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ABSTRACT

As large language models expand beyond natural language to domains such as
mathematics, multimodal understanding, and embodied agents, tokens increasingly
reflect metric relationships rather than purely linguistic meaning. We introduce
DIST2Loss, a distance-aware framework designed to train autoregressive discrete
models by leveraging predefined distance relationships among output tokens. At
its core, DIST2Loss transforms continuous exponential family distributions de-
rived from inherent distance metrics into discrete, categorical optimization targets
compatible with the models’ architectures. This approach enables the models to
learn and preserve meaningful distance relationships during token generation while
maintaining compatibility with existing architectures. Empirical evaluations show
consistent performance gains in diverse multimodal applications, including visual
grounding, robotic manipulation, generative reward modeling, and image gener-
ation using vector-quantized features. These improvements are most notable in
low-data regimes, demonstrating DIST2Loss’s strength under resource constraints.

1 INTRODUCTION

Large language models (LLMs) (Radford et al., 2018) have recently emerged as backbones for
general-purpose foundational models across wide domains (Bommasani et al., 2021). These models
rely on two probabilistic principles. First, they represent a sample text as a sequence of tokens and
train the model autoregressively, predicting each token conditioned on the previous ones. Second,
each token is treated as a discrete categorical variable, optimized to match a one-hot target distribution.

While originally developed for natural language, LLMs are now widely adapted to tasks far beyond
text. In vision, they have been coupled with discrete visual tokens for image generation and edit-
ing (Esser et al., 2021; Dhariwal et al., 2020); in robotics, they are finetuned to handle control and
planning tasks by treating actions or trajectories as token sequences (Xiao et al., 2024; Li et al.,
2024); and in multimodal reasoning, they are adapted to align visual, textual, and symbolic repre-
sentations (Yu et al., 2024). These cases demonstrate the portability of the discrete autoregressive
formulation beyond language.

A key limitation of such adaptation is the inability to fully exploit numerically or metrically structured
elements. These include explicit numbers, as well as entities situated in broader metric spaces—such
as integers in arithmetic reasoning (Yuan et al., 2023), spatial coordinates and rotation angles in
object detection and manipulation (Xiao et al., 2024; Li et al., 2024), and high-dimensional quantized
embeddings in image or video generation (Esser et al., 2021; Yu et al., 2024; Dhariwal et al., 2020).
In conventional finetuning, the intrinsic distance structure among these elements is ignored, since
tokens are reduced to one-hot categorical targets.

In this work, we introduce DIScreTized DISTance Loss (DIST2Loss), a framework that integrates
predefined distance relationships between tokens into the adaptation of autoregressive discrete mod-
els. DIST2Loss requires no additional data and incurs minimal computational overhead, enabling
plug-and-play use across diverse setups. By encoding metric structure directly into the target distribu-
tion, DIST2Loss accelerates performance improvement on tasks where distances are semantically
meaningful, including object detection (section 3.2), object manipulation (section 3.3), reward
modeling (section 3.4), and image generation (section 3.5).
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Figure 1: Tasks outside of language often require outputs with metric structure, for example quantities
or coordinates, making distance-aware modeling advantageous.

Conceptually, DIST2Loss can be viewed as the closed-form solution to entropy-regularized policy
optimization, providing a stable and efficient alternative to reinforcement learning. It constructs a
reward-weighted target distribution over the vocabulary and trains the model to match it through
KL divergence. This preserves the essential mechanism of reward alignment while avoiding the
sampling, rollouts, and instability characteristic of traditional RL methods. Crucially, such rewards
are only well defined when tokens admit a meaningful metric, such as numerical values, coordinates,
or quantized embeddings, so that distances can be translated into scalar quality signals. In domains
without intrinsic geometry, the method reduces to one-hot supervision.

Our experiments demonstrate that DIST2Loss generalizes effectively across domains and improves
downstream performance even in data-scarce settings. It yields tighter bounding box predictions in
visual grounding (section 3.2), accelerates the learning of robotic actions to increase success rates
in manipulation tasks (section 3.3), improves reward modeling for LLM alignment (section 3.4),
and enhances the learning of vector-quantized image representations in autoregressive models (sec-
tion 3.5). These results illustrate that distance-aware supervision can consistently strengthen discrete
autoregressive models beyond one-hot next-token prediction.

2 METHOD

We aim to design an objective that (1) leverages the given metric to construct optimization targets, and
(2) remains compatible with the categorical distributions used in LLM-based foundational models.
We hypothesize that incorporating this metric prior improves data efficiency when distances are
meaningful. This section is organized as follows: first, we review the conventional cross-entropy
formulation; second, we introduce DIST2Loss; third, we interpret DIST2Loss from a reinforcement
learning perspective; and finally, we extend the framework to high-dimensional metrics.

2.1 PRELIMINARIES

Notations. Let V denote the vocabulary of the discrete autoregressive model (e.g. an LLM), and
consider a subset Vd ⊆ V with cardinality |Vd| = M . Define a metric space (X , d), where each
element x ∈ X represents a sequence x = (x1, . . . , xL) with xi ∈ Vd. The metric d : X × X → R
assigns a distance d(x, y) between any pair of sequences (x, y) ∈ X × X . This distance d(x, y)
is determined by the underlying data structure, such as the Euclidean distance for integers or an
embedding distance for multi-dimensional vectors.

Consider the discrete input sequence s = (s1, . . . , sn), representing a sequence of tokens in an
autoregressive discrete model. A single forward pass through the model generates logits over the
entire vocabulary V for each token in the sequence:

lt = fθ(s<t), ∀t ∈ 1, . . . , n (1)

where lt represents the logit vector at time step t and fθ denotes the model parameterized by θ. These
logits lt are then transformed into probability distributions over the vocabulary subset Vd by applying
the softmax function:

pθ(v|s<t) = softmax(lt), v ∈ V (2)

Cross-Entropy Loss. In training a discrete autoregressive model, the standard approach involves
teacher-forcing, where the target and model predictions are compared independently at each token.
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Figure 2: DIST2Loss finetunes discrete autoregressive models with a distance-aware target distribution
instead of a one-hot target. The procedure is: (a) define a token distance metric d(x, x′), (b) convert
the metric into a continuous distribution p(x, x′), (c) discretize the distribution to obtain pd(x, x

′),
and (d) compute the KL divergence loss between the target pd and the model likelihood pθ per token.

Cross-entropy loss (Shannon, 1948), LCE, is commonly used to compare two categorical distributions:

LCE = −
n∑

t=1

∑
v∈V

ptarget(v|st) log pθ(v|s<t) (3)

where ptarget(v|st) denotes the target distribution at time step t. In most cases, ptarget(v|st) is a one-hot
distribution that corresponds to the ground truth token st.

