estimated by a simple and unbiased estimator, we can get
rid of this strong assumption.

4.2. A-Crab for robust policy improvement

Robust policy improvement (RPI) refers to the property of
an offline RL algorithm that the learned policy (almost) al-
ways improves upon the behavior policy used to collect data
over a wide range of the choice of some specific hyperparam-
eters (in this paper, the hyperparameter is 3) (Cheng et al.,
2022). Similar to ATAC in Cheng et al. (2022), our A-Crab
also enjoys the RPI property. Theorem 4.2 implies that as
long as 8 = o(v/N), our algorithm can learn a policy with
vanishing suboptimality compared to the behavior policy
with high probability. The proof is deferred to Appendix D.

Theorem 4.2 (Robust policy improvement). Under Assump-
tions 2.1 and 2.4, with probability at least 1 — 6,

() = J(T) S (B + D€t + CpVer) + €

where

* log(|F||II||W| /6
Estar XVrrlang2\/ g(| HNH |/8)
N ;

and T is returned by Algorithm 1 with the choice of any
B> 0.

4.3. Suboptimality of squared /> norm of Bellman error
as regularizers

The ATAC algorithm of Cheng et al. (2022) suffers sub-
optimal statistical rate O(1/N'/3) due to the squared £y
Bellman error regularizer. Intuitively, in Cheng et al.
(2022), they use Lemma 5.1 to decompose the perfor-
mance difference and use || f — 77 f||2,,, to upper bound
E,[(f — 77 f)(s, a)], which causes suboptimality since in
general the former could be much larger than the latter. To
overcome this suboptimal step, in our algorithm, we use a
weighted version of E,[(f — 77 f)(s, a)] as our regularizer
instead of || f — 77 f||2,,.. Proposition 4.3 shows that ATAC
is indeed statistically suboptimal even under their optimal
choice of the hyperparameter 5 = ©(N?2/3). The proof is
deferred to Appendix E.1.

Proposition 4.3 (Suboptimality of ATAC). If we change the
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regularizer s.t.

gll«(ﬂ-af) :”f - Tﬂf”;u
SD("Taf) :ﬁ(f’fv"Tv,D) —gréigﬁ(g,fﬂr,i?),

where L(g, f,m,D) = Ep[(g(s,a) —r—~f(s',7))?], then
even under all policy realizability (Q™ € F for all w € 11)
and completeness assumption (T7 f € F for all m € 11 and
[ € F), with their optimal choice of 3 = ©(N?/3) (Cheng
et al., 2022), there exists an instance s.t. the suboptimality
of the returned policy of (5) (i.e., the output policy by ATAC)
is Q(1/N/3) with at least constant probability.

5. Proof Sketch

We provide a proof sketch of our main theorem (Theo-
rem 4.1) in this section. The key lemma of the proof is
presented in Lemma 5.1.

Lemma 5.1 (Performance difference decomposition,
Lemma 12 in Cheng et al. (2022)). For any w,7 € IJ,
andany f : S x A — R, we have

J(m) = J(x)
=Eu[(f = T")(s,0)] + Ex[(T"f = f)(s,0)]
+Ex[f(s,m) = f(s, )] + Lou(f, f) = Lu(®, Q7).

Note that the first two terms in the RHS of the decomposition
are average Bellman errors of f and 7 w.r.t.  and d”™. Based
on this lemma, we can directly use the average Bellman
error as the regularizer instead of the squared Bellman error,
which could be much larger and causes suboptimality.

Proof sketch of Theorem 4.1. For simplicity, we assume re-
alizability of Q™, i.e., ex = 0. By Lemma 5.1 and the defini-
tion of 77, we have J (1) —J(7) = + S2p (J(m)—J (1)),
which equals to

K
Eul(fe = T™ fi)(s,0)] + E<[(T™ f& — fx)(s,a)]
(a) (b)

==

k=1

+ Exlfi(s,m) — fr(s,mr)] + L (7rs fr) — Lu(mr, Q7).

