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Abstract

Training-free guided generation is a widely used and powerful technique that
allows the end user to exert further control over the generative process of flow/d-
iffusion models. Generally speaking, two families of techniques have emerged
for solving this problem for gradient-based guidance: namely, posterior guidance
(i.e., guidance by projecting the current sample to the target distribution via the
target prediction model) and end-to-end guidance (i.e., guidance by performing
backpropagation throughout the entire ODE solve). In this work, we show that
these two seemingly separate families can actually be unified by looking at the
posterior guidance as a greedy strategy of end-to-end guidance. We explore the
theoretical connections between these two families and provide an in-depth the-
oretical understanding of these two techniques relative to the continuous ideal
gradients. Motivated by this analysis, we then show a method for interpolating
between these two families enabling a trade-off between compute and accuracy
of the guidance gradients. We then validate this work on several inverse image
problems and property-guided molecular generation.

1 Introduction

Guided generation greatly extends the utility of state-of-the-art generative models by allowing the end
user to exert greater control over the generative process, ultimately making the tool more useful in a
wide variety of applications ranging from conditional generation, editing of samples, inverse problems
&c. We focus particularly on a subset of neural differential equations that model affine probability
paths, in other words, diffusion and flow models due to their widespread adoption in a large variety
of practical tasks. E.g., audio (H. Liu et al. 2023; Schneider et al. 2024), images (Rombach et al.
2022; Black Forest Labs 2024), biometrics (Blasingame and C. Liu 2024c), molecules (Hoogeboom
et al. 2022; Ben-Hamu et al. 2024), proteins (Watson et al. 2023; Skreta et al. 2025), &c.

We can divide the guided generation techniques into two broad categories: conditional training and
training-free methods. The former of these two requires the training of the underlying diffusion/flow
model on additional conditional information, either as a part of the training or at a later time as
additional fine-tuning (Ho and Salimans 2021; J. Song, Meng, and Ermon 2021; Hu et al. 2022). The
latter category instead makes use of some known guidance function defined on the data distribution
and incorporates this information back to the model to influence the generative process. These
training-free techniques can be further broken down into two sub-categories, i.e., posterior and end-
to-end guidance. The former class of techniques uses a simple estimation of the posterior distribution
that can be easily found in diffusion models (Chung, J. Kim, et al. 2023) and some flow models (cf.
Lipman, Havasi, et al. 2024, Section 4.8). This simple posterior estimate can then be fed into a
guidance function to construct a gradient w.r.t. to the current timestep. We refer to this category as
posterior guidance as they use this posterior estimate to perform the guidance process. This can then
be used to update the ODE solve as a form of classifier guidance (Chung, J. Kim, et al. 2023; Yu et al.
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Figure 1: The greedy perspective as a unification of separate families in the taxonomy of training-free
guided generation. We provide a more detailed version of this in Figure 5.

2023). The latter class of techniques, in contrast, performs backpropagation throughout the entire
sampling process of the flow/diffusion model (Ben-Hamu et al. 2024; Blasingame and C. Liu 2024a).
We refer to this category as end-to-end guidance as it performs backpropagation throughout the entire
sampling trajectory.

The aim of this work is to bring these two seemingly disparate family of techniques together into a
single unified view.

Our key insight is that we can bridge between techniques that use posterior sampling and
techniques that use end-to-end optimization for guidance by viewing the former as a greedy
strategy on the latter.

Contributions. In light of this insight, we compare several state-of-the-art techniques from this
perspective, showing how this perspective yields a unified and flexible framework for viewing guided
generation with flow/diffusion models. We perform a detailed analysis of this greedy strategy,
showing that it is not only a unifying view, but that it actually makes good decisions under certain
scenarios. We then show a perspective which allows one to move between these two classes of guided
generation techniques, opening up an exciting and novel design space. Lastly, we conduct some
numerical experiments on inverse image problems and molecule generation.

2 Preliminaries

Flow models (Lipman, R. T. Q. Chen, et al. 2023) are a highly popular class of generative models
that model the generative process as a neural ordinary differential equation (ODE) (R. T. Chen et al.
2018). Consider two R¢-valued random variables: X ~ p(x) and X; ~ g(z), denoting the source
(noise) and target (data) distributions, respectively. Then consider a time-dependent vector field u €
Ch(]0,1] x R4 R4)! with » > 1 which determines a time-dependent flow ®; € C17([0, 1] x R%; R?)
which satisfies the ODE

d

Dy(x) = x, gét(w) = u(t, D¢ (x)). (1)

This is known as a C"-flow and this flow is diffeomorphism in its second argument for all ¢ € [0, 1].
For notational simplicity let u;(x) — wu(t, ). A special case of flow models are known as affine
probability paths and are defined as X; = oz X + 0+ X with schedule (a4, o). We provide more
details on flow models in Appendix B.1.?

"For notational simplicity, we let C*¥1:%2:-%n (X x X» x --- x X,,;Y) denote the set of continuous
functions that are k;-times differentiable in the i-th argument mapping from (X1 X X2 X -+ X X,)to Y, if Y
is omitted, then Y = R.

*Without loss of generality we consider flow models which subsume the ODE formulation of diffusion
models.
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Figure 2: Visual comparison of different training-free guided generation techniques.

3 An overview of training-free guidance with gradients

We explore techniques for solving training-free guidance problems—this is in contrast with techniques
like classifier (Dhariwal and Nichol 2021; Y. Song, Sohl-Dickstein, et al. 2021) and classifier-free
(Ho and Salimans 2021) guidance—which use some off-the-shelf guidance function £ € C*(R%)
defined on the output of the flow model. I.e., we wish to optimize the ODE solve such that the output

a1 minimizes £. Suppose we have numerical scheme (Euler, RK4, DPM-Solver, &c.) denoted
®:R xR xR?x C(R x RLRY) — RY,
q)(tn; t7L+17 T,y u?) — Tp41-

@

For simplicity we will omit the explicit dependency of the numerical scheme on u{ and assume it
implicitly; likewise, let @}, (t,,, -, -) — ®(t,, tnt1, -, ) where h = t,,.1 — t,,. We write this objective
more formally below in Equation (3).

Problem statement. Given some ¢; € [0, 1) and step size regime {t; < {2 < ... <ty =1}
solve:
Find a sequence {x, }Y_, which minimizes £(xy), 3)
subject to Tpi1 = P(tna1, tn, Tn).

Next, we will detail two popular families of techniques for solving the problem mentioned above. We
illustrate the relationships between these different families in Figure 1, a taxonomy of training-free
guidance methods. We note that these two seemingly separate branches can be unified back into a
single branch, by the viewing posterior guidance techniques as a greedy strategy of the later. Likewise,
we provide a visual overview of the guidance mechanisms in Figure 2.

3.1 Posterior guidance

A popular technique for training-free guidance is what we will term posterior guidance (Chung,
J. Kim, et al. 2023; Yu et al. 2023). The key idea behind this strategy is to use the parameterized
target prediction model a:?l ,(x), i.e., the expected value of the posterior distribution given X; = x,

to provide a guidance gradient of the form Vmﬁ(wflt(w)) for some guidance function £ € C!(R?).
For literature working with score-based generative models (Y. Song, Sohl-Dickstein, et al. 2021), this
interpretation arose from the famous Tweedie’s formula (Stein 1981; Efron and N. R. Zhang 2011).
Thus, for each x,, in the ODE solve, we add guidance to it in the form of posterior guidance gradient.

3.2 End-to-end optimization for guidance

Another popular class of techniques is what we will term end-to-end guidance (Ben-Hamu et al. 2024;
Blasingame and C. Liu 2024a), i.e., techniques which perform guidance by optimizing the initial
condition o w.r.t. the guidance function £; such techniques require performing backpropagation
through a neural ODE. Fittingly, we will import notations and terminology from the study of
neural differential equations (Kidger 2022) to discuss these techniques. The first technique for
performing this kind of guidance is known as discretize-then-optimize (DTO) where the numerical



scheme (cf. Equation (2)) is part of the computation graph of the model reverse-mode automatic
differentiation (Linnainmaa 1976) is applied, i.e., vanilla backpropagation. The memory cost of
such techniques, however, is O(n), prompting researchers to explore the second method known as
optimize-then-discretize (OTD) which instead solves another ODE in reverse-time which models
the continuous-time dynamics of reverse-mode differentiation, this is called the continuous adjoint
method (R. T. Chen et al. 2018; ¢f. Kidger 2022, Section 5.1.2).

Given a flow model uy € CH1([0, 1] x R%;RY) that is Lipschitz continuous in its second argument
and the solution z : [0, 1] — R, x; + x(t), let a,, == OL/Ox; denote the adjoint state. Then a.,(t)
can be found by solving the continuous adjoint equation:

oL dag,,, +0uf
= 0z, W(t) = —a.(t) 87:1:(%)' 4

N.B., this technique was first proposed by Pontryagin et al. (1963) and popularized for neural
differential equations by R. T. Chen et al. (2018). This approach has a constant memory cost O(1);
however, this comes with the cost of several drawbacks related to the numerical scheme. While these
issues are not particularly relevant to our theoretical analyses, we note them in Appendix E for the
ML practitioner.

az(1)

4 A greedy perspective on guidance

Now returning back to our problem statement from Equation (3), the end-to-end guidance techniques
amount to optimizing the initial condition x in light of the entire solution trajectory admitted by
the numerical scheme. A natural question we consider for problems of this form is that rather than
finding the full sequence {x,, }, can we make use of local information instead? Le.,

Key insight 1. Rather than solving the full ODE from x;, what if we greedily took a locally
optimal step at each x; instead?

Formally, we define a greedy strategy is the following augmentation to the numerical scheme from
Equation (2) as

] = G(tn, n,uf ), )
Tp+1 = q’(tna tn+1> wg)a (6)
where G is the greedy action which makes its decision from only information available at time ¢,,.

Now in particular we are interested in a specific greedy action, i.e., posterior guidance. We define this
(0)

greedy action as the solution to the following iterative process with initial value x,,° = x,, which
solves
2D =2l — gL (2, (20)), )

for some sufficient number £ > 0 and learning rate n > 0.

By construction this greedy action is the popular strategy of posterior guidance. The rest of this
section is then devoted to exploring the connections between this greedy action and end-to-end
guidance schemes. More, succinctly we state our insight below:

Key insight 2. Posterior guidance can be viewed as Euler schemes within the DTO or OTD
backpropagation schemes.

To make our analysis simpler, let us write the flow from s to ¢ in terms of the target prediction
model. The flow from time s to time ¢ can then be expressed as the integral of the right-hand side
of Equation (19) over time. Thus, the flow is now expressed as a semi-linear integral equation with
linear term a;x and non-linear term btw%t(m). Due to this semi-linear structure, we apply the same
technique of exponential integrators (Hochbruck and Ostermann 2010) that has been successfully
used to simplify numerical solvers for diffusion models (Lu et al. 2022a; Q. Zhang and Y. Chen
2023; Gonzalez et al. 2024). N.B., the full derivations and proofs for this section can be found in
Appendix B.



Let v¢ := ay/o: denote the signal-to-noise ratio (SNR), then +; is a monotonically increasing
sequence in ¢, due to the properties of (o, o) (¢f. Equation (17)) and thus has an inverse -, such

that ., (v(t)) = t. With abuse of notation, we let &, := ¢ () and z{| () = @, (). As such,

we can rewrite the solution to the flow model in terms of v by making use of exponential integrators,
which we show in Proposition 4.1 with the full proof provided in Appendix B.3.

Proposition 4.1 (Exact solution of affine probability paths). Given an initial value of x; at
time s € [0, 1] the solution x; at time t € [0, 1] of an ODE governed by the vector field in
Equation (18) is:
o Yt
Ty = @, + ot/ mfh(w,y) d~. 8)
7.