2.2 DISCRETIZED DISTANCE LOSS

Consider a subsequence x = [xi : xj ] with i ≤ t ≤ j in the input sequence s, represented as
s = [. . . , si−1, xi : xj , sj+1, . . .]. Following the notations defined above, x is also an element of the
metric space X (fig. 2 a). While this formulation easily generalizes to cases where multiple elements
from X are present within s, we limit our explanation to a single x-subsequence here for clarity.

To incorporate the metric distance into the model’s objective, we define a target distribution pd(v|x, t)
(fig. 2 b,c) that reflects the similarity of the tokens according to a chosen distance metric d in the
token space Vd. This target aligns probability mass with the similarity structure, encouraging model
outputs that respect the defined metric distance.

We propose formulating the target distribution pd using a discretized exponential family distribution:

pd(v|x, t) =
exp

(
−d(v,x,t)

τ

)
∑

v′∈Vd
exp

(
−d(v′,x,t)

τ

) (4)

where the temperature hyperparameter τ controls the smoothness of the target distribution, with lower
values of τ assigning higher probability to tokens closer to the target in the metric space. Note that in
a single token case, where each element in the metric space consists of a single token from a subset
of the vocabulary, we have d(v, x, t) = d(v, xt) and thus in turn ptarget(v|x, t) = ptarget(v|xt).

In the specific case where the Root Mean Squared Error (RMSE) is used as the distance metric, our
formulation is equivalent to a distribution referred to as Discrete Gaussian in prior work (Canonne
et al., 2020). Our framework generalizes this approach, offering a flexible loss function applicable
across diverse distance metrics and task domains for discrete autoregressive models.

The discretized distance loss is defined by comparing ptarget(v|x, t) with the model’s predicted
distribution pθ(v|s<t) via KL divergence (fig. 2 d):

Ldist =

n∑
t=1

∑
v∈Vd

pd(v|x, t) log
pd(v|x, t)
pθ(v|s<t)

(5)
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The final objective combines the cross-entropy loss LCE with this distance-based regularization:

L = LCE + αLdist (6)

where α adjusts the weighting between accuracy and metric coherence. For simplicity, we fix α = 0.1
throughout the experiments without hyperparameter tuning.

Example. Consider a single-token case, denoted as xsingle ∈ Xsingle with xsingle = (xi). To simplify,
we restrict the metric space to scalar Euclidean metrics. Suppose the target token xsingle is 5, with the
Euclidean distance metric defined as d(v, x) = (v − xi)

2. We construct a target distribution pd(v|x)
that assigns higher probabilities to tokens closer to 5 according to this distance. For example, token
4 receives a higher probability than token 2, reflecting its proximity to the target within the metric
space. This setup is used directly in our experiments in section 3.4.

2.3 CONNECTION TO ENTROPY-REGULARIZED POLICY OPTIMIZATION

The construction of DIST2Loss can be directly linked to entropy-regularized policy optimization. In
reinforcement learning, the goal is to optimize a policy π over actions a ∈ A by maximizing the
expected reward. Entropy regularization augments this objective with an entropy term that penalizes
peaked distributions and encourages exploration:

max
π

Ea∼π[R(a)] + τH(π), H(π) = −
∑
a∈A

π(a) log π(a).

Here, R(a) is the reward associated with action a, and τ is a temperature parameter controlling
the strength of regularization. The entropy term prevents the policy from collapsing too early to a
deterministic choice and ensures that probabilities remain distributed in proportion to their relative
rewards. This objective admits a closed-form optimal policy (Haarnoja et al., 2017):

π∗(a) ∝ exp
(

R(a)
τ

)
.

DIST2Loss instantiates this result in the autoregressive modeling setting, where candidate tokens
are actions and the reward R(a) is given by a distance-based evaluation. Rather than estimating
this distribution through sampling or iterative updates, DIST2Loss uses the analytical solution as
the target and trains the model to minimize its KL divergence. Thus, DIST2Loss corresponds to the
closed-form solution of entropy-regularized reinforcement learning with per-token rewards.

This interpretation clarifies both the efficiency and the scope of DIST2Loss: it eliminates the
instability associated with policy-gradient estimators, but applies cleanly only when rewards are
defined independently for each token, such as integers, coordinates, or quantized embeddings.

2.4 HIGH DIMENSIONAL DISTANCE

Our DIST2Loss is flexible and can be applied to any distance metric defined over the vocabulary Vd,
including the distance between high-dimensional continuous vectors. Here, we outline a practical case
where the distance is defined over high-dimensional vector embeddings, which are commonly used in
representation learning (Radford et al., 2021; Caron et al., 2021) and information retrieval (Karpukhin
et al., 2020) literature.

Consider a vector representation v(x) for each token x ∈ Vd, where v(x) ∈ RD is a high-dimensional
embedding. Suppose that we have two singleton sequences x = (x1) and y = (y1), each represented
by their embedding v(x1) and v(y1). To compute the distance between these sequences, we use a
distance metric d over their embeddings, such as cosine similarity or Euclidean distance. For instance,
when using cosine similarity, the distance between v(x) and v(y) is given by:

d (v(x),v(y)) = 1− v(x) · v(y)
∥v(x)∥∥v(y)∥

(7)

which captures the angular separation between token embeddings. The choice of distance metric often
depends on the training objective of the embedding function v. For instance, with vector-quantized
representations, the distance metric is typically chosen to match the quantization function used during
the training of the embedder, as discussed in experiments in section 3.5.
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# of Training Samples

MAE RMSE

# of Training Samples

Given input data points  
[( , ), ...],  
predict y for a new input x: .

The answer is 0.275.

0.358 0.589
0.500

Figure 3: (Left) Experimental results showing MAE and RMSE across varying numbers of training
samples. The y-axis is inverted for visualization. (Right) Overview of the task setup in the meta linear
regression experiment, where the model learns to perform linear regression based on the data points.

3 EXPERIMENTS

We propose a general approach for leveraging metric space information to finetune discrete autoregres-
sive models. Our method can be applied whenever a model needs to generate numeric or discretized
representations with regression targets. To validate its generality, we apply our approach across a
range of tasks: (1) synthetic function regression as a toy task, (2) generative reward modeling for
human feedback in LLMs, (3) object detection within multimodal LLMs, (4) object manipulation in
embodied AI, and (5) image generation on vector-quantized representations, showcasing its capacity
for high-dimensional distance modeling.

Baselines. Across our experiments, we evaluate two ablated baselines alongside the full distance-
aware loss (dist): the sft baseline, which applies only the standard cross-entropy loss LCE without
any distance-specific objective, and the vocab baseline, which replaces the distance loss Ldist with a
cross-entropy loss constrained to a subset of the vocabulary Vd. The vocab objective is intended to
assess the impact of the distance-aware target distribution on model performance, and is defined as:

Lvocab = LCE(V) + αLCE(Vd) (8)

where LCE(V) denotes the cross-entropy loss over the entire vocabulary V and LCE(Vd) is the
cross-entropy loss over the numeric-constrained subset Vd.

