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ABSTRACT
The task of skeleton-based action recognition remains a core chal-
lenge in human-centred scene understanding due to the multiple
granularities and large variation in human motion. Existing ap-
proaches typically employ a single neural representation for differ-
ent motion patterns, which has difficulty in capturing fine-grained
action classes given limited training data. To address the afore-
mentioned problems, we propose a novel multi-granular spatio-
temporal graph network for skeleton-based action classification
that jointly models the coarse- and fine-grained skeleton motion
patterns. To this end, we develop a dual-head graph network con-
sisting of two interleaved branches, which enables us to extract
features at two spatio-temporal resolutions in an effective and effi-
cient manner. Moreover, our network utilises a cross-head commu-
nication strategy to mutually enhance the representations of both
heads. We conducted extensive experiments on three large-scale
datasets, namely NTU RGB+D 60, NTU RGB+D 120, and Kinetics-
Skeleton, and achieves the state-of-the-art performance on all the
benchmarks, which validates the effectiveness of our method1.
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(a) Hand waving

(b) Type on a keyboard Time

Figure 1: Some actions can be recognised via coarse-grained tempo-
ral motion patterns, such as ‘hand waving’ (top), while recognising
other actions requires not only coarse-grained motion but subtle
temporal movements, such as ‘type on a keyboard’ (bottom).

1 INTRODUCTION
Action recognition is a fundamental task in human-centred scene
understanding and has achieved much progress in computer vision
and multimedia. Recently, skeleton-based action recognition has
attracted increasing attention to the community due to the advent
of inexpensive motion sensors [3, 29] and effective human pose esti-
mation algorithms [27, 32, 36]. The skeleton data typically are more
compact and robust to environment conditions than its video coun-
terpart, and accurate action recognition from skeletons can greatly
benefit a wide range of applications, such as human-computer in-
teractions, healthcare assistance and physical education.

Different from RGB videos, skeleton data contain only the 2D
or 3D coordinates of human joints, which makes skeleton-based
action recognition particularly challenging due to the lack of image-
based contextual information. In order to capture discriminative
spatial structure and temporal motion patterns, existing methods
[27, 31, 36] usually rely on a shared spatio-temporal representation
for the skeleton data at the original frame rate of input sequences.
While such a strategy may have the capacity to capture action
1Code available at https://github.com/tailin1009/DualHead-Network
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patterns of multiple scales, they often suffer from inaccurate predic-
tions on fine-grained action classes due to high model complexity
and limited training data. To tackle this problem, we argue that a
more effective solution is to explicitly model the motion patterns of
skeleton sequences at multiple temporal granularity. For example,
actions such as ‘hand waving’ or ‘stand up’ can be distinguished
based on coarse-grained motion patterns, while recognizing actions
like ‘type on a keyboard’ or ‘writing’ requires understanding not
only coarse-grained motions but also subtle temporal movements
of pivotal joints, as shown in Figure.1. To the best of our knowledge,
such multiple granularity of temporal motion information remains
implicit in the recent deep graph network-based approaches, which
is less effective in practice.

In this paper, we propose a dual-head graph neural network
framework for skeleton-based action recognition in order to capture
both coarse-grained and fine-grained motion patterns. Our key idea
is to utilise two branches of interleaved graph networks to extract
features at two different temporal resolutions. The branch with
lower temporal resolution captures motion patterns at a coarse
level, while the branch with higher temporal resolution is able to
encode more subtle temporal movements. Such coarse-level and
fine-level feature extraction are processed in parallel and finally
the outputs of both branches are fused to perform dual-granular
action classification.

Specifically, we first exact a base feature representation of the
input skeleton sequence by feeding it into a backbone Graph Convo-
lution Network (GCN). Then we perform two different operations
to the resulting feature maps: the first operation subsamples the
feature maps at the temporal dimension with a fixed downsampling
rate, which removes the detailed motion information and hence
produces a coarse-grained representation; in the second operation,
we keep the original temporal resolution and utilise an embedding
function to generate a fine-grained representation.

Subsequently, we develop two types of GCN modules to process
the resulting coarse- and fine-grained representations, which are
referred as fine head and coarse head. Each head consists of two
sequential GCN blocks, which extract features within respective
granularity. In particular, our coarse head captures the correlations
between joints at a lower temporal resolution, hence infers actions
in a more holistic manner. To facilitate such coarse-level inference,
we estimate a temporal attention from the fine-grained features in
the fine head, indicating the importance of each frame. The temporal
attention is used to re-weight the features at the coarse head. The
intuition behind such cross head attention is as follows: here we
pass the fine-grained motion contexts encoded in the attention to
the coarse head in order to remedy the lack of fine level information
in the coarse head. Similarly, we utilise the coarse-grained features
to estimate a spatial attention indicating the importance of joints.
The spatial attention highlights the pivotal joint nodes in the fine
head. Our fine GCN blocks are able to focus on the subtle temporal
movements of the pivotal joints and hence extract the fine-grained
information effectively. Finally, each head predicts an action score,
and the final prediction is given by fusion of two scores.

