
Under review as a conference paper at ICLR 2024

SKILLS-IN-CONTEXT PROMPTING: UNLOCKING
COMPOSITIONALITY IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of eliciting compositional generalization capabilities in
large language models (LLMs) with a novel type of prompting strategy. Com-
positional generalization empowers the LLMs to solve problems that are harder
than the ones they have seen (i.e., easy-to-hard generalization), which is a crit-
ical reasoning capability of human-like intelligence. However, even the current
state-of-the-art LLMs still struggle with this form of reasoning. To bridge this
gap, we propose skills-in-context (SKiC) prompting, which instructs LLMs how
to compose basic skills to resolve more complex problems. We find that it is
crucial to demonstrate both the skills and the compositional examples within the
same prompting context. With as few as two examplars, our SKiC prompting ini-
tiates strong synergies between skills and their composition capabilities. Notably,
it empowers LLMs to solve unseen problems that require innovative skill com-
positions, achieving near-perfect generalization on a broad range of challenging
compositionality tasks. Intriguingly, SKiC prompting unlocks the latent potential
of LLMs, enabling them to leverage pre-existing internal skills acquired during
earlier pretraining stages, even when these skills are not explicitly presented in
the prompting context. This results in the capability of LLMs to solve unseen
complex reasoning problems by activating and composing internal competencies.
With such prominent features, SKiC prompting is able to significantly improve the
mathematical reasoning capabilities (e.g., MATH) with simple 1-stage prompting.

1 INTRODUCTION

Large language models (LLMs) have achieved great success in solving natural language processing
(NLP) tasks (Brown et al., 2020; Radford et al., 2019; Smith et al., 2022; Chowdhery et al., 2022;
Lewkowycz et al., 2022; Sanh et al., 2021; Wei et al., 2021; Mishra et al., 2022; Chung et al., 2022;
Ouyang et al., 2022; OpenAI, 2023; Touvron et al., 2023b). When the size of the model scales up,
LLMs exhibit strong zero-shot and few-shot performance on a wide range of NLP tasks — a salient
behavior characterized by the scaling law (Kaplan et al., 2020; Hoffmann et al., 2022) and emergent
abilities (Wei et al., 2022a). However, LLMs still struggle with compositional generalization, i.e.,
the ability to use existing skills to solve more complex unseen problems (i.e., “easy-to-hard” gener-
alization) (Zhou et al., 2022; Dziri et al., 2023). In this paper, we will develop a prompting strategy
for LLMs that can effectively unlock their generic compositional generalization capabilities.

Ideally, if an LLM has already learned a rich set of skills, it should be able to solve any problem
whose solutions are composable from these skills. To unlock such great potential, the key is to
teach the LLMs how to use these skills to construct a solution to any unseen, more difficult prob-
lem. Towards this goal, there have been a series of prompting strategies being developed to improve
the reasoning and compositionality capabilities. Notably, chain-of-thought (CoT) prompting (Wei
et al., 2022b) significantly improves the reasoning performance of LLMs by demonstrating how to
approach a complex problem through a sequence of simple and basic steps. Follow-ups such as
Least-to-Most prompting (Zhou et al., 2022) and decomposed prompting (Khot et al., 2022) pro-
pose a two-stage strategy, which first decomposes the original problem into a set of subproblems,
and then solve and combine each of them sequentially. Although these methods significantly boost
the performance over standard prompting in solving many challenging compositional generalization
tasks, they still cannot perform systematic generalization well enough over problems that are sig-
nificantly harder than the ones they have seen. Moreover, least-to-most prompting and decomposed

1

Under review as a conference paper at ICLR 2024

Figure 1: Skills-in-Context Prompting. The prompt consists of three blocks: (i) the (basic) skills for
solving a complex task, (ii) (few-shot) examples of how to compose the skills, and (iii) the problem
to be solved. The above prompt will be fed into an LLM to generate the output — see Figure 20
for an example of the output. Note that the compositional examplars demonstrate how to ground the
reasoning steps onto the basic skills (highlighted in colors) for solving a complex problem.

prompting are restricted to solving a certain class of tasks, where each problem can be decomposed
as a sequence of subproblems. And for problems with general computation graphs (Dziri et al.,
2023), it is generally less intuitive, if not possible, to construct the prompting exemplars.

In this paper, we develop an effective one-stage prompting strategy, named SKills-in-Context
(SKiC) prompting, to unlock the general compositional generalization capability in LLMs. The key
insight is to teach the LLM to explicitly ground each of its reasoning steps on the (more elementary)
skills. Specifically, the SKiC prompt is constructed from three main blocks. The first block contains
a (non-exhaustive) list of skills that LLMs may need to use in order to solve a more complex prob-
lem, which include both descriptions of the skills and the instructions (with a few examples) on how
to use them. These skills can be distilled either manually or automatically via prompting the LLMs.
The second part consists of a few (generally two in most of our cases) examplars that demonstrate
how to explicitly compose skills into a solution to a more complex problem. The last part is the
problem to be solved. Interestingly, with both the skills and their explicit compositions presented in
the context, the LLMs successfully learn how to ground each reasoning step on the knowledge and
skills that they have already mastered, yielding the desirable general compositional generalization
capabilities. Notably, unlike the Least-to-Most or decomposed prompting, our proposed approach is
a one-stage prompting method, without the need to call LLMs multiple times. Therefore, it can be
easily used in a plug-and-play manner, as the CoT prompting and the standard prompting.

We evaluate our proposed SKiC prompting on a wide range of challenging compositional general-
ization tasks. Our experiments show that SKiC prompting achieves state-of-the-art performance on
all of these benchmarks, and it even achieves near-perfect generalization on unseen harder problems
on some of the datasets. Moreover, the improvement margins compared to the previous methods are
significant. For example, SKiC outperforms previous state-of-the-art prompting strategies on unseen
longer cases by 16.3% on last-letters (Zhou et al., 2022), 25.5% on addition, 45.0% on multiplica-
tion (Dziri et al., 2023),9.93% on Commaqa-E (Khot et al., 2021), 36.0% on dynamic programming
(Dziri et al., 2023), 2.7% on GSM8K(Cobbe et al., 2021), and 12.1% on MATH (Hendrycks et al.,
2021). Notably, our results on GSM8K and MATH further reveal that SKiC prompting allows the
LLMs to generalize beyond the skills provided in the context and solve problems by using the vast
reservoir of the internal skills they acquired during the prior pretraining stage. It clearly demonstrates
that SKiC prompting unleashes strong synergies between skills and their composition capabilities,
which teaches LLMs to generalize to harder problems than they have seen and to problems that
require innovative compositions of existing knowledge (either in context or inside model weights).