(e) (d)

By the concentration argument, with high probability,
we have £,(m, f) = Ep(m, f) £ €gae and L, (m, f) =
Lp(m, f) £ €qa for all # € II and f € F. Combining
the fact that "/ € W, one can show that (a) + (b) <

28, (7, fr) < 2Ep(mk, fr) + O(€sar). Therefore,

(a) + () + (d)
S'Cu(ﬂ'm Ir) +2Ep(mr, fir) + Olestar) — £u(77k7 Q™)
<Lop(mk, fr) +2Ep(Tk, fi) + Ol€s) — Lo (mk, Q™)
<Lop(mk, Q™) + 2Ep(mk, Q™) + O(€suar) — Lo (mk, Q™)
<O(€star) + 2Eu(Tr, Q™) = O(€star),

where the third inequality holds by the optimality of fy,, and
the last equality holds since the Bellman error of Q™ w.r.t.
m is 0. Therefore, with high probability,

J(Tf) — J(’/Tr) S O(Estat) + 6Z)Tpt'

6. Experiments

In this section, we conduct experiments of our proposed
A-Crab algorithm (Algorithm 1) using a selection of the
Mujoco datasets (v2) from D4RL offline RL benchmark (Fu
et al., 2020). In particular, we compare the performances
of A-Crab and ATAC, since ATAC is the state-of-the-art
algorithm on a range of continuous control tasks (Cheng
et al., 2022).

A more practical version of weighted average Bellman
error. Recall the definition of our proposed weighted av-
erage Bellman error regularizer

Ep(m, f) = max [Ep[w(s, a)(f(s,a) = r = 1f(s",m))]| -

Since the calculation of Ep (7, f) requires solving an opti-
mization problem w.r.t. importance weights w, for computa-
tional efficiency, we choose W = [0, C,]* as in Hong
et al. (2023), and thus

Ep (m,f) = Coo max{Ep[(f(s,a) —r = 7f(s',m))+],
ED[(T + 'Vf(slv 71—) - f(S, a))+]}7

®)
where (-)4 = max{-,0} and C can be viewed as a hy-
perparameter. We also observed that using a combination
of squared Bellman error and our average Bellman error
achieves better performance in practice, and we conjecture
the reason is that the squared Bellman error regularizer is
computationally more efficient and statistically suboptimal,
while our average Bellman error regularizer is statistically
optimal while computationally less efficient, and thus the
combination of these two regularizers can benefit the train-
ing procedure.

The practical implementation of our algorithm is nearly
identical to ATAC (Cheng et al., 2022)*, except that we

“We implement our algorithm based on a lightweight reim-
plementation of ATAC in https://github.com/microsoft/light ATAC.
All results of ATAC in this paper are obtained by the lightweight
version.


https://github.com/microsoft/lightATAC

Importance Weighted Actor-Critic for Optimal Conservative Offline Reinforcement Learning

choose

(268° (. f) + BED[((f — T™£)(s,a))?])

DN =

as the regularizer, while ATAC uses

BED[((f = T7 f)(s,a))?].

All hyperparameters are the same as ATAC, including j.
For the additional hyperparamter C,, we do a grid search
on {1,2,5,10, 20,50, 100, 200}.

Figure 2 compares the performance of ACrab and ATAC
during training. It shows that our A-Crab has higher re-
turns and smaller deviations than ATAC in various settings
(walker2d-random, halfcheetah-medium-replay, hopper-
medium-expert). We provide more results in Appendix F,
where except for the halfcheetah-random setting, A-Crab
shows comparative or better performance than ATAC consis-
tently. We also observed that in most settings, A-Crab has a
smaller variance, which shows that the training procedure
of A-Crab is more stable. We provide the choice of 5 and
C for each setting in Table F.2. Note that we use the same
value of 3 as in ATAC.

