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ABSTRACT
While the empirical success of self-supervised learning (SSL) heavily relies on the
usage of deep nonlinear models, existing theoretical works on SSL understanding
still focus on linear ones. In this paper, we study the role of nonlinearity in the
training dynamics of contrastive learning (CL) on one and two-layer nonlinear
networks with homogeneous activation h(x) = h′(x)x. We have two major the-
oretical discoveries. First, the presence of nonlinearity can lead to many local
optima even in 1-layer setting, each corresponding to certain patterns from the data
distribution, while with linear activation, only one major pattern can be learned.
This suggests that models with lots of parameters can be regarded as a brute-force
way to find these local optima induced by nonlinearity. Second, in the 2-layer
case, linear activation is proven not capable of learning specialized weights into
diverse patterns, demonstrating the importance of nonlinearity. In addition, for
2-layer setting, we also discover global modulation: those local patterns discrimi-
native from the perspective of global-level patterns are prioritized to learn, further
characterizing the learning process. Simulation verifies our theoretical findings.

1 INTRODUCTION
Over the last few years, deep models have demonstrated impressive empirical performance in many
disciplines, not only in supervised but also in recent self-supervised setting (SSL), in which models are
trained with a surrogate loss (e.g., predictive (Devlin et al., 2018; He et al., 2021), contrastive (Chen
et al., 2020; Caron et al., 2020; He et al., 2020) or noncontrastive loss (Grill et al., 2020; Chen & He,
2020)) and its learned representation is then used for downstream tasks.

From the theoretical perspective, understanding the roles of nonlinearity in deep neural networks is
one critical part of understanding how modern deep models work. Currently, most works focus on
linear variants of deep models (Jacot et al., 2018; Arora et al., 2019a; Kawaguchi, 2016; Jing et al.,
2022; Tian et al., 2021; Wang et al., 2021). When nonlinearity is involved, deep models are often
treated as richer families of black-box functions than linear ones (Arora et al., 2019b; HaoChen et al.,
2021). The role played by nonlinearity is also studied, mostly on model expressibility (Gühring et al.,
2020; Raghu et al., 2017; Lu et al., 2017) in which specific weights are found to fit the complicated
structure of the data well, regardless of the training algorithm. However, many questions remain
open: if model capacity is the key, why traditional models like k-NN (Fix & Hodges, 1951) or kernel
SVM (Cortes & Vapnik, 1995) do not achieve comparable empirical performance, even if theoretically
they can also fit any functions (Hammer & Gersmann, 2003; Devroye et al., 1994). Moreover, while
traditional ML theory suggests carefully controlling model capacity to avoid overfitting, large neural
models often generalize well in practice (Brown et al., 2020; Chowdhery et al., 2022).

In this paper, we study the critical role of nonlinearity in the training dynamics of contrastive
learning (CL). Specifically, by extending the recent α-CL framework (Tian, 2022) and linking
it to kernels (Paulsen & Raghupathi, 2016), we show that even with 1-layer nonlinear networks,
nonlinearity plays a critical role by creating many local optima. As a result, the more nonlinear nodes
in 1-layer networks with different initialization, the more local optima are likely to be collected as
learned patterns in the trained weights, and the richer the resulting representation becomes. Moreover,
popular loss functions like InfoNCE tends to have more local optima than quadratic ones. In contrast,
in the linear setting, contrastive learning becomes PCA under certain conditions (Tian, 2022), and
only the most salient pattern (i.e., the maximal eigenvector of the data covariance matrix) is learned
while other less salient ones are lost, regardless of the number of hidden nodes.

Based on this finding, we extend our analysis to 2-layer ReLU setting with non-overlapping receptive
fields. In this setting, we prove the fundamental limitation of linear networks: the gradients of
multiple weights at the same receptive field are always co-linear, preventing diverse pattern learning.
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Finally, we also characterize the interaction between layers in 2-layer network: while in each receptive
field, many patterns exist, those contributing to global patterns are prioritized to learn by the training
dynamics. This global modulation changes the eigenstructure of the low-level covariance matrix so
that relevant patterns are learned with higher probability.

In summary, through the lens of training dynamics, we discover unique roles played by nonlinearity
which linear activation cannot do: (1) nonlinearity creates many local optima for different patterns of
the data, and (2) nonlinearity enables weight specialization to diverse patterns. In addition, we also
discover a mechanism for how global pattern prioritizes which local patterns to learn, shedding light
on the role played by network depth. Preliminary experiments on simulated data verify our findings.

Related works. Many works analyze network at initialization (Hayou et al., 2019; Roberts et al.,
2021) and avoid the complicated training dynamics. Previous works (Wilson et al., 1997; Li & Yuan,
2017; Tian et al., 2019; Tian, 2017; Allen-Zhu & Li, 2020) that analyze training dynamics mostly
focus on supervised learning. Different from Saunshi et al. (2022); Ji et al. (2021) that analyzes
feature learning process in linear models of CL, we focus on the critical role played by nonlinearity.
Our analysis is also more general than Li & Yuan (2017) that focuses on 1-layer ReLU network with
symmetric weight structure trained on sparse linear models. Along the line of studying dynamics
of contrastive learning, Jing et al. (2022) analyzes dimensional collapsing on 1 and 2 layer linear
networks. Tian (2022) proves that such collapsing happens in linear networks of any depth and further
analyze ReLU scenarios but with strong assumptions (e.g., one-hot positive input). Our work uses
much more relaxed assumptions and performs in-depth analysis for homogeneous activations.

2 PROBLEM SETUP
Notation. In this section, we introduce our problem setup of contrastive learning. Let x0 ∼ pD(·) be
a sample drawn from the dataset, and x ∼ paug(·|x0) be a augmentation view of the sample x0. Here
both x0 and x are random variables. Let f = f(x;θ) be the output of a deep neural network that
maps input x into some representation space with parameter θ to be optimized. Given a batch of size
N , x0[i] represent i-th sample (i.e., instantiation) of corresponding random variables, and x[i] and
x[i′] are two of its augmented views. Here x[·] has 2N samples, 1 ≤ i ≤ N and N + 1 ≤ i′ ≤ 2N .

Contrastive learning (CL) aims to learn the parameter θ so that the representation f are distinct from
each other: we want to maximize squared distance d2ij := ∥f [i]− f [j]∥22/2 between samples i ̸= j

and minimize d2i := ∥f [i]− f [i′]∥22/2 between two views x[i] and x[i′] from the same sample x0[i].

Many objectives in contrastive learning have been proposed to combine these two goals into one. For
example, InfoNCE (Oord et al., 2018) minimizes the following (here τ is the temperature):

Lnce :=−τ
N∑
i=1

log
exp(−d2i /τ)

ϵ exp(−d2i /τ)+
∑

j ̸=i exp(−d2ij/τ)
(1)

In this paper, we follow α-CL (Tian, 2022) that proposes a general CL framework that covers a broad
family of existing CL losses. α-CL maximizes an energy function Eα(θ) using gradient ascent:

θt+1 = θt + η∇θEsg(α(θt))(θ), (2)

where η is the learning rate, sg(·) is the stop gradient operator, the energy function Eα(θ) :=
1
2 trCα[f ,f ] and Cα[·, ·] is the contrastive covariance (Tian, 2022; Jing et al., 2022) 1:

Cα[a, b] :=
1

2N2

N∑
i,j=1

αij

[
(a[i]− a[j])(b[i]− b[j])⊤ − (a[i]− a[i′])(b[i]− b[i′])⊤

]
(3)

One important quantity is the pairwise importance α(θ) = [αij(θ)]
N
i,j=1, which are N2 weights on

pairwise pairs of N samples in a batch. Intuitively, these weights make the training focus more on
hard negative pairs, i.e., distinctive sample pairs that are similar in the representation space but are
supposed to be separated away. Many existing CL losses (InfoNCE, triplet loss, etc) are special cases
of α-CL (Tian, 2022) by choosing different α(θ), e.g., quadratic loss corresponds to αij := const
and InfoNCE (with ϵ = 0) corresponds to αij := exp(−d2ij/τ)/

∑
j ̸=i exp(−d2ij/τ).

For brevity Cα[x] := Cα[x,x]. For the energy function Eα(θ) := trCα[f(x;θ)], in this work
we mainly study its landscape, i.e., existence of local optima, their local properties and overall

1Compared to Tian (2022), our Cα definition has an additional constant term 1/2N2 to simply the notation.
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distributions, where f is a nonlinear network with parameters θ. Note that in Eqn. 2, the stop gradient
operator sg(α) means that while the value of α may depend on θ, when studying the local property
of θ, α makes no contribution to the gradient and should be treated as an independent variable.

Since Cα is an abstract mathematical object with complicated definitions, as the first contribution,
we give its connection to regular variance V[·], if the pairwise importance α has certain kernel
structures (Ghojogh et al., 2021; Paulsen & Raghupathi, 2016):
Definition 1 (Kernel structure of pairwise importance α). There exists a (kernel) function K(·, ·)
so that αij = K(x0[i],x0[j]). Here K satisfies the decomposition K(a, b) = ϕ⊤(a)ϕ(b) =∑+∞

l=0 ϕl(a)ϕl(b) with non-negative high-dimensional mapping ϕ(·) = [ϕl(·)] ≥ 0.
Definition 2 (Adjusted PDF p̃l(x)). For l-th component ϕl of the mapping ϕ, we define the adjusted
density p̃l(x;α) :=

1
zl(α)

ϕl(x;α)pD(x), where zl(α) :=
∫
ϕl(x)pD(x)dx ≥ 0 is the normalizer.

Obviously αij ≡ 1 (uniform α corresponding to quadratic loss) satisfies Def. 1 with 1D mapping
ϕ ≡ 1. Here we show a non-trivial case, Gaussian α, whose normalized version leads to InfoNCE:
Lemma 1 (Gaussian α). For any function g(·) that is bounded below, if we use αij :=
exp(−∥g(x0[i])− g(x0[j])∥22/2τ) as the pairwise importance, then it has kernel structure (Def. 1).

Note that Gaussian α computes N2 pairwise distances using un-augmented samples x0, while
InfoNCE (and most of CL losses) uses augmented views x and x′ and normalizes along one
dimension to yield asymmetric αij . Here Gaussian α is a convenient tool for analysis. We now show
Cα is a summation of regular variances but with different probability of data, adjusted by the pairwise
importance α that has kernel structures. Please check Appendix A.1 for detailed proofs.
Lemma 2 (Relationship between Contrastive Covariance and Variance in large batch size). If α
satisfies Def. 1, then for any function g(·), Cα[g(x)] is asymptotically PSD when N → +∞:

Cα[g(x)]→
∑
l

z2l Vx0∼p̃l(·;α)
[
Ex∼paug(·|x0)[g(x)|x0]

]
(4)

Corollary 1 (No augmentation and large batchsize). With the condition of Lemma 2, if we further
assume there is no augmentation (i.e., paug(x|x0) = δ(x− x0)), then Cα[g]→

∑
l z

2
l Vp̃l

[g].

3 ONE-LAYER CASE

Now let us first consider 1-layer network with K hidden nodes: f(x;θ) = h(Wx), where W =
[w1, . . . ,wK ]⊤ ∈ RK×d, θ = {W} and h(x) is the activation. The k-th row of W is a weight
wk and its output is fk := h(w⊤

k x). In this case, trCα[f ] =
∑K

k=1 Cα[fk]. We consider per-filter
normalization ∥wk∥2 = 1, which can be achieved by imposing BatchNorm (Ioffe & Szegedy, 2015)
at each node k (Tian, 2022). In this case, optimization can be decoupled into each filter wk:

max
θ
Eα(θ) =

1

2
max

∥wk∥2=1,1≤k≤K
trCα[f ] =

1

2

K∑
k=1

max
∥wk∥2=1

Cα[h(w
⊤
k x)] (5)

Now let’s think about, which parameters wk maximizes the summation? For the linear case, since
Cα[h(w

⊤x)] = Cα[w
⊤x] = w⊤Cα[x]w, all wk converge to the maximal eigenvector of Cα[x] (a

constant matrix), regardless of how they are initialized and what the distribution of x is. Therefore,
the linear case will only learn the most salient single pattern due to the (overly-smooth) landscape of
the objective function, a winner-take-all effect that neglects many patterns in the data.

In contrast, nonlinearity can change the landscape and create more local optima in Cα[h(w
⊤x)],

each capturing one pattern. In this paper, we consider a general category of nonlinearity activations:
Assumption 1 (Homogeneity (Du et al., 2018)/Reversibility (Tian et al., 2020)). The activation
satisfies h(x) = h′(x)x.

Many activations satisfy this assumption, including linear, ReLU, LeakyReLU and monomial activa-
tions like h(x) = xp (with an additional global constant). In this case we have:

h(w⊤x) = w⊤h′(w⊤x)x = w⊤x̃w, (6)
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Figure 1: Left: Summary of Sec. 3. (a) We analyze the dynamics of one-layer network h(w⊤x) under CL loss
(Eqn. 2). (b) With linear activation h(x) = x, then there is only one fixed point (PCA direction). (c) Non-linear
activation h(x) creates many critical points and a proper choice of pairwise importance α can make them
local optima, enabling learning of diverse features. Right: Convergence patterns (iteration t versus iteration
discrepancy ∥w(t+1)−w(t)∥2) of Power Iteration (Eqn. PI) in latent summation models, when ∥U⊤U − I∥2
is small but non-zero. In this case, Theorem 3 tells there still exist local optima close to each um.

where x̃w := x · h′(w⊤x) is the input data after nonlinear gating. When there is no ambiguity, we
just write x̃w as x̃ and omit the weight superscript. One property is Cα[h(w

⊤x)] = w⊤Cα[x̃
w]w.

Now let A(w) := Cα[x̃
w]. With the constraint ∥w∥2 = 1, the learning dynamics is:

Lemma 3 (Training dynamics of 1-layer network with homogeneous activation in contrastive learn-
ing). The gradient dynamics of Eqn. 5 is (note that α is treated as an independent variable):

ẇk = P⊥
wk

A(wk)wk (7)

Here P⊥
wk

:= I −wkw
⊤
k projects a vector into the complementary subspace spanned by wk.

See Appendix B.2 for derivations. Now the question is that: what is the critical point of the dynamics
and whether they are attractive (i.e., local optima). In linear case, the maximal eigenvector is the one
fixed point; in nonlinear case, we are looking for locally maximal eigenvectors, called LME.
Definition 3 (Locally maximal eigenvector (LME)). w∗ is a locally maximal eigenvector of A(w), if
A(w∗)w∗ = λ∗w∗, where λ∗ = λmax(A(w∗)) is the distinct maximal eigenvalue of A(w∗).