Os

s

Remark 4.1. This result bears some similarity to Lu et al. (2022b, Propostion 5.1); however,
they integrate w.r.t. the log-SNR; their result can be recovered, mutatis mutandis, with the identity
At = log ;.

4.1 Greedy guidance as an Euler scheme

Now equipped with this simplified form, we begin to draw connections between end-to-end guidance
and our greedy strategy. In Proposition 4.2 we show that the greedy action in Equation (7) can be
interpreted as backpropagation via a DTO scheme with an Euler step of size h = 1 — ;.

Proposition 4.2 (Greedy as an explicit Euler scheme within DTO). For some trajectory state
x, at time t, the greedy gradient given by Vmﬁ(wf‘t(:c)) is the DTO scheme with an explicit

Euler discretization with step size h = 71 — 7.

Now we examine greedy action from the perspective of an OTD scheme. In Proposition 4.3 we show
that a greedy strategy can be viewed as the first iteration of a fixed-point method of an implicit Euler
discretization of the continuous adjoint equations.

Proposition 4.3 (Greedy as an implicit Euler scheme within OTD). For some trajectory state
x; at time t, the greedy gradient given by thﬁ(wf‘t(act)) is an implicit Euler discretization
of the continuous adjoint equations for the true gradients with step size h = y1 — V4.

Proof sketch. First, we use the technique of exponential integrators to simplify the continuous adjoint
equations. Then we perform a first-order Taylor expansion around ~;, which is equivalent to an
implicit Euler scheme, as we calculate the gradient flow from 1 to ¢. The full proof is provided in
Appendix B.5. O

S Is greed good?

A natural question to ask in light of this discussion on taking this greedy action is why even bother
backpropagating through the ODE solve at all for guidance? After all, we could simply run the
optimization process directly in the data space (cf. Equation (7)). So why perform end-to-end
guidance or this greedy action at all? N.B., the full derivations and proofs for this section may be
found in Appendix C.

We begin by examining the structure of the gradient V,£(®{ , (z)). By the chain rule we observe
the following:?

Vol (8], (2)) = Vo], (@) Va, £ (8 (21)) ©

The question then is what is the behavior of Vmégl(m)? We answer this in Theorem 5.1 below,
providing an integral equation for Vm@it (x).

JLet V4, be shorthand for the gradient w.r.t. the output ®f , (z).



Theorem 5.1 (Jacobian matrices of affine Gaussian probability paths). For the standard affine
Gaussian probability path with flow model <I>Z’t (x), the Jacobian matrix V o @ () as function
of x is given as the solution to

t
(oF .
Vo®! () = UlI + oy / 'yu%Varuu(@Z,u(m))thﬁgu(m) du, (10)

S

where
Varyy(z) = Ep, , (@1 |2) {(wl — & () (@1 — =5 (=) | . (11)

Remark 5.1. From Theorem 5.1 we observe the Jacobian-vector product thbg,t ()"

to an integral of covariance projections applied to v.*

v corresponds

Thus, we see that the continuous-time backpropagation process through the flow model is a projection
of the loss by a covariance matrix into the directions of highest variance, i.e., the guidance encourages
the state to evolve within states on the data manifold. We elaborate on this more in Appendix C.2.
While this is a nice observation we cannot solve such an integral in practice. What about our greedy
strategy, how does it impact the loss function?

5.1 Dynamics of gradient guidance

We now consider how the output of the flow model will change under greedy guidance. In particular,
we are interested in how <I>f71 (x) changes under the following gradient step

& =& —nVal (m%t(m)) . (12)

To do this, we make use of the Gateaux differential (Gateaux 1913) which allows us to define the
differential that describes how the output of the flow model ; evolves with changes to x at time t.
We present the result to this question in Proposition 5.2 below.

Proposition 5.2 (Dynamics of greedy gradient guidance). Consider the standard affine Gaus-
sian probability paths model trained to zero loss. The Gateaux differential of x at some time

t € [0, 1] in the direction of the gradient ¥V 5, L (mf‘t(m)) is given by

890] ) (x) = =V, (x) Vel (x) Va, L(1). (13)

Remark 5.2. Recall that from Theorem 5.1 and (Ben-Hamu et al. 2024, Proposition 4.1) we know
that both Vmégl(m) and mei)‘ ,(x) consist of covariance matrices, thus the dynamics of greedy

gradient guidance are governed by this covariance projection of the loss.

Next, we ask what is the difference between the idealized gradient qu)f,l () and the greedy gradient
Vzw‘f' ,()? Intuitively, we find that it is bound by the local truncation error, i.e., O(h?) which we
show below.

Theorem 5.3 (Dynamics of gradient vs greedy guidance). The difference between the dynamics
of gradient guidance in Proposition C.4 and greedy gradient guidance in Proposition 5.2 for a
point  at time t with guidance function £ € C*(R?) is bounded by O(h?) where h := 1 — 7,
ie,

|V=2!1@) = Vaal) ()| = O2). (14)

An important question is whether a greedy strategy makes good decisions at each timestep. Le., if we
make a good decision at time ¢, does that ensure that an optimal solution was made in the sense of
CID(fl ,(x¢). A natural way to examine this question is to consider whether convergence in the local case

implies convergence of the whole solution trajectory. We find that up to a bound dependent on the

“Readers familiar with the work of Ben-Hamu et al. (2024) may notice some similarities between our result
Theorem 5.1 and Ben-Hamu et al. (2024, Theorem 4.2). We discuss this more in Remark C.3.



step size, convergence in the greedy solution implies convergence in the flow, which we state more
formally in Theorem 5.4.

Theorem 5.4 (Greedy convergence). For affine probability paths, if there exists a sequence of
(n) (n)

states x; ~ at time t such that it converges to the locally optimal solution w‘fl Sz ) =z
Then the solution, @f‘t(xﬁ’”), converges to a neighborhood of size O(h?) centered at x.

6 Beyond Euler

Motivated by this connection between the powerful, but expensive, end-to-end guidance techniques
and posterior guidance techniques, we ask is there a middle-ground between them? A natural
extension would be to consider something beyond the Euler scheme from the previous section, e.g.,
applying the midpoint method or two Euler steps. To motivate this discussion more rigorously we
present Theorem 6.1, which shows that for any explicit single-step Runge-Kutta solver, the error
between the ideal gradient and this estimated gradient is on the order of the local truncation error of
the underlying numerical solver.

Theorem 6.1 (Truncation error of single-step gradients). Let ® be an explict Runge-Kutta
solver of order o > 0 of a flow model with flow Qg,t(a:). Then for any t € [0, 1],

|Va®! () — Vo®ia(z)|| = O, (15)
where h =1 — t.

Key insight 3. We can use a higher-order solver to move between posterior and end-to-end
guidance exchanging compute and gradient accuracy.

This theoretical tool enables us to move between posterior and full end-to-end guidance choosing
whichever point between compute and accuracy happens to be most suitable, hopefully opening a
larger design space for solving interesting problems. Additional discussions and the full derivations
are found in Appendix D.

7 Experiments

Motivated by the theoretical connections from the previous sections we apply the greedy posterior
strategy (Euler) to several problems using flow/diffusion models, as well as several methods lying in
the in between space of end-to-end guidance and posterior guidance, namely, a single-step midpoint
scheme and 2-step Euler scheme.

7.1 Inverse problems for images

A common application of posterior guidance has been in solving inverse problems (Y. Song, Sohl-
Dickstein, et al. 2021; Chung, Sim, and Ye 2022) (¢f. Appendix H). As such, we explore several
inverse problems in the image domain. In particular, we explore a set of inverse image problems on a
subset of 100 images from the FFHQ (Karras, Laine, and Aila 2019) 256 x 256 dataset. We make
use of the pre-trained diffusion model from Chung, J. Kim, et al. (2023) trained on the FFHQ dataset.

Inverse problems and metrics. Following (B. Zhang et al. 2025) we conduct experiments on the
following linear tasks: super resolution, Gaussian deblurring, motion deblurring, inpaintining (with a
box mask), and inpainting (with a 70% random mask); along with three non-linear problems: phase
retrieval, high dynamic range (HDR) reconstruction, and non-linear deblurring. We use the standard
evaluation metrics of peak signal-to-noise-ratio (PSNR), structural similarity index measure (SSIM),
Learned Perceptual Image Patch Similarity (LPIPS) (R. Zhang et al. 2018), and Fréchet Inception
Distance (FID) (Heusel et al. 2017). We solve the probability flow ODE with the midpoint scheme
and 20 discretization steps; further configuration details are reported in Appendix I.1.



Figure 3: Qualitative visualization of using posterior guidance to solve an inverse problem on the task
of inpainting with a 70% random mask. Top row is the ground truth, middle row is the measurement,
and the bottom row is the reconstruction.

Table 1: A snapshot of the quantitative results for solving inverse image problems on FFHQ. We
report the mean performance (PSNR, SSIM, and LPIPS) across 100 validation images along with the
FID. All tasks are using a noisy measurement with noise level 3, = 0.05. The full results are found
in Table 6.

Task Method PSNR (1) SSIM (1) LPIPS() FID()
Greedy (Euler) 30.87 0.823 0.141 40.73

Inpaint (random) Greedy (midpoint) 31.03 0.816 0.139 38.80
Greedy (2-step Euler) 30.80 0.811 0.144 39.23
DAPS 31.12 0.844 0.098 32.17
DPS 25.46 0.823 0.203 69.20
Greedy (Euler) 28.01 0.766 0.182 57.04

Gaussian deblurring Greedy (midpoint) 28.36 0.776 0.185 58.55
Greedy (2-step Euler) 28.18 0.774 0.181 57.18
DAPS 29.19 0.817 0.165 53.33
DPS 25.87 0.764 0.219 79.75

Results. We present some qualitative results on reconstructing images from a random mask in
Section 7. Quantitatively, we present a snapshot of our full results (cf. Table 6) on the inpainting with
random mask and Gaussian deblurring tasks. For reference we include the standard DPS (Chung,
J. Kim, et al. 2023) and the recent state-of-the-art DAPS (B. Zhang et al. 2025). We observe that the
posterior guidance strategy works well performing closer to DAPS than DPS. Interestingly, on these
tasks the extra compute and smaller truncation error of the midpoint and 2-step Euler did not lead to
any noticeable performance gains. We report further results in Appendix J.2 along with additional
analysis and discussion.

Ablations on discretization steps. As we discussed in Section 6 we can improve performance by
taking more step sizes. We preform a more involved ablation of this design axis on the high-dynamic
range (HRD) reconstruction experiment detailed in Table 2. Additionally, we also report the results
from the RED-diff (Mardani et al. 2024) algorithm. Following B. Zhang et al. (2025) for the non-
linear inverse problem of HDR reconstruction we perform 4 runs per algorithm and report the mean
and standard deviation. We notice that the Greedy (5-step Euler) performs very well beating the SOTA
DAPS algorithm, even the 2-step and 3-step perform variants as well or better than DAPs on this
problem. Increasing the number of discretization steps leads to better performance (cf. Theorem 6.1).
Interestingly, the standard deviation decreases as well with the results becoming more consistent.
We also compared to a full DTO run with vary step sizes, i.e., end-to-end optimization with a vary
number of steps used in calculating the gradient (the full 20 are used for the final sampling). We do
observe a similar trend of increasing performance as we increase the number of steps, however, it far
under-performs the greedy strategy for a similar compute budget.



Table 2: Further ablations on the number of discretization steps on the non-linear HDR inverse
problem.