7. Discussion

We present a new offline RL algorithm called A-Crab (Algo-
rithm 1) that can be combined with general function approx-
imators and handle datasets with partial coverage. A-Crab
is an actor-critic method, where the critic finds a relatively
pessimistic evaluation of the actor while minimizing an
importance-weighted average Bellman error. We prove that
A-Crab achieves the optimal statistical rate of 1/v/N con-
verging to the best policy “covered” in the data. Importantly,
the notion of coverage here is a weaker ¢, variant of the
single-policy concentrability, which only requires the av-
erage marginalized importance weights over visitations of
the target policy to be bounded. Also, A-Crab enjoys ro-
bust policy improvement that consistently improves over
the data-collection behavior policy. Moreover, we empir-
ically validated the effectiveness of A-Crab in the D4RL
benchmark. Interesting avenues for future work include
combining A-Crab’s offline learning with an online fine-
tuning algorithm with a limited trial-and-error budget and
developing new measures for single-policy coverage that
leverage both the visitation and hypothesis class structures.
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Figure 2: Comparison of A-Crab and ATAC. For each algo-
rithm, we run 8 copies with random seeds 0-7 and plot the
mean and standard deviation. We use the same pre-training
method as ATAC for 100 epochs, and the plot starts after
pre-training.
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A. Related Work

In this section, we review additional related literature not covered in the introductions.

A.1. Dataset Coverage Assumptions

One central challenge of offline RL is the insufficient coverage of the dataset. In RL theory, concentrability is often used
to characterize dataset coverage (Munos, 2007; Scherrer, 2014). For example, many earlier works require all-policy ¢
concentrability (Scherrer, 2014; Liu et al., 2019a; Chen & Jiang, 2019; Jiang, 2019; Wang et al., 2019; Liao et al., 2020;
Zhang et al., 2020a). Some works even require the ratio between occupancy probability induced by polices and the dataset
distribution to be bounded for every time step (Szepesvari & Munos, 2005; Munos, 2007; Antos et al., 2008; Farahmand
et al., 2010; Antos et al., 2007). The work Xie & Jiang (2021) makes stronger assumptions such as requiring lower bound
on conditionals (als).

Since the all-policy concentrability assumption is strong and can often be violated in practice, recent algorithms requiring
only partial data coverage assumptions are developed based on single-policy /., concentrability (Rashidinejad et al., 2021;
Zhan et al., 2022; Rashidinejad et al., 2022; Chen & Jiang, 2022; Ozdaglar et al., 2022). However, This could still be
restrictive even if only single-policy concentrability is required since the /., concentrability is an upper bound of density
ratios over all state-action pairs.

Milder versions of ¢, concentrability have been studied in both all-policy concentrability framework (Xie & Jiang, 2020;
2021; Feng et al., 2019; Uehara et al., 2020) or and single-policy concentrability (Uehara & Sun, 2021; Xie et al., 2021;
Song et al., 2022; Cheng et al., 2022). However, these works based on milder versions of /., single-policy concentrability
are either computationally intractable (Uehara & Sun, 2021; Xie et al., 2021) or suffer a suboptimal statistical rate (Cheng
et al., 2022).

Our work uses /5 concentrability version, which also appears in Xie & Jiang (2020). In particular, they also use weighted
average Bellman error in their algorithm. However, their algorithm requires all-policy concentrability assumptions and thus
cannot deal with partial dataset coverage. To the best of our knowledge among previous works, only Uehara & Sun (2021)
used ¢ single-policy concentrability to characterize data coverage, but their algorithm is designed for model-based settings
and are computationally intractable. Another closely related work is Uehara et al. (2020), which also uses weighted average
Bellman error. However, their algorithm is in the off-policy evaluation (OPE) framework, and they use /., concentrability
version to characterize dataset coverage.

A.2. Conservative offline reinforcement learning

To address partial dataset coverage in offline RL, a line of recent applied works studies conservative algorithms, which can
be divided into several categories.

The first category enforces the learned policy to be close to the behavior policy (or equivalently, dataset), which ensures that
candidate policies not well covered by the dataset are eliminated. This can be accomplished by either adding constraints
explicitly (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Jaques et al., 2019; Siegel et al., 2020; Ghasemipour
et al., 2020; Fujimoto & Gu, 2021), implicitly (Peng et al., 2019; Nair et al., 2020), or by importance sampling with bounded
ratio (Swaminathan & Joachims, 2015; Liu et al., 2019b; Nachum et al., 2019b; Zhang et al., 2020c;b; Lee et al., 2021).

The second category consists of model-based methods such as adversarial model learning (Rigter et al., 2022), learning
pessimistic models (Kidambi et al., 2020; Guo et al., 2022), using model ensembles to form penalties (Yu et al., 2020), or
combining model and values (Yu et al., 2021).