It is easy to see each LME is a critical point of the dynamics, since P⊥
w∗

A(w∗)w∗ = λP⊥
w∗

w∗ = 0.

3.1 EXAMPLES WITH MULTIPLE LMES IN RELU SETTING

To see why the nonlinear activation leads to many LMEs in Eqn. 7, we first give two examplar
generative models of the input x that show Eqn. 7 has multiple critical points, then introduce more
general cases. To make the examples simple and clear, we assume the condition of Corollary 1 (no
augmentation and large batchsize), and let αij ≡ 1. Notice that x̃w is a deterministic function of x,
therefore A(w) := Cα[x̃

w] = V[x̃w]. We also use ReLU activation h(x) = max(x, 0).

Let U = [u1, . . . ,uM ] be orthonormal bases (u⊤
mum′ = I(m = m′)). Here are two examples:

Latent categorical model. Suppose y is a categorical random variable taking M possible values,
P[x|y = m] = δ(x− um). Then we have (see Appendix B.1 for detailed steps):

A(w)
∣∣
w=um

:= Cα[x̃
w] = V[x̃w] = P[y = m](1− P[y = m])umu⊤

m (8)

Now it is clear that w = um is an LME for any m.

Latent summation model. Suppose there is a latent variable y so that x = Uy, where
y := [y1, y2, . . . , yM ]. Each ym is a standardized Bernoulli random variable: E[ym] = 0

and E[y2m] = 1. This means that ym = y+m :=
√
(1− qm)/qm with probability qm and

ym = y−m := −
√
qm/(1− qm) with probability 1 − qm. For m1 ̸= m2, ym1 and ym2 are in-

dependent. Then we have:

A(w)
∣∣
w=um

:= Cα[x̃
w] = V [x̃] = (1− qm)2umu⊤

m + qm(I − umu⊤
m) (9)

which has a maximal and distinct eigenvector of um with a unique eigenvalue (1 − qm)2, when
qm < 1

2 (3−
√
5) ≈ 0.382. Therefore, different w leads to different LMEs.

In both cases, the presence of ReLU removes the “redundant energy” so that A(w) can focus on
specific directions, creating multiple LMEs that correspond to multiple learnable patterns. The two
examples can be computed analytically due to our specific choices on nonlinearity h and α.
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3.2 RELATE LMES TO LOCAL OPTIMA

Once LMEs are identified, the next step is to check whether they are attractive, or stable critical
points, or local optima. That is, whether the weights converge into them and stay there during training.
For this, some notations are introduced below.

Notations. Let λi(w) be the i-th largest eigenvalue of A(w), and ϕi(w) the corresponding unit
eigenvector, λgap(w) := λ1(w) − λ2(w) the eigenvalue gap. Let ρ(w) be the local roughness
measure: ρ(w) is the smallest scalar to satisfy ∥(A(v)−A(w))w∥2 ≤ ρ(w)∥v−w∥2+O(∥v−w∥22)
in a local neighborhood of w. The following theorem gives a sufficient condition for stability of w∗:
Theorem 1 (Stability of w∗). If w∗ is a LME of A(w∗) and λgap(w∗) > ρ(w∗), then w∗ is stable.

This shows that lowering roughness measure ρ(w∗) at critical point w∗ could lead to more local
optima and more patterns to be learned. To characterize such a behavior, we bound ρ(w∗):
Theorem 2 (Bound of local roughness ρ(w) in ReLU setting). If input ∥x∥2 ≤ C0 is bounded, α
has kernel structure (Def. 1) and batchsize N → +∞, then ρ(w∗) ≤ C3

0vol(C0)
π r(w∗, α), where

r(w, α) :=
∑+∞

l=0 z2l (α)maxw⊤x=0 p̃l(x;α).

From Thm. 2, the bound critically depends on r(α) that contains the adjusted density p̃l(x;α) (Def. 2)
at the plane w⊤

∗ x = 0. This is because a local perturbation of w∗ leads to data inclusion/exclusion
close to the plane, and thus changes ρ(w∗). Different α leads to different p̃l(x;α), and thus different
upper bound of ρ(w∗), creating fewer or more local optima (i.e., patterns) to learn. Here is an
example that shows Gaussian α (see Lemma 1), whose normalized version is used in InfoNCE, can
lead to more local optima than uniform α, by lowering roughness bound characterized by r(w∗, α):
Corollary 2 (Effect of different α). For uniform αu (αij := 1) and 1-D Gaussian αg (αij :=
exp(−∥h(w⊤x0[i])−h(w⊤x0[j])∥22/2τ)), we have r(w∗, αg) = z0(αg)r(w∗, αu) with z0(αg) :=∫
exp(−h2(w⊤

∗ x)/2τ)pD(x)dx ≤ 1. As a result, z0(αg)≪ 1 leads to r(w∗, αg)≪ r(w∗, αu).

In practice, z0(αg) can be exponentially small (e.g., when most data appear on the positive side of the
weight w∗) and the roughness with Gaussian α can be much smaller than that of uniform α, which is
presumably the reason why InfoNCE outperforms quadratic CL loss (Tian, 2022).

3.3 FINDING CRITICAL POINTS WITH INITIAL GUESS

In the following, we focus on how can we find an LME, when A(w) does not have analytic form. We
show that if there is an “approximate eigenvector” of A(w) := Cα[x̃

w], then a real one is nearby.

Let L be the Lipschitz constant of A(w): ∥A(w)−A(w′)∥2 ≤ L∥w −w′∥2 for any w,w′ on the
unit sphere ∥w∥2 = 1, and the correlation function c(w) := w⊤ϕ1(w) be the inner product between
w and the maximal eigenvector of A(w). We can construct a fixed point using Power Iteration
(PI) (Golub & Van Loan, 2013), starting from initial value w = w(0):

w(t+ 1)← A(w(t))w(t)/∥A(w(t))w(t)∥2 (PI)

We show that even A(w) varies over ∥w∥2 = 1, the iteration can still converge to a fixed point w∗,
if the following quantity ω(w), called irregularity, is small enough.
Definition 4 (Irregularity ω(w) in the neighborhood of fixed points). Let µ(w) := .5(1 +

c(w))c−2(w) [1− λgap(w)/λ1(w)]
2 and ω(w) := ω(c(w), λgap(w), λ1(w), L, κ) ≥ 0 defined

as
ω(w) := µ(w) + 2κL2(1 + µ(w)c(w)) + 2Lλ−1

gap(w)
√
µ(w)(1 + µ(w)c(w)), (10)

here κ is the high-order eigenvector bound defined in Appendix (Lemma 9).

Intuitively, when w(0) is sufficiently close to any LME w∗, i.e., w(0) is an “approximate” LME, we
have ω(w(0))≪ 1. In such a case, w(0) can be used to find w∗ using power iteration (Eqn. PI).
Theorem 3 (Existence of critical points). Let c0 := c(w(0)) ̸= 0. If there exists γ < 1 so that:

sup
w∈Bγ

ω(w) ≤ γ, (11)

where Bγ :=
{
w : w⊤w(0) ≥ c0−cγ

1−cγ
, cγ :=

2
√
γ

1+γ

}
is the neighborhood of initial value w(0).

Then Power Iteration (Eqn. PI) converges to a critical point w∗ ∈ Bγ of Eqn. 7.
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Figure 2: Our setting for 2-layer network. (a) We use W for low-layer weights and V for top-layer weights.
There are K disjoint receptive fields (abbreviated as RF) Rk, each with M weight vectors in the low-layer,
denoted as wkm. The activation function of hidden layer nodes is h(x) and can be linear or nonlinear. (b)
Conditional independence in Assumption 2: there exists a global categorical variable z. Given z, variation in
different RFs are assumed to be independent.

See proof in Appendix B.4 . Intuitively, with L and κ small, c0 close to 1, and λgap large, Eqn. 11
can always hold with γ < 1 and the fixed point exists. For example, for the two cases in Sec. 3.1, if
U = [u1, . . . ,uM ] is only approximately orthogonal (i.e., ∥U⊤U − I∥ is not zero but small), and/or
the conditions of Corollary 1 hold roughly, then Theorem 3 tells that multiple local optima close to
um still exist for each m (Fig. 1). We leave it for future work to further relax the condition.

Possible relation to empirical observations. Since there exist many local optima in the dynamics
(Eqn. 7), even if objective involving wk are identical (Eqn. 5), each wk may still converge to different
local optima due to initialization. We suspect that this can be a tentative explanation why larger
model performs better: more local optima are collected and some can be useful. Other empirical
observations like lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019; Morcos et al., 2019; Tian
et al., 2019; Yu et al., 2020), recently also verified in CL (Chen et al., 2021), may also be explained
similarly. In LTH, first a large network is trained and pruned to be a small subnetwork S, then
retraining S using its original initialization yields comparable or even better performance, while
retraining S with a different initialization performs much worse. For LTH, our explanation is that S
contains weights that are initialized luckily, i.e., close to useful local optima and converge to them
during training. We leave a thorough empirical study to justify this line of thought for future work.

Given this intuition, it is tempting to study the distribution of local optima of Eqn. 7, their attractive
basin Basin(w∗) := {w : w(0) = w, limt→+∞ w(t) = w∗} for each local optimum w∗, and the
probability of random initialized weights fall into them. Interestingly, data augmentation may play an
important role, by removing unnecessary local optima with symmetry (see Appendix B.5), focusing
the learning on important patterns. Theorem 3 also gives hints. A formal study is left for future work.

4 TWO-LAYER SETTING
Now we understand how 1-layer nonlinearity learns in contrastive learning setting. In practice, many
patterns exist and most of them may not be relevant for the downstream tasks. A natural question
arises: how does the network prioritizes which patterns to learn? To answer this question, we analyze
the behavior of 2-layer nonlinear networks with non-overlapping receptive fields (Fig. 2(a)).

Setting and Notations. In the lower layer, there are K disjoint receptive fields (abbreviated as
RF) {Rk}, each has input xk and M weight wkm ∈ Rd where m = 1 . . .M . The output of the
bottom-layer is denoted as f1, f1km for its km-th component, and f1[i] for i-th sample. The top
layer has weight V ∈ Rdout×KM . Define S := V ⊤V . As the (km, k′m′) entry of the matrix S,
skm,k′m′ := [S]km,k′m′ = v⊤

kmvk′m′ .

At each RF Rk, define x̃km as an brief notation of gated input x̃wkm

k := xk · h′(w⊤
kmxk). Define

x̃k := [x̃k1; x̃k2; . . . , x̃kM ] ∈ RMd as the concatenation of x̃km and finally x̃ := [x̃1; . . . ; x̃K ] ∈
RKMd is the concatenation of all x̃k. Similarly, let wk := [wkm]Mm=1 ∈ RMd be a concatenation
of all wkm in the same RF Rk, and w := [wk]

K
k=1 ∈ RKMd be a column concatenation of all wk.

Finally, P⊥
w := diagkm[P⊥

wkm
] is a block-diagonal matrix putting all projections together.

Lemma 4 (Dynamics of 2-layer nonlinear network with contrastive loss).

V̇ = V Cα[f1], ẇ = P⊥
w

[
(S ⊗ 1d1

⊤
d ) ◦ Cα[x̃]

]
w (12)
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where 1d is d-dimensional all-one vector, ⊗ is Kronecker product and ◦ is Hadamard product.

See Appendix C.1 for the proof. Now we analyze the stationary points of the equations. If Cα[f1]
has unique maximal eigenvector s, then following similar analysis as in Tian (2022), a necessary
condition for (W,V ) to be a stationary point is that V = vs⊤, where v is any arbitrary unit vector.
Therefore, we have S = V ⊤V = ss⊤ as a rank-1 matrix and skm,k′m′ = skmsk′m′ . Note that s, as
a unique maximal eigenvector of Cα[f1], is a function of the low-level feature computed by W .

On the other hand, the stationary point of W can be much more complicated, since it has the feedback
term S from the top level. A more detailed analysis requires further assumptions, as we list below:
Assumption 2. For analysis of two-layer networks, we assume:

• Uniform α, large batchsize and no augmentation. Then Cα[g(x)] = V[g(x)] for any
function g(·) following Corollary 1.

• Fast top-level training. V undergoes fast training and has always converged to its stationary
point given Cα[f1]. That is, S = ss⊤ is a rank-1 matrix;

• Conditional Independence. The input in each Rk are conditional independent given a latent
global random variable z taking C different values:

P[x|z] =
K∏

k=1

P[xk|z] (13)

Explanation of the assumptions. The uniform α condition is mainly for notation simplicity.
For kernel-like α, the analysis is similar by combining multiple variance terms using Lemma 1.
The no augmentation condition is mainly technical. Conclusion still holds if Epaug

[g(x)|x0] ≈
g(Epaug

[x|x0]) for g(x) := x̃w, i.e., augmentation swaps with nonlinear gating. For conditional
independence, intuitively z can be regarded as different type of global patterns that determines what
input x can be perceived (Fig. 2(b)). Once z is given, the remaining variation resides within each RF
Rk and independent across different Rk. Note that there exists many patterns in each RF Rk. Some
are parts of the global pattern z, and others may come from noise. We study how each weight wkm

captures distinct and useful patterns after training.

With all the assumptions, we can compute the term Ak(wk) := Cα[x̃k] = V[x̃k]. Our Assumption 2
is weaker than orthogonal mixture condition in Tian (2022) that is used to analyze CL, which requires
the instance of input xk[i] to have only one positive component.

4.1 WHY NONLINEARITY IS CRITICAL: LINEAR ACTIVATION FAILS

Since in each RF Rk, there are M filters {wkm}, it would be ideal to have one filter to capture one
distinct pattern in the covariance matrix Ak. However, with linear activation, x̃k = xk and as a result,
learning of diverse features never happens, no matter how large M is (proof in Appendix C.4):
Theorem 4 (Gradient Colinearity in linear networks). With linear activation, W follows the dynamics:

ẇkm = skmbk(W,V ) (14)

where bk(W,V ) := Cα

[
xk,

∑
k′,m′ sk′m′w⊤

k′m′xk′

]
is a linear function w.r.t. W . As a result, (1)

ẇkm are co-linear over m, and (2) If skm ̸= 0, from any critical point with distinct {wkm}, there
exists a path of critical points to identical weights (wkm = wk).