3.1 TOY: LEARNING TO REGRESS

This experiment represents a learning-to-learn task, where the model is trained to acquire the
inductive bias of linear regression itself, rather than memorize specific input-output mappings. Each
training sample consists of three distinct (x, y) pairs defining a unique linear function, along with a
target input x for which the model must predict the corresponding output y, as illustrated in fig. 3.
Notably, the model is not explicitly informed that the underlying relationship is linear—it must infer
this structure from the input data alone.

To evaluate the data efficiency of DIST2Loss, we deliberately restrict the number of training samples
to between one and ten, where each sample corresponds to a different regression function with varying
slopes and intercepts. This low-data regime is a principled design choice: the goal is not to optimize
performance under large-scale supervision, but to assess whether our loss formulation facilitates
generalization from minimal structurally meaningful supervision. This aligns with prior work in
meta-learning and inductive bias evaluation (Trask et al., 2018; Yu et al., 2020), where models are
expected to extract abstract rules from very limited examples.

Setup. Each problem is defined by sampling a slope from [0.1, 1.0] and an intercept from
[0.0, 0.5]. For each random seed, we generate ten training and 1,000 test problems, us-
ing subsets of the training set (1–10 samples) to evaluate data efficiency. We fine-tune
meta-llama/Llama-3.2-1B-Instruct (AI@Meta, 2024) for 5,000 steps using AdamW
(batch size 1, learning rate 1× 10−5) with different loss functions, evaluating on unseen regression
problems to assess structural generalization. Predictions are made at x = 0.5, with performance
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RefCOCO RefCOCO+ RefCOCOgModels #PT #FT val test-A test-B val test-A test-B val test

UNINEXT 600K 127K 92.6 94.3 91.5 85.2 89.6 79.8 88.7 89.4
Ferret 1.1M 127K 89.5 92.4 84.4 82.8 88.1 75.2 85.8 86.3
Ferretv2 1.1M 127K 92.8 94.7 88.7 87.4 92.8 79.3 89.4 89.3
Florence-2-B 126M 127K 92.6 94.8 91.5 86.8 91.7 82.2 89.8 82.2
Florence-2-L 126M 127K 93.4 95.3 92.0 88.3 92.9 83.6 91.2 91.7

Phi3V-sft 0 127K 94.3 93.5 86.0 85.9 91.6 78.7 92.2 87.4
Phi3V-vocab 0 127K 94.5 (↑0.2) 93.2 (↓0.3) 86.0 (−) 85.9 (−) 90.6 (↓1.0) 78.2 (↓0.5) 92.4 (↑0.2) 87.6 (↑0.2)
Phi3V-dist 0 127K 94.8 (↑0.5) 94.5 (↑1.0) 87.3 (↑1.3) 87.1 (↑1.2) 92.2 (↑0.6) 81.4 (↑2.7) 92.8 (↑0.6) 88.0 (↑0.6)

Table 1: RefCOCO (Kazemzadeh et al., 2014; Mao et al., 2016; Yu et al., 2016) visual grounding
results (accuracy, %). We fine-tune (FT) Phi3V (Abdin et al., 2024), a model not trained on grounding
tasks, while baselines pretrain (PT) on large-scale detection datasets.

reported as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), averaged across five
random seeds. All values are reported to three decimal places. Additional details are in appendix D.3.

Results. The bottom panel of fig. 3 demonstrates that DIST2Loss consistently outperforms the
baselines (sft and vocab) in terms of MAE, except when only a single training sample is provided.
This exception reflects the challenge of generalizing the linear regression property from a single
example. Additionally, the vocab baseline shows high variability in regression accuracy across
different training data scales due to its tendency to sharpen the target distribution on numerical
outputs, leading to inconsistent performance.

3.2 MULTIMODAL: VISUAL GROUNDING

We begin by evaluating DIST2Loss on the multimodal task of visual grounding, which involves
generating the coordinates of the bounding box for a specified object based on the corresponding
referring expression provided as input.

Setup. To evaluate data efficiency, we finetune Phi3V1 (Abdin et al., 2024), which lacks pretrained
grounding ability, on RefCOCO (Kazemzadeh et al., 2014; Mao et al., 2016; Yu et al., 2016) without
object detection pretraining. Following (Xiao et al., 2024), we combine RefCOCO, RefCOCO+, and
RefCOCOg for finetuning. We focus on visual grounding—rather than object detection—to extend
LLM language grounding. DIST2Loss is compared against strong baselines pretrained on large-scale
grounding datasets, including UNINEXT (Yan et al., 2023), Ferret (You et al., 2024; Zhang et al.,
2024a), and Florence-2 (Xiao et al., 2024), all finetuned on the same data. Accuracy (IoU ≥ 0.5) is
the evaluation metric.

Results. Table 1 demonstrates that incorporating DIST2Loss consistently enhances performance
over the sft baseline. In contrast, the vocab baseline results varied, underscoring the importance of a
metric-informed target distribution for improved outcomes. With DIST2Loss, Phi3V attains visual
grounding performance on par with state-of-the-art models trained on large-scale pretraining datasets
optimized for object detection and grounding tasks. Refer to appendix F for the qualitative samples.

3.3 EMBODIED: ROBOTIC MANIPULATION

Robotic manipulation is another domain where foundational models frequently encounter numer-
ical data. Here, the model must generate robotic joint actions—typically represented by position
coordinates and rotation angles—based on contextual inputs and task instructions.

Setup. VIMABench (Jiang et al., 2023) is a benchmark for robotic manipulation, encompassing
a diverse array of robot arm manipulation tasks organized into 17 distinct categories. It assesses
generalization abilities across four levels (L1–L4), with this study focusing on levels L1 and L2.
Baseline models include recent multimodal LLM-based approaches, notably RT-2 (Brohan et al.,
2023) and LLaRA (Li et al., 2024). This work follows the experimental framework of LLaRA,

1microsoft/Phi-3.5-vision-instruct (4.2b)
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L1 L2
#Data 1K 10K 100K 1K 10K 100K

RT-2 1.9 21.9 73.1 3.8 17.7 70.4
LLaRA-sft 49.6 82.3 88.5 46.2 78.1 84.6
LLaRA-vocab 50.8 81.0 87.0 44.6 77.2 83.5
LLaRA-dist 53.9 83.4 89.5 51.5 82.8 86.1

Table 2: Object manipulation experiment results on VIMABench (Jiang et al., 2023), reported in
accuracy (%). Results are presented for two test protocols (L1 and L2) and various training data
scales. For details on baseline scores, refer to appendix D.4.