We validate our method by extensive experiments on three pub-
lic datasets: NTU RGBD+D 60[29], NTU RGB+D 120[23], Kinetics-
Skeleton[15]. The results show that our method outperforms exist-
ing works in all the benchmarks, demonstrating the effectiveness

of the proposed coarse-and-fine dual head structure. To summarize,
our contributions are three-folds:

1) We propose a dual-head spatio-temporal graph network that
can effectively learn robust human motion representations at both
coarse- and fine-granularity for skeleton-based action recognition.

2) We design a cross head attention mechanism to mutually
enhance the spatio-temporal features at both levels of granularity,
which enables the model to focus on key motion information.

3) Our dual-head graph neural network achieves new state-of-
the-art on three public benchmarks.

2 RELATEDWORK
2.1 Skeleton-based Action Recognition
Early approaches on skeleton-based action recognition typically
adopt hand-crafted features to capture the human body motion
[11, 13, 35]. However, they mainly rely on exploiting the relative
3D rotations and translations between joints, and hence suffer
from complicated feature design and sub-optimal performance. Re-
cently, deep learning methods have achieved significant progress
in skeleton-based action recognition, which can be categorized
into three groups according to their network architectures: i.e., Re-
current Neural Networks (RNNs), Convolutional Neural Networks
(CNNs) and Graph Convolutional Networks (GCNs).

The RNN-based methods usually first extract frame-level skele-
tal features and then model sequential dependencies with RNN
models [7, 22, 24, 29, 39]. For example, [22] constructed an adaptive
tree-structured RNN while [39] designed a view adaptation scheme
for modeling actions. LSTM networks have also been employed
to mine global informative joints [25], to extract co-occurrence
features of skeleton sequences [42], or to learn stacked temporal
dynamics [33]. The CNN-based methods typically convert the skele-
ton sequences into a pseudo-image and employ a CNN to classify
the resulting image into action categories. In particular, [20] de-
signed a co-occurrence feature learning framework and [17] used
a one-dimensional residual CNN to identify skeleton sequences
based on directly-concatenated joint coordinates. [26] proposed 10
types of spatio-temporal images for skeleton encoding, which are
enhanced by visual and motion features. However, both the RNNs
and CNNs have difficulty in capturing the skeleton topology which
are naturally of a graph structure.

To better capture human bodymotion, recent works utilise GCNs
[32, 36] for spatial and temporal modeling of actions. A milestone of
the GCN-based method is ST-GCN[36], which defines a sparse con-
nected spatial-temporal graph that both considers natural human
body structure and temporal motion dependencies in space-time
domain. Since then, a large body of works adopt the GCNs for
skeleton-based action recognition: 2s-AGCN[32] proposed an adap-
tive attention module to learn non-local dependencies in spatial
dimension. [41] explored contextual information between joints.
[31] further introduced spatial and temporal attentions in the GCN.
[6] developed a shift convolution on the graph-structured data.
[27] proposed a multi-scale aggregation method which can effec-
tively aggregate the spatial and temporal features. [38] designed a
context-enriched module for better graph connection. [34] utilised
multiple data modality in a single model. [4] proposed multi-scale
spatial temporal graph for long range modeling. Nevertheless, those
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Figure 2: Overview of our proposed framework. We first utilise a STGC block to generate backbone features of skeleton data, and then use a
coarse head to capture coarse-grainedmotion patterns, and a fine head to encode fine-grained subtle temporal movements. Cross-head spatial
and temporal attentions are exploited to mutually enhance feature representations. Finally each head generates a probabilistic prediction of
actions and the ultimate estimation is given by fusion of both predictions.

existing methods rely on a single shared representation for multi-
granular motion, which is difficult to learn from limited training
data. By contrast, our method explicitly design a two-branch graph
network to explicitly capture coarse- and fine-grained motion pat-
terns and hence is more effective on modeling action classes.

2.2 Video-based Action Recognition
In video-based action recognition, several methods have explored
temporal modeling at multiple pathways or temporal resolutions.
SlowFast Networks [8] “factorize” spatial and temporal inference in
two different pathways. Temporal Pyramid Network[37] explored
various visual tempos by fusing features at different stages with
multiple temporal resolutions. Recent Coarse-Fine networks[14]
propose a re-sampling module to improve long-range dependencies.
However, multiple-level motion granularity are not sufficiently
explored in skeleton-based action recognition. Due to the lack of
image level context, we need to carefully design the networks for
each level of granularity. In addition, we propose a cross-head
attention strategy to enhance each head with another, resulting in
an effective dual-granular reasoning.