This brings about the weakness of linear activation. First, the gradient of wkm within one RF Rk

during CL training all points towards the same direction bk; Second, even if the critical points
wkm have any diversity within RF Rk, there exist a path for them to converge to identical weights.
Therefore, diverse features, even they reside in the data, cannot be learned by the linear models.

4.2 THE EFFECT OF GLOBAL MODULATION IN THE SPECIAL CASE OF C = 2 AND M = 1

When z is binary (C = 2) with a single weight per RF (M = 1), wk’s dynamics has close form. Let
wk represent wk1, the only weight at each Rk, ∆k := E[x̃k|z = 1]− E[x̃k|z = 0]. We have:
Theorem 5 (Dynamics of wk under conditional independence). When C = 2 and M = 1, the
dynamics of wk is given by (s2k and δk ≥ 0 are scalars defined in the proof):

ẇk = P⊥
wk

(
s2kAk(wk) + δk∆k∆

⊤
k

)
wk (15)
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Generator

**C*B*A*D*
ACCEBDAFDG

CFCFBEABDA

Input sequence Input 𝒙

concat(𝑢!, 𝑢" , 𝑢" , 𝑢#, … , 𝑢$)

concat(𝑢" , 𝑢%, 𝑢" , 𝑢%, … , 𝑢!)

G*E*B*DF** GAECBBDFGC concat(𝑢$ , 𝑢!, 𝑢#, 𝑢" , … , 𝑢")

Positive pairs

Negative pairs

Figure 3: Experimental setting (Sec. 5). When generating input, we first randomly pick one generator (e.g.,
**C*B*A*D*) from a pool of G generators, generate the sequence by instantiating wildcard * with an arbitrary
token, and then replace the token a of sequence with an embedding vector ua to form the input x. Inputs from
the same generator are treated as positive pairs, otherwise negative pairs for contrastive loss.
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Figure 4: Overall matching score χ̄+ (Eqn. 16) with InfoNCE (top row) and quadratic loss (bottom row).
When P = 1, linear model works well regardless of the degree of over-parameterization β, while ReLU requires
large over-parameterization to perform well. When each Rk has multiple patterns (P > 1) related to generators,
ReLU models can capture diverse patterns better than linear ones in the over-parameterization region β > 1.
We found similar trend for other homogeneous activations such as LeakyReLU (with negative slope 0.05) and
quadratic. In contrast, linear models are much less affected by over-parameterization. While the trends are
similar, quadratic loss is not as effective as InfoNCE in feature learning. Each setting is repeated 3 times and
mean/std are reported. See Appendix (Fig. 9 and Fig. 10) for χ̄−.

See proof in Appendix C.3. There are several interesting observations. First, the dynamics are
decoupled (i.e., ẇk = Ak(W )wk) and other wk′ with k′ ̸= k only affects the dynamics of wk

through the matrix Ak(W ). Second, while Ak(wk) contains multiple patterns (i.e., local optima) in
Rk, the additional term ∆k∆

⊤
k , as the global modulation from the top level, encourages the model

to learn the pattern like ∆k which is a discriminative feature that separates the event of z = 0 and
z = 1. Quantitatively:

Theorem 6 (Global modulation of attractive basin). If the structural assumption holds: Ak(wk) =∑
l g(u

⊤
l wk)ulu

⊤
l with g(·) > 0 a linear increasing function and {ul} orthonormal bases, then for

Ak + culu
⊤
l , its attractive basin of wk = ul is larger than Ak’s for c > 0.

Therefore, if ∆k is a LME of Ak and wk is randomly initialized, Thm 5 tells that P[wk → ∆k] is
higher than the probability that wk goes to other patterns of Ak, i.e., the global variable z modulates
the training of the lower layer. This is similar to “Backward feature correction” (Allen-Zhu & Li,
2020) and “top-down modulation” (Tian et al., 2019) in supervised learning, here we show it in CL.

We also analyze how BatchNorm helps alleviates diverse variances among RFs (see Appendix D).

5 EXPERIMENTS

Setup. To verify our finding, we perform contrastive learning with a 2-layer network on a synthetic
dataset containing token sequences, generated as follows. From a pool of G = 40 generators, we pick
a generator of length K in the form of **C*B*A*D* (here K = 10) and generate EFCDBAACDB by
sampling from d = 20 tokens for each wildcard *. The final input x is then constructed by replacing
each token a with the pre-defined embedding ua ∈ Rd. {ua} forms a orthonormal bases (see Fig. 3).
The data augmentation is achieved by generating another sequence from the same generator.
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Figure 5: Visualization of learned weights with P = 3 (3 local patterns related to generators at each RF) and
β = 5 (5x over-parameterization). Each of the K = 10 subfigures corresponds to a RF (R0-R9). In each
subfigure, the left panel is the learned weight by ReLU, while the right panel is from linear activations. 15 rows
corresponds to M = βP = 15 weights and each weight is d = 8 dimensional. With ReLU activation, learned
weights clearly capture the 3 candidate tokens within Rg

k at each RF Rk, while linear activation cannot.

While there exists d = 20 tokens, in each RF Rk we pick a subset Rg
k of P < d tokens as the

candidates used in the generator, to demonstrate the effect of global modulation. Before training, each
generator is created by first randomly picking 5 receptive fields, then picking one of the P tokens
from Rg

k at each RF Rk and filling the remaining RFs with wildcard *. Therefore, if a token appears
at Rk but a /∈ Rg

k, then a must be instantiated from the wildcard. Any a /∈ Rg
k is noise and should

not to be learned in the weights of Rk since it is not part of any global pattern from the generator.

We train a 2-layer network on this dataset. The 2-layer network has K = 10 disjoint RFs, within
each RF, there are M = βP filters. Here β ≥ 1 is a hyper-parameter that controls the degree
of over-parameterization. The network is trained with InfoNCE loss and SGD with learning rate
2× 10−3, momentum 0.9, and weight decay 5× 10−3 for 5000 minibatches and batchsize 128. Code
is in PyTorch runnable on a single modern GPU.

Evaluation metric. We check whether the weights corresponding to each token is learned in the lower
layer. At each RF Rk, we know Rg

k, the subsets of tokens it contains, as well as their embeddings
{ua}a∈Rg

k
due to the generation process, and verify whether these embeddings are learned after the

model is trained. Specifically, for each token a ∈ Rg
k, we look for its best match on the learned

filter {wkm}, as formulated by the following per-RF score χ+(Rk) and overall matching score
χ̄+ ∈ [−1, 1] as the average over all RFs (similarly we can also define χ̄− for a /∈ Rg

k):

χ+(Rk) =
1

P

∑
a∈Rg

k

max
m

w⊤
kmua

∥wkm∥2∥ua∥2
, χ̄+ =

1

K

∑
k

χ+(Rk) (16)

5.1 RESULTS

Linear v.s ReLU activation and the effect of over-parameterization (Sec. 4.1). From Fig. 4, we
can clearly see that ReLU (and other homogeneous) activations achieve better reconstruction of the
input patterns, when each RF contains many patterns (P > 1) and specialization of filters in each RF
is needed. On the other hand, when P = 1, linear activation works better. ReLU activation clearly
benefits from over-parameterization (β > 1): the larger β is, the better χ̄+ becomes. In contrast, for
linear activation, over-parameterization does not quite affect the performance, which is consistent
with our theoretical analysis.

Quadratic versus InfoNCE. Fig. 4 shows that quadratic CL loss underperforms InfoNCE, while
the trend of linear/ReLU and over-parameterization remains similar. According to Corollary 2, non-
uniform α (e.g., Gaussian α, Lemma 1) creates more and deeper local optima that better accommodate
local patterns, yielding better performance. This provides a novel landscape point of view on why
non-uniform α is better, expanding the intuition that it focuses more on important sample pairs.

Global modulation (Sec. 4.2). As shown in Fig. 5, the learned weights indeed focus on the token
subset Rg

k that receives top-down support from the generators and no noise token is learned. We also
verify that quantitatively by computing χ̄− over multiple runs, provided in Appendix (Fig. 9-10) .
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A PROOFS

A.1 PROBLEM SETUP (SEC. 2)

Lemma 1 (Gaussian α). For any function g(·) that is bounded below, if we use αij :=
exp(−∥g(x0[i])− g(x0[j])∥22/2τ) as the pairwise importance, then it has kernel structure (Def. 1).

Proof. Since g(·) is bounded below, there exists a vector v so that each component of g(x)− v is
always nonnegative for any x. Let y[i] := g(x0[i])− v ∈ Rd, then y[i] ≥ 0 and we have:

αij = exp

(
−∥y[i]− y[j]∥22

2τ

)
(17)

= exp

(
−∥y[i]∥

2
2

2τ

)
exp

(
−∥y[j]∥

2
2

2τ

)
exp

(
y⊤[i]y[j]

τ

)
(18)

And using Taylor expansion, we have

exp

(
y⊤[i]y[j]

τ

)
= 1 +

y⊤[i]y[j]

τ
+

1

2

(
y⊤[i]y[j]

τ

)2

+ . . .+
1

k!

(
y⊤[i]y[j]

τ

)k

+ . . . (19)

Let

ϕ̃(y) :=



1
τ−1/2y

1√
2!
AllChoose(τ−1/2y, 2)

. . .
1√
k!
AllChoose(τ−1/2y, k)

. . .

 ≥ 0 (20)

be an infinite dimensional vector, where AllChoose(y, k) is a dk-dimensional column vector that
enumerates all possible dk products yi1yi2 . . . yik , where 1 ≤ ik ≤ d and yi is the i-th component of
y. Then it is clear that exp(y⊤[i]y[j]/τ) = ϕ̃⊤(y[i])ϕ̃(y[j]) and thus

αij = ϕ⊤(x0[i])ϕ(x0[j]) =

+∞∑
l=0

ϕl(x0[i])ϕl(x0[j]) (21)

which satisfies Def. 1. Here

ϕ(x) := exp

(
−∥y∥

2
2

2τ

)
ϕ̃(y) = exp

(
−∥g(x)− v∥22

2τ

)
ϕ̃(g(x)− v) (22)

is the infinite dimensional feature mapping for input x, and ϕl(x) is its l-th component.

Lemma 2 (Relationship between Contrastive Covariance and Variance in large batch size). If α
satisfies Def. 1, then for any function g(·), Cα[g(x)] is asymptotically PSD when N → +∞:

Cα[g(x)]→
∑
l

z2l Vx0∼p̃l(·;α)
[
Ex∼paug(·|x0)[g(x)|x0]

]
(4)

Proof. First let

Cinter
α [a, b] :=

1

2N2

N∑
i=1

∑
j ̸=i

αij(a[i]− a[j])(b[i]− b[j])⊤ (23)

Cintra
α [a, b] :=

1

2N

N∑
i=1

 1

N

∑
j ̸=i

αij

 (a[i]− a[i′])(b[i]− b[i′])⊤ (24)

and Cinter
α [a] := Cinter

α [a,a], Cintra
α [a] := Cinter

α [a,a]. Then we have

Cα[g] = Cinter
α [g]− Cintra

α [g]. (25)

13
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With the condition, for the first term Cinter
α [g], we have

Cinter
α [g] =

1

2N2

∑
ij

K(x0[i],x0[j])(g(x[i])− g(x[j]))(g(x[i])− g(x[j]))⊤ (26)

When N → +∞, we have:

Cinter
α [g] → 1

2

∫
K(x0,y0)(g(x)− g(y))(g(x)− g(y))⊤P(x,x0)P(y,y0)dxdydx0dy0

We integrate over x0 and y0 first:∫
(g(x)− g(y))(g(x)− g(y))⊤P(x|x0)P(y|y0)dxdy (27)

= E·|x0
[gg⊤] + E·|y0

[gg⊤]− E·|x0
[g]E·|y0

[g⊤]− E·|y0
[g]E·|x0

[g⊤] (28)
We now compute the four terms separately. With the condition that K(x0,y0) =

∑
l ϕl(x0)ϕl(y0),

and the definition of adjusted probability p̃l(x) :=
1
zl
ϕl(x)P(x) where zl :=

∫
ϕl(x)P(x)dx, for

the first term, we have: ∫
ϕl(x0)ϕl(y0)E·|x0

[gg⊤]P(x0)P(y0)dx0dy0

= z2l

∫
E·|x0

[gg⊤]p̃l(x0)dx0 (29)

= z2l Ex0∼p̃l
E·|x0

[gg⊤] (30)
So we have:

Cinter
α [g] →

∑
l

z2l
(
Ex0∼p̃l

E·|x0
[gg⊤]− Ex0∼p̃l

E·|x0
[g]Ex0∼p̃l

E·|x0
[g⊤]

)
(31)

=
∑
l

z2l Vx0∼p̃l,x∼paug(·|x0)[g] (32)

On the other hand, for Cintra
α [g], when N → +∞, we have:

1

N

∑
j ̸=i

αij =
1

N

∑
j ̸=i

K(x0[i],x0[j])→
∫
K(x0,y0)P(y0)dy0 (33)

=
∑
l

ϕl(x0)

∫
ϕl(y0)P(y0)dy0 =

∑
l

zlϕl(x0) (34)

Therefore, we have:

Cintra
α [g]→ 1

2

∑
l

zl

∫
ϕl(x0)(g(x)− g(x′))(g(x)− g(x′))⊤P(x,x′|x0)P(x0)dxdx

′dx0 (35)

Similarly, ∫
(g(x)− g(x′))(g(x)− g(x′))⊤P(x,x′|x0)dxdx

′ (36)

= 2

∫
g(x)g⊤(x)P(x|x0)dx− 2

∫
g(x)P(x|x0)dx

∫
g⊤(x′)P(x′|x0)dx

′ (37)

= 2Ex∼paug(·|x0)[gg
⊤]− 2Ex∼paug(·|x0)[g]Ex∼paug(·|x0)[g

⊤] (38)

= 2Vx∼paug(·|x0)[g] (39)
So we have:

Cintra
α [g] → 1

2

∑
l

zl

∫
ϕl(x0)2Vx∼paug(·|x0)[g]P(x0)dx0 (40)

=
∑
l

z2l Ex0∼p̃l
Vx∼paug(·|x0)[g] (41)

Using the law of total variation, finally we have:

Cα[g]→
∑
l

z2l Vx0∼p̃l
Ex∼paug(·|x0)[g] (42)

14
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B ONE-LAYER MODEL (SEC. 3)

B.1 COMPUTATION OF THE TWO EXAMPLE MODELS

Here we assume ReLU activation h(x) := max(x, 0), which is a homogeneous activation h(x) =
h′(x)x. Note that we consider h′(0) = 0. Therefore, for any sample x, if w⊤x = 0, then we don’t
consider it to be included in the active region of ReLU, i.e., x̃w = x · h′(w⊤x) = 0.