RewardBenchModels Type #Data Chat Chat Hard Safety Reasoning Average MT-Bench

UltraRM-13B Seq. Classifier 64K 96.4 55.5 59.9 62.4 68.5 91.4
Tulu-v2.5-RM-13B Seq. Classifier 64K 39.4 42.3 55.5 47.4 46.1 56.2
Tulu-v2.5-RM-13B Seq. Classifier 2M 93.6 68.2 77.3 88.5 81.9 91.4
GPT-3.5 Generative - 92.2 44.5 65.5 59.1 65.3 83.3
Claude-3-haiku Generative - 73.7 92.7 52.0 79.5 70.6 82.9
Prometheus-2-7B Generative 300K 85.5 49.1 77.1 76.5 72.0 75.8

Llama-binary Seq. Classifier 21K 83.8 34.7 39.9 73.5 58.0 62.8
Llama-sft Generative 21K 89.1 49.3 79.2 83.9 75.3 87.3
Llama-dist Generative 21K 95.0 (↑4.9) 69.1 (↑19.8) 86.5 (↑7.3) 90.4 (↑6.5) 85.3 (↑10.0) 88.1 (↑0.8)

Table 3: Results of reward modeling experiments on RewardBench (Lambert et al., 2024) and MT-
Bench (Zheng et al., 2023), reported in classification accuracy (%). Improvements of DIST2Loss
(dist) over sft are indicated with ↑.

which fine-tunes the multimodal LLM, LLaVA-1.52 (Liu et al., 2024), using instruction-tuning data.
Additionally, the scalability protocol from the same study is implemented, where data splits are
defined according to dataset size. Consistent with LLaRA’s setup, only the loss function is modified,
with LLaRA-sft serving as a direct baseline. Furthermore, auxiliary tasks introduced in the study are
incorporated to expand the training dataset.

Results. Table 2 shows a consistent increase in robotic manipulation accuracy with DIST2Loss.
Notably, its advantages are pronounced in data-scarce conditions, where training data is limited
to approximately 1K samples, further underscoring the effectiveness of the distance metric as a
meaningful prior in robotic manipulation learning. Although the performance difference between dist
and sft loss narrows with the inclusion of more data, DIST2Loss maintains an edge in generalization.
This advantage is further highlighted in the more challenging L2 test protocol, where enhanced
coordinate calibration by DIST2Loss significantly improves generalizability to complex tasks.

3.4 TEXTUAL: GENERATIVE REWARD MODELING

We apply DIST2Loss to generative reward modeling in the RLHF (Reinforcement Learning from
Human Feedback) framework, where language models learn from human preference signals. Unlike
traditional reward models, generative reward modeling (Zheng et al., 2023; Zhang et al., 2024b) uses
next-token prediction within natural language templates, avoiding architectural changes required by
classification approaches.

Setup. Following prior work (Wang et al., 2024b) on generative reward modeling, we train language
models to predict human feedback scores for instruction-response pairs by estimating the sum
of the multi-facet scores over the defined range (see appendix D.3). As a baseline, we train a
standard binary classifier. Evaluation is conducted on RewardBench (Lambert et al., 2024) and
MT-Bench (Zheng et al., 2023), alongside leaderboard models including UltraRM (Cui et al., 2024),
Tulu-v2.5-RM (Ivison et al., 2024), GPT-3.5 (Brown et al., 2020), Claude-3-Haiku (Anthropic, 2024),
and Prometheus-2 (Kim et al., 2024b). Open-source model sizes are matched to our backbone
LLM3 (AI@Meta, 2024) for fair comparison.

2liuhaotian/llava-v1.5-7b
3meta-llama/Llama-3.1-8B-Instruct
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Original Original

Close

Close

Random

Random

Distant

Distant

Figure 4: Illustration of token distance effects on image semantics. Each row shows VQ-encoded
images with four central tokens replaced by: the original, a nearby token (top-10), a random token,
and a distant token (bottom-10). Nearby tokens preserve semantics; random or distant ones cause
distortions or semantic shifts.

Epoch 50 Full (300)Models #Params FID ↓ IS ↑ FID ↓ IS ↑
GigaGAN 569M - - 3.45 225.5
LDM-4 400M - - 3.60 247.7
VQGAN 227M - - 18.65 80.4
VQGAN 1.4B - - 15.78 74.3

LlamaGen-sft 111M 10.03 116.37 6.44 157.17
LlamaGen-dist 111M 9.41 127.44 6.27 164.32
LlamaGen-sft 343M 4.24 206.74 3.08 256.07
LlamaGen-dist 343M 4.18 209.41 3.04 258.19

Table 4: Image generation results in ImageNet.
See appendix D.4 for details.

MAE ↓ RMSE ↓Ablation mean std mean std

Llama-dist 0.092 0.017 0.124 0.026
- Place value weighting 0.098 0.016 0.137 0.032
- Contrastive loss 0.099 0.015 0.139 0.020
- Distance-aware target 0.099 0.016 0.142 0.035
Llama-sft 0.113 0.016 0.154 0.025

Table 5: Ablation results on meta linear regres-
sion over 10 random seeds.

Results. Table 3 summarizes our reward modeling results. DIST2Loss shows substantial improve-
ment over the standard cross-entropy loss (dist vs. sft), highlighting its effectiveness in generative
reward modeling. Moreover, generative reward modeling variants outperform the sequential clas-
sification baseline (binary), suggesting that generative reward modeling is a competitive approach,
especially in data-scarce settings, as it fully leverages the pretrained language modeling strengths
of the LLM backbone better. The performance gain of dist over binary is consistent, with notable
improvements observed in the Chat Hard and Safety domains.

3.5 HIGH-DIMENSION: IMAGE GENERATION

Effects of Token Distance on Image Semantics Before training the image generator, we assess
how token distance affects image semantics by encoding images, replacing four central tokens, and
reconstructing them. Replacements use: (1) top-10 nearest tokens (excluding the original), (2) a
random token, and (3) bottom-10 distant tokens. Tokens closely aligned with the original typically
retain the semantic integrity of the image, whereas random replacements cause visual distortions, and
more distant tokens introduce new, unrelated concepts, as shown in the reconstructed images in fig. 4.
These findings highlight the strong influence of token distances on image semantics.

Setup. Following the LlamaGen (Sun et al., 2024) pipeline, we extract discrete features using a
pretrained 16×16 compression VQ model and train an autoregressive transformer on the resulting
quantized tokens. We adopt mean squared error (MSE) as the distance metric, applied in the
embedding space using the VQ model’s token embeddings. Inference uses a guidance scale of 2.0,
consistent with the original setup. All experiments use ImageNet (Deng et al., 2009).

Results. The results in table 4 demonstrate that LlamaGen trained with DIST2Loss consistently
outperforms the standard sft baseline across various model sizes. This performance advantage is
observed at both early (50 epochs) and later (300 epochs) stages of training.
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3.6 ABLATION STUDY

We further investigate the contribution of each design choice in DIST2Loss using the meta linear
regression experiment detailed in section 3.1. Three additional baselines are incorporated by indepen-
dently ablating each component. First, we examine the impact of ablating Place value weighting or
Contrastive loss for multi-token distances, as described in appendix A.2. We also assess the effect of
substituting the Distance-aware target with a label smoothing baseline (Szegedy et al., 2016) of 0.1.
Each value is tokenized to three decimal places (e.g., 0.123).