3 METHODS
3.1 Overview
Our goal is to jointly capture the multi-granular spatio-temporal
dependencies in skeleton data and learn discriminative represen-
tations for action recognition. To this end, we develop a novel
dual-head network that explicitly captures motion patterns at two
different spatio-temporal granular levels. Each head of our network
adopts a different temporal resolution and hence focuses on ex-
tracting a specific type of motion features. In particular, a fine head

maintains the original temporal resolutions as the input so that it
can model fine-grained local motion patterns, while a coarse head
uses a lower temporal resolution via temporal subsampling so that
it can focus more on coarse-level temporal contexts. Moreover, we
further introduce a cross-head attention module to ensure that the
extracted information from different heads can be communicated
in a mutually reinforcing way. The dual-head network generates
its final prediction by fusing the output scores of both heads.

The details of the proposed method are organised as follows.
Firstly, we introduce the GCNs (Sec. 3.2) and backbone module
(Sec. 3.3) for skeletal feature extraction. Secondly, we depict the dual-
head module (Sec. 3.4), the cross-communication attention module
(Sec. 3.5) and the fusion module (Sec. 3.6). Finally, we describe the
details of the multi-modality ensemble strategy (Sec. 3.7).

3.2 GCNs on Skeleton Data
The proposed framework adopts graph convolutional networks to
effectively capture the dependencies between dynamic skeleton
joints. Below we introduce three basic network modules used in
our method, including MS-GCN, MS-TCN and MS-G3D.

Formally, given a skeleton of 𝑁 joints, we define a skeleton
graph as G = (V, E), whereV = {𝑣1, ..., 𝑣𝑁 } is the set of 𝑁 joints
and E is the collection of edges. The graph connectivity can be
represented by the adjacency matrix A ∈ R𝑁×𝑁 , where its element
value takes 1 or 0 indicating whether the positions of 𝑣𝑖 and 𝑣 𝑗
are adjacent. Given a skeleton sequence, we first compute a set of
features X = {𝑥𝑡,𝑛 |1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑛 ≤ 𝑁 ;𝑛, 𝑡 ∈ Z} that can be
represented as a feature tensor X ∈ R𝐶×𝑇×𝑁 , where 𝑥𝑡,𝑛 = X𝑡,𝑛
denotes the C dimensional features of the node 𝑣𝑛 at time t.



MS-GCN. The spatial graph convolutional blocks(GCN) aims to
capture the spatial correlations between human joints within each
frame X𝑡 . We adopt a multi-scale GCN(MS-GCN) to jointly capture
multi-scale spatial patterns in one operator:

YS
𝑡 = 𝜎

(
𝐾∑︁
𝑘=0

Ã𝑘X𝑡W𝑘

)
, (1)

where X𝑡 ∈ R𝑁×𝐶 and YS
𝑡 ∈ R𝑁×𝐶out denote the input and output

features respectively. Here W𝑘 ∈ R𝐶×𝐶out are the graph convolu-
tion weights, and K indicates the number of scales of the graph
to be aggregated. 𝜎 (·) is the activation function. Ã𝑘 are the nor-
malized adjacency matrices as in [18, 21] and can be obtained by:
Ã𝑘 = D̂

− 1
2

𝑘
Â𝑘 D̂

− 1
2

𝑘
, where Â𝑘 = A𝑘 + I is the adjacency matrix

including the nodes of the self-loop graph ( I is the identity matrix)
and D̂𝑘 is the degree matrix of A𝑘 . We denote the output of entire
sequence as YS = [YS

1 , · · · ,Y
S
𝑇
].

MS-TCN. The temporal convolution(TCN) is formulated as a
classical convolution operation on each joint node across frames.
We adopt multiple TCNs with different dilation rates to capture
temporal patterns more effectively. A 𝑁 -scale MS-TCN with kernel
size of 𝐾𝑡 × 1 can be expressed as,

YT =

𝑁∑︁
𝑖

𝐶𝑜𝑛𝑣2𝐷 [𝐾𝑡 × 1;𝐷𝑖 ] (X). (2)

where 𝐷𝑖 denotes the dilatation rate of 𝑖𝑡ℎ convolution.

MS-G3D. To jointly capture spatio-temporal patterns, a unified
graph operation(G3D) on space and time dimension is used. We
also adopt a multi-scale G3D in our model. Please refer to [27] for
more detailed descriptions.

3.3 Backbone Module
We first describe the backbone module of our network, which com-
putes the base features of the input skeleton sequence. In this work,
we adopt the multi-scale spatial-temporal graph convolution block
(STGC-block) [27], which has proven effective in representing long-
range spatial and temporal context of the skeletal data.

Specifically, given an input sequence {𝑧𝑡,𝑛 ∈ R𝑑 |1 ≤ 𝑡 ≤ 𝑇, 1 ≤
𝑛 ≤ 𝑁 ; 𝑡, 𝑛 ∈ Z}, where 𝑑 ∈ {2, 3} indicates the dimension of joint
locations, the output of the backbone module can be defined as:

X𝑏𝑎𝑐𝑘 = {𝑥 (𝑏𝑎𝑐𝑘)𝑡,𝑛 ∈ RC𝑏𝑎𝑐𝑘 |1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑛 ≤ 𝑁 ; 𝑡, 𝑛 ∈ Z}, (3)

where C𝑏𝑎𝑐𝑘 is the channel dimension of the output feature, and
𝑥
(𝑏𝑎𝑐𝑘)
𝑡,𝑛 indicates the representation of a specific joint 𝑛 at frame 𝑡 .