Method PSNR (1) SSIM (1) LPIPS () FID()
DAPS 27121353 0.75210.041 0.16210.072 42.97
DPS 22.73i6ﬂ7 0.591i0A141 0‘264i0A156 112.82
RED-diff 22.1643.41  0.51240.083 0.25840.089  108.32
Greedy (Euler) 25.07+4.25 0.776+0.126 0.173+0.070 43.25

Greedy (2-step Euler) 26.3244.34 0.80240.111  0.173+0.065 38.64
Greedy (3-step Euler)  27.171421 0.82010.096 0.15410.062 36.07
Greedy (4—step Euler) 27.89:5:4‘10 0.828:“)‘092 0‘151:(:0()61 36.94
Greedy (S-Step Euler) 28.27i4‘01 0-831i().088 0-149i04059 35.35

DTO (1-step) 13.1641.15  0.37240.083 0.52140.059 108.39
DTO (2—step) 14.9141 23 0.372+0.080 0.483+0.061 98.93
DTO (4-step) 16.3711.38 0~455i()4082 0~457i0.066 93.52
DTO (8—step) 16.37:&138 0-455:l:0.082 O~457:l:0‘066 93.52

48.43 53.64 60.05 73.95 78.02 82.75 88.45 91.30

Figure 4: Qualitative visualization of controlled generated molecules for various polarizability ()
levels. Top row is generated using end-to-end guidance with a DTO scheme and the bottom row is
generated using greedy guidance.

7.2 Molecule generation for QM9

We also illustrate the core ideas with some experiments in controllable molecule generation on the
QMO dataset (Ruddigkeit et al. 2012), a popular molecular dataset containing small molecules with
up to 29 atoms. Following Hoogeboom et al. (2022) and Ben-Hamu et al. (2024), we perform the
conditional generation of molecules with specified quantum chemical property values. In particular,
we target the following properties: polarizability «, orbital energies eronmo, eLumo and their gap
Ag, dipole moment i, and heat capacity C,. The property classifiers were trained following the
methodology outlined in Hoogeboom et al. (2022). The underlying flow model is an unconditional
equivariant flow matching model with conditional optimal transport path (Lipman, Havasi, et al.
2024, Section 4.7; c¢f. Tong, Malkin, et al. 2023; Tong, FATRAS, et al. 2024), i.e., the EquiFM
(Y. Song, Gong, et al. 2023) model. We solve the ODE with Euler’s method and 50 discretization
steps; further configuration details are reported in Appendix I.1. Further details are provided in
Appendix 1.2.

Metrics. To evaluate the guided generation we calculate the mean absolute error (MAE) between
the predicted property value of the generated molecule by the property classifier and the target
property value (Satorras et al. 2021). Additionally in Appendix J.1 we report the quality of the
generated molecules by evaluating the atom stability (the percentage of atoms with correct valency)
and molecule stability (the percentage of molecules where all atoms are stable).

Results. In Section 7.1 we present a visual comparison between molecules generated targeting
different polarizability « values using a DTO end-to-end guidance scheme (essentially D-Flow)
and the posterior guidance scheme. Notice that as « increases the compactness of the molecules



Table 3: Quantitative evaluation of conditional molecule generation. The MAE is reported for each
molecule property (lower is better).

Property o Ae EHOMO ELUMO m Cy

Unit Bohr? meV meV meV D Kf‘;‘nlol
Greedy (Euler) 11.282 1265 725 1092 1.559  6.469
Greedy (midpoint) 5.313 1196 599 1057 1417 2967
Greedy (2-step Euler)  5.667 1205 695 1222 1.491  2.767
Greedy (3-step Euler)  5.098 1152 600 1152 1.384  3.229
Greedy (5-step Euler)  4.177 1083 571 939 1.328 2332
DTO (1-step) 13.049 989 x 10*? 681 86.512  1.666 15.144
DTO (2-step) 6.113 1359 666 1199 1.533 3757
DTO (4-step) 6.115 1294 668 1190 1.406  2.829
DTO (8-step) 4.549 1070 608 1078 1.247  2.594
DTO (16-step) 3.454 817 608 939 1.177  2.003
DTO (32-step) 2912 750 410 666 0.721  1.566
DTO (40-step) 2.384 625 372 556 0.719  1.425
DTO (50-step) 1.404 401 176 373 0372 0.866
EquiFM 9.525 1494 622 1523 1.628  6.689
Lower bound 0.10 64 39 46 0.043  0.040

generated by a DTO scheme decreases. This trend is less noticeable for the posterior guided samples.
We report quantitative results in Table 3. We report the unguided EquiFM generated molecules as
an upper bound and include the theoretical lower bounds from Ben-Hamu et al. (2024). It is here
that we notice a sharp decrease in performance from using posterior guidance. In particular the
greedy (Euler) strategy is is highly unstable even performing worse than the unguided model on the
« property. The introduction of an additional step in the form of either midpoint or 2-step Euler does
seem to improve performance; although the significance varies property to property. We observe
that the midpoint method seems to perform slightly better than the 2-step Euler. We performed
experiments with Ralston’s third-order method and a fourth-order Runge-Kutta scheme but noticed
significant instability in comparison to just taking more steps, we posit this is due to the large step
size and that a hybrid scheme like that employed by Moufad et al. (2025) might be a reasonable
solution to such problems, but ultimately we leave that question up to future work. Moreover, we
observe that increasing the number of steps generally improves performance with greedy (5-step
Euler) performing the best among all the greedy guidance strategies. The gradients of DTO (50-step)
strategy are the ideal and perfect gradients w.r.t. the flow model as the numerical solver takes 50
discretization steps and thus form the upper bound of performance. We see that as the DTO strategy
incorporates more discretization steps the results converge to the upper bound along this particular
design axis; in particular, we notice that the greedy strategy does well in the the regime of less
discretization steps.

8 Conclusion

In this paper we present a unifying view of two different families of guided generation: end-to-end
guidance and posterior guidance from the lens of a greedy algorithm. We present numerous theoretical
connections tying these two families together. Our theoretical analysis shows that there might be
some reason to believe that such a cheap approximation of the gradient can be reasonable for certain
tasks. By exploiting the theoretical connections we created, we investigate guidance techniques which
lie in between these two families giving rise to an exciting novel design space. We then conduct
several experiments on inverse image problems and on controlled molecule generation to illustrate
this new design space. We hope that our findings can help future researchers find the optimal spot
between computational cost and accuracy of gradients for guidance problems.
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* The answer NA means that the paper has no limitation while the answer No means that
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 The authors are encouraged to create a separate "Limitations" section in their paper.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The source code will be uploaded as a part of the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, the full details for the experiments are provided in Appendix I.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the heavy computational demands in running these experiments we did
not report statistical significance which is inline with other works in this space.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the full details of the compute resources in Appendix 1.4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted research conforming in every aspect with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we discuss such impacts in Appendix K.1.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: While the theoretical concepts could be distilled for potential malicious
downstream tasks it is not immediately applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The details for the datasets are described in Section 7 and Appendix L.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are being released.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not perform crowdsourcing. We used FFHQ, which contains subjects
with human faces, but this is a publicly avaiable dataset.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research only used publicly available datasets and as such IRB approvals
were not required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in any part of this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Organization of the appendix

In Appendix A we discuss previous approaches by exploring posterior guidance and end-to-end
guidance in greater detail to provide a more comprehensive overview of how this greedy perspective
connects these various works. Appendix B is devoted to the proofs and derivations from Section 4 in
the main paper. Likewise, Appendices C and D is devoted to proofs and derivations from Sections 5
and 6 respectively. In Appendix E we discuss some important practical issues when using OTD
for guidance, which we believe several to be useful background for the reader. We provide some
additional connections between posterior guidance and control signal optimization in Appendix F that
we were unable to include in the main paper. Appendix H is devoted to providing a brief background
on inverse problems. Likewise, Appendix I is devoted to discussing the implementation details of the
numerical experiments in Section 7 and providing a background for the experiments. In Appendix J
we include additional results that we could not fit into the main paper. Lastly, in Appendix K we
discuss the limitations and broader impacts of this research.
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Theorem (Continuous adjoint equations for the control term)
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Figure 5: A more detailed taxonomy of training-free guided generation methods from Figure 1 from
the main paper.

A Related works

We provide a brief summary of previous work exploring either posterior guidance or end-to-end
guidance strategies. In Figure 5 we provide a more detailed taxonomy of training-free methods for
gradient-based guided generation based on Figure 1 from the main paper.

A.1 Posterior guidance

Recent work in flow/diffusion models has explored the guidance using this strategy; we highlight a
few notable examples. Diffusion Posterior Sampling (DPS) (Chung, J. Kim, et al. 2023) is a guidance
method that uses Tweedie’s formula (Stein 1981) to estimate the gradient of some guidance function
defined in the output state w.r.t. the noisy state, i.e., E[X|X; = x|. Likewise, the work of Bansal
et al. (2023), He et al. (2024), Y. Wang, Yu, and J. Zhang (2023), and Yu et al. (2023) explores similar
concepts by employing Tweedie’s formula for diffusion models. Most of these works have explored
using the SDE (or Markov chain) formulation of diffusion models rather than the ODE formulation,
which is what we primarily focused on in our analysis.

Correcting the guidance trajectory. Several works have explored extensions to the DPS framework
by using multiple steps of an SDE solver to correct errors made by the guidance steps. In particular,
FreeDoM (Yu et al. 2023) explores the usage of a time-reversal strategy repeated for a set number
of times in each sampling step to correct possible guidance errors. Likewise, recent work by B.
Zhang et al. (2025) explored modeling Langevin dynamics on top of a diffusion ODE to correct
measurement errors in inverse problems. A significant number of the proposed methods which use
posterior guidance arise from solving inverse problems (c¢f. Daras et al. 2024).

26



Scheduled hyperparameters. Researchers realized that extra performance can be gained in such
problems by scheduling hyperparameters like the learning rate (or guidance strength) at different
timesteps in the numerical scheme (Moufad et al. 2025; Yu et al. 2023).

Beyond Euler. Recent work by Moufad et al. (2025) explores an extension to (Chung, J. Kim, et al.
2023) by using a two-step method to estimate the guidance gradient. This is mostly closely related
to the greedy (2-step Euler) method from the main paper, although they use a stochastic sampling
method, so it would be more akin to taking two Euler-Maruyama steps.

A.2 End-to-end guidance

Within the last year, many researchers have explored backpropagation through flow/diffusion models
for controllable generation. As mentioned in the main paper, the two main strategies for solving such
a problem is a DTO or OTD scheme (c¢f. Appendix E).

Discretize-then-optimize. FlowGrad proposed by X. Liu et al. (2023) uses a DTO scheme to
optimize an additional control signal (more details on this later) to perform guidance with flow
models. Although the analysis of Ben-Hamu et al. (2024) makes use of the continuous adjoint
equations, in practice they use the generally preferred approach of DTO with gradient checkpointing.’
Likewise, Clark et al. (2024), Karunratanakul et al. (2024), and Novack et al. (2024) all use gradient
checkpointing with DTO to perform backpropagation through the flow/diffusion model.

Optimize-then-discretize. Another stream of work has explored the use of continuous adjoint
equations to perform the backpropagation. The advantage of such approaches is the O(1) memory
cost, and we enumerate the drawbacks in Appendix E, but suffice to say there are several. To the
best of our knowledge, the first work to explore this was Nie et al. (2022) which used OTD with
SDEs for the adversarial purification task. More general work came later by Ben-Hamu et al. (2024),
Blasingame and C. Liu (2024a), and Pan, Liew, et al. (2024). More specifically, Pan, Liew, et al.
(2024) and Pan, Yan, et al. (2023) explore bespoke solvers for the continuous adjoint equations of
diffusion ODEs. Blasingame and C. Liu (2024a) extends these works by developing bespoke solvers
for diffusion ODEs and SDEs and performs more theoretical analysis of the problem in the SDE
setting. Marion et al. (2025) explore using the continuous adjoint equations as a part of a larger
bi-level optimization scheme for guided generation. The work of Ben-Hamu et al. (2024) extends the
analysis of continuous adjoint equations for diffusion models to flow-based models and provides an
alternative perspective to the analysis performed in the earlier works. Recent work by L. Wang et al.
(2025) explores an extension of Ben-Hamu et al. (2024) to Riemannian manifolds which incorporates
a control signal to the vector field and optimizes both the solution state and co-state, they call their
approach OC-Flow.