Let z be a hidden binary variable and we could compute A(w) (here p0 := P[z = 0] and p1 :=
P[z = 1]):

V[x̃w] = Vz[E[x̃w|z]] + Ez[V[x̃w|z]] = p0p1∆(w)∆⊤(w) + p0Σ0(w) + p1Σ1(w) (43)
where ∆(w) := E[x̃|z = 1]− E[x̃|z = 0] and Σz(w) := V[x̃|z].
Latent categorical model. If w = um, let z := I(y = m). This leads to Σ1(um) = Σ0(um) = 0
and ∆(um) = um. Therefore, we have:

A(w)
∣∣
w=um

:= Cα[x̃
w] = V[x̃w] = P[y = m] (1− P[y = m])umu⊤

m (44)

Latent summation model. If w = um, first notice that due to orthogonal constraints we have
w⊤x =

∑
m′ ym′u⊤

m′w = ym. Let z := I(ym > 0), then we can compute ∆(um) = y+mum,
Σ1(um) = I − umu⊤

m and Σ0(um) = 0. Therefore, we have:

A(w)
∣∣
w=um

:= Cα[x̃
w] = V [x̃] = (1− qm)2umu⊤

m + qm(I − umu⊤
m) (45)

B.2 DERIVATION OF TRAINING DYNAMICS

Lemma 3 (Training dynamics of 1-layer network with homogeneous activation in contrastive learn-
ing). The gradient dynamics of Eqn. 5 is (note that α is treated as an independent variable):

ẇk = P⊥
wk

A(wk)wk (7)

Here P⊥
wk

:= I −wkw
⊤
k projects a vector into the complementary subspace spanned by wk.

Proof. First of all, it is clear that from Eqn. 5, each wk evolves independently. Therefore, we omit
the subscript k and derive the dynamics of one node w.

To compute the training dynamics, we only need to compute the differential of Cα[h(w
⊤
k x)]. We use

matrix differential form (Giles, 2008) to make the derivation easier to understand.

Note that for one-layer network with K = 1 nodes, E(w) := 1
2Cα[h(w

⊤x)] =
1
2Cα[h(w

⊤x), h(w⊤x)] be the objective function to be maximized. Using the fact that

• Cα[x,y] is a bilinear form (linear w.r.t x and y) given fixed α,

• for any vector a and b, we have a⊤Cα[x,y]b = Cα[a
⊤x, b⊤y],

• for scalar x and y, Cα[x, y] = Cα[y, x],

and by the product rule d(x · y) = dx · y + x · dy, we have:

dE =
1

2
Cα[h(w

⊤x), h′(w⊤x)dw⊤x] +
1

2
Cα[h

′(w⊤x)dw⊤x, h(w⊤x)]

= Cα[h(w
⊤x), h′(w⊤x)x]dw (46)

Now use the homogeneous condition (Assumption 1) for activation h: h(x) = h′(x)x, which gives
h(w⊤x) = h′(w⊤x)w⊤x, therefore, we have:

dE = w⊤Cα[h
′(w⊤x)x, h′(w⊤x)x]dw = w⊤A(w)dw (47)

where A(w) := Cα[h
′(w⊤x)x, h′(w⊤x)x] = Cα[x̃

w, x̃w]. Therefore, by checking the coefficient
associated with the differential form dw, we know ∂E

∂w = A(w)w. By gradient ascent, we have ẇ =

A(w)w. Since w has the additional constraint ∥w∥2 = 1, the final dynamics is ẇ = P⊥
wA(w)w

where P⊥
w := I −ww⊤ is a projection matrix that projects a vector into the orthogonal complement

subspace of the subspace spanned by w.
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Remarks. Note that an alternative route is to use homogeneous condition first: Cα[h(w
⊤x)] =

w⊤A(x)w, then taking the differential. This involves an additional term 1
2w

⊤(dA)w. In the
following we will show it is zero. For this we first compute dA:

dA = dCα[h
′(w⊤x)] (48)

= Cα[h
′′(w⊤x)(dw⊤x)x, h′(w⊤x)x] + Cα[h

′(w⊤x)x, h′′(w⊤x)(dw⊤x)x] (49)
Therefore, since a⊤Cα[x,y]b = Cα[a

⊤x, b⊤y], we have:

w⊤(dA)w = Cα[(dw
⊤x)h′′(w⊤x)w⊤x, h(w⊤x)] + Cα[h(w

⊤x), h′′(w⊤x)(dw⊤x)w⊤x]

= 2Cα[(dw
⊤x)h′′(w⊤x)w⊤x, h(w⊤x)] (50)

Note that we now see the term h′′(w⊤x)w⊤x. For ReLU activation, its second derivative h′′(x) =
δ(x), where δ(x) is Direct delta function (Boas & Peters, 1984). From the property of delta function,
we have xh′′(x) = xδ(x) = 0 even evaluated at x = 0. Therefore, h′′(w⊤x)w⊤x = 0 and
w⊤(dA)w = 0. This is similar for LeakyReLU as well.

B.3 LOCAL STABILITY

Theorem 1 (Stability of w∗). If w∗ is a LME of A(w∗) and λgap(w∗) > ρ(w∗), then w∗ is stable.

Proof. For any unit direction ∥u∥2 = 1 so that u⊤w∗ = 0, consider the perturbation v =√
1− ϵ2w∗ + ϵu. Since ∥w∗∥2 = 1 we have ∥v∥2 = 1.

Now let’s compute P⊥
v A(v)v. First, we have:

P⊥
v = I − vv⊤ = I −

(√
1− ϵ2w∗ + ϵu

)(√
1− ϵ2w∗ + ϵu

)⊤
(51)

= I −w∗w
⊤
∗ − ϵ(uw⊤

∗ +w∗u
⊤) +O(ϵ2) (52)

= P⊥
w∗
− ϵ(uw⊤

∗ +w∗u
⊤) +O(ϵ2) (53)

So we have:
P⊥
v A(w∗)v = P⊥

w∗
A(w∗)v − ϵ(uw⊤

∗ +w∗u
⊤)A(w∗)v +O(ϵ2) (54)

= P⊥
w∗

A(w∗)ϵu− ϵλ∗u+O(ϵ2) (55)

= P⊥
w∗

(A(w∗)− λ∗I)ϵu+O(ϵ2) (56)

The previous derivation is due to the fact that P⊥
w∗

A(w∗)w∗ = 0, u⊤A(w∗)w∗ = 0 and P⊥
w∗

u = u.
Therefore, for P⊥

v A(v)v, we can decompose it to two parts:

P⊥
v A(v)v = P⊥

v A(w∗)v + P⊥
v (A(v)−A(w∗))v (57)

= P⊥
w∗

(A(w∗)− λ∗I)ϵu+ P⊥
v (A(v)−A(w∗))v +O(ϵ2) (58)

Therefore, since u⊤w∗ = 0, we have:
u⊤P⊥

w∗
(A(w∗)− λ∗I)ϵu = u⊤(I −w∗w

⊤
∗ )(A(w∗)− λ∗I)ϵu (59)

= ϵu⊤(A(w∗)− λ∗I)u ≤ −λgap(w∗)ϵ+O(ϵ2) (60)

and since ∥u∥2 = ∥v∥2 = 1 and ∥P⊥
v ∥2 = 1, we have:

|u⊤P⊥
v (A(v)−A(w∗))v| ≤ ∥(A(v)−A(w∗))v∥2 (61)

By the definition of local roughness measure ρ(w∗), we have:

∥(A(v)−A(w∗))w∗∥2 ≤ ρ(w∗)∥v −w∗∥2 +O(∥v −w∗∥22) = ρ(w∗)ϵ+O(ϵ2) (62)
This leads to

∥(A(v)−A(w∗))v∥2 ≤ ∥(A(v)−A(w∗))w∗∥2 + ∥(A(v)−A(w∗))(v −w∗)∥2 (63)

≤ ρ(w∗)ϵ+O(ϵ2) (64)
Therefore, we have:

u⊤P⊥
v A(v)v ≤ −(λgap(w∗)− ρ(w∗))ϵ+O(ϵ2) (65)

When λgap(w∗) > ρ(w∗) and we have u⊤P⊥
v A(v)v < 0 for any u ⊥ w∗ and sufficiently small ϵ.

Therefore, the critical point w∗ is stable.
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Theorem 2 (Bound of local roughness ρ(w) in ReLU setting). If input ∥x∥2 ≤ C0 is bounded, α
has kernel structure (Def. 1) and batchsize N → +∞, then ρ(w∗) ≤ C3

0vol(C0)
π r(w∗, α), where

r(w, α) :=
∑+∞

l=0 z2l (α)maxw⊤x=0 p̃l(x;α).

Proof. Suppose w∗ and its local perturbation w are on the unit sphere ∥w∥2 = ∥w∗∥2 = 1. Since
w is a local perturbation, we have w⊤w∗ ≥ 1− ϵ for ϵ≪ 1.

In the following we will check how we bound ∥(A(w)−A(w∗))w∗∥2 in terms of ∥w −w∗∥2 and
then we can get the upper bound of local roughness metric ρ(w∗).

Let the function g(x) := x̃w, apply Corollary 1 with no augmentation and the large batch limits, we
have

A(w) := Cα[x̃
w] =

∑
l

z2l Vp̃l
[x̃w]. (66)

where p̃l(x) =
1
zl
P(x)ϕl(x) is the probability distribution of the input x, adjusted by the mapping

of the kernel function determined by the pairwise importance αij (Def. 1). zl is its normalization
constant.

To study (A(w)−A(w∗))w∗, we will study each component (Vp̃l
[x̃w]− Vp̃l

[x̃w∗ ])w∗.

Note that since x̃w := xI(w⊤x ≥ 0), we have Vp̃l
[x̃w] = Ep̃l

[xx⊤I(w⊤x ≥ 0)]−Ep̃l
[xI(w⊤x ≥

0)]Ep̃l
[x⊤I(w⊤x ≥ 0)]. Let

e :=

∫
w⊤x≥0

xp̃l(x)dx, e∗ :=

∫
w⊤

∗ x≥0

xp̃l(x)dx (67)

E :=

∫
w⊤x≥0

xx⊤p̃l(x)dx, E∗ :=

∫
w⊤

∗ x≥0

xx⊤p̃l(x)dx (68)

So we can write
Vp̃l

[x̃w] = E − ee⊤, Vp̃l
[x̃w∗ ] = E∗ − e∗e

⊤
∗ (69)

and Vp̃l
[x̃w]− Vp̃l

[x̃w∗ ] = (E − E∗) + (e∗e
⊤
∗ − ee⊤).

Define the following regions

Ω+ := {x : w⊤
∗ x ≥ 0,w⊤x ≤ 0} (70)

Ω− := {x : w⊤
∗ x ≤ 0,w⊤x ≥ 0} (71)

Ω := Ω+ ∪ Ω− (72)

Now let’s bound (E − E∗)w∗ and (e∗e
⊤
∗ − ee⊤)w∗.

Bound (E − E∗)w∗. We have:

E − E∗ =

∫
Ω−

xx⊤p̃l(x)dx−
∫
Ω+

xx⊤p̃l(x)dx (73)

and thus
(E − E∗)w∗ =

∫
Ω−

xx⊤w∗p̃l(x)dx−
∫
Ω+

xx⊤w∗p̃l(x)dx (74)

For any x ∈ Ω+, we have:

0 ≤ w⊤
∗ x = w⊤x+ (w∗ −w)⊤x ≤ (w∗ −w)⊤x ≤ C0∥w∗ −w∥2 (75)

Therefore, |w⊤
∗ x| ≤M∥w∗ −w∥2 and we have∥∥∥∥∥

∫
Ω+

xx⊤w∗p̃l(x)dx

∥∥∥∥∥
2

≤
∫
Ω+

|w⊤
∗ x|∥x∥2p̃l(x)dx (76)

≤ C2
0∥w∗ −w∥2 max

x∈Ω+

p̃l(x)

∫
Ω+,∥x∥2≤C0

dx (77)

= C3
0∥w∗ −w∥2 max

x∈Ω+

p̃l(x)
vol(C0)

2π
arccosw⊤w∗ (78)
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where vol(C0) is the volume of the d-dimensional ball of radius C0. Similarly for x ∈ Ω−, we have

0 ≥ w⊤
∗ x = w⊤x+ (w∗ −w)⊤x ≥ (w∗ −w)⊤x ≥ −C0∥w∗ −w∥2 (79)

hence |w⊤
∗ x| ≤ C0∥w∗ −w∥2 and overall we have:

∥(E − E∗)w∗∥2 ≤
C3

0vol(C0)

π
∥w∗ −w∥2 max

x∈Ω
p̃l(x) arccosw

⊤w∗ (80)

Since for x ∈ (0, 1], arcsin
√
1− x2 ≤

√
1−x2

x , we have:

arccosw⊤w∗ = arcsin
√
1− (w⊤w∗)2 ≤

√
1− (w⊤w∗)2

w⊤w∗
(81)

=

√
1 +w⊤w∗

√
1−w⊤w∗)

w⊤w∗
≤
√

2(1−w⊤w∗)

w⊤w∗
(82)

=
1

1− ϵ
∥w −w∗∥2 (83)

we have:

∥(E − E∗)w∗∥2 ≤
C3

0vol(C0)

π

1

1− ϵ
∥w∗ −w∥22 max

x∈Ω
p̃l(x) (84)

Therefore, ∥(E − E∗)w∗∥2 is a second-order term w.r.t. ∥w −w∗∥2.