The last category aims to learn conservative values such as fitted Q-iteration using conservative update (Liu et al., 2020),
conservative Q-learning (CQL) (Kumar et al., 2020), critic regularization (Kostrikov et al., 2021), and subtracting penalties
(Rezaeifar et al., 2022).

On the theoretical side, many works use some form of uncertainty quantification to design to ensure pessimism (Yin &
Wang, 2021; Kumar et al., 2021; Uehara et al., 2021; Yin et al., 2022; Zhang et al., 2022; Yan et al., 2022; Shi & Chi, 2022;
Wang et al., 2022). Except for uncertainty quantification, in linear function approximation settings, Zanette et al. (2021) uses
value function perturbation combined with the actor-critic method. Recent advances in the theory of pessimistic algorithms
include MIS (Zhan et al., 2022; Chen & Jiang, 2022) and adversarially trained actor-critic (ATAC) (Cheng et al., 2022). In
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particular, our algorithm is built based on MIS combined with the actor-critic method.

B. Proof of Proposition 2.3

The first part of the proposition is easy to see:

(OFF = "B, = Ew (s, )P < B, o7, TOD ] —op g, | T0D) o

Cf, = w2 < lwfloo = C.

For the second part, consider the case where for a fixed policy 7 and for any s € S, a € A, there exists f € F such that
(f = T7™f)(s,a) is non-zero only at (s, a) and is zero otherwise. The Bellman-consistent concentrability defines Cg,;.., t©
be the smallest constant that

=T B
reF |lf=T7fl3,
(f B Tﬂf)Q(Sv a)dw(sv a) < Cﬂ'

T
S C1Bellman

— ma
e (T 25 (s ) - Belman
d™(s,a)
- Hslf}lx m S lgrellmana

which makes it equal to the /., variant. On the other hand, the /5 variant only requires the average importance weights to be
bounded:

> () oo = [0 < e

s,a

C. Theoretical Analysis of the Main Theorem

In this section, we provide theoretical proof of our main theorem (Theorem 4.1). We first present two key lemmas in
Appendix C.1 and then prove the main theorem in Appendix C.3. For convenience, we always assume Assumptions 2.1, 2.4
and 2.5 hold.

C.1. Key lemmas

The first lemma shows that with high probability, the population version of our weighted average Bellman error regularizer
is close to the empirical version.

Lemma C.1 (Concentration of the empirical regularizer). With probability at least 1 — 6, for any f € F, w € 11, we have
|€M(7Ta f) - gD(ﬂ—7 f)l S €stat-

Proof. We condition on the high probability event in Lemma C.3. For any f € F and 7 € II, define wj ;=
arg maxyew Eu(m, f) = argmaxyew [E,lw(s,a)(f — T7f)(s,a)]| and define W, ; = argmax,ew Ep(m, f) =

arg maxyew |+ 2 (s.amsnep WS, a)(f(s,a) —r —f(s, w))‘ Then

En(m, f) = Ep(m, [)

:|Eu[w;,f(sv a)(f - Tﬂ'f)(sa Cl)]l - % Z wﬂ',f(s’ a)(f(S’ a) -Tr—= rYf(Slvﬂ-))

(s,a,r,s’)ED

=[Bulwr ¢ (s,a)(f = T7f)(s; a)ll = [Epfdor 5 (s, a)(f = T"f)(s,a)]]

Bl (s, 0)(f = T N0l = |5 3 g, 0)(f(s0) = = (', m)

(s,a,r,s")ED

>0 — €sta = —€star;
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where the inequality holds by the optimality of wy ¢ and Lemma C.3. Similarly,
5#(7'(‘7 f) - gD(ﬂ—7 f)

SIEulwl (5,0~ T NGl — |y Y0 wh(s,0)(fs,0) =7 =27 m)

(s,a,r,s")ED

+ % Z w:r,f(sﬂ a)(f(s,a) —r— ’Yf(sl’ 7))

Iy X drssa)(f(sa) —r =y )

(s,a,r,s’)ED
<éstat + 0 = €stars

where the inequality holds by the optimality of 1 ; and Lemma C.3. O

The next lemma provides a high-probability upper bound of the empirical weighted average Bellman error of f, w.r.t. 7,
where f; is the (approximate) Q-function of 7.