Parallel to these works (conceptually) is the work of Wallace, Gokul, Ermon, et al. (2023) who uses
EDICT (Wallace, Gokul, and Naik 2023), an invertible formulation of diffusion models, to perform
backpropagation through the diffusion model. Although not presented or viewed this way in the
original work, the later work by Blasingame and C. Liu (2024a) showed that this approach can be
viewed as a specific discretization scheme of continuous adjoint equations. We note that the EDICT
solver, while reversible, is a zeroth-order solver and has poor convergence properties (cf. F. Wang
et al. 2024).

Control signal optimization. We discuss this in more detail in Appendix F, but there are several
works that explore the optimization of an additional control signal z(t) rather than the solution
trajectory x(t); namely, X. Liu et al. (2023) and L. Wang et al. (2025).

B A greedy perspective

We present the proofs and derivations associated with Section 4.

3See https://docs.kidger.site/diffrax/api/adjoints/ for an excellent summary of such design
considerations and why DTO is generally preferable over OTD.
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B.1 Additional details on flow models

Applying this flow to the random variable X, we define a continuous-time Markov process
{Xt}iepo,1) with mapping X; = ®;(Xy). The goal, then, is to learn a flow ®; such that
X, = ®,(Xy) ~ ¢(x). This procedure amounts to learning a neural network parameterized
vector field u? € €17 ([0, 1] x R%; R9); this learning procedure can be performed efficiently through
a simulation-free training process known as flow matching (Lipman, R. T. Q. Chen, et al. 2023) or
more generally generator matching (Holderrieth et al. 2025).

Throughout the rest of this paper we will assume a standard flow model trained to zero loss and we
denote the parameterized flow model via ®¢(z). We let @ ;(x) = (®; o ®;1)(x) denote the flow
from time s to time ¢, s, ¢ € [0,1].

Affine probability paths. A special subset of flow models, are flows which model an affine
probability path, i.e., given a schedule (o, ;) the random process { X} is described via the affine
equation

X = o Xy + 01 Xo, (16)
where oy, op € C*°([0, 1]; [0, 1]) which satisfy
ap=01=0, ay=09=1, Vte(0,1)[a >0, ¢ <0 (17)

The marginal vector field can then be expressed as the following conditional expectation:
ut(w) ZE[thl “l‘thOlXt Zil:] (18)

This nice form of the marginal vector field enables use to rewrite the vector field in the forms of either
source (Ho, Jain, and Abbeel 2020) or target (Kingma et al. 2021) prediction as

wplm) = Db gy T O o) (19)
B B
~—
=a¢ =by
where 3; = —a; for source prediction with f;(x) = x| (x) = E[Xo|X; = x| and 3; = o, for

target prediction with f;(z) = x;,(x) = E[X|X; = «]; and a,, b; are useful shorthands to be
used later.

Remark B.1. The probability flow ODE formulation of diffusion models (Y. Song, Sohl-Dickstein,
et al. 2021) is subsumed by flow models, and represents a model with an affine Gaussian probability
paths (AGGP), i.e., (X0, X1) ~ mo.1(x0, 1) = p(x0)q(x1) with p(x) = N (z|0, o*I) (Lipman,
Havasg, et al. 2024). Thus without loss of generality we consider flow models of affine probability
paths.

B.2 Assumptions

Throughout the norm || - || corresponds to the Euclidean norm || - ||2. Additionally, we make the
following (mild) regularity assumptions:

Assumption B.1. The function a; := % is integrable in [0, 1].

an
n

Assumption B.2. The total derivatives v {we (CB)} exist and are continuous for 0 <n < k — 1.

ly

Assumption B.1 is necessary for the simplification that we perform with exponential integrators
and Ben-Hamu et al. (2024) make the same assumption in their analysis of the continuous adjoint
equations for affine probability paths. Assumption B.2 is to ensure that we can take a Taylor expansion
of m?l L (@).

B.3 Proof of Proposition 4.1

We restate Proposition 4.1 below.

SClearly, diffusion models which solve the reverse-time SDE are different and require a separate analysis.
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Proposition 4.1 (Exact solution of affine probability paths). Given an initial value of s at
time s € [0, 1] the solution x; at time t € [0, 1] of an ODE governed by the vector field in
Equation (18) is:
o Tt
Ty = @, + at/ w%v(ww) d~. (8)
Y

s s

Proof. Recall that we uniquely define a flow model through the vector field u € C11([0, 1] x R%; R9).
The vector field which models the affine conditional flow with schedule (o, 0¢), is defined as

uf(x) = Ele, X, + 6, Xo| X; = x]. (20)
With some simple algebra, we can rewrite the vector field in terms of &1,

uf(x) = ayx + btw‘flt(m),

ot ) ot 2D
at = — bt:at—at—.
Ot Ot

Now using this definition we can rewrite the solution for x; from x, in terms of &1,
t
Ty = Ty + / ul (x,) dr, (22)
S

t
Ty = Ts —|—/ ar Ty + bT:cﬁlr(wT) dr. (23)

Note the semi-linear form of the integral equation. We can exploit this structure using the technique
of exponential integrators, (see Gonzalez et al. 2024; Lu et al. 2022a; Q. Zhang and Y. Chen 2023),
to simplify Equation (23), under Assumption B.1, to

t
t t
@y = els awdug 4 / el- o dub 2 (x,) dr. (24)
S
Now, the integrating factor simplifies quite nicely to
@fst ay du _ ef: Z—’; du _ 6‘[:: 1do _ 2’ (25)
Os

such that Equation (24) becomes

t
b,
T, = ﬂzcs + O’t/ U—mflT(mT) dr. (26)

S

We can simplify b, /o to find:

b Y10y — Q0 d d
b Guor—andy (Q) - 2 @7)

o U? dt \ oy

where v; = ay /oy, i.e., the signal-to-noise ratio. As such, we can rewrite Equation (26) with a

change of variables ., = T 1) = T

oy vt 9
Ty = —Ts + 0y .’Blw(a]‘»y) d’}/, (28)

s s

concluding the proof. O

B.4 Proof of Proposition 4.2

Proposition 4.2 (Greedy as an explicit Euler scheme within DTO). For some trajectory state
x¢ at time t, the greedy gradient given by Vmﬁ(w% ,(x)) is the DTO scheme with an explicit

Euler discretization with step size h = v1 — 4.
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Proof. From Proposition 4.1 we see that using the target prediction model to estimate x; is akin
to taking a first-order approximation of the flow. More specifically, under Assumption B.2 we can
construct a (k — 1)-th Taylor expansion of Equation (8) with:

k—1
dn Yt — Vs n
Ty = *tms +oy Z d~n [w?’y(w'v)} /7 . n;y ) dy + O(hk+1)» (29)
S n=0 Y="7s s :
k—1
oy d" | 4 hr k1
- O Zs+ 0t vt d,yn |:x1"/(m’}’) . (n + 1)' + O(h’ )a (30)

where h = 7; — -, is the step size. Then it follows that for £ = 1 the first-order discretization of the
flow, omitting high-order error terms becomes,

~ [oF7 0tQg
TR T = —xs + (g + —
Os Os

In the limit as ¢ — 1 we have ; = mf‘ s(:cs).7 Thus, the greedy gradient is a DTO scheme with an
explicit Euler discretization with step size h = y; — ;. O

B.5 Proof of Proposition 4.3

We restate Proposition 4.3 below.

Proposition 4.3 (Greedy as an implicit Euler scheme within OTD). For some trajectory state
xy at time t, the greedy gradient given by th/l(mf‘t(a:t)) is an implicit Euler discretization
of the continuous adjoint equations for the true gradients with step size h = y1 — V4.

For clarity we restate the definition of the continuous adjoint equations. Let ug € C'1([0, 1] x R%; R9)
be a model that models the vector field of some ODE and be Lipschitz continuous in its second
argument. Let = : [0,1] — R? be the solution to the ODE with the initial condition xy € RY,
&y = ug(t, ). For some scalar-valued loss function £ € C2(R?) in 1, let a,, :== OL/dx; denote
the gradient. Then a, and related quantity ay := 9L/90 can be found by solving an augmented
ODE of the form,

_oc dag . B T%

an(l) =5 G = —as(®) S (b a) o
_ dag T Ou

ag(l) =0, " (t) = —ag(t) 50 (t,xy).

Now we present the proof.

Proof. The adjoint state can be simplified by rewriting the vector field in terms of the target prediction
model to find

dag

da, T(’“)ac?‘t(:c,g)
dt '

(t) = —arax(t) — brax(t) o,

(33)

We can express this backwards-in-time ODE as an integral equation in the form of

® (9:[:9 T,
am(S) = am(t) — / arQy (t) + bTam(T)leer() d7-7
¢ T

dr. (time-reversal) (34)
ox,

:%@+/%%M+M%W

"Note that despite o; — 0 the asymptotic behavior is well-defined (see Ben-Hamu et al. 2024).
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Using the technique of exponential integrators we rewrite the integral as

t 8113 b
am(s) :€f5 ay du / f ay dub ay ( ) 1a| ( ) dT,

0zl (z,)

= — T

= am(t)+at/s . T ag(T) Do dr,
0

o " a7 i)

=5, o) o L 5 ax(7) oz, dy. (35)

By Assumption B.2 it follows that the vector-Jacobian product has (k — 1)-th total derivatives,
allowing us to define a first-order Taylor expansion around ~,:

a:i: S wS
au(s) = Zag(t) + (o0 — Laryay(s) T 20l2e)

+ O(h?). (36)

Thus, the first-order approximation of the adjoint state at time ¢ with a step size of h = y; — 7, is the
implicit equation
T 653 1 ‘ t (a:t)

5mt

Now to solve the implicit equation we can use the fixed-point iteration method. Let a5 (t)(?) = a(1),
then the first iteration has

az(t) = ax(t) (37)

T 8é1\t($t)
8:ct

Thus, we have shown that the greedy gradients are equivalent to the first iteration of an implicit Euler
discretization of the continuous adjoint equations.

ax () = ag(1) = Va, L(&1):(2:)). (38)

O

C Dynamics of guidance

In this section we detail some of the formalisms omitted in the main paper concerning the dynamics
of the gradient flow and greedy gradients.

We begin by re-establishing some useful prior results. Ben-Hamu et al. (2024, Proposition 4.1)
showed that the gradient of the target prediction model is proportional to the variance of the random
variable defined by pq|(21|x), we restate their result below.

Lemma C.1 (Gradient of target prediction model). For affine Gaussian probability paths, the gradient
of the target prediction model :L‘f‘t(:c) w.r.t. @ is proportional to the variance of py|;(x1|x), i.e.,

a/
Ve, (z) = ?évar”t(“")’ (39)

where
Vary (@) = Ep, (@1 ]2) | (@1 — @), (@) (@1 — 2], (2)) " | . (40)

Remark C.1. This can be written more generally in terms of the (pushforward) differential Dmmf‘ ()

where the underlying spaces are smooth manifolds and mi) , is a smooth map between them (Ben-

Hamu et al. 2024). In this section, we only consider flow models defined in Euclidean spaces, and so
we opt not to elaborate on this generalization.

We restate a well-known result below in Lemma C.2 regarding the continuous-time analogue to
forward-mode autodifferentiation, or in other words, forward sensitivity.

Lemma C.2 (Dynamics of Jacobian matrices for flows). Let g € R? and let f € C11([0,T] x
R%; R?) be uniformly Lipschitz in x. Let « : [0, T| — R? be the unique solution to

2(0) =20, (1) = flt2(1). 1)
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Let @, (), s,t € [0, T] denote the flow associated with Equation (41). Then let J5(t) := V4P ()
denote the Jacobian matrices, where J; : [s, T| — R**4 solve the differential equation

dJ
dt

where Vo f (t, ) refers to the gradient w.r.t. the second argument.