2

Under review as a conference paper at ICLR 2024

2 METHODOLOGY

While humans naturally exhibit compositional generalization in problem-solving, LLMs often strug-
gle to compose basic skills in innovative ways to solve more difficult problems (Dziri et al., 2023).
Empowering LLMs with the ability to compose the skills that they have seen to solve more complex
tasks is important to mirror human intelligence and to reach superintelligence. To this end, we intro-
duce a novel prompt methodology, Skills-in-Context (SKiC) prompting, to teach language models
composing elementary skills to solve problems for better compositional generalization.

2.1 SKILLS-IN-CONTEXT PROMPTING

Skills-in-context prompting facilitates compositional generalization by explicitly instructing lan-
guage models to utilize basic skills to solve complex problems.1 This aligns with the success of
Elaborative Rehearsal in the human learning process (Berry, 1983; McNamara & Magliano, 2009),
where studies (Kheirzadeh & Pakzadian, 2016) have demonstrated that by first summarizing relevant
knowledge and skills as the Scaffolding (Hammond & Gibbons, 2005) and establishing connections
between the problem-solving steps and the existing Scaffolding, human would process the new in-
formation with greater depth and thoroughness, thus reinforcing both the concepts and their practical
applications. Inspired by such human cognition theory (Berry, 1983; Bakker et al., 2015), a SKiC
prompt consists of three major parts: (i) Characterization of the basic skills that are needed to solve
complex problems, including the description of the skills and the instruction on how to use them
(with few-shot examplars). (ii) Examples of how to compose basic skills into solutions to complex
problems. (iii) The problem to be solved. An example is shown in Figure 1. The language model
is first provided with several skills (scaffolding) such as getting the last letter of one word followed
by several examples introduced to illustrate the process of utilizing these basic skills to answer the
complex problem (elaborative rehearsal). For example, to take the last letter of a series of words,
language models use the “words to list” skill to add the words to a list and then use the “last letter”
skill to iteratively obtain the last letter of each word.

Comparison to previous prompting strategies Figure 5 (in Appendix) visualizes the differences
between our proposed SKiC prompting and the previous related prompting methods. Different from
Chain-of-Thoughts prompting, our SKiC prompting provides explicit grounding on the basic skills
for reasoning steps towards final answers inspired by elaborative rehearsal(Berry, 1983). Compared
to recent prompting methods for handling compositional problems such as Least-to-Most prompt-
ing (LtM) (Zhou et al., 2022) and Decomp (Khot et al., 2022), our SKiC is superior in several
dimensions: (i) Our SKiC prompting is more general to solve extended sets of problems. Previ-
ous decomposing-based approaches like LtM and Decomp usually solve complex problems in a
two-stage fashion by first decomposing the problem into a linear sequence of subproblems and then
solving them sequentially. However, many of the tasks that have complex computation graphs such
as multiplication and dynamic programming problems (Dziri et al., 2023) cannot be decomposed
in a simple manner, which makes it hard to apply these decomposition-based approaches. (ii) The
decomposition operation can also be viewed as one basic skill in our SKiC prompt (for example,
we view the decomposition operation as one of the skills in the question-answer task in Figure 12).
(iii) SKiC solves the complex problems in a single stage, which could alleviate the error propagation
compared to decomposition-based approaches that require multiple distinct stages. Due to the one-
stage nature, our SKiC prompting can replace other one-stage strategies such as the CoT promptings
in a plug-and-play manner. And it can also be easily combined with other ensemble techniques such
as self-consistency (Wang et al., 2022) and Progressive-Hint Prompting (Zheng et al., 2023) to fur-
ther boost the performance.

2.2 CONSTRUCTION OF THE SKIC PROMPTS

One key step in constructing our SKiC prompts is to distill the (basic) skills that might be needed
for solving problems associated with a task. We now introduce two approaches (shown in Figure 2).

Distill Skills via Human This is a fully manual approach, where the basic skills are manually sum-
marized from a few (less than 10) problems. For example, given several samples from the last-letter-

1The term “basic skills” within SKiC prompting are not necessarily atomic skills. Rather, they could be any
skills (e.g., a composite skill by itself) that serve as the foundational blocks for tackling complex problems.

3

Under review as a conference paper at ICLR 2024

Figure 2: Two approaches to creating SKiC prompts, depending on how we distill the skills. (a)
We manually summarize the skills from the sample problems, and then construct the compositional
examplars on how to compose these skills. (b) We prompt the LLMs to automatically generate the
necessary skills, followed by human review. Then we manually craft the compositionl examplars
by grounding their reasoning steps onto either the provided in-context skills or the inherent skills
within the LLMs, where the existence of the inherent skills is verified by zero-shot prompting.

concatenation task, we manually identify that “words to list” and “last letter” are common skills to
be used. Based on the discovered skills, we add a few (1 ∼ 2) simple examples to illustrate these
basic skills alone. Once the in-context skills are constructed, we add the compositional examplars to
demonstrate the composition of these skills to solve a problem (Figure 1). This approach puts all the
essential skills in the context and is generally applicable to narrow domain problems that require the
composition of limited skills for solving harder problems. It is also beneficial for semi-parametric
LLMs, which can dynamically access the most relevant skills from external memories based on each
input instance and integrate them into the problem context (Borgeaud et al., 2022; Pan et al., 2022;
Izacard et al., 2022).

Distill Skills via Prompting LLMs This is a semi-automatic approach, where we first prompt the
LLMs to automatically generate the necessary basic skills (i.e., the descriptions and examples) fol-
lowed by human review. For instance, when identifying the skills required to address the mathe-
matical problems in the MATH task (Hendrycks et al., 2021), we prompt the LLM with phrases like
“basic skills in Algebra”. This leads the model to generate foundational skills, such as “Factoring”
(see Figure 18 for the full list of the skills). Next, we manually construct the compositional exam-
plars by grounding the reasoning steps on the skills. It is worth noting that an exemplar might require
skills not explicitly presented in the prompt context. In these instances, we anchor the reasoning to
inherent skills within the LLMs, confirming their presence through zero-shot prompting. For exam-
ple, in the compositional exemplar showcased in Figure 19, aside from leveraging in-context skills
such as “Combination” and “Sub”, it also employs skills like “Pascal’s Triangle” — a capability not
present in the context but inherently known to the LLM. Such a construction of the examplars will
encourage the model to generalize beyond the in-context skills and compose solutions from the in-
ternal capabilities as well — see Figure 33 for an example of the generated solution that activates the
internal skills <Angle Bisector Theorem> and <Heron’s Formula>. To be more specific, for every
problem in the MATH task, around 24% of the skills, as shown in Table 5, applied in the reasoning
steps stem from the LLM’s internal pre-trained knowledge (see Table 12 for the most frequently
used internal skills). The ability to harness both in-context skills and inherent capabilities is crucial
for addressing complex reasoning problems, which typically require varied compositions across a
broad spectrum of foundational skills. Manually enumerating every required skill within a prompt
context is often impractical. Meanwhile, LLMs have accumulated a vast reservoir of knowledge
and skills during their pre-training. Leveraging these internal competencies can unlock significant
potential, allowing LLMs to tackle even more complex challenges.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