Lemma C.2 (Empirical weighted average Bellman error of approximate ) function). With probability at least 1 — 6, for
any w € 11, we have

51)(71’, fﬂ') < 022 VEF + €star-

where f7r = arg minfG]" mMaXadmissible v ||f - Tﬂf”%,l/'
Proof. We condition on the high probability event in Lemma C.1. Since
Eu(m, fr) = max [E,[w(s, a)(fx — T fx)(s,a)]|
weW
[fr = T frll2

< max ]z,

Sc,é; VEF,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by the definition of f, and
Assumption 2.1, we can immediately obtain that

5'D(777 f?r) < Eu(ﬁv f?T) + €stat = 022 VEF + Estar-

C.2. Complementary lemmas

We provide two complementary lemmas in this section, which are both high-probability concentration inequalities.

Lemma C.3 (Concentration of weighted average Bellman error). With probability at least 1 — 6, for any f € F, m € Il and
w € W, we have

B - Tl ~ |5 S wlsa)(f(s@) —r -2 f(s'm)
(s,a,r,s’)€ED
-0 (Vm% e IIVS) |, Vi 1og<]|vf||H|W/6>> .
Proof. 1t suffices to bound
B/~ T fu] - 5 w(s, a)(f(s.a) =1 1(s',7)

(s,a,r,s")€ED
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for any fixed f € F, w € II, w € W, and a union bound and the triangle inequality conclude.
Note that

By Y Ulsa) —r =S m)ulsa)

(s,a,r,s")€ED

(s,a) —r —~f(s',m)w(s,a)]
=E(s,a)~pBrr(s, a),s ~P(lsa) [(f(s,0) =7 =y f(s",m))w(s,a)ls, a]
=E(s.a)oul(f(s,0) =TT f(s,a))w(s,a)].

Then by Bernstein’s inequality, we have that with probability at least 1 — 9,

:E(s a)~p,rer(s,a),s’~P(-|s,a) [(

1

E(f =T ful—5 D (fls0)—r—af(s \muls,a)
(s,a,r,s’) €D
-0 < wamw ~ T D)ul10g(1/3) | Ve ]éogu/é)) |

Since
Var, [(f = T flw] < EL[(f = T F)*w?] < O(Vigaxllwll3 ) < O(Viaax(CF,)?),

we can obtain that

1
E(f =T" vl = (f(s,a) =r = f(s", m))w(s,a)
(s,a,r,s")€ED
log(1/6 maxBw log(1/6
<0 <me% B0 1 Yo B )> :
which implies the result. O

Lemma C.4 (Concentration of the actor’s objective). With probability at least 1 — 0, for any f € F, w € I, we have

L(m. ) — £o(r, f><o<max WW)s

where €y, is defined in Lemma C.3.

Proof. Note that E,[Lp (7, f)] = L,(m, f) and |f(s,7) — f(s,a)] < O(Viax). Applying a Hoeffding’s inequality for any
fixed f, m and a union bound over all f € F, w € II, we can obtain that with probability at least 1 — J, it holds that

|L,(7, f) = Lp(m, )] <O (Vmax WHHW) .

N
forall f € Fand 7 € IL O

C.3. Proof of Theorem 4.1

Now we are able to prove our main theorem equipped with lemmas in previous sections.
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Proof of Theorem 4.1. By Lemma 5.1 and the definition of 7, we have

1 K
J(m) = J(7) = - > () = I ()
1 p k=1

K
k=1

(Epl(fi = T™ fi) (s, )] + Ex[(T™ fi — fu)(s, a)]
(a) (b)
+ Er[fu(s,m) — fu(s, )] + Lou(mhs fo) — L1, @™)).
(¢) (d)

Now we condition on the high probability event in Lemma C.1 and Lemma C.4 simultaneously and rescale ¢ by 1/2 and
apply a union bound. Note that d™ /y € W, which implies that (a) + (b) < 2&, (7, fr) < 2Ep(Tk, fr) + 2€a, Where the
last inequality holds by Lemma C.1. By Lemma 13 of Cheng et al. (2022), we can obtain that