Jo(s) =1, (t) = Vaf(t, Pse(2(s)))Js(t), (42)

Remark C.2. This result is well known and has been extended to controlled differential equations
(Friz and Victoir 2010, Theorem 4.4) and rough differential equations (Friz and Victoir 2010, Theorem
11.3). Kidger (2022, Theorem 5.8) discusses this result for neural ODEs.

C.1 Proof of Theorem 5.1

‘We restate Theorem 5.1 below.

Theorem 5.1 (Jacobian matrices of affine Gaussian probability paths). For the standard affine
Gaussian probability path with flow model (I)Z,t (x), the Jacobian matrix V o @ () as function
of x is given as the solution to

t
wabit(a:) = ?I—l—ot/ Var1|u(<1> (X)) Vg <1)9 L(x) du, (10)

where

Varyy(z) = Ep, , (1 |2) {(5'31 — @, (@) (@1 — 4, (x)) | . (11)

This proof follows a similar technique to that used by Blasingame and C. Liu (2024a) to simplify
adjoint equations for diffusion models using exponential integrators.

Proof. Now recall Lemma C.2 which discusses the dynamics of Jacobian matrices for flows, rewriting
this as an integral equation yields:

Vo®?,(z) = / Vo, ul (90 ,(2))V 2!, (2) du. (43)

Now recall the definition of the marginal vector field in terms of the target prediction model (cf.
Equation (19)) which we use to rewrite Equation (43) as

Vao® (z) =T+ / Ve, au®] () Va®) () + Va, by, (9, (2) V!, (z) du,

DL [ 00T (@) 400V, 00,, (0 2) VB 0) (44

where (i) holds by V., <I>§7u(:c) = I. Next we can make use of the popular technique of exponential
integrators to simplify Equation (43) in combination with Equation (19). Thus, the integral equation
in Equation (44) becomes

t
Vad! (@) = Au(s, )] + / Nt )0,V (B0 (2)) V00! () du,  (45)

where A, (s,t) == exp fst a,, du is the integrating factor. This simplifies to A, (s,t) = 0+/0,. Using
this, Equation (45) can be simplified to

t
o by
Vo, (x) = UiI + 0y / . — Ve, 2], (20, (@) V2 ®! () du. (46)
Now we can apply Lemma C.1 to further simplify Equation (46) to find

g t Oy,
Vo®? () = J—tI + oy / ;bu\/arl‘u(@‘;u(m))vwcbju(a:) du. 47)
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Next we simplify the coefficient av, b, /o? in the integral term. Let ; == /o equal the signal-to-

noise-ratio. Then we observe
Qi . o\ oy
bt*g =\t —e— | 3,
o} or) o}
Qo — 00

o} o}
W dfa]al
o de¢ Ot | Ot O't)
(@) .
D520 (48)
Ot

where (i) holds by the quotient rule and (ii) holds by definition of ;. Using this simplification we
can perform a change-of-variables to simplify the gradient resulting in

t
Ve (z) = ?I + oy / "yuZ—u\/ar”u(q)z_’u(a:))vmq)z,u(a:) du. (49)

S

O

Remark C.3. Readers familiar with the work of Ben-Hamu et al. (2024) may notice some similarities
between our result Theorem 5.1 and Ben-Hamu et al. (2024, Theorem 4.2). The difference between
the two is that the former is a simplified integral equation; whereas, the latter is the exact solution and
no longer requires solving an ODE. However, this later solution does require solving a time-ordered
exponential which requires a formal truncated series expansion, e.g., Magnus expansion.

Theorem 5.1 is closely related to Ben-Hamu et al. (2024, Theorem 4.2) which we restate below within
the context of our notational conventions.?

Theorem C.3. For the standard affine Gaussian probability path, the differential of @8,1 (x) as of
function of x is

1
1
Vot @) =T e | [ pvan@) di] (50)
where T exp denotes the time-ordered exponential.
The time-ordered exponential® (Grossman and Katz 1972) is defined as

T exp ulA(s) ds] i:“/tldsl.../tldsn T{A(s1) ... A(sn)},

n=0
0 1 S1 Sn—1

= Z/ dsq / dsg - / ds, A(s1)A(s2)...A(sn),
——_ t ¢

and the solution can be found the Dyson series (Sakurai and Napolitano 2020) or Magnus expansion
(Magnus 1954), which are truncated in practice. The meta-operator 7 denotes the time-ordering
(Dyson 1949), e.g., consider the time-ordering of two operators A, B:

T{A(s1)B(s5)} — {iggiffi i 6

For more details we refer the reader to Weinberg (1995).

(S

C.2 Dynamics of gradient guidance

We state this more formally below in Proposition C.4.

8With abuse of notation let 42 denote the time derivative of vZ.
This is closely related to the Peano-Baker series (see Frazer, Duncan, and Collar 1938, Section 7.5).
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Proposition C.4 (Dynamics of gradient guidance). Consider the standard affine Gaussian
probability paths model trained to zero loss. The Gateaux differential of x at some time
t € [0,1] in the direction of the gradient V5L (9] | ()) is given by

5mq)t0,1 (x) = _vzq)?,l (fB)Vm‘I’f,l (m)—rvmﬁ(‘zl)' (53)

Thus the behavior of ; when guided by £ is determined by the operator V',,J(I)Zl () which iteratively
projects the gradient of the loss function by the covariance matrix Var;; (). Put another way:

Performing gradient guidance with £ at time ¢ < 1 amounts to guidance which follows the
target distribution p(X) by projecting V., £(21) onto to the target distribution via the local
covariance matrix.

It is for this reason that it is undesirable to simply perform guidance in the data space as we are likely
to deviate from this target distribution. From Equation (53) we know that applying the gradient at
earlier timesteps causes the initial gradient V,, £(1) to be projected into high-variance directions
of the target distribution causing the guided sample to stay closer to the true target distribution.

The next question is: how does x; change when x is updated with our greedy guidance strategy?

C.3 Proof of Proposition C.4

We restate Proposition C.4 below.

Proposition C.4 (Dynamics of gradient guidance). Consider the standard affine Gaussian
probability paths model trained to zero loss. The Gateaux differential of x at some time
t € [0,1] in the direction of the gradient V5 L (9] | ()) is given by

5m(1)t0,1 (x) = _vzq)g,l (m)vmq)te,l (w)Tvm1£(a’1)- (53)

Proof. This can be shown from a straightforward derivation:

G) d

59:‘1)?,1(‘13) = dT? ‘I’?,l (-’E —nVaL (‘I’fl(w))) )
n=0

@) —Vw‘I’f,l (x —nVaL ((I)fl(w))) Vil ((I)?vl(x)) ’
n=0

= —Vo®] 1 (®)Val (97, (x)),

(idi

D V0! (2)Va ! () Va, L(@1), (54)

where (i) holds by the definition of the Gateaux differential, (ii) holds by the chain rule, and (iii)
holds by a substitution of Equation (9) with the simplification of x; = <I>f71 (x). O

C4 Proof of Proposition 5.2

We restate Proposition 5.2 below.

Proposition 5.2 (Dynamics of greedy gradient guidance). Consider the standard affine Gaus-
sian probability paths model trained to zero loss. The Gateaux differential of x at some time

t € [0, 1] in the direction of the gradient V L (:L'%A:I:)) is given by

55(1)?,1 (x) = _qu)?,l (w)Vzw‘f”(w)Tleﬁ(ml). (13)
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Proof. This can be shown from a straightforward derivation:

d

(4)
55(1’?,1 (x) = din

(I’?,l (:c — VgL (m%t(w))) )

n=0

Va0l (2 1VaL (90, (2))) VaL (2, ()

— VP! (2)V,L (m?,t(w)) :

W V9!, (2)Vea!), (@) Ve, L(@1), (55)

where (i) holds by the definition of the Gateaux differential, (ii) holds by the chain rule, and (iii)
holds by the chain rule. O

We note an interesting corollary below.

Corollary C.4.1 (Dynamics of gradient vs greedy guidance). The difference between the dynamics
of gradient guidance in Proposition C.4 and greedy gradient guidance in Proposition 5.2 for a point
x at time t with guidance function £ € C*(R?) is

.
16297, (@) — 6707 , ()| = \ Vo1 (@) (Vo (@) = Voa!,(2)) Vo, L(21)

(56)

C.5 Proof of Theorem 5.3

‘We restate Theorem 5.3 below.

Theorem 5.3 (Dynamics of gradient vs greedy guidance). The difference between the dynamics
of gradient guidance in Proposition C.4 and greedy gradient guidance in Proposition 5.2 for a
point x at time t with guidance function £ € C*(R?) is bounded by O(h?) where h == v1 — s,
i.e.,

|ve9l1(@) - Vorl,(@)| = 0(2). (14)

Proof. From Corollary C.4.1 it is clear that the difference between 6, @} | () and 0 ® | () amounts
to the difference between the true gradient and gradient of the target prediction model. Recall
Theorem 5.1 which enables to write the gradient as the solution to an integral equation:

1
Vad! (z) = ?I +o / %7 Vary (90, (€)) V48!, () du. (57)
t t Oy
Now as oy — 0 as t — 1, we can simplify the integral equation
1
Vo | (x) = 0y / %7 Vary,, (87, (€)) Vo8, () du, (58)
t Oy
and then by rewriting the integral in terms of dy = 4, du we find
P Y1 v 0
Va®;1(x) =01 / U—Varlh(fb% L(®)) Ve @D, () dy. (59)
Yt Y

Next we take a first-order Taylor expansion of - o Vary, (@W () Ve <I>,9Yt () centered at y; which
yields:

T Vary, (87, (2))Va®?, () = va&rw(mwowf%). (60)

Yt Y
Oy

For this analysis, it is actually more convenient to include the « term as part of the Taylor expansion
rather than computing it in closed form in the integral. Now plugging Equation (60) into Equation (59)
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yields

71

1
Vad!,(2) = o) / Yo Vary(e) + Oy~ 70) d,

Yt

i Y1
@ al—Var”t( )/ dy + O(h?),
Y

t

=01 ;Varut(m) (11 — ) + O(h?), (61)
t
where (i) holds with A := v, — ~;. Then, with a little algebra we have
Vm‘ﬁ,l( )= ‘71 (71 7t) Vary(x) + O(h?),

« « (07
= 0'17; (0-]1- — 0‘Z> Varllt(m) + O(h2),

o a

= —; <a1 - 01t> Var,(x) + O(h?),

(o Ot

i) «

© 25 Vary (@) + O(h2), (62)
t

where (i) holds by the boundary conditions of the schedule (c¢f. Equation (17)). Now recall Lemma C.1

which states:

«
me‘flt(m) = U—éVarl‘t(m). (63)
Thus from Equation (62) and Equation (63) it is easy to see that
V22!, (@) - vmw%t(as)H — o), (64)
holds and thus
|02®¢ | (x) — 05®7 1 ()| = (65)
O

C.6 Proof of Theorem 5.4

We restate Theorem 5.4 below.

Theorem 5.4 (Greedy convergence). For affine probability paths, if there exists a sequence of

states CC,E ") at time t such that it converges to the locally optimal solution w?l (g z\" )) — x]

Then the solution, (I)l\ Lz (n )), converges to a neighborhood of size O(h?) centered at .