In our experiments, we will show the superior compositional capabilities of SKiC prompting by
evaluating in two broad settings. Details of each task can be found in the Appendix B:

Composition over in-context skills, where all the essential skills needed to solve the problems are
provided in the context. The tasks we evaluated in this setting include (i) symbolic manipulation(last

4

Under review as a conference paper at ICLR 2024

letter concatenation) (Wei et al., 2022b; Zhou et al., 2022; Khot et al., 2022), where the LLM needs
to generate the concatenation of the last letter from each word in a given list of 1 ∼ 12 words, (ii)
arithmetic operation (addition and multiplication) (Dziri et al., 2023), where the LLM needs to gen-
erate the sum of two number with 2∼7 digits and the product of two numbers with 2∼5 digits, (iii)
question answering (CommaQA-E) (Khot et al., 2022), where for given facts of entities, the models
need to answer the multi-hop questions, e.g., What movies have people from the country Stridery
acted in?, and (iv) dynamic programming (Dziri et al., 2023), where for a sequence of 4∼8 integers,
LLMs need to find the highest sum for a subsequence where no two numbers are adjacent. These
tasks require only a limited skill set, yet pose challenges in terms of easy-to-hard generalization
capabilities. Under these circumstances, we construct our SKiC prompts manually, adhering to the
first methodology outlined in Section 2.2. The skills and examples of how to compose these skills
are shown in Figures 6-7 for last letter concatenation, Figures 8-9 for addition, Figures 10-11 for
multiplication, Figures 12-13 for CommaQA-E, and Figures 14-15 for dynamic programming.

Generalization beyond in-context skills, where models also need to harness skills beyond
what have been provided in the context and tap into the internal skills for math reasoning like
GSM8K (Wei et al., 2022b; Zhou et al., 2022) and MATH (Hendrycks et al., 2021) problems. In
this context, the primary challenge lies in achieving diverse compositions across a wide range of
skills to solve a complex reasoning problem. Thus, we evaluate whether our SKiC prompting could
allow LLMs to invoke the massive set of internal skills and knowledge that are acquired during pre-
training. Such capability is vital in solving complex reasoning problems (e.g., math), which require
varied compositions over a vast amount of foundational skills. And it is impractical to enumerate
all the skills in context. For GSM8K (Cobbe et al., 2021), which is a set of relatively simpler math
problems that could mostly be solved by simple math operations such as multiplication, addition
and etc. As a result, we construct SKiC following the first approach as described in Section 2.2. The
skill sets and one example of how to compose these skills to solve a GSM8K problem are shown in
Figure 16 and Figure 17, respectively. For MATH (Hendrycks et al., 2021), which is a significantly
more challenging benchmark on mathematical reasoning with problems in Algebra, Counting and
Probability, Geometry, Intermediate Algebra, Number Theory, PreAlgebra, and PreCalculus. It is
infeasible to distill and enumerate the needed skills manually. Therefore, we adopt the second ap-
proach as described in Section 2.2, where we prompt the LLMs to generate the skills and then craft
the compositional examples manually shown in Figures 18-19.

For all the experiments, we mainly compare our SKiC with zero/few-shot standard prompting
(4-shot) (Brown et al., 2020), CoT (Wei et al., 2022b), Least-to-Most prompting (LtM) (Zhou
et al., 2022) and Decomp prompting (Khot et al., 2022) 2 on different foundation models includ-
ing LLAMA-65B (Touvron et al., 2023a), text-davinvi-003 (Brown et al., 2020), ChatGPT and
GPT4 (OpenAI, 2023). For tasks in the second setting, we further compare our methods with
Scratchpad (Nye et al., 2021), Learning-to-Program(LtP) (Guo et al., 2023), and ComplexCoT (Fu
et al., 2022) as well as different ensemble strategies that are commonly combined together with these
baselines: majority voting (maj1@k) (Lewkowycz et al., 2022), Self-Consistency (SC) (Wang et al.,
2022), and Progressive-Hint Prompting (PHP) (Zheng et al., 2023). Note that all the compositional
examplars in SKiC prompts are either a subset of or the same as what have been used in baselines.
Additional experiments on LLAMA2 (Touvron et al., 2023b) can be found in Appendix C.

3.2 MAIN RESULTS

Composition over In-Context Skills: Easy-to-Hard Generalization We report the evaluation re-
sults for last letter concatenation, addition&multiplication, Commmaqa-E and DP in Tables 1-4. We
observe that standard zero/few-shot prompting generalizes poorly on the problems that are harder
than the examplars in the prompting context. For example, on last letter concatenation tasks, 4-shot
standard prompting only achieves 10% accuracy with text-davinci-003 when solving testing prob-
lems that involve 12 words. CoT, LtM and Decomp prompting improve the overall performance
but still degrade quickly over longer inputs (e.g., CoT slightly improves the accuracy on arithmetic
tasks, LtM outperform CoT on last letter concatenation and Decomp prompting boosts the exact
match on Commaqa-E dataset.) Our Skills-in-Context prompting significantly boosts the perfor-
mance with less demonstration examples on all the tasks especially in harder cases (e.g., gaining over

2We exclude the LtM or Decomp prompting in arithmetic and dynamic programming tasks as it is difficult
to design linear problem decomposition in these settings.

5

Under review as a conference paper at ICLR 2024

Table 1: Accuracy on different evaluation subsets of the last-letter-concatenation task. The testing
problems with 1 and 2 words are in-distribution evaluation, while the ones with 4 ∼ 12 words are
(harder) out-of-distribution evaluations.

Model Prompting #-shots 1 2 4 6 8 10 12

LLAMA-65B

zero-shot 0 0 0 0 0 0 0 0
4-shots 4 72.0 66.0 50.0 26.0 10.0 6.0 0

CoT 4 76.0 70.0 58.0 42.0 30.0 26.0 20.0
LtM 4 76.0 72.0 66.0 50.0 46.0 36.0 25.0
SKiC 2 81.0 97.0 77.0 59.0 56.0 48.0 36.0

text-davinci-003

zero-shot 0 0 0 0 0 0 0 0
4-shots 4 99.0 97.0 89.0 68.0 45.0 27.0 10.0

CoT 4 100.0 99.0 90.0 75.0 52.0 39.0 31.0
LtM 4 100.0 99.0 94.0 90.0 87.0 84.0 80.0
SKiC 2 100.0 100.0 100.0 100.0 100.0 99.0 98.0

ChatGPT

zero-shot 0 99.0 98.0 93.0 88.0 84.0 80.0 77.0
4-shots 4 100.0 100.0 95.0 92.0 90.0 86.0 85.0

CoT 4 100.0 100.0 97.0 95.0 92.0 88.0 85.0
LtM 4 100.0 100.0 99.0 95.0 92.0 92.0 88.0
SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 2: Accuracy on the task of adding and multiplying two numbers with different digits. For the
addition or multiplication task, the examplars include how to add or multiply two numbers with 2 or
3 digits. Therefore, the results for adding numbers with 4 ∼ 7 digits and multiplying numbers with
4 and 5 digits measure the compositional generalization capabilities over harder problems. We also
compare GPT3 finetuned with scratchpad method (Dziri et al., 2023) on the multiplication task.