Results As shown in table 5, each component contributes positively to DIST2Loss’s performance.
Notably, the label smoothing baseline, lacking a distance-aware target, falls behind the dist model
by a wide margin. This outcome reinforces our hypothesis that modeling distance relationships is
central to DIST2Loss’s performance gains.

4 RELATED WORK

Distance modeling in discrete autoregressive models. LLMs are increasingly extended to tasks
requiring precise spatial, temporal, or relational distance modeling. Vision tasks such as detection
and segmentation rely on coordinate generation and are now addressed by multimodal LLMs (Deitke
et al., 2024; You et al., 2024; Zhang et al., 2024a; Xiao et al., 2024). In alignment, generative
reward models approximate human feedback for instruction tuning (Zheng et al., 2023; Zhang et al.,
2024b). Applications also span arithmetic (Yuan et al., 2023), time series forecasting (Gruver et al.,
2024; Jin et al., 2023), and function regression (Vacareanu et al., 2024; Song et al., 2024), where
encoding proximity reduces error. In robotics, manipulation and navigation encode actions explicitly
as coordinates or rotations (Jiang et al., 2023; Brohan et al., 2023; Li et al., 2024) or implicitly
via discrete embeddings (Metz et al., 2017; Shafiullah et al., 2022). Beyond these, geospatial
analysis (Manvi et al., 2024), RNA structure prediction (Zablocki et al., 2024), and clinical outcome
forecasting (Zheng et al., 2024) also depend on modeling distance. We propose a simple, general
training objective for distance modeling in LLM-like architectures, applicable across such domains.

Discretizing continuous distribution. The discretization of continuous distributions is a well-
studied area in statistics (Chakraborty, 2015). Discrete analogues of continuous distributions, such
as the Laplace (Ghosh et al., 2009) and Gaussian (Canonne et al., 2020), are commonly employed
in differential privacy for efficient sampling, often in conjunction with federated learning (Kairouz
et al., 2021). For non-analytic continuous distributions, discrete approximations using vector quanti-
zation (Van Den Oord et al., 2017) and the Gumbel-Softmax trick (Jang et al., 2022) are common,
enabling categorical representations suitable for multimodal generation tasks such as image, video,
and audio synthesis (Esser et al., 2021; Yu et al., 2024; Dhariwal et al., 2020). Recently, these
quantization approaches have been adopted by general-purpose multimodal generative LLMs (Ge
et al., 2024; Wang et al., 2024a; Team, 2024). Building on these methods, we propose a training
objective that embeds distance semantics into discrete autoregressive generation.

Distance modeling in loss functions. Metric-based objectives have shown effectiveness across
applications, such as enhancing explainability in image classification (Choi et al., 2020) and boosting
accuracy in few-shot learning (Gao et al., 2022). Likewise, Earth Mover Distance Optimization
(EMO) better aligns distributions in language modeling compared to traditional cross-entropy (Ren
et al., 2024). Unlike previous approaches, our method leverages inherent metric relationships within
data for metric information and targets general foundational models rather than specific objectives,
such as image classification.

5 CONCLUSION

We presented DIST2Loss, a distance-aware objective for discrete autoregressive models. By replacing
one-hot targets with reward-weighted distributions derived from token metrics, DIST2Loss offers
a closed-form alternative to reinforcement learning. Experiments across visual grounding, robotic
manipulation, reward modeling, and image generation show improved data efficiency, demonstrating
the value of distance-aware supervision whenever tokens admit a meaningful metric.
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ETHICS STATEMENT

DIST2Loss is a training objective and does not introduce new datasets, human subjects, or sensitive
information. All experiments are performed on publicly available datasets and pretrained backbones,
with no additional human annotation. As the method modifies only the training loss, ethical consid-
erations inherit from the original datasets and models. Potential concerns such as bias or fairness
are therefore bounded by the properties of the underlying backbones and data sources. Since the
objective is designed for tasks with numerical or metric outputs, it does not introduce new risks of
harmful applications beyond those already present in existing autoregressive models.

REPRODUCIBILITY STATEMENT

All experiments use publicly available backbones and datasets. Hyperparameter settings, including
loss weight and temperature, are documented in Appendix C. Training follows standard implementa-
tions, and code with full configurations will be released for reproducibility. While training runs incur
stochasticity from initialization and data order, we could not conduct extensive statistical analysis
across multiple runs due to computational limits. Reported results are therefore based on single or
limited runs, but we verify robustness through hyperparameter ablations. All datasets, model outputs,
and scripts required to reproduce the results will be made publicly available.
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A MULTI-TOKEN DISTANCE

This section provides additional details on the treatment of multi-token distances, clarifying the
limitations of DIST2Loss in this setting and outlining possible workarounds.

A.1 CREDIT ASSIGNMENT PROBLEM

Extending DIST2Loss to multi-token sequences implicitly assumes that a global reward can be
decomposed into independent token-wise contributions, or that each token can be evaluated while
holding the others fixed. In practice, this assumption fails: the model receives undifferentiated
feedback across all tokens, without information about which position is responsible for the error.
This is the classic credit assignment problem. As a result, gradients become noisy and poorly
aligned with the true error source, which weakens the learning signal, slows training, and can lead
to suboptimal or unstable optimization. It also undermines one of the advantages of DIST2Loss
—interpretability—since the induced soft targets no longer reflect a coherent metric over the token
space.

For these reasons, we do not apply DIST2Loss to structured multi-token objectives in our experiments.
Instead, we focus on tasks where the reward function decomposes naturally at the token level, such as
integers, coordinates, or continuous tokens. These settings preserve the benefits of DIST2Loss: stable
training, interpretable reward alignment, and computational efficiency. Generalizing to multi-token
objectives would require explicit credit assignment mechanisms or structured training methods, which
we view as an important direction for future work.

A.2 WORKAROUNDS

Consider a multi-token case where each element in the metric space consists of a sequence of tokens
from the vocabulary, denoted xmulti ∈ Xmulti with xmulti = (x1, . . . , xL). For instance, this could
represent a multi-digit integer split into individual tokens. Applying multi-token objectives directly in
autoregressive models trained with teacher-forcing is extremely inefficient, as it requires training-time
sequence generation. To circumvent this limitation, we propose two practical alternatives.

Contrastive Target Augmentation Instead of evaluating all possible multi-token sequences, we
propose sampling a contrastive multi-token candidate x̄ ∈ Xmulti for training. Such a candidate is
selected from nearby neighbors of the target x in the metric space, without reference to the training
model fθ. For example, in the case of integer sequences, 39 might be chosen as a close neighbor to
the target 40, with each digit tokenized separately.

For each token in the sequence, we extend the target distribution by incorporating the negative sample
x̄. The contribution of each token in x̄ to the overall distance is defined based on its position-wise
difference from the target x. For instance, when the target is 40, the negative sample 39 is assigned a
token-wise distance where the tens digit 3 has distance 0 from the target’s 4, while the units digit 9
has a distance of 1 from the target’s 0. We then concatenate the logits of x and the selected logit x̄ at
each token position, forming an extended likelihood distribution. The distance loss Ldist is applied to
this extended distribution.