1L (e, Q) = Ly (s fr )| < | e = T Frillzn + [ fre = T frill2.ame < O(Ver),

where fr, £ argmin e maXadmissivle v || f — wa”;V Also, by Lemma C.4, we have

|Lu(mh, fr) = Lo (7w, fro)| + 1Lu(Tks fr) — Lo(Ths fr)] < O€star)-
Therefore,

(@) + (b) + (d) <L 7k, fx) + 2ED(Tks [r) + 2€stat — LTk, fr) + O(VeF)

<

<Lp(7k, fr) + 2Ep(Tk; fr) + O(estar) — Lo (Th, fr,) + O(VeF)
SACD(ﬂ'kv fwk) + 25D(7Tk> f7rk) + O(esmt) - ‘C'D(ﬂ'lﬁ fﬂ’k) + O(\/a)
SO(Estat + Cé;\/a)

where the third inequality holds by the optimality of fj, and the last inequality holds by Lemma C.2. Therefore,

J(m) = J(7) < Oegua + CF,\/€7) + Eopt-

D. Analysis of Robust Policy Improvement

Proof of Theorem 4.2. By Lemma 5.1 and the definition of 7, we have
1 X
J(p) = J(7) = 4 > (T (w) = J(m))
k=1

K
:% Z(Eu[(fk — T fi) (s, )] +Eu[(T™ fx — fr)(s,a)]
k=1 5 ~
+ E'n’[fk(s,/l) - fk(S,’]Tk)] +£/—L(7Tk,fk) _ ‘Cﬂ(’n—kaﬂ-k)).
(c) ()

Now we condition on the high probability event in Lemma C.1 and Lemma C.4 simultaneously and rescale 6 by 1/2 and
apply a union bound. Note that (a) + (b) = 0. By Lemma 13 of Cheng et al. (2022), we can obtain that

“c;t(ﬂ-kv Qﬂ-k) - £;L(7Tk7 fﬂ'k)‘ S ||f7rk - Tﬂkfﬂk ||2,u + ||f7rk - 7d‘n-kar;C HQ,d"k S O(\/ 6]—"), (9)
where fr, £ arg minyse r maXumissivie v ||/ — 77 f|3.,,- Also, by Lemma C.4, we have

|L (s i) — Lo (T, f1)| + LTy fr) — L (Thes fr)| < O€star)- (10)
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Therefore,
E;,L(ﬂ-lw fk:) - ‘Cu(ﬂ-ka Qﬂ'k)
<L, (Tk, fr) + BED (T, fr) — Lpu(mr, QTF) (ép(+,-) > 0)
<L, (Tx, fx) + BED(mh, fr.) — Lu(Tr, Q™) — BED(Th, fry,)
+ BCE, VeF + Bésa (Lemma C.2)
SﬂD(Tf—k, fk) + ﬁgD(ﬂ—k:a fk:) - ‘CD(’]TIW fﬂ'k) - 65D(7Tk7 fTrk)
+ (5 + 1)(€Stﬂt + sz \/a) ((9)7 (10))
<(B + D) (estar + C7\/€F). (Optimality of f%)
Therefore,

J(p) = J(7) S (B4 1) (esar + ChV/Er) + €5y

E. Analysis of the Suboptimality of ATAC

In this section, we prove Proposition 4.3 in Appendix E.1. For convenience, we use Bern(p) to denote a Bernoulli variable
with parameter p, and use Bin(n, p) to denote a binomial variable with parameters n and p.

E.1. Proof of Proposition 4.3

Construction of a two-arm bandit example. Assume there are two arms a1, az. Assume § = (:)(N *) where a > %
Note that this is a more general case than 3 = ©(N?/3) as stated in the proposition. Let A = min{3/N,1/10}. Assume
the reward of the first arm is deterministic, i.e., (a1) = 1/2 + A, and r(a2) = Bern(1/2). Let II = {7, w2}, where
7T1(a1) = 1771'1(@2) =0, and 7'('2(0,1) = O,?TQ(CI,Q) = 1. Also, let F = {fh fg}, where fl(al) = 1/2 + A, fl(a2> = 1/2
and fa(a1) = 1/2+ A, fo(az) = 1/2 4 2A. Finally, the dataset distribution y satisfies 11(a2) = w5z, p(a1) =1 — p(az).
Note that in bandit settings, for any policy 7 and any function f, we have Q™ = T " f = r. Therefore, the example above
satisfies both completeness and realizability assumptions.