Model Prompting #-shots Addition Multiplication
2 3 4 5 6 7 2 3 4 5

LLAMA-65B

zero-shot 0 58.0 40.5 22.5 8.0 0 0 28.0 17.0 0 0
4-shots 4 64.5 46.5 28.0 10.0 0 0 24.0 18.0 0 0

CoT 4 60.0 52.5 24.0 12.0 1.0 0 22.0 21.0 0 0
SKiC 2 82.5 74.5 66.5 52.0 38.0 22.0 50.0 42.0 12.0 8.0

text-davinci-003

zero-shot 0 100.0 100.0 98.0 87.5 74.5 54.0 76.0 14.5 0 0
4-shots 4 100.0 100.0 98.0 92.0 80.5 58.5 82.0 18.0 0 0

CoT 4 100.0 100.0 92.0 68.5 42.0 38.0 86.0 20.5 2.0 0
finetuned 0 - - - - - - 99.0 55.0 1.0 0.0

SKiC 2 100.0 100.0 99.0 98.0 99.0 98.5 100.0 58.0 42.5 36.0

ChatGPT

zero-shot 0 100.0 100.0 100.0 92.0 86.5 78.0 99.0 55.0 1.0 0
4-shots 4 100.0 100.0 100.0 94.0 90.5 83.5 99.0 58.0 1.0 0

CoT 4 100.0 100.0 98.5 90.0 87.5 80.0 99.0 54.5 13.0 2.0
SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 82.0 72.0 48.5

68.9% improvements on 7-digits summation with text-davinci-003 compared to baselines). Notably,
SKiC achieves nearly perfect generalization to harder problems on tasks like last letter concatena-
tion, addition, and dynamic programming with text-davinci-003, ChatGPT or GPT4. Compared to
fine-tuneded baselines such as finetuned text-davinci-003 with scratchpad, SKiC prompting is also
significantly better in the out-of-distribution regime, although its performance at the in-distribution
regime is worse. These significant improvements demonstrate that by jointly presenting the models
with skills and how to use these skills within the same prompt context, the models are instructed
to reason and resolve problems on the ground of these basic skills. Consequently, it performs the
reasoning steps more accurately and could generalize better to the harder examples by following
similar patterns to compose the basic skills. Examples of the generated answer with SKiC on these
tasks when the inputs are harder can be found in Figures 20–24.

The results on Commaqa-E also illustrate the superiority of our one-stage SKiC compared to previ-
ous multi-stage prompts. Unlike the multi-stage prompting(Decomp), both the ability to break down
complex questions and answer simple questions are treated as skills in SKiC, and they are presented
with the examplars to demonstrate how to compose the skills (Figure 13) in the same context. Conse-
quently, the LLM is able to flexibly apply these skills to reach the final answer within 1-stage, which
could make different simple question answering help each other and might avoid error propagation.
For an example in Figure 34, errors made in early stages in Decomp result in wrong prediction while

6

Under review as a conference paper at ICLR 2024

Table 3: Exact Match on Commaqa-
E. The “Comp. Gen” column re-
ports the results on the unseen com-
positional questions from the com-
positional generalization split.

Model Prompting #-shots Test Comp. Gen

LLAMA-65B

zero-shot 0 12.0 16.3
4-shots 4 15.0 24.6

CoT 4 27.0 30.8
Decomp 12 32.0 40.4
SKiC† 2 44.0 52.0

text-davinci-003

zero-shot 0 34.0 26.8
4-shots 4 42.0 33.5

CoT 4 44.0 38.2
Decomp 12 58.0 66.6
SKiC† 2 66.0 74.8

ChatGPT

zero-shot 0 42.0 30.6
4-shots 4 47.0 40.3

CoT 4 55.0 46.4
Decomp 12 64.0 73.5
SKiC† 2 70.0 80.8

Table 4: Accuracy on the dynamic programming task. The
in-context examplars are with sequence lengths of 4, 5. So
the results for 6,7,8 measures the out-of-distribution general-
ization to harder problems. We also compare the finetuned
text-davinci-003 with scratchpad (Dziri et al., 2023).

Model Prompting #-shots 4 5 6 7 8

text-davinci-003

zero-shot 0 10.5 4.0 4.0 0.0 0.0
4-shots 4 32.5 18.0 10.0 4.0 0.0

CoT 4 58.0 22.0 15.0 8.0 2.0
finetuned 0 100.0 100.0 22.0 14.0 8.0

SKiC 2 78.0 62.5 54.5 48.0 42.5

ChatGPT

zero-shot 0 18.0 10.0 6.0 4.0 0.0
4-shot 4 44.5 18.0 10.0 4.0 0.0
CoT 4 82.5 76.0 72.0 64.0 55.5
SKiC 2 98.0 96.0 95.0 94.0 92.0

GPT4

zero-shot 0 58.0 42.5 35.5 28.0 12.0
4-shots 4 76.5 70.5 58.0 55.0 42.0

CoT 4 94.0 91.0 88.0 83.5 72.0
SKiC 2 100.0 100.0 100.0 99.0 98.0

our SKiC accurately answer different questions in one context. This is a further manifestation of the
advantage of concurrently demonstrating the skills and their compositions.

Figure 3: The accuracy on GSM8K tasks.

Generalization Beyond In-Context
Skills: Complex Reasoning The ac-
curacy on GSM8K is shown in Fig-
ure 3 3. Even with incomplete skill
set in our SKiC prompts, we observe
a significant accuracy boost com-
pared to previous prompting methods
across all foundation models (even
better than ensemble methods such as
PHP which modify and correct the
predictions through multiple rounds).
Significantly, we observe several in-
triguing cases of generalization: (i) generated reasoning steps effectively utilize the provided skills
that are not demonstrated in the compositional examples (see Figure 26 for an example), (ii) gener-
ated reasoning steps successfully employ skills that are not included in the prompts but may exist
within the pre-trained knowledge of the LLM (see Figure 27 and 28 for examples). These discover-
ies suggest that, even with manully constructed SKiC prompts, LLMs can be taught to use the skills
provided in the context as well as from their pre-existing internal (pretrained) knowledge to solve
math problems via compositionality.