Bound (e∗e
⊤
∗ − ee⊤)w∗. On the other hand:

ee⊤ − e∗e
⊤
∗ = e(e− e∗)

⊤ + (e− e∗)e
⊤
∗ (85)

We have ∥e∥2, ∥e∗∥2 bounded and

e− e∗ =

∫
Ω−

xp̃l(x)dx−
∫
Ω+

xp̃l(x)dx (86)

Using similar derivation, we conclude that ∥e(e− e∗)
⊤w∗∥2 is also a second-order term. The only

first-order term is ∥(e− e∗)e
⊤
∗ w∗∥2:

∥(e− e∗)e
⊤
∗ w∗∥2 ≤ Ep̃l

[h(w⊤x)]

∫
Ω

∥x∥2p̃l(x)dx (87)

≤ C2
0

∫
Ω

p̃l(x)dx ≤ C2
0 max

x∈Ω
p̃l(x)

∫
Ω:∥x∥2≤C0

dx (88)

≤ C3
0vol(C0)

π
arccosw⊤w∗ max

x∈Ω
p̃l(x) (89)

≤ C3
0vol(C0)

π

1

1− ϵ
∥w −w∗∥2 max

x∈Ω
p̃l(x) (90)

Overall we have:

∥(A(w)−A(w∗))w∗∥2 ≤
∑
l

z2l ∥ (Vp̃l
[x̃w]− Vp̃l

[x̃w∗ ])w∗∥2 (91)

≤ C3
0vol(C0)

π

1

1− ϵ

(∑
l

z2l max
x∈Ω

p̃l(x)

)
∥w −w∗∥2 +O(∥w −w∗∥22) (92)

Since ρ(w∗) is the smallest scalar that makes the local roughness metric hold and ϵ is arbitrarily
small, we have:

ρ(w∗) ≤
C3

0vol(C0)

π
r(w∗, α) (93)

where r(w, α) :=
∑

l z
2
l maxw⊤x=0 p̃l(x;α).

Corollary 2 (Effect of different α). For uniform αu (αij := 1) and 1-D Gaussian αg (αij :=
exp(−∥h(w⊤x0[i])−h(w⊤x0[j])∥22/2τ)), we have r(w∗, αg) = z0(αg)r(w∗, αu) with z0(αg) :=∫
exp(−h2(w⊤

∗ x)/2τ)pD(x)dx ≤ 1. As a result, z0(αg)≪ 1 leads to r(w∗, αg)≪ r(w∗, αu).
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Proof. For uniform αu, it is clear that the mapping ϕu(x) ≡ 1 is 1-dimensional. Therefore,
p̃0(x;αu) := 1

z0(αu)
ϕu0(x)pD(x) = pD(x) with z0(αu) =

∫
ϕu0(x)pD(x)dx = 1. This means

that

r(w∗, αu) :=

+∞∑
l=0

z2l (αu) max
w⊤

∗ x=0
p̃l(x;αu) (94)

= z20(αu) max
w⊤

∗ x=0
p̃0(x;αu) = max

w⊤
∗ x=0

pD(x) (95)

For Gaussian αg, from Lemma 1 we know that its infinite-dimensional mapping ϕg(x) has the
following form for w = w∗:

ϕg(x) = e−
h2(w⊤

∗ x)

2τ



1
τ−1/2h(w⊤

∗ x)
1

τ2/2
√
2!
h2(w⊤

∗ x)

. . .
1

τk/2
√
k!
hk(w⊤

∗ x)

. . .

 (96)

When l ≥ 1, z2l p̃l(x;αg) = zlϕgl(x)pD(x) = 0 for any x on the plane w⊤
∗ x = 0, since ϕgl(x) = 0

on the plane. On the other hand, ϕg0(x) = e−
h2(w⊤

∗ x)

2τ . On the plane, ϕg0(x) = 1 and is a constant.
Therefore, we have:

r(w∗, αg) :=

+∞∑
l=0

z2l max
w⊤

∗ x=0
p̃l(x;αg) = z20(αg) max

w⊤
∗ x=0

p̃0(x;αg) (97)

= z0(αg) max
w⊤

∗ x=0
ϕg0(x)pD(x) (98)

= z0(αg) max
w⊤

∗ x=0
pD(x) = z0(αg)r(w∗, αu) (99)

Here
z0(αg) :=

∫
ϕg0(x)pD(x)dx =

∫
e−

h2(w⊤
∗ x)

2τ pD(x)dx ≤ 1 (100)

B.4 FINDING CRITICAL POINTS WITH INITIAL GUESS (SEC. 3.3)

Notation. Let λi(w) and ϕi(w) be the i-th eigenvalue and unit eigenvector of A(w) where ϕ1(w)
is the largest. We first assume A(w) is positive definite (PD) and then remove this assumption later.
In this case, λ1(w) ≥ λ2(w) ≥ . . . ≥ λd(w) > 0. Let c(w) := w⊤ϕ1(w) be the inner product
between w and the maximal eigenvector of A(w).

Consider the following Power Iteration (PI) format:

w̃(t+ 1)← A(w(t))w(t), w(t+ 1)← w̃(t+ 1)

∥w̃(t+ 1)∥2
(101)

Along the trajectory, let ϕi(t) := ϕ1(A(w(t))) be the i-th unit eigenvector of A(w(t)) and λi(t) to
be the i-th eigenvalue. Define δw(t) := w(t+ 1)−w(t), δA(t) := A(w(t+ 1))−A(w(t)), and

ct := c(w(t)) = ϕ⊤
1 (t)w(t), dt := ϕ⊤

1 (t)w(t+ 1) (102)

Then −1 ≤ ct, dt ≤ 1 since they are inner product of two unit vectors.
Theorem 3 (Existence of critical points). Let c0 := c(w(0)) ̸= 0. If there exists γ < 1 so that:

sup
w∈Bγ

ω(w) ≤ γ, (11)

where Bγ :=
{
w : w⊤w(0) ≥ c0−cγ

1−cγ
, cγ :=

2
√
γ

1+γ

}
is the neighborhood of initial value w(0).

Then Power Iteration (Eqn. PI) converges to a critical point w∗ ∈ Bγ of Eqn. 7.
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Proof. Note that if c0 < 0, we can always use −ϕ1(w) as the maximal eigenvector.

First we assume A(w) is positive definite (PD) over the entire unit sphere ∥w∥2 = 1, then follow
Lemma 11, and notice that ∥w −w(0)∥2 =

√
2(1−w⊤w(0)), so

∥w −w(0)∥2 ≤
√
2(1 + γ)(1− c0)

1−√γ
⇐⇒ w⊤w(0) ≥ c0 − cγ

1− cγ
(103)

When A(w) is not PD, Theorem 3 still applies to the PD matrix Â(w) := A(w)− λmin(w)I + ϵI

with L and κ specified by Â(w), where ϵ > 0 is a small constant.

This transformation keeps c0 since the eigenvectors of Â(w) are the same as A(w). wwThe resulting
fixed point ŵ∗ is also the fixed point of the original problem with A(w), due to the fact that

P⊥
w Â(w)w = P⊥

wA(w)w − (λmin(w)− ϵ)P⊥
ww = P⊥

wA(w)w (104)

Remarks. Note that Lemma 11 assumes that along the trajectory {w(t)}, µt + νt ≤ γ holds. In
Theorem 3, this can not be assumed true until we prove that the entire trajectory is within Bγ .

B.5 THE EFFECT OF DATA AUGMENTATION ON LOCAL OPTIMA

While the majority of the analysis focuses on the cases where there are no data augmentation (i.e.,
using Corollary 1), the original formulation Lemma 2 can still handle contrastive learning in the
presence of data augmentation.

In fact, data augmentation plays an important role by removing unnecessary local optima. First,
Lemma 2 tells that the objective Eqn. 5, when K = 1, takes the following form:

2Eα(w) := Cα[h(w
⊤x)]→

∑
l

z2l Vx0∼p̃l(·;α) [b(w|x0)] (105)

where b(w|x0) := Ex∼paug(·|x0)[h(w
⊤x)|x0].

Now let us consider the following simple data augmentation of x0:

x = R(t)x0, t ∼ Uniform(T ) (106)

where R(t) ∈ Rd×d is some rotation parameterized by t, which is drawn uniformly from a parameter
family T .

We assume {R(t)}t∈T forms a 1-dimensional Lie group parameterized by T . This means that

• Closeness. For any t, t′ ∈ T , there exists t′′ ∈ T so that R(t′′) = R(t)R(t′).

• Existence of inverse element. For each R(t), there exists an inverse element t′ ∈ T so that
R(t′) = R−1(t) = R⊤(t). The last equality is due to the fact that R(t) is a rotation.

• Existence of identity map. R(0) = I .

Then for any small transformation R(t′) applied to the weights w (here “small” means ∥R(t′)− I∥2
is small), we can write down b(R(t′)w|x0) using reparameterization trick:

b(R(t)w|x0) := Ex∼paug(·|x0)[h((R(t)w)⊤x)|x0] =

∫
h(w⊤R⊤(t)R(t′)x0)P[t′]dt′

=

∫
h(w⊤R−1(t)R(t′)x0)P[t′]dt′ (107)

=

∫
h(w⊤R(t′′)x0)P[t′′]dt′′ = b(w|x0) (108)

Note that the last equality is due to the fact that {R(t)}t∈T is a Lie group, so that R−1(t)R(t′) always
maps to another group element R(t′′), and t′′ as the resulting parameterization is still uniform.
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Due to stop gradient, α and thus ϕl(·;α) is treated as a constant term when checking the local property
of the current parameters w. This means that in the local neighborhood of w, Eα(w) = Eα(R(t′)w).

Now notice an important observation: if w′ := R(t′)w ̸= w, then Eα(w) = Eα(R(t′)w) = Eα(w′)
and therefore, w cannot be a local optimal.

Intuitively, this means that the data augmentation can remove certain local optima of w, if they are
not locally invariant (i.e., R(t′)w ̸= w) to the transformation of the data augmentation. Therefore,
augmentation removes certain patterns in the input data and their local optima in the training, to only
keep patterns (local optima) that are most relevant to the tasks.

Here we only use 1-dimensional rotation group as one simple example. In practice, the augmentation
may not globally form a Lie group, and there could be multiple different types of augmentations,
yielding high-dimensional transformation space. Therefore, we may use Lie algebra instead to capture
the local transformation structure, without making assumptions about the global structure. We will
give a formal study in the future work.

C TWO LAYER CASE (SEC. 4)

C.1 LEARNING DYNAMICS

Lemma 4 (Dynamics of 2-layer nonlinear network with contrastive loss).

V̇ = V Cα[f1], ẇ = P⊥
w

[
(S ⊗ 1d1

⊤
d ) ◦ Cα[x̃]

]
w (12)

where 1d is d-dimensional all-one vector, ⊗ is Kronecker product and ◦ is Hadamard product.

Proof. The output of the 2-layer network can be written as the following:

f2l =
∑
k

vlkh(w
⊤
k xk) (109)

For convenience, we use f1 := [h(w⊤
k xk)] to represent the column vector that collects all the outputs

of intermediate nodes, and v⊤
l is the l-th row vector in V .

According to Theorem 1 in Tian (2022), the gradient descent direction of contrastive loss corresponds
to the gradient ascent direction of the energy function Eα(θ). From Eqn. 25 of that theorem, we have:

∂E
∂θ

=
∑
l

Cα

[
∂f2l
∂θ

, f2l

]
(110)

Therefore, for V = [vik] we have:

v̇i =
∂E
∂vi

=
∑
l

Cα

[
∂f2l
∂vi

, f2l

]
(111)

= Cα

[
f1,v

⊤
i f1

]
(112)

= Cα [f1,f1]vi (113)

So we have v̇i = Cα[f1]vi, or V̇ = V Cα[f1].
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Figure 6: Decomposition of the variance term V[x̃].

Now we compute ∂E/∂wk:

ẇk =
∂E
∂wk

=
∑
l

Cα

[
∂f2l
∂wk

, f2l

]
(114)

=
∑
l

Cα[vlkh
′(w⊤

k xk)xk,v
⊤
l f1] (115)

=
∑
l

vlkCα[x̃k,v
⊤
l f1] (116)

=
∑
l

vlkCα

[
x̃k,

∑
k′

vlk′h(w⊤
k′xk′)

]
(117)

=
∑
k′

(∑
l

vlkvlk′

)
Cα [x̃k, x̃k′ ]wk′ (118)

=
∑
k′

skk′Cα [x̃k, x̃k′ ]wk′ (119)

where S = [skk′ ] = V ⊤V =
∑

l vlv
⊤
l . Let w := [w1; . . . ;wK ] and it leads to the conclusion.

When M > 1, the proof is similar.

C.2 VARIANCE DECOMPOSITION

Let pc := P[z = c] be the probability that the latent variable z takes categorical value c.
Lemma 5 (Close-form of variance under Assumption 2). With Assumption 2, we have

V[x̃] = diagk [Lk] +

C−1∑
c=0

pc(1− pc)
2∆(c)∆⊤(c) (120)

where Lk := EzV[x̃k|z] ∈ RMd and ∆(c) := E[x̃|z = c] − E[x̃|z ̸= c] ∈ RMKd. In particular
when C = 2, the second term becomes p0p1∆∆⊤, a rank-1 matrix. Here ∆ := ∆(0) for brevity.

Proof. Use variance decomposition, we have:

V[x̃] = EzV[x̃|z] + VzE[x̃|z] (121)

Remember that x̃km is an abbreviation of gated input:

x̃km := x̃wkm

k := xk · h′(w⊤
kmxk) (122)

By conditional independence, we have

Cov[x̃km, x̃k′m′ |z] = 0 ∀k ̸= k′ (123)

This is because x̃km and x̃k′m′ are deterministic functions of xk and xk′ and thus are also indepen-
dent of each other.

22



Published as a conference paper at ICLR 2023

Let

x̃k :=

 x̃k1

x̃k2

. . .
x̃kM

 ∈ RMd (124)

and Lk := EzV[x̃k|z]. Then we know that EzV[x̃|z] = diagk[Lk] is a block diagonal matrix (See
Fig. 6).

On the other hand, VzE[x̃|z] is a low-rank matrix:

VzE[x̃|z] = Ez

[
(E[x̃|z]− E[x̃])(E[x̃|z]− E[x̃])⊤

]
(125)

Let qc := E[x̃|z = c] and q−c := E[x̃|z ̸= c], then we have:

E[x̃|z = c]− E[x̃] = qc −
∑
c

pcqc = (1− pc)

qc −
∑
c′ ̸=c

pc′

1− pc
qc′

 (126)

= (1− pc)

qc −
∑
c′ ̸=c

P[z = c′|z ̸= c]qc′

 (127)

= (1− pc)(qc − q−c) (128)

Therefore, we have:

VzE[x̃|z] = Ez

[
(E[x̃|z]− E[x̃])(E[x̃|z]− E[x̃])⊤

]
(129)

=
∑
c

pc(1− pc)
2(qc − q−c)(qc − q−c)

⊤ (130)

=
∑
c

pc(1− pc)
2∆(c)∆⊤(c) (131)

where

∆(c) := ∆(c;W ) := qc − q−c =

[
∆11(c)
. . .