Proof. By Assumption B.2, we can take a (k — 1)-th order Taylor expansion around ; of the flow in
Equation (8) to obtain

k—1
o Y1 dn 'y ’y
(I)%t(fct) = 0_713315 + 01/ Z dyfﬂ [m%’y(xﬁ] % dy + O(th)
Tt p=0 Y= !
k=1 o,
= ﬂ:l:t +o0 Z — |z (:l: ) / ('Y 'Yt) dy + O(hk'H)
ot n=0 dfyn e Y=t Yt !
k—1
o1 dm 0 Bl .
B oy +O(h ), 66
Sty o 2t ) e rOu) (©6)

where h := 1 — 74 is the stepsize. Let k = 1, then we have:

o N
‘b(;u(%) = 0*13% + o1y (®)h + O(h?), (67)
t
= 2zt (ar = )@y (2) + O(h?), (68)
Ot (o4
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By definition o7 = 0 and a; = 1, then
0, (@) = &1)4(m0) + O(B?), (69)

which is equivalent to

| @8 (@) = @10 < a2, (70)

for some constant C; > 0. Since w?“(:cgn))
n > N such that |z} — mf‘t(mgn))H < €. Thus,

— a] we know that for any € > 0 there exists some

H(I)l\t mgn)) -

! n) 20 (x H + H:c —zf ( H <e+Cih%. 71
H e(®e ) = 1\t( 1 e Cl (71)
=02

Therefore, @, (a:i”)) converges to a point inside a neighborhood centered at ] with radius O(h?).

O
D Beyond Euler
In this section we provide the full proofs and derivations for Section 6 in the main paper.
D.1 Proof of Theorem 6.1
Before showing Theorem 6.1 we show a more general version below.
Theorem D.1 (Local truncation error of discretize-then-optimize gradients). Let ® be an
explict Runge-Kutta solver of order oo > 0 to the ODE
dx
2(0) = @0, () = uo(t,a(t)), )
on [0, T) which satisfies the regularity conditions for the Picard-Lindeldf theorem. Let @Z,t (x)
denote the flow from s to t, for any s,t € [0, T| admitted by the ODE. Then,
[Ve®! (@) — Vob, (z)|| = O(h). (73)
Proof. Consider an explicit k-stage Runge-Kutta method given by
J
Up,j = Up <tn +cjh,:cn+h2aj,iun7i> , 1=12...k (74)
i=1
k
Tpt1 = Ty + hz bjunw (75)
j=1

where a;;,bj,c; are all given via the Butcher Tableau (Stewart 2022, Section 6.1.4). Now, we
consider a single step from time s to time ¢ with initial value « and step size h := ¢t — s. Then, the
gradient is

k J
Vae®si(x) =Vex+h Z b;Vzug (s +cjh,z+h Z am-uZ) ,

j=1 i=1

J
Vg, uo(s + cjh, &;) (I +h Z aj7ivmui>‘| , (76)
i=1

where we let

J
ilA)j =x+h Z Qg iU;. (77)
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Next, recall Lemma C.2 which gives the following ODE

dJy

JS(S) = I? dt

(t) = Vzug(t, D, (x))Js(t). (78)

Next, we augmented the ODE above with the underyling ODE for the solution state, &(t) =
ug(t, z(t)). We now apply the same Runge-Kutta solver to this augmented ODE for the Jacobian
matrices which yields

-_I+th

Clearly, Equation (79) and Equation (105) are equivalent. Now as the underlying numerical solver
has local truncation error O(h**1) we find that

J
Vi, ug (s + cjh, &;) (I—l—hZaj,inui)] . (79)

i=1

|Ve®? (@) — Vob, ()| = Oh). (80)
O

Remark D.1. This result is intuitive as differentiation is a linear operator. However simple, we
believe the insight is useful on the discussion of using DTO/OTD/posterior methods for guidance and
thus include it here.

Remark D.2. Theorem D.1 shows that DTO and OTD are really just two sides of the same coin and
that one of the main differences is the choice of end points when discretizing.

Remark D.3. Onken and Ruthotto (2020, Appendix A) made similar observations; however, it is for
only of the case of Euler.

Theorem 6.1 (Truncation error of single-step gradients). Let ® be an explict Runge-Kutta
solver of order a > 0 of a flow model with flow <I>2 (x). Then forany t € [0,1],

where h =1 — t.

Proof. This follows as a corollary of Theorem D.1. O

Corollary D.1.1 (Convergence of a a-th order posterior gradient). For affine probability paths, if

(n)

there exists a sequence of states x, ~ at time t such that it converges to the locally optimal solution

<I>f71 (wE")) — x}. Then solution, (IDf‘t( )), converges to a neighborhood of size O(h®+1) centered
at .

Proof. This follows as a straightforward derivation from Theorem D.1. O
Corollary D.1.2 (Dynamics of a-th order posterior gradient). Consider the standard affine Gaussian
probability paths model trained to zero loss. Let ® be an explicit Runga-Kutta solver of order a > 0
of a flow model with flow ®9 ,(x). The Gateaux differential of @ at some time t € [0,1] in the
direction of the gradient V o L (®4 1(x)) is given by

62’(33) = —vm@f’l(w)vm<1>t71(m)Tvm1£(w1). (81)
Proof. This follows straightforwardly from Proposition 5.2 and Theorem 6.1. O

D.2 A useful reparameterization of the flow model

We present a useful reparameterization of the flow model, which is a parallel result to Proposition 4.1.
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Proposition D.2 (Reparameterized for the target prediction model of affine probability paths).
The ODE governed by the vector field in Equation (18) can be reparameterized as

dy, o (%
d77:00$1|g ;Oyg ) (82)

where y; = ‘;—fmt.

Proof. The ODE governed by the vector field in Equation (18) can be written as

dzx
ditt = QT —+ btwﬁlt(wt). (83)
Now we can use the technique of exponential integrators to rewrite the ODE as
d t ¢
a |:€f0 —Qqy duwt:| — ef() —Cu dubtmglt(wt). (84)
The exponential term can be simplified to
eJs —audu _ 70, (85)
Ot

We introduce a change-of-variables, y; = Z®x;. Thus, the ODE becomes
t

dy, 00 0 ¢

— =—b — . 86

ar o t L1t ont (36)
Next, recall that b; /o = 4: (¢f. Equation (27)) which enables a change of integration variable:

dy, 6 Oy

a = 00y, U—Oyv . (87)

O

Remark D.4. Recall that, often, for affine probability paths we let g = 1, further simplifying
Proposition D.2 to
Wy 20 (o) (88)
d 'Y — ¥y YY) -
Remark D.5. Proposition D.2 is a tangential result to the prior result of Pan, Liew, et al. (2024,
Equation (11)) which was for diffusion models and was developed w.r.t. the source prediction model
rather than the target prediction model and was solved in reverse-time.'?

This parameterization in Proposition D.2 can be combined with Theorem D.1 to construct a DTO
approximation of the gradient with truncation error (y; — 75 )**!.

E Notes on using OTD in practice

While the OTD approach has become quite popular after the work of R. T. Chen et al. (2018), several
later works have noticed several key issues that we wish to note for ML practitioners.

Recall our prototypical neural ODE (or flow model) of the form
dz
—(t) = ug(t, z(t)), (89)
dt

and assume it is defined on the interval [0, 7] and the flow model statifies the usual regularity

conditions. Then, the continuous adjoint equations (Kidger 2022, Theorem 5.2) are:

oL da, T %

@) = 3o 020 = —au () S (10 (0), "
aT) =0, SO0 = a, ()T U 1,2(0),

where a,(t) := 0L/0z(t) and ag(0) := OL/0.

19Technically forward-time due to the conventions of diffusion models.
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Table 4: Comparison of different strategies for performing backpropagation through flow models.
For the complexity analysis n denotes the number of discretization steps and d the dimensionality of
the state. Note, for accuracy we mean there are no truncation errors. Note that whilst in general the
stability of reversible solvers is quite poor, there are some solvers which have a non-trival region of
stability.

Method Time Memory Accurate gradients Stability
DTO O(n) O(nd?) v -
DTO + recursive checkpointing  O(nlogn) O(d?logn) v -
OTD + stored trajectory O(n) O(nd + d?) v -
OTD + reversible solver O(n) O(d?) v ?
OTD O(n) O(d?) X

Truncation errors. One area of concern is the potential mismatch between the forward trajectory
{z,} | and the backward trajectory {&;, }¥; when performing the backwards solve. E.g., consider
an explicit Euler scheme

Ty, = Ty, + (tigr — ti)ug(ti, xy,). On
The same scheme when applied to solving the backward trajectory would yield,

iti = jtzﬂ+1 + (ti - ti+1)u9(ti+1a j1571+1)' (92)

Clearly, there is no guarantee that these two trajectories match during the forward and backward solve
introducing a source of error. One potential solution is to use an algebraically reversible solver (see
Blasingame and C. Liu 2025; Kidger et al. 2021; McCallum and Foster 2024) which guarantees that
the forward and backward trajectory match perfectly. Another option is to store the forward trajectory
{z,} Y, in memory and use interpolated adjoints if the backward timesteps do not perfectly align
with the forward timesteps (see S. Kim et al. 2021).

Stability concerns. Consider the simple ODE, ¢(t) = Ay(t) defined on ¢ € [0, T with y(0) = yo
and A < 0. Clearly, most ODE solvers with a non-trivial region of stability (see Harier and Wanner
2002, Definition 2.1) will solve this ODE without an issue, as the errors will decrease exponentially
with A < 0. However, in the backwards in time solve from y(7T") the errors will grow exponentially.
It can be shown that the adjoint state suffers from similar stability issues. The local behavior of a
differential equation is described through the eigenvalues of the Jacobian of the vector field (see

Butcher 2016). For @, this is given by % and for a this is given by

0 T 81149 8u9
(- a5 2(0)) = -5 200, ©3)
Clearly, the Jacobians for a, and x; solved in reverse-time are identical, meaning the stability of the
backward solve is pushed onto the solve for the adjoint state (see Kidger 2022, Section 5.1.2.4) for
more details. Reversible solvers eliminate truncation errors, but tend to suffer from poor stability,
e.g., the region of stability for reversible Heun applied to neural ODEs is the complex interval [—i, 4]
(Kidger et al. 2021). Recent work by McCallum and Foster (2024), however, has shown a strategy for
constructing reversible solvers with a non-trivial region of stability.

Recommendations. In light of these concerns we propose we consider to be best practices for
deciding what scheme to use.

Generally, the best choice is DTO when memory allows as it is the most accurate in terms of the
forward discretization. If memory is an issue then using a clever checkpointing scheme (Griewank
1992; Griewank and Walther 2000; Stumm and Walther 2010) can help alleviate such issues in
exchange for additional compute time. The recursive checkpointing strategy in combination with
DTO is actually the default (and recommended) implementation in the Diffrax library. Alternatively,
one could store the forward trajectory in memory and then apply the OTD scheme on these stored
states (not activations). This strategy of caching the forward trajectory is quite popular and was
used by Blasingame and C. Liu (2024a) and Domingo-Enrich et al. (2025) in practice when solving
the continuous adjoint equations. Another option is to use an algebraically reversible solver in
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conjunction with OTD. Lastly, one could use vanilla OTD, which we should mention can actually
work reasonably well depending on the application despite the concerns listed above.

In Table 4 we summarize the discussion of this section and hope it is helpful to the reader.

F On control signal optimization

Rather than optimizing the trajectory of the solution or the initial condition, several works (X. Liu
et al. 2023; L. Wang et al. 2025) have explored the guidance from the perspective of optimal control
(Kirk 2004). In essence this technique first injects an additional control signal, z € C!(R; R%), to the
vector field, u?, such that

dﬂ)t

dt

Thus, instead of optimizing {@; };c[o,¢ directly, this control signal can instead be optimized, serving
as one of the key insights in (X. Liu et al. 2023; L. Wang et al. 2025). Le., suppose we have a neural
ODE with vector field u/ (x), then we can write the optimization problem as

= ud (x;) + 2(t). 94)

T
min  L(zr) + )\/ llz(t)| dt,
: 0 (95)

T
st. xp=xg +/ wl(xy) + z(t) dt.
0

The next natural question then is to ask about the behavior of a greedy strategy applied to z(¢). To
simplify the analysis, we now consider a control signal applied to the posterior model a:?lt such that
it is replaced by w?‘t(wt) + z(t) which amounts to simply rescaling z(t) from Equation (94) with b;.
From this construction, it should be clear that the greedy gradient for the control signal is merely
Vz,L(&1). If using the original formulation where the control signal is applied to the vector field,
rather than the denoiser, the gradient is simply scaled by a weighting function dependent on time.
Note that this approach is similar to the greedy approach taken by Blasingame and C. Liu (2024b);
however, they inject the control signal to the source prediction model rather than the target prediction
model.