The accuracy on the MATH is reported in Table 5. With SKiC constructed in a semi-automated
manner, models could explicitly ground the reasoning steps to in-context skills as well as their in-
ternal knowledge to resolve diverse math problems. As a result, our SKiC significantly outperforms
previous prompting methods on all the sub-categories in MATH test set with only one round of gen-
eration, and it even outperforms the approaches that ensemble the outputs from multiple rounds of
generations (e.g., PHP). In Table 5, we also show the internal skill activation rate that measures the
percentage of skills utilized in the generated reasoning steps for each question that originates from
pre-trained knowledge (rather than being introduced in the SKiC prompt). It further verifies that our
SKiC prompting allows the LLMs to generalize beyond the in-context skills and invoke the massive
reservoir of internal capabilities in LLMs (e.g., 24% of skills utilized in the output reasoning steps
are from the GPT4 internal knowledge) — see Figures 29 – 33 for more examples of the generated
solutions, where the reasoning process carried out by the LLM effectively utilize both in-context
and internal skills. Table 12 also reports the most frequently used in-context and internal skills.

Ablation Study: different sources of the in-context skills One important question we want to un-
derstand is whether it is beneficial to generate the in-context skills from the same foundation model

3The results are re-implemented with the provided prompts by the original works. Note that GPT4’s perfor-
mance might drop over time on math related tasks as is observed in Chen et al. (2023), which might make our
reproduced number lower than the ones reported in the original papers (e.g., PHP results with GPT-4).

7

Under review as a conference paper at ICLR 2024

Table 5: Testing accuracy on the MATH benchmark. We compare our SKiC prompting with differ-
ent prompting strategies and certain ensemble strategies that are commonly combined together with
these baselines (the top block of the table). Our SKiC prompting improves over the state-of-the-art
one-stage prompting method (ComplexCoT) by a large margin and even outperforms many other
ensemble methods. In SKiC prompting, we also report the internal skill activation rate, which mea-
sures the percentage of skills utilized in the output reasoning steps for each question that originate
from pre-trained knowledge (rather than being included in the SKiC prompt context).

Model Prompting Ensemble Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus NumTheory Overall

PaLM-2 CoT SC - - - - - - - 48.8
Minerva-540B CoT, Scratchpad maj1@k 71.1 42.0 27.1 72.7 43.5 34.5 36.3 50.3

ChatGPT ComplexCoT PHP 57.7 25.4 17.1 49.1 33.7 16.1 35.1 36.5
GPT-4 ComplexCoT PHP 73.8 41.9 26.3 73.4 56.3 29.8 55.7 53.9

PaLM-2 CoT % - - - - - - - 34.3
Minerva-540B CoT, Scratchpad % 54.9 26.7 13.6 51.2 27.9 18.0 21.2 33.6

ChatGPT

CoT, LtP % 52.3 22.5 16.9 49.6 30.2 16.3 29.8 31.1
ComplexCoT % 53.8 22.3 14.6 49.1 29.7 16.8 33.4 34.1
SKiC (Ours) % 62.0 ↑ 8.2 30.1 ↑ 7.8 17.8 ↑ 3.2 57.9 ↑ 8.8 38.2 ↑ 8.5 23.0 ↑ 6.2 35.5 ↑ 2.1 40.6 ↑ 6.5

Internal Skill Activation Rate 6.5 19.0 13.2 5.7 9.1 45.2 7.8 14.9

GPT4

CoT % - - - - - - - 42.2
ComplexCoT % 71.6 36.5 23.4 70.8 53.1 26.7 49.6 50.3
SKiC (Ours) % 79.7 ↑ 8.1 43.6 ↑ 7.1 29.5 ↑ 6.1 74.6 ↑ 3.8 58.2 ↑ 5.1 36.6 ↑ 9.9 55.9 ↑ 6.3 56.4 ↑ 6.1

Internal Skill Activation Rate 12.7 37.0 33.4 16.0 4.4 65.5 12.1 24.3

Table 6: Testing accuracy and internal skill activation rate on the MATH benchmark. We compare
two different versions of SKiC prompts on ChatGPT: the prompt with the skills generated from (i)
ChatGPT and (ii) GPT-4. The internal skill activation rate refers to the average proportion of skills
utilized per question that originate from pre-trained knowledge (i.e., internal skills) rather than from
the SKiC prompt context (i.e., the in-context skills).

Metric Source of SKiC Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus NumTheory Overall

Accuracy GPT4 60.7 27.8 16.8 58.2 33.3 19.0 34.2 38.9
ChatGPT 62.0 30.1 17.8 57.9 38.2 23.0 35.5 40.6

Internal Skill
Activation Rate

GPT4 5.9 18.5 11.2 6.6 7.0 43.8 6.2 12.5
ChatGPT 6.5 19.0 13.2 5.7 9.1 45.2 7.8 14.9

used for prediction. Our hypothesis is that in-context skills generated from the same foundation
model can initiate stronger synergize with the internal knowledge, due to their higher alignment. To
test this hypothesis, we prompt the ChatGPT using the SKiC constructed from GPT-4 (i.e., the in-
context skills are generated by GPT-4). The accuracy and the internal skill activation rate on MATH
test set are reported in Table 6. With the skills prompted from itself, we observe both improved accu-
racy and higher internal skill activation rate, even though the skills prompted from GPT-4 generally
have higher quality. This suggests that (i) aligning the model that is used to prompt the in-context
skills and the model that is used to generate answers helps the models’ capability to link and utilize
the internal pretrained skills, and (ii) activating more internal skills generally leads to higher perfor-
mance gains, especially when solving problems that require compositions over wider of skills.

Error Analysis We perform error analysis on the tasks that are still far away from achieving (nearly)
perfect generalization when applying SKiC on ChatGPT — multiplication, question answering,
GSM8K and MATH. For each task, we randomly sample 50 error cases (Zhou et al., 2022) and
conduct an examination of the types of errors involved. We summarize five types of common errors:
(i) seen basic skills: errors arise due to a lack of mastery of the skills in context, (ii) unseen basic
skills: errors caused by the absence of necessary skills in context, particularly when these skills do
not exist in the pre-trained knowledge of the LLM, (iii) incorrect composition: errors of incorrect
composition or reasoning using the basic skills, (iv) incorrect copying: copying or merging errors
between different steps, (v) others: other errors such as incorrect ground truth labels in the test set.