∆KM (c)

]
∈ RKMd (132)

and
∆km(c) := ∆km(c;wkm) := E[x̃km|z = c]− E[x̃km|z ̸= c] (133)

We can see that VzE[x̃|z] is at most rank-C, since it is a summation of C rank-1 matrix.

In particular, when C = 2, it is clear that ∆(0) = −∆(1) and thus ∆(0)∆⊤(0) = ∆(1)∆⊤(1) and∑
c pc(1− pc)

2 = p0p
2
1 + p1p

2
0 = p0p1. Hence the conclusion.

C.3 GLOBAL MODULATION WHEN C = 2 AND M = 1

Theorem 5 (Dynamics of wk under conditional independence). When C = 2 and M = 1, the
dynamics of wk is given by (s2k and δk ≥ 0 are scalars defined in the proof):

ẇk = P⊥
wk

(
s2kAk(wk) + δk∆k∆

⊤
k

)
wk (15)

Proof. Since M = 1, each receptive field (RF) Rk only output a single node with output fk. Let:

Lk := EzV[x̃k|z] (134)

dk := w⊤
k Lkwk = EzV[fk|z] ≥ 0 (135)

D := diagk[dk] (136)

b := [bk] := [w⊤
k ∆k] ∈ RK (137)

and λ be the maximal eigenvalue of V[f1]. Here Lk is a PSD matrix and D is a diagonal matrix.
Then

V[f1] = D + p0p1bb
⊤ (138)
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is a diagonal matrix plus a rank-1 matrix. Since p0p1bb
⊤ is always PSD, λ = λmax(V[f1]) ≥

λmax(D) = maxk dk. Then using Bunch–Nielsen–Sorensen formula (Bunch et al., 1978), for largest
eigenvector s, we have:

sk =
1

Z

bk
dk − λ

(139)

where λ is the corresponding largest eigenvalue satisfying 1 + p0p1
∑

k
b2k

dk−λ = 0, and Z =√∑
k

(
bk

dk−λ

)2
. Note that the above is well-defined, since if k∗ = argmaxk dk and bk∗ ̸= 0, then

λ > maxk dk = dk∗ . So bk/(dk − λ) won’t be infinite.

So we have:

ẇk =
∑
k′

sksk′Cα[x̃k, x̃k′ ]wk′ (140)

=
∑
k′

sksk′(LkI(k = k′) + p0p1∆k∆
⊤
k′)wk′

= s2kV[x̃k]wk + p0p1sk∆k

∑
k′ ̸=k

sk′∆⊤
k′wk′ (141)

= s2kV[x̃k]wk +
p0p1bk

Z2(dk − λ)
∆k

∑
k′ ̸=k

b2k′

dk′ − λ

= s2kV[x̃k]wk + δk∆k∆
⊤
k wk

=
(
s2kV[x̃k] + δk∆k∆

⊤
k

)
wk (142)

where

δk :=
p0p1

Z2(λ− dk)

∑
k′ ̸=k

b2k′

λ− dk′
(143)

Since λ ≥ maxk dk, we have δk ≥ 0 and thus the modulation term is non-negative. Note that since
p0p1

∑
k

b2k
λ−dk

= 1, we can also write δk = 1− p0p1b
2
k

λ−dk
.

Theorem 6 (Global modulation of attractive basin). If the structural assumption holds: Ak(wk) =∑
l g(u

⊤
l wk)ulu

⊤
l with g(·) > 0 a linear increasing function and {ul} orthonormal bases, then for

Ak + culu
⊤
l , its attractive basin of wk = ul is larger than Ak’s for c > 0.

Proof. Since Ak(w) =
∑

l g(u
⊤
l w)ulu

⊤
l , we could write down its dynamics (we omit the projection

P⊥
w for now):

ẇ = Ak(w)w =
∑
l

g(u⊤
l w)ulu

⊤
l w (144)

Let yl(t) := u⊤
l w(t), i.e., yl(t) is the projected component of the weight w(t) onto the l-th direction,

i.e., a change of bases to orthonormal bases {ul}, then the dynamics above can be written as

ẏl = g(yl)yl (145)

which is the same for all l, so we just need to study ẋ = g(x)x. g(x) > 0 is a linear increasing
function, so we can assume g(x) = ax+ b with a > 0. Without loss of generality, we could just set
a = 1.

Then we just want to analyze the dynamics:

ẏl = (yl + bl)yl, bl > 0 (146)

which also includes the case of Ak + culu
⊤
l , that basically sets bl = b+ c. Solving the dynamics

leads to the following close-form solution:

yl(t)

yl(t) + bl
=

yl(0)

yl(0) + bl
eblt (147)
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The 1-d dynamics has an unstable fixed points yl = 0 and a stable one yl = −bl < 0. Therefore,
when the initial condition yl(0) < 0, the dynamics will converge to yl(+∞) = −bl, which is a finite
number. On the other hand, when yl(0) > 0, the dynamics has finite-time blow-up Thompson et al.
(1990); Goriely & Hyde (1998), i.e., there exists a critical time t∗l < +∞ so that yl(t∗l ) = +∞. See
Fig. 7.

Note that this finite time blow-up is not physical, since we don’t take into consideration of normal-
ization Z(t), which depends on all yl(t). The real quality to be considered is ŷl(t) = 1

Z(t)yl(t).
Fortunately, we don’t need to estimate Z(t) since we are only interested in the ratio:

rl/l′(t) :=
ŷl(t)

ŷl′(t)
=

yl(t)

yl′(t)
(148)

If for some l and any l′ ̸= l, rl/l′(t)→∞, then yl(t) dominates and ŷl(t)→ 1, i.e., the dynamics
converges to ul.

Now our task is to know which initial condition of yl and bl makes rl/l′(t)→ +∞. By comparing
the critical time we know which component l shoots up the earliest and that l∗ = argminl t

∗
l is the

winner, without computing the normalization constant Z(t).

The critical time satisfies
yl(0)

yl(0) + bl
eblt

∗
l = 1 (149)

so

t∗l =
1

bl
ln

(
1 +

bl
yl(0)

)
(150)

It is clear that when yl(0) is larger, the critical time t∗l becomes smaller and the l-th component
becomes more advantageous over other components.

For bl > 0, we have:
∂t∗l
∂bl

=
1

b2l

[
bl/yl(0)

1 + bl/yl(0)
− ln(1 + bl/yl(0))

]
< 0 (151)

where the last inequality is due to the fact that x
1+x < ln(1 + x) for x > 0. Therefore, larger bl

leads to smaller t∗l . Since adding culu
⊤
l with c > 0 to Ak increase bl, it leads to smaller t∗l and thus

increases the advantage of the l-th component.

Therefore, larger bl and larger yl(0) both leads to smaller t∗l . For the same t∗l , larger bl can trade for
smaller yl(0), i.e., larger attractive basin.

Remark. Special case. We start by assuming only one ϵl ̸= 0 and all other ϵl′ = 0 for l′ ̸= l, and
then we generalize to the case when all {ϵl} are real numbers.

To quantify the probability that a random weight initialization leads to convergence of ul, we setup
some notations. Let the event El be “a random weight initialization of y leads to y → el”, or
equivalently w → ul. Let Yl be the random variable that instantiates the initial value of yl(0) due
to random weight initialization. Then the convergence event El is equivalent to the following: (1)
Yl > 0 (so that the l-component has the opportunity to grow), and (2) Yl + ϵl is the maximum over
all Yl′ for any l′ ̸= l, where ϵl is an advantage (> 0) or disadvantage (< 0) achieved by having
larger/smaller bl due to global modulation (e.g., c). Therefore, we also call ϵl the modulation factor.

Here we discuss about a simple case that Yl ∼ U [−1, 1] and for l′ ̸= l, Yl and Yl′ are independent. In
this case, for a given l, maxl′ ̸=l Yl′ is a random variable that is independent of Yl, and has cumulative
density function (CDF) Fmax(x) := P[maxl′ ̸=l Yl′ ≤ x] = F d−1(x), where F (x) is the CDF for Yl.

Then we have:

P[El] = P
[
Yl > 0, Yl + ϵl ≥ max

l′ ̸=l
Yl′

]
(152)

=

∫ +∞

0

P
[
max
l′ ̸=l

Yl′ ≤ Yl + ϵl

∣∣∣Yl = yl

]
P[Yl = yl]dyl (153)

=

∫ +∞

0

F d−1(yl + ϵl)dF (yl) (154)
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When Yl ∼ U [−1, 1], F (x) = min
{

1
2 (x+ 1), 1

}
has a close form and we can compute the integral:

P[El] = P
[
Yl > 0, Yl + ϵl ≥ max

l′ ̸=l
Yl′

]
=


1
2 ϵl > 1

1
d

[
1−

(
1+ϵl
2

)d]
+ ϵl

2 0 ≤ ϵl ≤ 1
1
d

[
(1 + ϵl

2 )
d − ( 1+ϵl

2 )d
]
−1 < ϵl < 0

(155)

We can see that the modulation factor ϵl plays an important role in deciding the probability that
w → ul:

• No modulation. If ϵl = 0, then P[El] ∼ 1
d . This means that each dimension of y has equal

probability to be the dominant component after training;
• Positive modulation. If ϵl > 0, then P[El] ≥ ϵl

2 , and that particular l-th component has
much higher probability to become the dominant component, independent of the dimension-
ality d. Furthermore, the stronger the modulation, the higher the probability becomes.

• Negative modulation. Finally, if ϵl < 0, since 1 + ϵl/2 < 1, P[El] ≤ 1
d (1 +

ϵl
2 )

d decays
exponentially w.r.t the dimensionality d.

General case. We then analyze cases if all ϵl are real numbers. Let l∗ = argmaxl ϵl and c(k) be the
k-th index of ϵl in descending order, i.e., c(1) = l∗.

• For l = c(1) = l∗, ϵl is the largest over {ϵl}. Since

P[El] = P
[
Yl ≥ 0, Yl + ϵl ≥ max

l′ ̸=l
Yl′ + ϵl′

]
≥ P

[
Yl ≥ 0, Yl + ϵc(1) − ϵc(2) ≥ max

l′ ̸=l
Yl′

]
where ϵc(1) − ϵc(2) is the gap between the largest ϵl and second largest ϵl. Then this case is
similar to positive modulation and thus

P[Ec(1)] ≥
1

2

(
ϵc(1) − ϵc(2)

)
(156)

• For l with rank r (i.e., c(r) = l), and any r′ < r, we have:

P[El] = P
[
Yl ≥ 0, Yl + ϵl ≥ max

l′ ̸=l
Yl′ + ϵl′

]
≤ P

[
Yl ≥ 0, Yl + ϵl ≥ max

l′:c−1(l′)≤r′
Yl′ + ϵl′

]
= P

[
Yl ≥ 0, Yl + ϵl − ϵc(r′) ≥ max

l′:c−1(l′)≤r′
Yl′ + ϵl′ − ϵc(r′)

]
≤ P

[
Yl ≥ 0, Yl + ϵl − ϵc(r′) ≥ max

l′:c−1(l′)≤r′
Yl′

]
Then it reduces to the case of negative modulation. Therefore, we have:

P[Ec(r)] ≤ min
r′<r

1

r′ + 1

(
1−

ϵc(r′) − ϵc(r)

2

)r′+1

(157)

and the probability is exponentially small if r is large, i.e., ϵl ranks low.

C.4 FUNDAMENTAL LIMITATION OF LINEAR MODELS

Theorem 4 (Gradient Colinearity in linear networks). With linear activation, W follows the dynamics:

ẇkm = skmbk(W,V ) (14)

where bk(W,V ) := Cα

[
xk,

∑
k′,m′ sk′m′w⊤

k′m′xk′

]
is a linear function w.r.t. W . As a result, (1)

ẇkm are co-linear over m, and (2) If skm ̸= 0, from any critical point with distinct {wkm}, there
exists a path of critical points to identical weights (wkm = wk).
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Proof. In the linear case, we have x̃km = xk since there is no gating and all M shares the same
input xk. Therefore, we can write down the dynamics of wkm as the following:

ẇkm =
∑
k′,m′

skm,k′m′Cα[x̃km, x̃k′m′ ]wk′m′ (158)

=
∑
k′,m′

skm,k′m′Cα[xk,xk′ ]wk′m′ (159)

Now we use the fact that the top-level learns fast so that skm,k′m′ = skmsk′m′ , which gives:

ẇkm = skm
∑
k′,m′

sk′m′Cα[xk,xk′ ]wk′m′ (160)

= skmCα

xk,
∑
k′,m′

sk′m′w⊤
k′m′xk′

 (161)

Let bk(W,V ) := Cα

[
xk,

∑
k′,m′ sk′m′w⊤

k′m′xk′

]
be a linear function of W , and we have:

ẇkm = skmbk(W,V ) (162)
Since bk is independent of m, all ẇkm are co-linear.

For the second part, first all if W ∗ is a critical point, we have the following two facts:

• Since there exists m so that skm ̸= 0, we know that bk(W ∗) = 0;

• If W ∗ contains two distinct filters wk1 = µ1 ̸= wk2 = µ2 covering the same receptive
field Rk, then by symmetry of the weights, W ′∗ in which wk1 = µ2 and wk2 = µ1, is also
a critical point.

Then for any c ∈ [0, 1], since bk(W ) is linear w.r.t. W , for the linear combination W c := cW ∗ +
(1− c)W ′∗, we have:

bk(W
c) = bk(cW

∗ + (1− c)W ′∗) = cbk(W
∗) + (1− c)bk(W

′∗) = 0 (163)
Therefore, W c is also a critical point, in which wk1 = cµ1+(1− c)µ2 and wk2 = (1− c)µ1+ cµ2.
In particular when c = 1/2, wk1 = wk2. Repeating this process for different m, we could finally
reach a critical point in which all wkm = wk.

D ANALYSIS OF BATCH NORMALIZATION

From the previous analysis of global modulation, it is clear that the weight updating can be much
slower for RF with small dk, due to the factor 1

λ−dk
in both s2k (Eqn. 139) and βk (Eqn. 143) and

the fact that λ ≥ maxk dk. This happens when the variance of each receptive fields varies a lot (i.e.,
some dk are large while others are small). In this case, adding BatchNorm at each node alleviates this
issue, as shown below.