3.4 Dual-head Module
To capture the motion patterns with inherently variable temporal
resolutions, we develop a multi-granular spatio-temporal graph net-
work. In contrast to prior work relying on shared representations,
we adopt a dual-head network to simultaneously extract motion
patterns from coarse and fine levels. Given the backbone features
X𝑏𝑎𝑐𝑘 , below we introduce the detailed structure of our coarse head
and fine head.

Figure 3: Basic blocks in coarse head(left) and fine head(right). We
simplify the GCN blocks in two directions. In coarse block, we re-
duce the G3D component with the largest window size to reduce
temporal modeling; in fine block, we reduce the convolution ker-
nels though channel dimensions to 1/2 of coarse block.

Coarse Head. Our coarse head extracts features at a low tempo-
ral resolution, aiming to capture coarse grained motion contexts. In
the coarse head, a subsampling layer is first adopted to downsample
the feature map at the temporal dimension. Concretely, given the
backbone features X𝑏𝑎𝑐𝑘 with 𝑇 frames, we uniformly sample 𝑇 /𝛼
nodes in the temporal dimension:

X𝑐𝑜𝑎𝑟 = F𝑠𝑢𝑏𝑠 (X𝑏𝑎𝑐𝑘 ), (4)
where F𝑠𝑢𝑏𝑠 and 𝛼 ∈ Z denote the subsampling function and sub-
sampling rate respectively. X𝑐𝑜𝑎𝑟 = {𝑥 (𝑐𝑜𝑎𝑟 )𝑡,𝑛 ∈ RC𝑐𝑜𝑎𝑟 |1 ≤ 𝑡 ≤
𝑇 /𝛼, 1 ≤ 𝑛 ≤ 𝑁 ; 𝑡, 𝑛 ∈ Z} represents the initial feature maps of
coarse head.

Subsequently, we introduce a coarse GCN block, denoted by
G𝑐𝑜𝑎𝑟 , which consists of two parallel paths formed by aMS-G3D and
stacking of multiple MS-GCN and MS-TCN respectively, followed
by a MS-TCN fusion block. The detailed structures of coarse GCN
block is shown in Figure 3 (a). The coarse GCN block is used to
compute the final coarse feature representation as follows:�X𝑐𝑜𝑎𝑟 = G𝑐𝑜𝑎𝑟 (X𝑐𝑜𝑎𝑟 ) (5)

where �X𝑐𝑜𝑎𝑟 is the output feature set.
Fine Head. Our fine head extracts features at a high temporal

resolution and encode more fine-grained motion contexts. In the
fine head, an embedding function F𝑒𝑚𝑏𝑒𝑑 (i.e., 1 × 1 convolution
layer) will be applied at the beginning to reduce the feature di-
mensions. In this way, the output features of the backbone module
X𝑏𝑎𝑐𝑘 will be projected into the new feature space X𝑓 𝑖𝑛𝑒 :

X𝑓 𝑖𝑛𝑒 = F𝑒𝑚𝑏𝑒𝑑 (X𝑏𝑎𝑐𝑘 ), (6)

where X𝑓 𝑖𝑛𝑒 = {𝑥 (𝑓 𝑖𝑛𝑒)𝑡,𝑛 ∈ RC𝑓 𝑖𝑛𝑒 |1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑛 ≤ 𝑁 ; 𝑡, 𝑛 ∈ Z}.
Then we introduce a fine GCN block, denoted as G𝑓 𝑖𝑛𝑒 , to extract
fine-grained temporal features as below,�X𝑓 𝑖𝑛𝑒 = G𝑓 𝑖𝑛𝑒 (X𝑓 𝑖𝑛𝑒 ). (7)
The fine GCN block consists of three parallel branches formed by
twoMS-G3D and stacking of multipleMS-GCN andMS-TCN respec-
tively, followed by a MS-TCN fusion block.The detailed structures
of fine GCN block is shown in Figure 3 (b).
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block.

Block Simplification. The proposed dual-head network, a novel
structure based on the divide-and-conquer strategy, can effectively
extract motion patterns of different levels of granularity in the tem-
poral domain. Note that, due to the downsampling operation, the
temporal receptive field has already been expanded. As a result,
GCN blocks in such structure naturally can be simplified, such
as using smaller temporal convolution kernels. Specifically, in the
coarse head, we remove G3D component with the largest window
size in the STGC-block to reduce temporal modeling. In the fine
head, as the original temporal resolution data already maintains
rich temporal contexts, we then reduce the channel dimensions for
efficient modelling. The detailed structures of coarse GCN block
and fine GCN block are shown in Figure 3.