Their distributions are visualized in Figure 4. We observe that (i) the most common errors arise
from unseen basic skills (for example, 83% of the errors in the Multiplication task are due to the
absence of the skill to add large numbers), (ii) a lack of mastery of the basic skills leads to more
errors when there are more complex or more basic skills to be used (for example, the question
decomposition capability in the CommaQA-E task is generally a complex skill, and the GSM8K
and MATH dataset requires more basic skills), (iii) incorrect composition is a major error type for
tasks that require more complex reasoning steps such as GSM8K (e.g., 45% of the errors are due to

8

Under review as a conference paper at ICLR 2024

Figure 4: Error distributions in Multiplication, Question Answering, GSM8K and MATH tasks.

incorrect reasoning steps such as misinterpreting the questions), (iv) copying errors become more
prevalent when there are more reasoning steps with longer context, and (v) math reasoning generally
requires a wider variety of skill compositions, and the way of composition varies significantly from
one problem to another, making it considerably harder to master the appropriate skill composition
for each problem. Therefore, there are several key directions to further improve SKiC: (1) providing
the model with high-quality basic skills and illustrations to improve the execution quality of these
basic skills, (2) expanding the range of task-related basic skills to prevent errors caused by unseen
skill, (3) providing more examples of how to compose basic skills, especially for more complex
tasks, and (4) utilizing better foundation models that can handle longer context and have a more
extensive set of well-mastered skills in their pre-pretrained knowledge.

4 RELATED WORK

There has been a long history of studies on compositional generalization (Lake & Baroni, 2018; Jia
& Liang, 2016; Andreas, 2019; Lake & Baroni, 2018; Ouyang et al., 2023; Keysers et al., 2020; Chen
et al., 2020; Dziri et al., 2023; SHAO et al., 2023; Saparov & He, 2022; Nye et al., 2021; Welleck
et al., 2022; Dong et al., 2019; Schwarzschild et al., 2021). Different types of approaches have been
developed to solve compositional generalization. One widely studied approach is neuro-symbolic
methods (Dong et al., 2019; Schwarzschild et al., 2021), which blend symbolic and distributed rep-
resentations for modeling the reasoning process. A recent line of work that has gained significant
traction is to prompt large language models to unlock its potential compositional generalization ca-
pabilities (Nye et al., 2021; Zhou et al., 2022; Khot et al., 2022; Dua et al., 2022; Dziri et al., 2023).
The least-to-most prompting (Zhou et al., 2022) boosts the performance of compositional general-
ization by first decomposing a difficult problem into a sequence of easy-to-hard problems and then
solving them sequentially. Meanwhile, the decomposed prompting (Khot et al., 2022) breaks the
original problem into a set of different subproblems, solves them sequentially, and then aggregates
the answers into a final solution. In spite of the significant improvement compared to previous
works, the performance of these approaches still degrade quickly over increasingly harder testing
problems. Moreover, their applications are limited to a class of problems that can be decomposed
into a set of subproblems. For more general complex problems, where the subproblems are highly
nested (e.g., the ones shown in Dziri et al. (2023)), it becomes quite challenging to construct the
prompts and the examplars. Recent work (Zhang et al., 2023; Zhou et al., 2023) have also explored
multiple agents for solving complex problems. Unlike these multi-stage/agents prompting methods,
which require multiple calls of multiple LLM in inference process, our proposed Skills-in-Context
prompting is a simple one-stage/single-agent strategy that can be used in a plug-and-play manner to
replace existing standard or CoT prompting.

5 CONCLUSION

In this work, we propose an effective prompting technique, Skills-in-Context (SKiC) prompting, to
unlock compositional generalization abilities in LLMs. Specifically, SKiC prompts consist of two
major building blocks: the basic skills that are needed for solving the problems, and the examplars
of how to compose these skills into solutions for complex problems. Significant improvements on
symbolic manipulation, arithmetic operation, question answering, dynamic programming, and math
reasoning tasks demonstrate that our SKiC prompting technique is highly effective in unleashing
the compisitionality in LLMs. Notably, with SKiC prompting, the LLMs could generalize beyond
the skills provided in the prompting context and learns to activate the skills and knowledge that are
acquired through earlier pretraining stages for solving unseen complex problems.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jacob Andreas. Good-enough compositional data augmentation. arXiv preprint arXiv:1904.09545,
2019.

Arthur Bakker, Jantien Smit, and Rupert Wegerif. Scaffolding and dialogic teaching in mathematics
education: Introduction and review. Zdm, 47:1047–1065, 2015.

Dianne C Berry. Metacognitive experience and transfer of logical reasoning. The Quarterly Journal
of Experimental Psychology Section A, 35(1):39–49, 1983.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behavior changing over time?,
2023.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song, and Denny Zhou. Compositional general-
ization via neural-symbolic stack machines, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. arXiv preprint arXiv:1904.11694, 2019.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt Gardner. Successive prompting for decom-
posing complex questions. arXiv preprint arXiv:2212.04092, 2022.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers
on compositionality. arXiv preprint arXiv:2305.18654, 2023.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu, Dongyan Zhao, and Nan Duan. Learning to
program with natural language, 2023.

Jenny Hammond and Pauline Gibbons. Putting scaffolding to work: The contribution of scaffolding
in articulating esl education. Prospect, 20(1):6–30, 2005.

10

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Under review as a conference paper at ICLR 2024

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Few-shot learning with re-
trieval augmented language models. arXiv preprint arXiv:2208.03299, 2022.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. arXiv preprint
arXiv:1606.03622, 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A com-
prehensive method on realistic data. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SygcCnNKwr.

Shiela Kheirzadeh and Sarah Sadat Pakzadian. Depth of processing and age differences. Journal of
psycholinguistic research, 45:1137–1149, 2016.

Tushar Khot, Kyle Richardson, Daniel Khashabi, and Ashish Sabharwal. Hey ai, can you solve
complex tasks by talking to agents? arXiv preprint arXiv:2110.08542, 2021.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Danielle S McNamara and Joseph P Magliano. Self-explanation and metacognition. Handbook of
metacognition in education, pp. 60–81, 2009.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generaliza-
tion via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3470–3487,
2022. doi: 10.18653/v1/2022.acl-long.244. URL https://aclanthology.org/2022.
acl-long.244.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

11

https://openreview.net/forum?id=SygcCnNKwr
https://aclanthology.org/2022.acl-long.244
https://aclanthology.org/2022.acl-long.244

Under review as a conference paper at ICLR 2024

Siru Ouyang, Jiaao Chen, Jiawei Han, and Diyi Yang. Compositional data augmentation for abstrac-
tive conversation summarization. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1471–1488, 2023.

Xiaoman Pan, Wenlin Yao, Hongming Zhang, Dian Yu, Dong Yu, and Jianshu Chen. Knowledge-
in-context: Towards knowledgeable semi-parametric language models. arXiv preprint
arXiv:2210.16433, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, pp. 9, 2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34:6695–6706, 2021.