F.1 Continuous adjoint equations for control signals

We can model the gradient for this signal by augmenting the continuous adjoint equations with the
adjoint state a(t) :== 0L/0z(t). In Theorem F.1 we show that this gradient is simply an integral of
the adjoint state a(t).

Theorem F.1 (Continuous adjoint equations for the control term). Let uf € C**([0,T] x
R?=; R%+) be a parameterization of some time-dependent vector field of a neural ODE that
is Lipschitz continuous in its second argument, and let z € C*([0,1];R?) be an additional
control signal such that the new dynamics are given by Equation (94). Let a(t) := 0L/0z(t),
then

a(t) = 7/ az(s) ds. (96)

T

Our proof follows the structure of the modern proof of Pontryagin’s original result (Pontryagin et al.
1963) presented by (R. T. Chen et al. 2018); and is similar to the form used by Blasingame and C. Liu
(2024a, Theorem 2.2).

Proof. For notational clarity, we use the notation x(t) = ;. We define the augmented state on [0, 7]
as

d [z B ~ue(t, (1)) + 2(t)
& |:z:| (t) - faug — [ %(t) ] ) (97)
and the augmented adjoint state as
Qg (t) = [Zﬂ (t). 98)



The Jacobian of f,,, has form

afaug Oug (t,2(t)) 1
= 8:2 . 99
0|z, z] 0 0 ©9)
The evolution of the adjoint state is given by
daaug 8.faug
t)=—laz a;](t t). 100
0= loe sl ()5 () (100)
Therefore, a,,(t) evolves with
da
a.(T) =0, —dt" (t) = —as(t), (101)
thereby finishing the proof. O

G Implementation details

We discuss how to implement the greedy strategy.

G.1 The construction of the greedy guidance schemes

Recall that the general Butcher tableau for a k-stage explicit RK scheme (Stewart 2022, Section 6.1.4)
is written as

C1
C2 | Q2,1
C3 | a3l G3.2
S B (102)
b
Cr | g,1 Qg2 " Q(k—1)k
by b2 - b1 by
Thus a single-step is given by
J
Un,; = Uy (tn +eih, @y +hY aj,,»um> . i=12.. .k (103)
i=1
k
Tpi1=Tp+h Y bjthn;, (104)
j=1

where a;;,b;,c; are all given via the Butcher Tableau (Stewart 2022, Section 6.1.4). Now, we
consider a single step from time s to time ¢ with initial value & and step size h := ¢t — s. Then, the
gradient is

i=1

k J
Va®si(x) =Vex+h Z b;iVaug (s +cjh,x+h Z am-ul) ,

Jj=1

J
Vi, ug(s + cjh, &;) (I—i—hZaMVmui)} . (105)

=1
where we let
J
& =x+hy aju. (106)
1=1

Which can easily be found through standard reverse-mode autodifferentiation frameworks; likewise,
the gradients for multiple Euler steps can be found.
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G.2 A PyTorch pseudocode illustration

Below in Code G.1 we provide an example PyTorch implementation of the greedy guidance strategy
with an Euler scheme for sampling the main ODE.

Code G.1: Example implementation of greedy guidance

# posterior step

def posterior_step(t, x, n_steps=1)
tlist = [0, 1]
dt = tlist[1] - t

if method == 'euler':
# Euler step
x = x + model(t, x) * dt
elif method == 'midpoint':
# Midpoint step
x = X + dt * model(t + 0.5 *x dt, x + 0.5 * dt * model(t, x))
elif method == 'ralston3':
# Ralston's third order
k1 = model(t, x)
k2 = model(t + 0.5 * dt, x + 0.5 * dt * ki)
k3 model(t + 0.75 * dt, x + 0.75 * dt * k2)

x = x +dt *x (2/9 % k1 + 1/3 * k2 + 4/9 * k3)
elif method == 'heun3':

# Heun's third order

k1 = model(t, x)

k2 = model(t + 1/3 * dt, x + 1/3 * dt * k1)

k3 = model(t + 2/3 * dt, x + 2/3 * dt * k2)

x =x +dt x (1/4 * k1 + 3/4 * k3)

elif method == 'rkéd':
# RK-4 step
k1 = model(t, x)
k2 = model(t + 0.5%dt, x + 0.5*kdt*kl)
k3 = model(t + 0.5%dt, x + 0.5*%dt*k2)
k4 = model(t + dt, x + dt*k3)

x =x+dt x (1/6 x k1 + 1/3 * k2 + 1/3 * k3 + 1/6 * k4)

elif method == 'multiple_euler':
# k Euler steps

Dt = tlist[1] - t
dt = Dt / n_steps
ts = torch.linspace(t, tlist[1], n_steps + 1)

for t in ts:
x = x + model(t, x) * dt

return x

# posterior guidance pseudocode
# assumed dt and loss are defined

xt = x0
for t in timesteps:
# quick fiz
xt_opt = xt.detach().clone().requires_grad_(True)
if optim == 'sgd':
optimizer = torch.optim.SGD([xt_opt], lr=1r)
else:

optimizer = torch.optim.LBFGS([xt_opt], max_iter=max_iter, lr=lr, line_search_fn='strong_wolfe')

for step in range(opt_steps):
optimizer.zero_grad()

xlhat = posterior_step(t, xt_opt)

loss(xtlhat) .mean() .backward()
optimizer.step()

with torch.no_grad():
xt = xt_opt + model(t, xt_opt) * dt

return xt

H A brief introduction to inverse problems

Inverse problems cover a large class of scientific problems (Chung, J. Kim, et al. 2023) that encompass
scenarios where a partial measurement y is made of . When the mapping & +— ¥ is not an injection,
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recovering « from y becomes an ill-posed inverse problem. Generally, the relationship between the
underlying sample x and the measurement y is given by

y=A®)+n, ymneR xzecR, (107)

where A : R% — R% is the forward measurement operator and 1 ~ (0, B;I ) is the measurement
noise.

The inverse problem then is to find p(x|y).

More details on these types of problems can be found in Chung, J. Kim, et al. (2023), Moufad et al.
(2025), and B. Zhang et al. (2025).

H.1 Inverse problems and diffusion models

Recall that the ODE formulation of diffusion models is just a particular type of affine Gaussian
probability path (Lipman, Havasi, et al. 2024). Following the conventions of the EDM model (Karras,
Aittala, et al. 2022) we write this ODE formulation, known in the literature as the probability flow
ODE, below in

dCCt = _dtgtth lng(O't,.’Bt) dt, (108)
where p(oy, x;) is the joint distribution of x; at noise level o M1 N.B., for diffusion models dt is
a negative timestep and we integrate in reverse-time from 7" to 0. These models are also called
score-based generative models due to learning the score function V, log p(oy, ).

One of the insights of Chung, J. Kim, et al. (2023) and Y. Song, Sohl-Dickstein, et al. (2021) is to
apply Bayes’ theorem for inverse problems to score-based generative models, i.e.,

x)p(x
p(xly) = Plylzlp(z) ), (109)
p(y)
Vg logp(z|y) = Vg logp(x) + Vg log p(y|z). (110)
Adapting this for diffusion models, assuming A is defined on x( (the output), we have
Vi, logp(or, @ily) = Vg, logp(or, i) + Va, log p(ylxe, o1). (111

The unconditional score term is the regular score function learned by diffusion models and thus is
appropriately learned; however, the other term is much more difficult to work with. The approach of
Chung, J. Kim, et al. (2023) is to use an approximation of

P(y|iﬂt,0t) = ]E:ngwp(mo\zt)[p(y|m01UO)]7 (112)
via Tweedie’s formula (Stein 1981) to write
p(ylze, 01) = p(y|E[zo|T:], 00). (113)

The approximation error can be quantified by the Jensen gap (Chung, J. Kim, et al. 2023, Theorem 1).

I Experimental details

We provide additional details of the experiments performed in Section 7. N.B., for all experiments we
used fixed random seeds between the different software components to ensure a fair comparison.

L1 Inverse image problems

Inverse problems. The inverse problems are implemented in the same way as in B. Zhang et al.
(2025). We reiterate some of the important settings below. For Gaussian and motion deblurring we
made use of kernels of size 61 x 61 with standard deviations of 3.0 and 0.5 respectively. The box
inpainting task makes use of a random box of size 128 x 128 to mask the original images, while the
random inpainting task randomly masks each pixel with a probability of 70% following (B. Song
et al. 2024). The measure for the high dynamic range reconstruction problem is defined as

y ~ N(clip(amo, —1,1), B21), (114)
with o = 2.

"This o 1s not the same as the o; from the scheduler (at, crt) used in the main paper.
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Diffusion model. We make use of the pre-trained diffusion model from Chung, J. Kim, et al.
(2023), trained on the FFHQ 256 x 256 dataset. We focus on the probability flow ODE formulation
popularized by Karras, Aittala, et al. (2022) known as EDM described as

d;];t = —dtatth logp(at,act) dt. (115)

Following Ben-Hamu et al. (2024), we employ a midpoint scheme to solve this ODE in reverse-time
with V = 20 steps. We use the noise schedule o; = ¢ which means ¢; = 1. The discretized noise
schedule {o,, }_, is given by the following polynomial interpolation

1 n 1 1 P
o, = <U§1ax + N1 <J§1in — or,’{lax>> . (116)

Weuse p =7, T = omax = 100, and € = o;n = 0.01 for all experiments and integrate over
[e, T']. N.B., truncating the integration domain at e rather than 0 is quite common in diffusion models
(Y. Song, Dhariwal, et al. 2023).

Hyperparameters. Unlike previous works (B. Zhang et al. 2025) we did not adjust the hyper-
parameters per task and left them the same throughout. The learning rate was set at 7 = 1 for all
experiments, and we performed nqp, = 50 optimization steps with the stock implementation of the
torch.optim.SGD method for each step of the ODE solve. We set 3,, = 0.05 for all tasks.

Ablation study. For the ablation study in Table 2 we used the L-BGFS optimizer over the standard
SGD optimizer used in the main experiments (for the greedy guidance runs). For full DTO we
used SGD as it provided better performance over L-BGFS in that scenario. N.B., due to compute
limitations we couldn’t run DTO for step sizes larger than 8. Importantly, we fix the maximum number
of optimization steps between the greedy and DTO strategies; for greedy we take 5 optimization step
per step in the ODE solver, so a 100 in total. Likewise, for DTO we take a 100 optimization steps in
total.

1.2 Molecule generation for QM9

We follow the experimental methodology taken in previous work (Ben-Hamu et al. 2024; L. Wang
et al. 2025) and follow the conditional generation pipeline used by Hoogeboom et al. (2022). An
equivariant graph neural network (GNN) was trained for each property on half of the QM9 dataset,
serving as a classifier—this model was then used as a guidance function during the experiments. The
EquiFM (Y. Song, Gong, et al. 2023) model was trained on the whole QM9 training set and was used
as the underlying flow model for the experiments. Following L. Wang et al. (2025), the test time
properties were sampled from the whole training set; in contrast to Ben-Hamu et al. (2024).