Place Value Weighting For tasks involving multi-digit integers or sequences where token positions
have different significance, we introduce place value weighting. In this approach, tokens are weighted
according to their positional importance, so that differences in higher place values have a greater
impact on the loss. For example, in a multi-digit integer setting, we directly multiply the distance
loss by the place value weight for each token, assigning more weight to tokens in higher positions.
Let xmulti = (x1, . . . , xL) represent the target sequence, with xi denoting the digit in the i-th place
(e.g., thousands, hundreds, tens, units). The place-weighted loss is formulated as:

Lplace =

L∑
i=1

wi · Ldist(xi) (9)

where wi is the place weight for position i: 4 (thousands), 3 (hundreds), 2 (tens), and 1 (units).
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Coefficient (α) Accuracy (%)

1.0 77.3
0.2 77.8
0.1 85.3

0.02 80.7
0.01 79.9

0.005 76.7
0.001 75.6
SFT 75.4

Table 6: Hyperparameter sensitivity analysis
on the loss weight coefficient α. Results shown
for reward modeling.

Model Reward
Accuracy (%)

MMLU
Accuracy (%)

Backbone - 44.5
SFT 75.3 42.8

DIST2Loss 85.3 43.9

Table 7: Catastrophic forgetting analysis. Fine-
tuning with DIST2Loss for reward modeling
yields minimal degradation on MMLU.

Metric Accuracy (%)

DIST2Loss (Euclidean) 85.3

DIST2Loss (Random) 76.0
SFT 75.3

Table 8: Sanity check with a contradictory metric. Using a random distance metric provides no
improvement over SFT, confirming that the semantic validity of the metric is essential for DIST2Loss.
Results shown for reward modeling.

B DISCUSSION

B.1 ASYMPTOTIC BEHAVIOR

A potential concern is that the advantages of DIST2Loss diminish with unlimited data and compute.
While true in theory, this setting is not representative of practical training. Realistic applications
operate with limited supervision, moderate model capacity, and constrained compute, where inductive
biases are critical. Under these conditions, DIST2Loss provides consistent improvements with
negligible overhead, as demonstrated in all reported experiments using standard backbones, realistic
dataset sizes, and established evaluation protocols.

C ADDITIONAL EXPERIMENTS

C.1 HYPERPARAMETER SENSITIVITY

DIST2Loss introduces two tunable hyperparameters.

Loss weight α. We fix α = 0.1 unless otherwise noted. A sweep in reward modeling shows
robustness across a wide range; performance drops only when α becomes too small, effectively
reducing the method to SFT. We additionally conduct sensitivity analysis on table 6, which confirms
that DIST2Loss improves over the base SFT for a wide range of α.

Temperature τ . Controls the sharpness of the soft target distribution. We set τ relative to the token
space: small values for digits (0–9) and larger values for VQ-VAE vocabularies. No tuning was
performed. Place value weights in multi-digit numbers are fixed by construction and not tunable.

C.2 ROBUSTNESS TO TASK AND METRIC VARIATIONS

To assess generalization, we conducted two experiments.
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Experiment Type Size Backbone

Toy (3.1) 1B meta-llama/Llama-3.2-1B-Instruct AI@Meta (2024)
Textual (3.4) 8B meta-llama/Llama-3.1-8B-Instruct AI@Meta (2024)
Multimodal (3.2) 3.8B microsoft/Phi-3-mini-4k-instruct Abdin et al. (2024)
Embodied (3.3) 7B liuhaotian/llava-v1.5-7b Liu et al. (2024)
High-Dimension (3.5) 343M Scratch Sun et al. (2024)

Table 9: Backbone models used for finetuning in each experiment type.

Experiment Type GPU Model VRAM (GB) # GPUs

Toy (3.1) RTX 3090 24 1
Textual (3.4) A6000 48 4
Multimodal (3.2) A6000 48 4
Embodied (3.3) L40S 48 8
High-Dimension (3.5) L40S 48 8

Table 10: Computational requirements for each experiment are reported per single run; multiple runs
may be needed depending on configuration or random seeds.

Task generalization. We evaluated whether DIST2Loss fine-tuning impairs unrelated tasks by
testing a reward-modeling model on MMLU. Results in table 7 show backbone performance is largely
preserved.

Contradictory metric. We trained reward models with randomly assigned distances between
labels. As shown in table 8, this yielded no gains over SFT, confirming that improvements arise when
distances capture meaningful structure.

D IMPLEMENTATION DETAILS

D.1 LARGE LANGUAGE MODEL USAGE.

LLMs (ChatGPT, GPT-4/5 class) were employed to refine phrasing, improve clarity, and standardize
style in sections of the manuscript, but all scientific ideas, experiments, and analyses were conceived,
executed, and validated by the authors. LLMs were also used in a limited capacity to assist with
literature discovery (e.g., surfacing related work for manual screening). All substantive content
decisions, experiment design, and result interpretation remain entirely author-driven.

D.2 GLOBAL SETUPS

We use the HuggingFace Trainer (Wolf et al., 2020) and TRL trainer (von Werra et al., 2020) with
DeepSpeed ZeRO-3 (Ren et al., 2021) and the AdamW optimizer (Loshchilov & Hutter, 2019). The
backbone model configurations are detailed in table 9, with computational requirements specified
in table 10.

D.3 TASK-SPECIFIC SETUPS

Toy: Learning to Regress The learning rate is set to 2e−5 with a linear decay schedule and no
warmup. Training epochs are configured to ensure each model is exposed to approximately 250
samples to prevent underfitting. For example, with a training dataset size of 2, the epoch count is set
to 125. Each experiment is repeated five times with random seeds [1 : 5] for statistical stability.

Textual: Generative Reward Modeling The baselines were trained on different scales of prefer-
ence data. UltraRM-13B and Tulu-v2.5-RM-13B were trained on 64K pairs from UltraFeedback (Cui
et al., 2024), with Tulu also having an additional 2M version (Ivison et al., 2024). Prometheus-2-7B
was trained on 300K pairs (Kim et al., 2024a), while the Llama-based models relied on 21K pairs
from HelpSteer2 (Wang et al., 2024b). In contrast, GPT-3.5 and Claude-3-haiku are proprietary
models and their training sizes have not been disclosed.
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For fine-tuning, the helpsteer2 dataset (Wang et al., 2024b) was reformatted into an instruction-
following structure, where scores for each of the five categories were designated as model outputs.
The model was trained for two epochs with a learning rate of 1 × 10−5 using the paged Adam
optimizer (Kingma & Ba, 2015). The prompt used during training is illustrated in fig. 7. During
inference, a logit-based score prediction function was implemented to evaluate two samples by
generating score probabilities on a 0-20 points scale. The model calculated weighted averages from
the softmax probabilities, assigning a final reward based on higher scores for preferred outputs.