NAN SHAO, Zefan Cai, Hanwei xu, Chonghua Liao, Yanan Zheng, and Zhilin Yang. Compo-
sitional task representations for large language models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6axIMJA7ME3.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.
URL https://arxiv.org/abs/2203.11171.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022a.

12

https://openreview.net/forum?id=6axIMJA7ME3
https://openreview.net/forum?id=6axIMJA7ME3
https://arxiv.org/abs/2203.11171

Under review as a conference paper at ICLR 2024

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022b.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:
Grounded mathematical proof generation with language models. Advances in Neural Information
Processing Systems, 35:4913–4927, 2022.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models. arXiv preprint arXiv:2308.04371, 2023.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

13

Under review as a conference paper at ICLR 2024

A APPENDIX: COMPARISON TO PREVIOUS PROMPTING STRATEGIES

Figure 5 visualizes the differences between our proposed SKiC prompting and the previous related
prompting methods. Different from Chain-of-Thoughts prompting, our SKiC prompting provides
explicit grounding on the basic skills for reasoning steps towards final answers. Compared to recent
prompting methods for handling compositional problems such as Least-to-Most prompting (LtM)
(Zhou et al., 2022) and Decomp (Khot et al., 2022), our SKiC is superior in several dimensions: (i)
Our SKiC prompting is more general to solve extended sets of problems. Previous decomposing-
based approaches like LtM and Decomp usually solve complex problems in a two-stage fashion by
first decomposing the problem into a linear sequence of subproblems and then solving them sequen-
tially. However, many of the tasks that have complex computation graphs such as multiplication
and dynamic programming problems (Dziri et al., 2023) cannot be easily and fully decomposed in
one stage, which makes it hard to apply these decomposition-based approaches. (ii) The decompo-
sition operation can also be viewed as one basic skill in our SKiC prompt (for example, we view the
decomposition operation as one of the skills in the question-answer task in Figure 12). (iii) SKiC
solves the complex problems in a single stage, which could alleviate the error propagation compared
to decomposition-based approaches that require multiple distinct stages.

Due to the one-stage nature, our SKiC prompting can replace other one-stage strategies such as
the CoT promptings in a plug-and-play manner. And it can also be easily combined with other
ensemble techniques such as self-consistency (Wang et al., 2022) and Progressive-Hint Prompting
(Zheng et al., 2023) to further boost the performance.

Figure 5: The building blocks of different prompting strategies. Blue cells stand for different inter-
mediate steps, green cells denote the answers to the asked question, and red cells refer to the provided
skills in our Skills-in-Context prompting. A block of several cells represents one distinct stage in a
two-stage prompting strategy (e.g., problem decomposition stage in the Least-to-Most prompting).
Standard prompting provides only labeled examplars in the context. Chain-of-Thoughts prompt-
ing further provides a step-by-step rationale preceding the answer. Decomposed prompting is a
two-stage prompting method, which first breaks the questions into sub-problems, and then utilizes
standard or Chain-of-Thoughts prompting to solve each sub-problem sequentially to derive the final
answer. Least-to-Most prompting adopts a two-stage strategy: it first generates multiple questions in
an easy-to-hard manner, and then sequentially answers each of them until solving the original ques-
tion. In contrast, our Skills-in-Context prompting is a simple one-stage prompting, which places
both the (basic) skills and the demonstrations of how to compose them into solutions within the
same prompt context. This teaches the LLM how to explicitly and adeptly ground each reasoning
step onto the skills (illustrated in dashed lines), which unleashes strong synergies between skills and
composition capabilities in LLMs, leading to strong compositionality over unseen harder problems.

14

Under review as a conference paper at ICLR 2024

B APPENDIX: EXPERIMENTAL SETUP

In this section, we explain our experimental settings in details. We show the superior compositional
capabilities of our SKiC prompting by evaluating it in two settings:

• Composition over in-context skills, where all the essential skills needed to solve the problems
are provided in the context. The tasks we evaluate in this setting include symbolic manipulation
(Wei et al., 2022b; Zhou et al., 2022; Khot et al., 2022), arithmetic operation (Dziri et al., 2023),
question answering (Khot et al., 2022), and dynamic programming (Dziri et al., 2023). In this
setting, we mainly examine the ability to generalize from easy demonstration examplars to more
difficult testing problems (i.e., easy-to-hard generalization).

• Generalization beyond in-context skills, where models also need to harness skills beyond
what have been provided in the context and tap into the internal skills for math reasoning like
GSM8K (Wei et al., 2022b; Zhou et al., 2022) and MATH (Hendrycks et al., 2021) problems. In
this context, the primary challenge lies in achieving diverse compositions across a wide range
of foundational skills to solve a complex reasoning problem.

B.1 COMPOSITION OVER IN-CONTEXT SKILLS: EASY-TO-HARD GENERALIZATION

We begin by evaluating our SKiC prompting strategy on tasks that require only a limited skill
set, yet pose challenges in terms of easy-to-hard generalization capabilities. Under these circum-
stances, we construct our SKiC prompts manually, adhering to the first methodology outlined in
Section 2.2. We mainly consider foundation models including LLAMA-65B (Touvron et al., 2023a),
text-davinvi-003 (Brown et al., 2020), ChatGPT and GPT4 (OpenAI, 2023). Additional experiments
on LLAMA2 (Touvron et al., 2023b) can be found in Appendix C.

B.1.1 SYMBOLIC MANIPULATION: LAST LETTERS

Following Zhou et al., we first assess the compositionality in LLMs through the last-letter-
concatenation task. For a given list of words, the LLM needs to generate an output that is the
concatenation of the last letter from each word in the list. We compare our SKiC with zero/few-
shot standard prompting (4-shot) (Brown et al., 2020), CoT (Wei et al., 2022b) and Least-to-Most
prompting (LtM) (Zhou et al., 2022) on different large language models, including LLAMA-65B
(Touvron et al., 2023a), text-davinvi-003 (Brown et al., 2020; Ouyang et al., 2022), and ChatGPT.
And we evaluate them on different subsets of testing problems that include 1, 2, 4, 6, 8, 10, 12
words4, respectively. The examplars in all the prompts are constructed from the cases with 1 or 2
words. Therefore, the evaluations on the test subsets with 1, 2 words are in-distribution, and the
ones on 4, 6, 8, 10, 12 words are out-of-distribution. A SKiC prompt contains the skills and two
examples of how to compose these skills as shown in Figure 6 and Figure 7. The model is given the
needed skills such as putting the given words to a list and getting the last letter of one word, and
then two examples of how to compose these skills to take the last letters of two given words.