Proof of the suboptimality of ATAC. The ATAC algorithm is simplified to

e arglglélﬁ(Eu[f”(W) — f(a)],

st. f7 € arg ?g}__lEu[f(W) = f(@)] + BEL((f = 7)(a))],

in bandit settings.

For convenience, we assume that P, (a = a1) = Pp(a = a1). Note that by anti-concentration of the binomial distribution
(Lemma E.1), we have that with constant probability, it holds that 7*(as) > % + =2 = % + 2A.

v/ Nu(az)

Conditioned on this event, we compute f™* and f™2 separately. We have
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and

B (m1, 1) =BEI((f: — r)(@))?] = Bu(az) (
BE(m, f2) =BE[((f2 - r)(@))?

Bu(ay) (72(&2) (; _ 2A>2 + (1 — #(az)) <; + 2A)2>
e ((329) (5-22) + 3-) (5+))
<Bu(az) ((;)2 - (QA)2>

_ Bu(as)
4

[\

—4—.

Also, we have
Lp(ma, f1) =Eulfi(m2) — fila)] = fi(m2) — plar) f1(ar) — p(az) fi(az)
“n(en)(fulas) — e = - (1= 115 ) &
Lp (72, f2) =Eulfa(m2) — f2(a)] = fa(m2) — pla1) f2(a1) — p(az) f2(az2)
=p(a1)(f2(az) — fa(ar)) = (1 - NlAg> A,

and
BE,(m2, f1) = BED(m1, 1) = 5“51@,
8,2, f2) = BEp(m, f2) < P2 40

Since /N > A, we can obtain that Lp (72, f1) + 8Ep (72, f1) > Lp (72, f2) + BED (ma, f2), which implies that ™2 = f,.
Finally, note that

v >

Lp(ma, ) = Lp(ma, f2) > — > ﬁ = |Lp(m1, )],

we have 7=, by ATAC algorithm. Note that J(m) — J(#) = r(m;) — r(72) = A > Q(1/V/N). Therefore, for any
« > 1/2, there exists an instance s.t. ATAC cannot achieve the optimal rate O(1/v/N). In particular, when 3 = ©(N?/3),
we have J(m;) — J(7) = A = Q(1/N1/3).

E.2. Complementary lemma

Lemma E.1 (Anti-concentration of Binomial distribution, adapted from Proposition 7.3.2 of Matousek & Vondrak (2001)).
Let X ~ Bin(n, %) be a binomial random variable with mean p. = %. Then we have that for any t € [0, %} and universal
constants ci, ca,

Pr(X > p+nt) > cle_CQtQ".

F. Additional Experimental Results
F.1. Comparision of A-Crab and ATAC in different settings

In this section, we show comparisons of A-Crab and ATAC in more different settings in Figure 3.
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Figure 3: Comparison of A-Crab and ATAC in more different settings.
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F.2. Value of 3 and C, for each setting

In this section, we show our choices of 5 and C, for each setting in Table F.2. Note that we directly choose the same value
of § as in ATAC, and select C, by a grid search over {1, 2, 5, 10, 20, 50, 100, 200}.

Table 2: Choices of S and C, for each setting. The value of /3 is the same as in ATAC (Cheng et al., 2022) and C, is
chosen by a grid search.

B Cw
walker2d-random 64 50
walker2d-medium 64 1

walker2d-medium-replay 64

5
walker2d-medium-expert 64 2
2

hopper-random 64
hopper-medium 64 1
hopper-medium-replay 16 1
hopper-medium-expert 1 1
halfcheetah-random 16 10
halfcheetah-medium 4 1

halfcheetah-medium-replay 16 2

halfcheetah-medium-expert | 0.062 5