We consider BatchNorm right after f : fbn
k [i] = (fk[i] − µk)/σk, where µk and σk are the batch

statistics computed from BatchNorm on all 2N samples in a batch:

µk :=
1

2N

∑
i

fk[i] + fk[i
′] (164)

σ2
k :=

1

2N

∑
i

(fk[i]− µk)
2 + (fk[i

′]− µk)
2 (165)

When N → +∞, we have µk → E[fk] and σ2
k → V[fk] = w⊤

k V[x̃k]wk.

Let x̃bn
k := σ−1

k x̃k and x̃bn :=

 x̃bn
1

x̃bn
2
. . .
x̃bn
K

. When computing gradient through BatchNorm layer, we

consider the following variant:
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Definition 5 (mean-backprop BatchNorm). When computing backpropagated gradient through
BatchNorm, we only backprop through µk.

This leads to a model dynamics that has a very similar form as Lemma 4:
Lemma 6 (Dynamics with mean-backprop BatchNorm). With mean-backprop BatchNorm (Def. 5),
the dynamics is:

V̇ = V Cα[f
bn
1 ], ẇ =

[
(S ⊗ 1d1

⊤
d ) ◦ Cα[x̃

bn]
]
w (166)

Proof. The proof is similar to Lemma 4. For V̇ it is the same by replacing f1 with fbn
1 , which is the

input to the top layer.

For ẇ, similarly we have:

ẇk =
∂E
∂wk

=
∑
l

Cα

[
∂f2l
∂wk

, f2l

]
(167)

=
∑
l

Cα

[
vlk

∂fbn
1k

∂wk
,
∑
k′

vlk′fbn
1k′

]
(168)

=
∑
l

Cα

[
vlk

∂fbn
1k

∂wk
,
∑
k′

vlk′(f1k′ − µk′)σ−1
k′

]
(169)

Note that Cα[·, µk′σ−1
k′ ] = 0 since µk′ and σk′ are statistics of the batch and is constant. On the other

hand, for ∂fbn
1k /∂wk, we have:

∂fbn
1k

∂wk
=

1

σk

(
∂f1k
∂wk

− ∂µk

∂wk

)
− fbn

1k

σk

∂σk

∂wk
(170)

Note that
∂µk

∂wk
= Esample[x̃k] (171)

where Esample[·] is the sample mean, which is a constant over the batch. Therefore
Cα [·, ∂µk/∂wk] = 0. For mean-backprop BatchNorm, since the gradient didn’t backpropagate
through the variance, the second term is simply zero. Therefore, we have:

ẇk =
∑
l

Cα

[
vlkσ

−1
k

∂f1k
∂wk

,
∑
k′

vlk′f1k′σ−1
k′

]
(172)

=
∑
l

Cα

[
vlkσ

−1
k x̃k,

∑
k′

vlk′w⊤
k′ x̃k′σ−1

k′

]
(173)

=
∑
k′

skk′Cα[σ
−1
k x̃k, σ

−1
k′ x̃k′ ]wk′ (174)

Let x̃bn
k := σ−1

k x̃k and x̃bn :=

 x̃bn
1

x̃bn
2
. . .
x̃bn
K

 ∈ RKd. The conclusion follows.

Corollary 3 (Dynamics of wk under conditional independence and BatchNorm). Let

Abn
k := V[x̃bn

k ] = σ−2
k Ak (175)

dbnk := σ−2
k dk (176)

∆bn
k := σ−1

k ∆k = E[x̃bn
k |z = 1]− E[x̃bn

k |z = 0] (177)

and λbn be the maximal eigenvalue of V[fbn
1 ]. Then we have

• (1) λbn ≥ maxk d
bn
k ;
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• (2) For λbn, the associated unit eigenvector is

sbn :=
1

Zbn

[
w⊤

k ∆
bn
k

λbn − dbnk

]
∈ RK ,

where Zbn is the normalization constant;

• (3) the dynamics of wk is given by:

ẇk =
[
(sbnk )2Abn

k + δbnk (∆bn
k )(∆bn

k )⊤
]
wk (178)

where

δbnk :=
p0p1

(Zbn)2(λbn − dbnk )

∑
k′ ̸=k

(w⊤
k′∆bn

k′ )2

λbn − dbnk′
≥ 0 (179)

Proof. Similar to Theorem 5.

Remarks In the presence of BatchNorm, Lemma 5 still holds, since it only depends on the generative
structure of the data. Therefore, we have

σ2
k → V[fk] = w⊤

k V[x̃k]wk = dk + p0p1
(
w⊤

k ∆k

)2
and thus

dbnk = σ−2
k dk →

dk

dk + p0p1
(
w⊤

k ∆k

)2 =
1

1 + p0p1
(
w⊤

k ∆k/
√
dk
)2

becomes more uniform. This is because dk := w⊤
k Lkwk = EzV[fk|z] ≥ 0 (Eqn. 135) is approx-

imately the variance of fk, and thus w⊤
k ∆k/

√
dk is normalized across different receptive field k,

reducing the effect of magnitude of the input.

Since there is no much variation within {dbnk }, λbn − dbnk becomes almost constant across different
receptive field Rk and won’t lead to slowness of feature learning.
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Figure 8: Local optima of objective Eα(w) under uniform α := 1. w = [cos θ, sin θ]⊤ is parameterized by
θ ∈ [−π, π], and each vertical dotted line is a data point. Dotted line is Eα with linear activation h(x) = x, and
solid line is using ReLU activation h(x) = max(x, 0). Both lines are scaled so that their maximal value is 1.

E ADDITIONAL EXPERIMENTS

E.1 VISUALIZATION OF LOCAL OPTIMA IN 1-LAYER SETTING

We added a simple experiment to visualize the local maxima of Eα(w) := 1
2Cα[h(w

⊤x)], when
w = [cos θ, sin θ]⊤ is a 2D unit vector parameterized by θ, and h is ReLU activation. For simplicity,
here we use a uniform α := 1.

We put a few data points {xi} on the unit circle, which are also parameterized by θ. The data
points are located at {− 4π

5 ,−π
2 ,−

2π
5 ,−π

6 , 0,
π
5 ,

2π
5 , 3π

5 , 4π
5 } and no data augmentation is used. The

objective function Eα(θ) is plotted in Fig. 8.

From the figure, we can see many local maxima (≥ 8) caused by nonlinearity (solid line), much more
than 2 × 2 = 4, the maximal possible number of local maxima counting all PCA components in
2D case (i.e., ±ϕ1 and ±ϕ2, where ϕ1 and ϕ2 are orthogonal PCA directions in this 2D example).
Moreover, unlike PCA directions, these local optima are not orthogonal to each other.

On the other hand, in the linear case (dotted line), the curve is much smoother. There are only two
local maxima corresponding to ±ϕ1, where ϕ1 is the largest PCA eigenvector.

E.2 2-LAYER SETTING

We also do more experiments on the 2-layer setting, to further verify our theoretical findings.

Overall matching score χ̄+ and overall irrelevant-matching score χ̄−. As defined in the main
text (Eqn. 16), the matching score χ+(Rk) is the degree of matching between learned weights and
the embeddings of the subset Rg

k of tokens that are allowed in the global patterns at each receptive
field Rk. And the overall matching score χ̄+ is χ̄+ averaged over all receptive fields:

χ+(Rk) =
1

P

∑
a∈Rg

k

max
m

w⊤
kmua

∥wkm∥2∥ua∥2
, χ̄+ =

1

K

∑
k

χ+(Rk) (180)

Similarly, we can also define irrelevant-matching score χ−(Rk) which is the degree of matching
between learned weights and the embeddings of the tokens that are NOT in the subset Rg

k at each
receptive field Rk. And the overall irrelevant-matching score χ̄− is defined similarly.

χ−(Rk) =
1

P

∑
a/∈Rg

k

max
m

w⊤
kmua

∥wkm∥2∥ua∥2
, χ̄− =

1

K

∑
k

χ−(Rk) (181)

Ideally, we want to see high overall matching score χ̄+ and low overall irrelevant-matching score
χ̄−, which means that the important patterns in Rg

k (i.e., the patterns that are allowed in the global
generators) are learned, but noisy patterns that are not part of the global patterns (i.e., the generators)
are not learned. Fig. 9 shows that this indeed is the case.

Non-uniformity ζ and how BatchNorm interacts with it. When the scale of input data varies a
lot, BatchNorm starts to matter in discovering features with low magnitude (Sec. D). To model the
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scale non-uniformity, we set ∥ua∥2 = ζ for ⌊d/2⌋ tokens and ∥ua∥2 = 1/ζ for the remaining tokens.
Larger ζ corresponds to higher non-uniformity across inputs.

Fig. 11 shows that BN with ReLU activations handles large non-uniformity (large ζ) very well,
compared to the case without BN. Specifically, BN yields higher χ̄+ in the presence of high non-
uniformity (e.g., ζ = 10) when the network is over-parameterized (β > 1) and there are multiple
candidates per Rk (P > 1), a setting that is likely to hold in real-world scenarios.

Note that in the real-world scenario, features from different channels/modalities indeed will have
very different scales, and some local features that turn out to be super important to global features,
can have very small scale. In such cases, normalization techniques (e.g., BatchNorm) can be very
useful and our formulation justifies it in a mathematically consistent way.

Selectively Backpropagating µk and σ2
k in BatchNorm. In our analysis of BatchNorm, we assume

that gradient backpropagating the mean statistics µk, but not variance σ2
k (see Def. 5). Note that

this is different from regular BatchNorm, in which both µk and σ2
k get backpropagated gradients.

Therefore, we test how this modified BN affects the matching score χ̄+: we change whether µk

and σ2
k gets backpropagated gradients, while the forward pass remains the same, yielding the four

following variants:

fbn
k [i] :=

fbn
k [i]− µk

σk
(Vanilla BatchNorm)

fbn
k [i] :=

fbn
k [i]− stop-gradient(µk)

σk
(BatchNorm with backpropated σk)

fbn
k [i] :=

fbn
k [i]− µk

stop-gradient(σk)
(BatchNorm with backpropated µk)

fbn
k [i] :=

fbn
k [i]− stop-gradient(µk)

stop-gradient(σk)
(BatchNorm without backpropating statistics)

As shown in Tbl. 1, it is interesting to see that if σ2
k is not backpropagated, then the matching score

χ̄+ is actually better. This justifies our BN variant.

Quadratic versus InfoNCE loss. Fig. 10 shows that quadratic loss (constant pairwise importance
α) shows worse matching score than InfoNCE. A high-level intuition is that InfoNCE dynamically
adjusts the pairwise importance α (i.e., the focus of different sample pairs) during training to focus
on the most important sample pairs, which makes learning patterns more efficient. We leave a
comprehensive study for future work.
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Figure 9: Overall matching score χ̄+ (Eqn. 180, the top row) and irrelevant-matching score χ̄− (Eqn. 181, the
bottom row). This is an extended version of Fig. 4. (a) When P = 1, linear model works well regardless of the
degree of over-parameterization β, while ReLU model requires large over-parameterization to perform well; (b)
When each Rk has multiple local patterns that are related to the global patterns (P > 1) related to generators,
ReLU models can capture diverse patterns better than linear ones in the over-parameterization region β > 1 and
stay focus on relevant local patterns that are related to the global patterns (i.e., low χ̄−). Among all activations
(homogeneous or non-homogeneous), ReLU shows its strength by achieving the lowest irrelevant-matching
score χ̄−. In contrast, linear models are much less affected by over-parameterization. Each setting is repeated 3
times and mean/standard derivations are reported.
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Figure 10: Overall matching score χ̄+ (top row) and overall irrelevant-matching score χ̄− (Eqn. 16, bottom
row) using quadratic loss function rather than InfoNCE. The result using InfoNCE is shown in Fig. 9, with
all experiments setting being the same, except for the loss function. While we see similar trends as in Sec. 5.1,
quadratic loss is not as effective as InfoNCE in feature learning.
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Figure 11: The effect of BatchNorm (BN) with ReLU activation in the presence of non-uniformity ζ of the
input data. The non-uniformity is set to be ζ = 2 (top), ζ = 5 (middle) and ζ = 10 (bottom). For small
non-uniformity, BN doesn’t help much. For larger nonuniformity, BN yields better matching score χ̄+ in the
over-parameterization region (large β) and multiple tokens per RF (large P ).

β P
µk no backprop µk backprop

σ2
k no backprop σ2

k backprop σ2
k no backprop σ2

k backprop

1

1 0.31± 0.24 0.23± 0.06 0.30± 0.24 0.23± 0.06
3 0.65± 0.09 −0.03± 0.01 0.64± 0.07 0.24± 0.11
5 0.61± 0.06 −0.00± 0.00 0.62± 0.02 0.38± 0.04
10 0.66± 0.06 0.53± 0.05 0.70± 0.03 0.56± 0.04

2

1 0.36± 0.13 0.27± 0.06 0.63± 0.11 0.33± 0.12
3 0.78± 0.01 0.00± 0.01 0.80± 0.02 0.41± 0.07
5 0.78± 0.02 0.22± 0.21 0.77± 0.07 0.56± 0.02
10 0.83± 0.08 0.72± 0.06 0.80± 0.04 0.71± 0.05

5

1 0.63± 0.06 0.43± 0.12 0.67± 0.06 0.46± 0.06
3 0.90± 0.06 0.45± 0.07 0.90± 0.03 0.60± 0.08
5 0.90± 0.01 0.72± 0.01 0.88± 0.06 0.74± 0.02
10 0.88± 0.01 0.88± 0.04 0.92± 0.03 0.90± 0.03

10

1 0.63± 0.12 0.37± 0.15 0.70± 0.17 0.46± 0.15
3 0.95± 0.05 0.72± 0.06 0.94± 0.05 0.80± 0.03
5 0.98± 0.02 0.84± 0.05 0.96± 0.06 0.92± 0.01
10 0.90± 0.01 0.97± 0.02 0.89± 0.03 0.97± 0.02

Table 1: The effect of backpropagating different BN statistics under nonuniformity ζ = 10. Backpropagating
the gradient through the sample mean µk but not the sample variance σ2

k gives overall good matching score χ̄+,
justifying our setting of mean-backprop BatchNorm (Def. 5).
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Receptive field 0 Receptive field 1 Receptive field 2 Receptive field 3

Figure 12: Learned filters (of the 4 disjoint receptive field) in MNIST dataset without using augmentation. The
4 receptive fields corresponds to upper left (0), upper right (1), bottom left (2) and bottom right (3) part of the
input image.