Multimodal: Visual Grounding For fine-tuning, we concatenate the training sets of RefCOCO,
RefCOCO+, and RefCOCOg (Kazemzadeh et al., 2014; Mao et al., 2016; Yu et al., 2016). All images
are resized to 1024 × 1024 to constrain the range of generated digits, with coordinate values rounded
to the nearest integer. During inference, outputs that cannot be parsed as bounding box coordinates
are considered incorrect. Training is conducted with a learning rate of 2e−5, 100 steps of linear
warmup, and a total of three epochs.

Embodied: Robotic Manipulation We convert the VIMA dataset (Jiang et al., 2023) into an
instruction-tuning-compatible format using the provided script from the LLaRA (Li et al., 2024)
repository . The pretrained LLaVA-1.5 (Liu et al., 2024) model is then fine-tuned on the object
manipulation task. Following (Li et al., 2024), we incorporate auxiliary objective augmentations
from the same repository into the training set. We the oracle object detection labels for evaluation.
Training is conducted with a learning rate of 2e−5, using a 0.3 ratio of linear warmup and cosine
decay over two epochs.

High-Dimension: Image Generation We employ the pretrained image vector quantization model
from the LlamaGen (Sun et al., 2024) repository . All images are resized to 384 × 384 using random
center cropping. During evaluation, images are generated at 384 × 384 and then resized to 256 × 256
for model-based metric computations. Classifier-free guidance with a scale of 2.0 is applied during
inference. Experimental protocols strictly adhere to the repository’s guidelines.

D.4 BASELINE SCORES

Embodied: Robotic Manipulation For LLaRAsft, we adopt results from Tables 15, 17, and 19
of the original paper (Li et al., 2024), using D-inBC + Aux with all six auxiliary tasks (epoch: 2,
iteration: 14) for data sizes of 0.8k, 8k, and 80k. Notably, at the 80k scale, using all auxiliary tasks
does not outperform using only a subset, as reported in Table 1 of the same paper. However, we adopt
the former for consistency and generalizability across different scales.

High-Dimension: Image Generation We use the class-conditional ImageNet 256×256 results
with CFG 2.0 from Table 9 of the LlamaGen paper (Sun et al., 2024) as baselines. Specifically, we
incorporate the following baselines: GigaGAN (Kang et al., 2023), LDM-4 (Rombach et al., 2022),
VQGAN (Esser et al., 2021), VQGAN (Esser et al., 2021), and LlamaGen (Sun et al., 2024).

E EXTENDED QUANTITATIVE RESULTS

Toy: Learning to Regress We provide scores corresponding to fig. 3 in the main paper in table 11.

Textual Task: Generative Reward Modeling Detailed results for each data source in Reward-
Bench (Lambert et al., 2024) are reported in table 12.

F ADDITIONAL QUALITATIVE SAMPLES

Textual: Generative Reward Modeling Figure 5 shows inference results of Llama-based genera-
tive reward model trained with DIST2Loss.

Multimodal: Visual Grounding Figure 6 presents qualitative results from visual grounding
experiments, comparing the base cross-entropy loss with our proposed DIST2Loss.
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MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
mean std mean std mean std mean std mean std mean std mean std mean stdModels

Training Problems: 1 Training Problems: 2 Training Problems: 3 Training Problems: 4

sft 0.2 0.039 0.243 0.05 0.182 0.014 0.221 0.02 0.17 0.039 0.216 0.056 0.152 0.018 0.2 0.035
vocab 0.2 0.039 0.243 0.05 0.157 0.022 0.202 0.023 0.167 0.031 0.215 0.05 0.127 0.007 0.166 0.016
dist 0.21 0.032 0.259 0.037 0.17 0.006 0.212 0.008 0.147 0.032 0.198 0.035 0.114 0.017 0.146 0.022

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
mean std mean std mean std mean std mean std mean std mean std mean std

Training Problems: 5 Training Problems: 6 Training Problems: 7 Training Problems: 8

sft 0.159 0.03 0.211 0.042 0.144 0.024 0.185 0.032 0.129 0.011 0.173 0.02 0.119 0.017 0.154 0.019
vocab 0.133 0.006 0.172 0.009 0.122 0.016 0.162 0.017 0.141 0.034 0.189 0.046 0.122 0.029 0.164 0.035
dist 0.122 0.023 0.165 0.032 0.113 0.018 0.153 0.021 0.104 0.013 0.148 0.031 0.104 0.035 0.15 0.081

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
mean std mean std mean std mean std

Training Problems: 9 Training Problems: 10

sft 0.115 0.012 0.154 0.022 0.113 0.016 0.154 0.025
vocab 0.122 0.014 0.163 0.023 0.111 0.008 0.151 0.014
dist 0.112 0.053 0.163 0.093 0.092 0.017 0.124 0.026

Table 11: Meta linear regression experiment results on one to ten training problems and 1,000 test
problems with scores averaged over five random seeds, conducted with the Llama-3.2 1B model.

AlpacaEval HumanEvalPack -Models Model Type Average Easy Hard Length Do-Not-Answer CPP GO Java Javascript Python Rust -

binary Seq. Classifier 58 94.5 94.7 76.3 16.9 54.9 55.8 56.1 52.4 48.5 56.7 -
sft Generative 75.3 89.0 97.9 77.9 44.9 84.1 80.5 89.0 83.5 84.1 81.1 -
dist Generative 85.3 97.0 98.9 88.4 78.7 89.6 90.2 89.6 87.8 90.2 85.4 -

LLMBar MATH MT-Bench Refusal XSTest
A.GPTInst A.GPTOut A.Manual A.Neighbor Natural PRM Easy Hard Medium Dangerous Offensive Refuse Respond

binary 13.6 36.2 23.9 24.6 61.5 92.8 64.3 62.1 62.5 0.4 0.3 22.7 92.0
sft 32.6 63.8 32.6 29.1 82.0 84.1 96.4 78.3 90.0 93.0 99.0 92.9 76.0
dist 57.6 72.3 67.4 63.4 84.0 84.1 100.0 75.7 92.5 96.0 100 94.8 88.0

Table 12: Fine-grained statistics on model performance on RewardBench Lambert et al. (2024) with
the Llama-3.1-8B model.
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Query: Who created the Superman cartoon character?

“Chosen” Answer: Superman, the iconic comic book superhero, was created by writer Jerry Siegel and artist Joe Shuster. Superman first
appeared in Action Comics #1, which was published by Detective Comics, Inc. (later DC Comics) in June 1938. The character’s immense
popularity established him as one of the most enduring and recognizable figures in the superhero genre.

DIST2Loss helpfulness score expectation: 2.81

“rejected” Answer: The Superman cartoon character was created by Jerry Siegel and Joe Shuster in 1938.

DIST2Loss helpfulness score expectatione: 0.96

Query: Hi, I’m in the mood for a Bloody Mary. Can you give me a recipe for making one?