3.5 Cross-head Attention Module
To better fuse the representations at different temporal resolutions,
we introduce a cross-head attention module to enable communica-
tion between two head branches. Such communication canmutually
enhance the representations encoded by both head branches.

Communication Strategy. The detailed workflow of the pro-
posed communication strategy can be found in Figure 2. Since
the unsampled frames intrinsically contain more elaborate motion
patterns than the downsampled frames, the granular temporal in-
formation will be initially transmitted from the fine head to the
coarse head. Taking the first temporal attention block as an exam-
ple, the output of the Fine block will go though an attention block
similar to the SE network [10]. The generated attention serves as
an interactive message, and then the correlation with the coarse
temporal feature is obtained through element-wise matrix multipli-
cation. The correlated feature will be finally fused with the coarse
temporal feature and fed into the coarse block for the upcoming
propagation. The spatial attention holds a similar structure as the
temporal attention, but the order of input features is different. The
detailed calculation of these two attention will be introduced below
and the structure is shown in Figure 4.

Temporal Attention. The temporal attention block takes the
output of the fine block as the input and can extract the tempo-
ral patterns with high similarity from the distant frames to the
greatest extent because it retains the complete frame rate of the
input sequence. The features learned from this can fully reflect the
importance of the frame level and lead the coarse-level reasoning
in an efficient way of communication. Formally, it can be denoted

as:
𝜃𝑡𝑒 = 𝜎 (Wte (𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑠𝑝 (X𝑓 𝑖𝑛𝑒 ))), (8)

where X𝑓 𝑖𝑛𝑒 is the feature map in fine head,𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑠𝑝 denotes the
average pool in spatial dimension, Wte indicates a 1D convolution
with a large kernel size to capture large temporal receptive field.
𝜎 indicates sigmoid activation function, 𝜃𝑡𝑒 ∈ R1×𝑇×1 is the esti-
mated temporal attention. The attention is used to re-weight coarse
features X𝑐𝑜𝑎𝑟 in a residual manner:

X̂𝑐𝑜𝑎𝑟 = 𝜃𝑡𝑒 · X𝑐𝑜𝑎𝑟 + X𝑐𝑜𝑎𝑟 , (9)
where · indicates the element-wise matrix multiplication with shape
alignment.

Spatial Attention. Our fine head aims to extract motion pat-
terns from subtle temporal movements. To promote such fine-
grained representation learning, we then utilise the spatial attention
to highlight important joints across frames. Compared with fine-
head itself, our coarse head extracts features in lower temporal
resolution and can easily learn high-level abstractions in a holistic
view. We therefore take the advantage of such holistic representa-
tion from coarse head to estimate the spatial attention. Formally,

𝜃𝑠𝑝 = 𝜎 (Wsp (𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑡𝑒 (X𝑐𝑜𝑎𝑟 ))), (10)
where 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑡𝑒 indicates the average pooling at temporal dimen-
sion, Wsp indicates a 1D convolution layer, 𝜃𝑠𝑝 ∈ R1×1×𝑁 is the
joint level attention, which is used to re-weight fine features in a
residual manner:

X̂𝑓 𝑖𝑛𝑒 = 𝜃𝑠𝑝 · X𝑓 𝑖𝑛𝑒 + X𝑓 𝑖𝑛𝑒 , (11)
As shown in Figure 2, our temporal attention and spatial at-

tention are alternately predicted to enhance temporal and spatial
features of both heads.

3.6 Fusion Module
The proposed network has two heads, responsible for the different
granularities of temporal reasoning.We utilise the score level fusion
to combine the information of both head and facilitate the final
prediction. For simplicity, we denote the outputs of coarse head
and fine head as �X𝑐𝑜𝑎𝑟 and �X𝑓 𝑖𝑛𝑒 , and then each head is attached
with a global average pooling (GAP) layer, a fully connected layer
combined with a SoftMax function to predict a classification score
𝑠𝑐𝑜𝑎𝑟 and 𝑠𝑓 𝑖𝑛𝑒 :

𝑠𝑐𝑜𝑎𝑟 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (Wcoar (𝐴𝑣𝑔𝑃𝑜𝑜𝑙 ( �X𝑐𝑜𝑎𝑟 ))), (12)
𝑠𝑓 𝑖𝑛𝑒 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (Wfine (𝐴𝑣𝑔𝑃𝑜𝑜𝑙 ( �X𝑓 𝑖𝑛𝑒 ))). (13)

where 𝑠𝑐𝑜𝑎𝑟 , 𝑠𝑓 𝑖𝑛𝑒 ∈ R𝑎 indicate the estimated probability of 𝑎
classes in the dataset, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 is a GAP operation conducted on
the spatial and temporal dimensions, Wcoar and Wfine are fully
connected layeres. Then, the final prediction can be achieved by
fusion of these two scores:

𝑠 = 𝜇 · 𝑠𝑐𝑜𝑎𝑟 + (1 − 𝜇) · 𝑠𝑓 𝑖𝑛𝑒 , (14)
where 𝜇 is a hyperparameter used to examine the importance be-
tween two heads. During our implementation, we empirically set
𝜇 = 0.5. More configurations can be explored in future work. During
traning, we also supervise 𝑠𝑐𝑜𝑎𝑟 and 𝑠𝑓 𝑖𝑛𝑒 with two cross entropy
losses and sums them with the same weight 𝜇.