Receptive field 0 Receptive field 1 Receptive field 2 Receptive field 3

Figure 13: Same as Fig. 12 but with data augmentation during contrastive learning. The learned filters are
smoother. According to the tentative theory in Sec. B.5, data augmentation removes some of the local optima.

E.3 MNIST EXPERIMENTS WITH 2-LAYER SETTING

We also run the same 2-layer network (as in Sec. E.2) on MNIST Deng (2012) dataset. In its training,
the MNIST dataset consists of 50, 000 images, each with the size of 28 by 28. We split the 28-by-28
images into 4 disjoint receptive fields, each with a size of 14 by 14, just like Fig. 2(b). In each region,
we vectorize the receptive field into 14 ∗ 14 = 196 dimensional vector. We use smaller batchsize
(8), since there are only 10 true classes in MNIST, and the probability that two samples from the
same class are incorrectly treated as negative pair increases with large batchsizes. We train for 50000
minibatches and start new pass (epoch) of the dataset if needed.

Fig 12 shows the initial results. We could see that indeed filters in each receptive
field capture a diverse set of pattern of the input data points (e.g., part of the dig-
its). Furthermore, with additional data augmentation (i.e., random cropping and resizing
with transform transforms.RandomResizedCrop((28,28), scale=(0.5, 1.0),
ratio=(0.5, 1.5) in PyTorch), the resulting learned patterns becomes smoother with much
weaker high-frequency components. This is because the augmentation implicitly removes some of
the local optima (Sec. B.5), leaving more informative local optima.
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F CONTEXT AND MOTIVATIONS OF THEOREMS

Here are the motivations and intuitions behind each major theoretical results:

• First of all, Lemma 2 and Corollary 1 try to make connection between a relatively new (and
somehow abstract) concept (i.e., contrastive covariance Cα[·]) and a well-known concept
(i.e., regular covariance V[·]). This will also enable us to leverage existing properties of
covariance, in order to deepen our understanding of this concept, which seems to play an
important role in contrastive learning (CL).

• After that, we mainly focus on studying the CL energy function Eα, which can be represented
in terms of the contrastive covariance Cα[·]. One important property of the energy function
is whether there exists any local optima and what are the properties of these local optima,
since these local optima are the final destinations that network weights will converge into.
Previous works in landscape analysis often talk about local optima in neural networks as
abstract objects in high-dimensional space, but here, we would like to make them as concrete
as possible.

• For such analysis, we always start from the simplest case (e.g., one-layer). Therefore,
naturally we have Lemma 3 that characterizes critical points (as a superset of local optima),
a few examples in Sec. 3.2, properties of these critical points and when they become local
optima in Sec. 3. Finally, Appendix B.5 further gives a preliminary study on how the data
augmentation affects the distribution of the local optima.

• Then we extend our analysis to 2-layer setting. The key question is to study the additional
benefits of 2-layer network compared to K independent 1-layer cases. Here the assumption
of disjoint receptive fields is to make sure there is an apple-to-apple comparison, otherwise
additional complexity would be involved, e.g., overlapping receptive fields. As demonstrated
in Theorem 5 and Theorem 6, we find the effect of global modulation in 2-layer case, which
clearly tells that the interactions across different receptive fields lead to additional terms
in the dynamics that favors patterns related to latent variable z that leads to conditional
independence across the disjointed receptive fields.

• As a side track, in 2-layer case, we also have Theorem 4 that shows linear activation does not
learn distinct features, which is consistent with 1-layer case that linear activation h(x) = x
only gives to maximal PCA directions (Sec. 6).

G OTHER LEMMAS

Lemma 7 (Bound of 1− dt). Define

µ(w) :=
1 + c(w)

2c2(w)

(
λ2(A(w(t))

λ1(A(w(t))

)2

=
1 + c(w)

2c2(w)

[
1− λgap(A(t))

λ1(A(t))

]2
≥ 0 (182)

and µt := µ(w(t)). If ct > 0 and λ1(t) > 0, then 1− dt ≤ µt(1− ct).

Proof. We could write dt:

dt =
ϕ⊤
1 (t)w̃(t+ 1)

∥w̃(t+ 1)∥2
=

λ1(t)ϕ
⊤
1 (t)w(t)√∑

i λ
2
i (t)

(
ϕ⊤
i (t)w(t)

)2 (183)

≥ λ1(t)ct√
λ2
1(t)c

2
t + λ2

2(t)(1− c2t )
=

1√
1 +

(
λ2(t)
λ1(t)

)2 (
1
c2t
− 1
) (184)

=

[
1 +

(
λ2(t)

λ1(t)

)2(
1

c2t
− 1

)]−1/2

(185)

≥ 1− 1

2

(
λ2(t)

λ1(t)

)2(
1

c2t
− 1

)
=: 1− µt(1− ct) (186)
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The first inequality is due to the fact that
∑

i>1 λ
2
i (t)

(
ϕ⊤
i (t)w(t)

)2
= 1− c2t (Parseval’s identity).

The last inequality is due to the fact that for x > −1, (1 + x)α ≥ 1 + αx when α ≥ 1 or α < 0
(Bernoulli’s inequality). Therefore the conclusion holds.

Lemma 8 (Bound of weight difference). If ct > 0 and λi(t) > 0 for all i, then ∥δw(t)∥2 ≤√
2(1 + µtct)(1− ct)

Proof. First, for w⊤(t+ 1)w(t), we have (notice that λi(t) ≥ 0):

w⊤(t+ 1)w(t) =

∑
i λi(t)

(
ϕ⊤
i (t)w(t)

)2√∑
i λ

2
i (t)

(
ϕ⊤
i (t)w(t)

)2 (187)

≥ λ1(t)c
2
t√

λ2
1(t)c

2
t + λ2

2(t)(1− c2t )
≥ [1− µt(1− ct)] ct (188)

Therefore,

∥w(t+ 1)−w(t)∥2 =
√
2
√

1−w⊤(t)w(t+ 1) ≤
√

2(1 + µtct)(1− ct) (189)

Lemma 9. Let δA = A′ −A, then the maximal eigenvector ϕ1 := ϕ1(A) and ϕ′
1 := ϕ1(A

′) has the
following Taylor expansion:

ϕ′
1 = ϕ1 +∆ϕ1 +O(∥δA∥22) (190)

where λi is the i-th eigenvalue of A, ∆ϕ1 :=
∑

j>1

ϕ⊤
j δAϕ1

λ1−λj
ϕj is the first-order term of eigenvector

perturbation. In terms of inequality, there exist κ > 0 so that:
∥ϕ′

1 − (ϕ1 +∆ϕ1)∥2 ≤ κ∥δA∥22 (191)

Proof. See time-independent perturbation theory in Quantum Mechanics (Fernández, 2000).

Lemma 10. Let L be the minimal Lipschitz constant of A so that ∥A(w′)−A(w)∥2 ≤ L∥w−w′∥2
holds. If ct > 0 and λi(t) > 0 for all i, then we have:

|dt − ct+1| =
∣∣∣ (ϕ1(t)− ϕ1(t+ 1))

⊤
w(t+ 1)

∣∣∣ ≤ νt(1− ct) (192)

where
ν(w) := 2κL2(1 + µ(w)c(w)) + 2Lλ−1

gap(Aw(t))
√
µ(w)(1 + µ(w)c(w)) ≥ 0 (193)

and νt := ν(w(t)).

Proof. Using Lemma 9 and the fact that ∥w(t+ 1)∥2 = 1, we have:

|dt − ct+1| =
∣∣∣ (ϕ1(t)− ϕ1(t+ 1))

⊤
w(t+ 1)

∣∣∣ ≤ |∆ϕ⊤
1 (t)w(t+ 1)|+ κL2∥δw(t)∥22 (194)

where

∆ϕ1(t) :=
∑
j>1

ϕ⊤(t)jδA(t)ϕ1(t)

λ1(t)− λj(t)
ϕj(t) (195)

and δA(t) := A(t+ 1)−A(t). For brevity, we omit all temporal notation if the quantity is evaluated
at iteration t. E.g., δw means δw(t) and ϕ1 means ϕ1(t).

Now we bound |∆ϕ⊤
1 w(t+ 1)|. Using Cauchy–Schwarz inequality:

|∆ϕ⊤
1 w(t+ 1)| =

∣∣∣∣∣∑
j>1

(
ϕ⊤
j δAϕ1

λ1 − λj

)(
ϕ⊤
j w(t+ 1)

) ∣∣∣∣∣ (196)

≤

√√√√∑
j>1

(
ϕ⊤
j δAϕ1

λ1 − λj

)2√∑
j>1

(
ϕ⊤
j w(t+ 1)

)2
(197)

≤ 1

λgap(A)

√∑
j>1

(
ϕ⊤
j δAϕ1

)2√∑
j>1

(
ϕ⊤
j w(t+ 1)

)2
(198)
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Since {ϕj} is a set of orthonormal bases, Parseval’s identity tells that for any vector v, its energy
under any orthonormal bases are preserved:

∑
j(ϕ

⊤
j v)

2 = ∥v∥22. Therefore, we have:

|∆ϕ⊤
1 w(t+ 1)| ≤ 1

λgap(A)
∥δAϕ1∥2

√
1− d2t (199)

≤ L

λgap(A)
∥δw(t)∥2

√
1− d2t (200)

Note that using −1 ≤ dt ≤ 1 and Lemma 7, we have:√
1− d2t =

√
1 + dt

√
1− dt ≤

√
2(1− dt) ≤

√
2µt(1− ct) (201)

Finally using bound of weight difference (Lemma 8), we have:

|dt − ct+1| ≤ 2κL2(1 + µtct)(1− ct) + Lλ−1
gap

√
2(1 + µtct)(1− ct)

√
1− d2t (202)

≤ νt(1− ct) (203)

Here νt := 2κL2(1 + µtct) + 2Lλ−1
gap(A(t))

√
µt(1 + µtct).

Lemma 11. Let c0 := c(w(0)) = w⊤(0)ϕ1(A(w(0))) > 0. Define local region Bγ:

Bγ :=

{
w : ∥w −w(0)∥2 ≤

√
2(1 + γ)(1− c0)

1−√γ

}
(204)

Define ω(w) := µ(w) + ν(w) to be the irregularity (also defined in Def. 4). If there exists γ < 1 so
that

sup
w∈Bγ

ω(w) ≤ γ, (205)

then

• The sequence {ct} increases monotonously and converges to 1;

• There exists w∗ so that limt→+∞ w(t) = w∗.

• w∗ is the maximal eigenvector of A(w∗) and thus a fixed point of gradient update (Eqn. 7);

• For any t, ∥w(t)−w(0)∥2 ≤
√

2(1+γ)(1−c0)

1−√
γ .

• ∥w∗ −w(0)∥2 ≤
√

2(1+γ)(1−c0)

1−√
γ . That is, w∗ is in the vicinity of the initial weight w(0).

Proof. We first prove by induction that the following induction arguments are true for any t:

• ct+1 ≥ ct > 0;

• 1− ct ≤ γt(1− c0);

• w(t) is not far away from its initial value w(0):

∥w(t)−w(0)∥2 ≤
√
2(1 + γ)(1− c0)

t−1∑
t′=0

γt′/2 (206)

which suggests that w(t) ∈ Bγ .

Base case (t = 1). Since 1 ≥ c0 > 0, µ(w) ≥ 0, and A(w) is PD, applying Lemma 8 to
∥w(1)−w(0)∥2, it is clear that

∥w(1)−w(0)∥2 = ∥δw(0)∥2 ≤
√
2
√

(1 + µ0c0)(1− c0) ≤
√
2(1 + γ)(1− c0) (207)
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Note that the last inequality is due to µ0 ≤ γ. Note that

1− c1 = 1− d0 + d0 − c1 ≤ 1− dt + |d0 − c1| ≤ (µ0 + ν0)(1− c0) ≤ γ(1− c0) (208)

and finally we have c1 ≥ 1− γ(1− c0) ≥ c0 > 0. So the base case is satisfied.

Inductive step. Assume for t, the induction argument is true and thus w(t) ∈ Bγ . Therefore, by the
condition, we know µt + νt ≤ γ.

By Lemma 8, we know that

∥w(t+ 1)−w(t)∥2 = ∥δw(t)∥2 ≤
√

2(1 + µtct)(1− ct) ≤
√
2(1 + γ)(1− c0)γ

t/2 (209)

Therefore, we know that w(t+ 1) also satisfies Eqn. 206:

∥w(t+ 1)−w(0)∥2 ≤ ∥w(t)−w(0)∥2 + ∥δw(t)∥2 (210)

≤
√

2(1 + γ)(1− c0)

[
t−1∑
t′=0

γt′/2 + γt/2

]
(211)

=
√
2(1 + γ)(1− c0)

t∑
t′=0

γt′/2 (212)

Also we have:

1− ct+1 = 1− dt + dt − ct+1 ≤ 1− dt + |dt − ct+1| (213)
≤ (µt + νt)(1− ct) ≤ γ(1− ct) (214)

≤ γt+1(1− c0) (215)

and thus we have ct+1 ≥ 1− γ(1− ct) ≥ ct > 0.

Therefore, we have
1− ct ≤ γt(1− c0)→ 0 (216)

thus ct is monotonously increasing to 1. This means that:

lim
t→+∞

ct = lim
t→+∞

ϕ⊤
1 (t)w(t)→ 1 (217)

Therefore, we can show that w(t) is also convergent, by checking how fast ∥δw(t)∥2 decays:

∥δw(t)∥2 ≤
√
2(1 + µtct)(1− ct) ≤

√
2(1 + γ)(1− c0)γ

t/2 (218)

By Cauchy’s convergence test, w(t) = w(0) +
∑t−1

t′=0 δw(t′) also converges. Let

lim
t→+∞

w(t) = w∗ (219)

This means that A(w∗)w∗ = λ∗w∗ and thus P⊥
w∗

A(w∗)w∗ = 0, i.e., w∗ is a fixed point of gradient
update (Eqn. 7). Finally, we have:

∥w(t)−w(0)∥2 ≤
√

2(1 + γ)(1− c0)

t−1∑
t′=0

γt′/2 ≤
√
2(1 + γ)(1− c0)

1−√γ
(220)

Since ∥ · ∥2 is continuous, we have the conclusion.
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