“Chosen” Answer: Certainly! The Bloody Mary is a classic cocktail known for its bold flavor and is commonly enjoyed as a brunch drink.
Here’s a basic recipe for making a single serving:
### Ingredients:
- 1 1/2 ounces (45 ml) vodka
- 3 ounces (90 ml) tomato juice
- 1/2 ounce (15 ml) lemon juice, freshly squeezed
- 1 dash of Worcestershire sauce
- Tabasco sauce (to taste)
- Ground black pepper (to taste)
- Celery salt (to taste)
- Horseradish (optional, to taste)
- 1 celery stalk (for garnish)
- 1 lemon wedge or lime wedge (for garnish)
- Ice cubes

### Instructions:
1. **Prepare the Glass:**
- Rub the lemon or lime wedge along the lip of a tall glass (often a highball glass).
- Dip the wetted rim into celery salt if you like a salted rim.
2. **Mix the Drink:**
- Fill the glass with ice cubes.
- Add vodka, tomato juice, and lemon juice to the glass.
- Add Worcestershire sauce, a few dashes of Tabasco, a pinch of celery salt, ground black pepper, and horseradish (if using).
- Stir well to combine all the ingredients.
3. **Garnish:**
- Garnish with a celery stalk and a lemon or lime wedge on the rim.
4. **Adjust and Serve:**
- Taste and adjust the seasoning, adding more Tabasco, lemon juice, or other ingredients as necessary.
- Serve immediately.

### Variations and Tips:
- **Garnish Variations:** You can also garnish with olives, pickles, cocktail onions, or even a strip of crispy bacon.
- **Spice Level:** Adjust the spiciness to your liking with more or less Tabasco or by adding hot sauce of your choice.
- **Clamato:** Some people like to use Clamato (a mixture of clam and tomato juices) instead of plain tomato juice for a different twist known
as a Bloody Caesar.
- **Make it a Virgin:** To make a non-alcoholic version, simply omit the vodka for a Virgin Mary.
Feel free to customize your Bloody Mary to your taste preferences. Enjoy your cocktail!

DIST2Loss Overall score expectation: 1.33

“rejected” Answer: Sure, here’s a quick and easy recipe for making a delicious Bloody Mary:
Ingredients:
- 2 ounces vodka
- 3-4 dashes Worcestershire sauce
- 1-2 teaspoons hot sauce
- 1 lime wedge for garnish
- 2 ounces tomato juice
- 1 ounce horseradish
- 1/2 ounce beet juice
- 1/2 ounce olive juice
Instructions:
Fill an Old-Fashioned glass with ice cubes. In a shaker, combine the vodka, Worcestershire sauce, hot sauce, lime wedge, and tomato juice.
Shake well to combine. Strain the mixture into the prepared glass and top off with beet juice and olive juice. Garnish with a lime wedge and
serve.

DIST2Loss Overall score expectation: 1.20

Figure 5: Qualitative examples from the generative reward modeling experiment.
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Dude sitting all by himself

Distance Modelling Enhances Grounding Accuracy

guy behind tennis racket, baldish
the brocolli by the micky mouse 

and the chicken

Hut above v roof

blue stripe shirtElephant at 3:00

GT Base Ours

Error Cases: Ambiguous Ground-Truth Labels

head looking at computer

lime with a perfect hole and line

maroon shirt black shorts bending

Figure 6: Qualitative examples from the visual grounding experiment. Top: our proposed DIST2Loss
loss demonstrates higher visual grounding accuracy compared to the standard cross-entropy loss.
Bottom: A manual examination of inference results reveals that a substantial portion of the RefCOCO
dataset (Kazemzadeh et al., 2014; Mao et al., 2016; Yu et al., 2016) contains labels that are ambiguous,
even for human annotators, which may lead to underestimation of model performance.
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Prompt for Generative Reward Evaluation

Please act as an impartial judge and evaluate the quality of the response provided by AI
assistant to the user question displayed below. Your evaluation should consider five factors
helpfulness, correctness, coherence, complexity, verbosity. Here’s brief explanation of each
factor:
- Helpfulness: Overall helpfulness of the response to the prompt.
- Correctness: Inclusion of all pertinent facts without errors.
- Coherence: Consistency and clarity of expression.
- Complexity: Intellectual depth required to write response (i.e. whether the response can be
written by anyone with basic language competency or requires deep domain expertise).
- Verbosity: Amount of detail included in the response, relative to what is asked for in the
prompt.
Do not allow the length of the responses to influence your evaluation. Be as objective as
possible. Please first provide an overall score over model response. You must provide overall
score as a number between 0 and 20.
Then provide a set of 5 score over model response. Only provide the score as a number
between 0 and 4.
[User Question]
{user input}
[Start of Model Response]
{model response to evaluate}
[End of Model Response]

Figure 7: Instruction-tuning prompt template for generative reward modeling.

Instruction-Response Pair Sample for Object Manipulation

[Prompt]
<image0> <task>Sweep any <p>polka dot small block</p> at <b>(0.500, 0.617),
0.203, 0.578</b> into <p>blue three-sided rectangle</p> at <b>(0.500, 0.625),
0.297, 0.398</b> without exceeding <p>plastic line</p> at <b>(0.500, 0.617), 0.328,
0.047</b>.</task>
Can you explain what needs to be done to perform the task in this scene?
Every action you take must include two locations in the format of <b>(x, y)</b> and
one clockwise rotation angle in the format of <r>[r]</r>. The first location is the image
coordinate where you start to sweep the object using a spatula, and the second location is
where you stop sweeping. The image coordinate ranges from 0 to 1. The rotation angle
indicates how many degrees you rotate the spatula clockwise, and it ranges from -359 to 359.

[Answer]
Step 1: Sweep the <p>polka dot small block</p> at <b>(0.629, 0.805)</b>, rotate
<r>[0]</r> degrees, and stop at <b>(0.500, 0.609)</b>.

Figure 8: Example of an instruction-response pair from the VIMA dataset Jiang et al. (2023),
illustrating an object manipulation task. Metric-related output tokens are bolded for emphasis.

22


	Introduction
	Method
	Preliminaries
	Discretized Distance Loss
	Connection to Entropy-Regularized Policy Optimization
	High Dimensional Distance

	Experiments
	Toy: Learning to Regress
	Multimodal: Visual Grounding
	Embodied: Robotic Manipulation
	Textual: Generative Reward Modeling
	High-Dimension: Image Generation
	Ablation Study

	Related Work
	Conclusion
	Multi-Token Distance
	Credit Assignment Problem
	Workarounds

	Discussion
	Asymptotic Behavior

	Additional Experiments
	Hyperparameter Sensitivity
	Robustness to Task and Metric Variations

	Implementation Details
	Large Language Model Usage.
	Global Setups
	Task-Specific Setups
	Baseline Scores

	Extended Quantitative Results
	Additional Qualitative Samples