3.7 Multi-modality Ensemble
Following prior works[4, 6, 31, 32], we generate four modalities for
each skeleton sequence, they are the joint, bone, joint motion and
bone motion. Specifically, the joint modality is derived from the
raw position of each joints. The bone modality is produced by the
offset between two adjacent joints in a predefined human structure.
The joint motion modality and bone motion modality are generated
by the offsets of the joint data and bone data in two adjacent frames.
We recommend that readers refer to [31, 32] for more details about
multi-stream strategy. Our final model is a 4-stream network that
sums the softmax scores of each modality to make predictions.

4 EXPERIMENTS
4.1 Datasets
NTU RGB+D 60. NTU RGB+D 60 [29] is a large-scale indoor-
captured action recognition dataset, containing 56,880 skeleton se-
quences of 60 action classes captured from 40 distinct subjects and
3 different camera perspectives. Each skeleton sequence contains
the 3D spatial coordinates of 25 joints captured by the Microsoft
Kinect v2 cameras. Two evaluation benchmarks are provided, (1)
Cross-Subject (X-sub): half of the 40 subjects are used for training,
and the rest are used for testing. (2) Cross-View (X-view): the sam-
ples captured by cameras 2 and 3 are selected for training and the
remaining samples are used for testing.
NTU RGB+D 120. NTU RGB+D 120 [23] is an extension of the
NTU RGB+D 60[29] in terms of the number of performers and
action categories and currently is the largest 3D skeleton-based
action recognition dataset containing 114,480 action samples from
120 action classes. Two evaluation benchmarks are provided, (1)
Cross-Subject (X-sub) that splits 106 subjects into training and test
sets, where each set contains 53 subjects; (2) Cross-setup (X-set)
that splits the collected samples by the setup IDs (i.e., even setup
IDs for training and odds setup IDs for testing).
Kinetics-Skeleton. Kinetics dataset [15] contains approximately
300,000 video clips in 400 classes collected from the Internet. The
skeleton information is not provided by the original dataset but
estimated by the publicly available Open-Pose toolbox [3] . The
captured skeleton information contains 18 body joints, as well
as their 2D coordinates and confidence score. There are 240,436
samples for training and 19,794 samples for testing.

4.2 Implementation Details
All experiments are conducted using PyTorch. The cross-entropy
loss is used as the loss function, and Stochastic Gradient Descent
(SGD) with Nesterov Momentum (0.9) is used for optimization. The
downsample ratio of coarse head is set to 𝛽 = 2. The fusion weight
𝜇 of the two heads is set to 0.5 and the weight 𝜆 of the loss function
is set to 1.

The preprocessing of the NTU-RGB+D 60&120 dataset is in line
with previous work [27]. During training, the batch size is set to 64
and the weight decay is set to 0.0005. The initial learning rate is set
to 0.1, and then divided by 10 in the 40𝑡ℎ epoch and 60𝑡ℎ epoch. The
training process ends in the 80𝑡ℎ epoch. The experimental setup
of the Kinetics-Skeleton dataset is consistent with previous works
[32, 36]. We set the batch size to 128 and weight decay to 0.0001.

Methods Publisher NTU RGB+D 60
X-sub X-view

GCA-LSTM [25] CVPR17 74.4 82.8
VA-LSTM [39] ICCV17 79.4 87.6
TCN [17] CVPRW17 74.3 83.1
Clips+CNN+MTLN [16] CVPR17 79.6 84.8
ST-GCN [36] AAAI18 81.5 88.3
SR-TSL [33] ECCV18 84.8 92.4
STGR-GCN [19] AAAI19 86.9 92.3
AS-GCN [21] CVPR19 86.8 94.2
2s-AGCN [32] CVPR19 88.5 95.1
DGNN [30] CVPR19 89.9 96.1
GR-GCN [9] ACMMM19 87.5 94.3
SGN [40] CVPR20 89.0 94.5
MS-AAGCN [31] TIP20 90.0 96.2
NAS-GCN [28] AAAI20 89.4 95.7
4s Decouple-GCN [5] ECCV2020 90.8 96.6
4s Shift-GCN [6] CVPR20 89.7 96.6
STIGCN [12] ACMMM20 90.1 96.1
ResGCN [34] ACMMM20 90.9 96.0
4s Dynamic-GCN [38] ACMMM20 91.5 96.0
2s MS-G3D [27] CVPR20 91.5 96.2
4s MST-GCN [4] AAAI21 91.5 96.6

Js DualHead-Net (Ours) - 90.3 96.1
Bs DualHead-Net (Ours) - 90.7 95.5
2s DualHead-Net (Ours) - 91.7 96.5
4s DualHead-Net (Ours) - 92.0 96.6

Table 1: Comparison of the Top-1 accuracy (%) with the state-of-
the-art methods on the NTU RGB+D 60 dataset.