Following Ben-Hamu et al. (2024) we used the L-BFGS algorithm (D. C. Liu and Nocedal 1989)
with 5 optimizer steps and 5 inner steps with a linear search, in particular we used the stock PyTorch
implementation torch.opt.LBFGS. For the DTO experiment we used a learning rate of n = 1. We
tried this for the posterior guidance experiments but encountered severe instability. We found that a
learning rate of 7 = 0.001 seemed to work better.

Recall that Proposition 5.2 states that the greedy gradient is scaled by the covariance projection.
This effect is lessened as ¢ — 1, thus in later timesteps the greedy gradient is more likely to push
samples off the data manifold. We observed this, with exploding losses even at small learning rates.
To remedy this, we took inspiration from other works (Chung, J. Kim, et al. 2023; Moufad et al. 2025;
Yu et al. 2023) and annealed the learning rate. We chose the following simple scheduler:

1—1) t>05
"t:{g( )t<05’ (117

where 17 = 0.001 is the base learning rate.
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Runge-Kutta 4. Additionally, we ran some experiments using RK4 but ran into insurmountable
stability issues. Recall that RK4 is given by

ki =g (tn, ), (118)
h h
k:2:u9 <tn+2,$n+2k1) 1) (119)
h h
ks = uyg (tn+h,$n+hk3)7 (121)
h
Tpt1 = Ty + 6(’61 + 2ko + 2ks3 + k4) (122)

Using the step size h = 1 — ¢t we encountered large stability issues with the k4 term due to being
evaluated at the endpoint of the flow model trajectory. We tried a mixed-solver scheme were we
would start with Euler and then switch to RK4, but that did not help. We also tried the common
diffusion trick of truncated the time interval to [0, 1 — €] for some small € > 0, but this did not solve
the stability issues either. Ultimately, we abandoned it for this work and left such explorations for
future work. It seems reasonable to suppose that schemes which don’t evaluate on the endpoint, e.g.,
Ralston’s method, Heun’s third-order method, or Ralton’s third-order method may fair better.

I.3 Numerical schemes

We detail the numerical schemes used for posterior guidance beyond Euler.

Midpoint. The midpoint scheme used in both experiments is implemented as

h h
T, = T + hue <t + 5, Ty + 2U9(t,$t)> (123)

with step size h = 1 — ¢.!2

2-step Euler. This scheme used in both experiments is implemented as

h
Toy =@t guglt @), (124)
h h
xlzmt+%+§u9 <t+2,xt+g), (125)

with step sizes h = 1 — ¢.

1.4 Hardware and compute cost

Inverse image problems. The inverse image problem experiments were run on a single NVIDIA
H100 80GB GPU. It took roughly 4 minutes and 78 GB of VRAM to generate 10 images for each
inverse problem. As such each experiment took about an 40-50 minutes. Experiments which used
the midpoint method, unsurprisingly ran about 90% slower.

Molecule generation. The molecule generation experiments were run on a single NVIDIA V100
16GB GPU. It took about 3 minutes and 1.5 GB of VRAM to generate 1 molecule leading to the
experiments taking on the order of 300 minutes to complete. Experiments which used the midpoint
method, unsurprisingly ran about 90% slower.

J Further experimental results

We present additional experimental results that we could not include in the main paper for the sake of
space.

">This is appropriately adjusted for diffusion models with a terminal time of 0.
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J.1 Molecule generation for QM9

In Table 5 we present the atom stability percentage (ASP) and molecule stability percentage (MSP) per
property for each guided generation model. Interestingly, despite their poor quantitative performance
in MAE (cf. Table 3) the greedy (midpoint) and (2-step Euler) strategies have slightly better stability
than DTO.

Table 5: Stability reported in ASP/MSP per property.

Property @ Ae EHOMO ELUMO 7 Cy
DTO 94.90/65.00 96.20/74.00 95.90/67.00 96.00/65.00 94.60/61.00 95.00/67.00
Greedy (Euler) 94.70/68.80 96.40/76.00 97.40/79.00 98.40/84.80 97.60/84.00 85.55/21.20
Greedy (midpoint) 97.46/80.00 97.51/83.00 97.91/81.00 97.77/83.00 97.70/81.00 97.09/80.00
Greedy (2-step Euler)  97.67/82.00  96.95/74.00  98.18/84.00  96.29/72.00  97.40/93.00  97.75/84.00
EquiFM 98.88/89.00

J.2 Further results on inverse image problems

To put the results from Section 7.1 into context we present some detailed comparisons to other works
from the domain of inverse problems with diffussion models, namely:

DAPS (B. Zhang et al. 2025),

DPS (Chung, J. Kim, et al. 2023),

DDRM (Kawar et al. 2022),

DDNM (Y. Wang, Yu, and J. Zhang 2023),

DCDP (Li et al. 2024),

FPS-SMC (Dou and Y. Song 2024),

DiffPIR (Zhu et al. 2023), and

RED-diff (Mardani et al. 2024).

e A R

We present the full comparison in Table 6.
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Table 6: Additional results for inverse image problems on FFHQ 256 x 256.

Task Method PSNR (1) SSIM (1) LPIPS () FID ({)
Greedy (Euler) 27.94 0.728 0.217 66.64
Greedy (midpoint) 27.98 0.727 0.224 70.96
Greedy (2-step Euler) 27.95 0.728 0.220 68.93
DAPS 29.07 0.818 0.177 51.44
Super resolution 4 DPS 25.86 0.753 0.269 81.07
DDRM 26.58 0.782 0.282 79.25
DDNM 28.03 0.795 0.197 64.62
DCDP 28.66 0.807 0.178 53.81
FPS-SMC 28.42 0.813 0.204 49.25
DiftPIR 26.64 - 0.260 65.77
Greedy (Euler) 23.74 0.732 0.187 46.87
Greedy (midpoint) 24.08 0.724 0.186 44.55
Greedy (2-step Euler) 23.88 0.720 0.188 44.09
DAPS 24.07 0.814 0.133 43.10
Inpaint (box) DPS 22.51 0.792 0.209 61.27
DDRM 22.26 0.801 0.207 78.62
DDNM 24.47 0.837 0.235 46.59
DCDP 23.89 0.760 0.163 45.23
FPS-SMC 24.86 0.823 0.146 48.34
Greedy (Euler) 30.87 0.823 0.141 40.73
Greedy (midpoint) 31.03 0.816 0.139 38.80
Greedy (2-step Euler) 30.80 0.811 0.144 39.23
Inpaint (random) DAPS 31.12 0.844 0.098 32.17
DPS 25.46 0.823 0.203 69.20
DDNM 2991 0.817 0.121 44.37
DCDP 30.69 0.842 0.142 52.51
FPS-SMC 28.21 0.823 0.261 61.23
Greedy (Euler) 28.01 0.766 0.182 57.04
Greedy (midpoint) 28.36 0.776 0.185 58.55
Greedy (2-step Euler) 28.18 0.774 0.181 57.18
DAPS 29.19 0.817 0.165 53.33
Gaussian deblurring DPS 25.87 0.764 0.219 79.75
DDRM 24.93 0.732 0.239 92.43
DDNM 28.20 0.804 0.216 57.83
DCDP 27.50 0.699 0.304 86.43
FPS-SMC 26.54 0.773 0.253 67.45
DiffPIR 27.36 - 0.236 59.65
Greedy (Euler) 29.35 0.748 0.207 63.05
Greedy (midpoint) 29.73 0.762 0.207 66.21
Greedy (2-step Euler) 29.64 0.764 0.203 63.99
Motion deblurring DAPS 29.66 0.847 0.157 39.49
DPS 24.52 0.801 0.246 65.23
DCDP 25.08 0.512 0.364 125.13
FPS-SMC 27.39 0.826 0.227 48.32
DiffPIR 26.57 - 0.255 65.78
Greedy (Euler) 15.10 0.282 0.598 298.06
Greedy (midpoint) 15.10 0.286 0.595 299.45
Greedy (2-step Euler) 15.07 0.284 0.598 304.60
Phase retrieval DAPS 30.63;&3,13 0.851i0,072 6.139:&04060 42.71
DPS 17.6442 .97 0.44140.129 0.41040.090 104.52
RED-diff 15-60i4.48 0.398i0,195 0.596i0_092 167.43
DCDP 28.65 +8.09 0.78140.217 0.203+0.196 68.13
Greedy (Euler) 24.767 0.551 0.327 79.06
Greedy (midpoint) 25.09 0.558 0.332 76.73
Greedy (2-step Euler) 24.81 0.547 0.330 76.26
Nonlinear deblur DAPS 28.29;&1,77 O~783i0,036 0.155:&0‘032 49.38
DPS 23.3942.01 0.62340.082 0.27840.060 91.31
RED-diff 30.8640.51 0.79540.028 0.160+0.034 43.84
DCDP 27.9242 64 0.779+0.067 0.183+0.051 51.96
Greedy (Euler) 24.16 0.767 0.181 43.59
Greedy (midpoint) 26.62 0.809 0.160 37.86
High dynamic range Greedy (2-step Euler) 25.70 0.797 0.165 3797
DAPS 27.1243 53 0.75240.041 0.16240.072 42.97
DPS 22.7346.07 0.59140.141 0.26440.156 112.82
RED-diff 22.164+3.41 0.51240.083 0.25840.089 108.32
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J.3 Sampling trajectories for inverse problems

We present the solution trajectories the different guidance algorithms below for solving the HDR
inverse problem. Note that the midpoint and 2-step Euler, unsurprisingly, have better approximations
of ¢ 1-

Figure 6: Sampling trajectory for greedy (Euler) solving the HDR inverse problem. Top row is
m‘flt(mt) and the bottom row is x;.

Figure 7: Sampling trajectory for greedy (midpoint) solving the HDR inverse problem. Top row is
midpoint estimate and the bottom row is x;.

Figure 8: Sampling trajectory for greedy (2-step Euler) solving the HDR inverse problem. Top row is
2-step Euler estimate and the bottom row is x;.

J.4 More qualitative samples for inverse problems

We showcase some examples generated by the greedy gradient strategy (Euler) on the different
inverse problems.
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Figure 9: Qualitative visualization of using greedy guidance to solve the super resolution 4 X inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 10: Qualitative visualization of using greedy guidance to solve the super resolution 4 x inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 11: Qualitative visualization of using greedy guidance to solve the Gaussian deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.
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Figure 12: Qualitative visualization of using greedy guidance to solve the motion deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 13: Qualitative visualization of using greedy guidance to solve the Phase retrieval inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.

Figure 14: Qualitative visualization of using greedy guidance to solve the nonlinear deblurring inverse
problem. Top row is the ground truth, middle row is the measurement, and the bottom row is the
reconstruction.
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Figure 15: Qualitative visualization of using greedy guidance to solve the HDR inverse problem. Top
row is the ground truth, middle row is the measurement, and the bottom row is the reconstruction.
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Figure 16: Qualitative visualization of controlled generated molecules for various dipole moments
(). Top row is generated using a end-to-end guidance with a DTO scheme and the bottom row is
generated using posterior guidance.

J.5 More qualitative samples for controlled molecule generation

In Appendix J.4 we present some qualitative results for property-guided molecule generation. In
particular, we target different dipole moments.

K Discussions

K.1 Broader Impacts

Controllable generation can be used for many tasks both benign and malicious. The insights from
this paper could be used to develop more effective adversarial attacks, generation of harmful content,
or other malicious applications.

K.2 Limitations

As this work is mostly theoretical, our experimental illustrations are limited, serving more to illustrate
the key concepts rather than advancing the state-of-the-art within the particular problem. We believe
that future work can use these insights to make informed design choices when developing solutions
to guided generation problems.

In our controllable molecule generation experiments, we take a naive strategy for annealing the
learning rate leaving performance on the table. Moreover, we don’t consider mixed accuracy schemes,
i.e., using Euler for certain steps closer to the target and midpoint for steps further away (cf. Moufad
et al. 2025).
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