The learning rate is set to 0.1 and is divided by 10 in the 45𝑡ℎ epoch
and the 55𝑡ℎ epoch. The model is trained for a total of 80 epochs.

4.3 Comparisons with the State-of-the-Art
Methods

We compare the proposed method (DualHead-Net) with the state-
of-the-art methods on three public benchmarks. Following the pre-
vious works [4, 6, 31, 32], we generate four modalities data (joint,
bone, joint motion and bone motion) and report the results of joint
stream (Js), bone stream (Bs), joint-bone two-stream fusion (2s), and
four-stream fusion (4s). Experimental results are shown in Table1,
Table 2 and Table 3 respectively. On three large-scale datasets, our
method outperforms existing methods under all evaluation settings.

Specifically, as shown in Table 1, our method achieves state-of-
the-art performance 91.7 on NTU RGB+D 60 X-sub setting with
only joint-bone two-stream fusion. The final four-stream model fur-
ther improves the performance to 92.0. For NTU RGB+D 120 (Ta-
ble 2), it is worth noting that on X-sub setting, our single-stream (Bs)
model is competitive to two-stream baseline MS-G3D[27], which
demonstrates the effectiveness of our proposed dual-head graph
network design.

Furthermore, for the largest Kinetics-Skeleton, as shown in
Table 3, our four-stream model outperforms prior work[4] by 0.3
in terms of the top-1 accuracy.



Methods Publisher NTU RGB+D 120
X-sub X-set

ST-LSTM [24] ECCV16 55.7 57.9
Clips+CNN+MTLN [16] CVPR17 62.2 61.8
SkeMotion[2] AVSS19 67.7 66.9
TSRJI [1] SIBGRAPI19 67.9 62.8
ST-GCN [36] AAAI18 70.7 73.2
2s-AGCN [32] CVPR19 82.5 84.2
4s Decouple-GCN [5] ECCV2020 86.5 88.1
4s Shift-GCN [6] CVPR2020 85.9 87.6
2s MS-G3D [27] CVPR20 86.9 88.4
ResGCN [34] ACMMM20 87.3 88.3
4s Dynamic-GCN [38] ACMMM20 87.3 88.6
4s MST-GCN [4] AAAI21 87.5 88.8
Js DualHead-Net (Ours) - 84.6 85.9
Bs DualHead-Net (Ours) - 86.7 87.9
2s DualHead-Net (Ours) - 87.9 89.1
4s DualHead-Net (Ours) - 88.2 89.3

Table 2: Comparison of the Top-1 accuracy (%) with the state-of-
the-art methods on the NTU RGB+D 120 dataset.

Methods Publisher Kinetics-Skeleton
Top-1 Top-5

PA-LSTM [29] CVPR16 16.4 35.3
TCN [17] CVPRW17 20.3 40.0
ST-GCN [36] AAAI18 30.7 52.8
AS-GCN [21] CVPR19 34.8 56.5
2s-AGCN [32] CVPR19 36.1 58.7
DGNN [30] CVPR19 36.9 59.6
NAS-GCN [28] AAAI20 37.1 60.1
2s MS-G3D [27] CVPR20 38.0 60.9
STIGCN [12] ACMMM20 37.9 60.8
4s Dynamic-GCN [38] ACMMM20 37.9 61.3
4s MST-GCN [4] AAAI21 38.1 60.8
Js DualHead-Net (Ours) - 36.6 59.5
Bs DualHead-Net (Ours) - 35.7 58.7
2s DualHead-Net (Ours) - 38.3 61.1
4s DualHead-Net (Ours) - 38.4 61.3

Table 3: Comparison of the Top-1 accuracy (%) and Top-5 accu-
racy (%) with the state-of-the-art methods on the Kinetics Skeleton
dataset.

4.4 Ablation Studies
In this subsection, we perform ablation studies to evaluate the
effectiveness of our proposed modules and attention mechanism.
Except for the experiments in Incremental ablation study, all
the following experiments are performed by modifying the target
component based on the full model. Unless stated, all the experi-
ments are conducted under X-sub setting of NTU-RGBD 60 dataset,
using only joint stream.

4.4.1 Incremental ablation study. We first evaluate the pro-
posed dual head module, temporal and spatial attention mechanism

Method Params Dual head TA SA Acc
Baseline 3.2M - - - 89.4

Ours
3.0M ✓ - - 89.9
3.0M ✓ ✓ - 90.2
3.0M ✓ ✓ ✓ 90.3

Table 4: Ablation study of different modules on NTU RGB+D 60
X-sub setting, evaluated with only joint stream. ‘TA’ indicates cross
head temporal attention, ‘SA’ indicates cross head spatial attention.
Note that both attention block introduces parameters fewer than
0.1M.

Channel reduction Params Acc
Baseline (MS-G3D[27]) 3.2M 89.4

No reduction 4.9M 90.5
Reduce channels to 1/2 (proposed) 3.0M 90.3

Reduce channels to 1/4 2.5M 89.7
Table 5: Different reduction rate of feature channels in fine head.

G3D pathways Params Acc
w/o G3D(factorized) 2.4M 90.0

1 G3D 3.0M 90.3
2 G3D 3.9M 90.0

Table 6: Comparison of different number of G3D pathways in
coarse block.

in an incremental manner. We start from our baseline network,
MS-G3D[27]. We add our proposed modules one-by-one. The re-
sults are shown in Table 4. Our dual head structure improves the
performance from 89.4 to 89.9, which demonstrates the effective-
ness such divide-and-conquer structure. Note that our dual head
structure keeps less parameters than baseline network due to block
simplification. Adding attentions further improves the performance.

4.4.2 Model simplification. Due to the robust modelling ability
of dual head structure, we argue that the GCN blocks in both heads
can be simplified for balancing the model performance and com-
plexity. The simplification strategies are investigated and discussed
below.
Simplification of fine head. We reduce the channel dimensions
of feature maps in fine head due to the rich temporal information
contained. In Table 5, we can observe that, without channel re-
duction, the model achieves an accuracy of 90.5, but with 4.9M
parameters. By reducing the channels to 1/2, the accuracy only
drops to 90.3, while the parameters are significantly reduced to
3.0M, which is smaller than the baseline network(3.2M). However,
as we further reduce the parameters to 2.5M, the accuracy will
drop to 87.4. To balance the model complexity and performance,
we choose a reduction rate of 2(reduce to 1/2) in our final model.
Simplification of coarse head. We report the ablation study of
different G3D pathways in our coarse block in Table 6. We can
observe that utilising one G3D component is able to sufficiently
capture the coarse grained motion contexts. Increasing G3D compo-
nents to 2 will drop the performance a little, we believe it’s because
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Figure 6: Skeleton samples and the prediction scores of MS-G3D
and our method. GT action and confusing action are shown in blue
and red color. Our method improves the prediction scores of those
fine-grained actions.

the coarse grained motion contexts are easy to capture and large
models will turn to over-fitting.

4.4.3 Temporal subsample rate of coarse head. Wemodel the
coarse grained temporal information in our coarse head, which is
generated by subsampling the features in temporal dimension. We
hence perform an ablation study of temporal subsampling rate of
coarse head, shown in Table 7. Since proposed method utilise a
subsampling rate of 2(reduce to 1/2). We can observe that, without
subsampling, the coarse head also takes fine grained features, and
the performance will drop from 90.3 to 89.8, demonstrating the
importance of coarse grained temporal context. However, as we

Temporal subsample Acc
subsample all frames 89.8
subsample 1/2 frames 90.3
subsample 1/4 frames 90.1

Table 7: Ablation study of temporal subsample rate in coarse
head.

Attention type Mechanism Acc

Temporal attention cross head attention 90.3
self learned attention 90.0

Spatial attention cross head attention 90.3
self learned attention 90.1

Table 8: Comparison of cross head attention and self learned
attention, which is estimated by the features of their own
heads.

further enlarge the subsample rate to 4(reduce to 1/4), the perfor-
mance will drop to 90.1. This implies that over subsampling will
lose the important frames and hence drop the performance.

4.4.4 Cross head attention. We also perform ablation studies on
our proposed cross head temporal attention and spatial attention.
Our proposed cross head temporal attention passes fine grained
temporal context from fine head to coarse head and re-weight the
coarse features. As shown in Table 8, such cross head temporal at-
tention mechanism outperforms the attention estimated by coarse
features themselves. Similar in Table 8, the cross head spatial atten-
tion outperforms the spatial attention estimated by fine features,
denoted by ’self learned attention’.

4.5 Qualitative Results
We show some qualitative results in Figure.5 and Figure.6. We can
observe that our method improves those action classes that are in
fine-grained label space, which requires both coarse grained and
fine grained motion information to be recognised.

5 CONCLUSION
In this paper, we propose a novel multi-granular spatio-temporal
graph network for skeleton-based action recognition, which aims
to jointly capture coarse- and fine-grained motion patterns in an
efficient way. To achieve this, we design a dual-head graph network
structure to extract features at two spatio-temporal resolutions
with two interleaved branches. We introduce a compact architec-
ture for the coarse head and fine head to effectively capture spatio-
temporal patterns in different granularities. Furthermore, we pro-
pose a cross attention mechanism to facilitate multi-granular infor-
mation communication in two heads. As a result, our network is able
to achieve new state-of-the-art on three public benchmarks,namely
NTU RGB+D 60, NTU RGB+D 120 and Kinetics-Skeleton, demon-
strating the effectiveness of our proposed dual-head graph network.
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