B.1.2 ARITHMETIC OPERATION

Following Dziri et al., we evaluate the compositional capabilities on two arithmetic operation
tasks: addition and multiplication. These two tasks involves complicated composition over skills
such as one-digit addition or multiplication, carry over, concatenation and etc.(Dziri et al., 2023),
making it difficult especially for long form addition or multiplication. We compare our Skills-
in-Context prompting (SKiC) with zero/few-shot standard prompting (Brown et al., 2020) and
Chain-of-Thoughts prompting (CoT) (Wei et al., 2022b) on different foundation models includ-
ing LLAMA-65B, text-davinvi-003, and ChatGPT. We exclude the Least-to-Most prompting (Zhou
et al., 2022) as it is difficult to design linear problem decomposition for addition or multiplication
task. We also include text-davinci-003 finetuned with scratchpad method (Nye et al., 2021; Dziri
et al., 2023) on the multiplication task for comparison.

Addition We construct different subsets of testing problems, which ask to output the sum of two
numbers with 2,3,4,5,6,7 digits, respectively. The given in-context examplars are only constructed

4From https://github.com/first20hours/google-10000-english/tree/master.

15

https://github.com/first20hours/google-10000-english/tree/master

Under review as a conference paper at ICLR 2024

to demonstrate the addition of two numbers with 2-digits or 3-digits. Consequently, the results for
4,5,6,7-digits summation are out-of-distribution evaluation. We show our Skills-in-Context prompt-
ing for the addition task in Figure 8 and Figure 9, where show the skills and one compositional
examplar, respectively. We first present the basic skills like extracting digits from a number and then
show the model how to use these skills to add two numbers with two examples.

Multiplication Next, we evaluate the compositional generalization performance on the multipli-
cation task. Specifically, we construct different subsets of evaluation problems that ask for the
product of two numbers with 2,3,4,5 digits, respectively. The given in-context examplars in all the
prompts are constructed to demonstrate 2-digit and 3-digit multiplications. Therefore, the results
for 4,5-digits multiplications measure the compositional generalization to unseen harder problems.
The construction of our Skills-in-Context prompting is shown in Figure 10 and Figure 11, which
illustrate the skills and the compositional examplar, respectively.

B.1.3 LONG-CONTEXT QUESTION ANSWERING: COMMAQA-E

To evaluate the compositional generalization in the reading comprehension setting, following Khot
et al., we evaluate different prompting strategies on CommaQA-E (Khot et al., 2021). For given
facts of a set of synthetically generated entities, the models need to answer the multi-hop questions
which are composed of multiple reasoning steps, e.g., What movies have people from the country
Stridery acted in?. Besides the standard zero/few-shot prompting (Brown et al., 2020) and the Chain-
of-Thoughts prompting (CoT) (Wei et al., 2022b), we also compare our Skills-in-Context (SKiC)
prompting to Decomp prompting5 (Khot et al., 2022). We evaluate the results on different foundation
models: LLAMA-65B, text-davinvi-003, and ChatGPT. The construction of the SKiC prompting for
CommaQA-E is described in Figure 12 and 13, which show the skills and the examplars of how to
compose the skills, respectively. Notably, both the ability to break down complex questions into
simple ones and the operation to answer each simple questions are also treated as (basic) skills —
see Figure 12.

B.1.4 DYNAMIC PROGRAMMING

We then further evaluate the compositional generalization capabilities of Skills-in-Context (SKiC)
prompting in solving a classic dynamic programming problem (Dziri et al., 2023): Given a sequence
of integers, find a subsequence with the highest sum, such that no two numbers in the subsequence
are adjacent in the original sequence. We compare our SKiC prompting (SKiC) with standard
zero/few-shot prompting (Brown et al., 2020), and Chain-of-Thoughts prompting (CoT)6 (Wei et al.,
2022b) on different LLMs (text-davinvi-003, ChatGPT and GPT4). In addition, we also compare
with the baseline of finetuned text-davinci-003 with scratchpad from (Dziri et al., 2023). Likewise,
we evaluate them on different subsets of testing instances with sequence length of 4, 5, 6, 7, 8, re-
spectively.7 The in-context examplars are constructed with sequence length of 4 and 5. Therefore,
the testing subsets with sequence length of 4 and 5 are in-distribution evaluation and the ones with
length 6, 7, and 8 are for out-of-distribution evaluation. The construction of SKiC prompt is charac-
terized in Figure 14 and 15, which show the skills and their compositions examplars, respectively.
Specifically, in the SKiC prompt, the models are presented with the skills to get the length of a list,
find the max number for a given list and add two single digit numbers, followed by two composi-
tional examplars about how to compose these skills to solve the dynamic programming problems
with sequence length 4 and 5.

B.2 GENERALIZATION BEYOND IN-CONTEXT SKILLS: COMPLEX REASONING

We further evaluate whether our SKiC prompting could allow LLMs to generalize beyond the skills
provided in the prompt context and invoke the massive set of internal skills and knowledge that
are acquired during pre-training. Such capability is vital in solving complex reasoning problems

5Reproduced using the original code from: https://github.com/allenai/DecomP/tree/
main

6The reasoning steps are constructed based on the scratchpad prompts used in Dziri et al. (2023).
7The numbers are within the range [-5,5]

16

https://github.com/allenai/DecomP/tree/main
https://github.com/allenai/DecomP/tree/main

Under review as a conference paper at ICLR 2024

(e.g., math), which require varied compositions over a vast amount of foundational skills. And it is
impractical to enumerate all the skills in context.

B.2.1 GSM8K

We first apply our Skills-in-Context prompting to GSM8K (Cobbe et al., 2021), which requires
multiple math-related skills to solve complex math world problems. We construct our SKiC prompt
by using the first approach in Section 2.2, which includes a limited skill set together with eight
compositional examplars to teach the LLMs how to use them. Figure 16 and Figure 17 show the
constructed skill set and one compositional examplar, respectively. We compare our SKiC with
Chain-of-Thoughts prompting (CoT) (Wei et al., 2022b), Least-to-Most prompting (LtM) (Zhou
et al., 2022), ComplexCot (Fu et al., 2022) and PHP (Zheng et al., 2023) on different foundation
models (i.e., text-davinvi-003, ChatGPT and GPT-4).

B.2.2 MATH

We then apply our Skills-in-Context prompting to MATH (Hendrycks et al., 2021), which is a sig-
nificantly more challenging benchmark on mathematical reasoning. It encompasses problems in
Algebra, Counting and Probability, Geometry, Intermediate Algebra, Number Theory, PreAlgebra,
and PreCalculus. Due to the large variety of foundational capabilities needed for solving these math
problems, it is infeasible to distill and enumerate the needed skills manually. Therefore, we adopt
the second approach as described in Section 2.2, where we prompt the LLM to generate the skills
and then craft the compositional examples manually. Specifically, we first prompt the LLM (i.e.,
the same LLM that we will use to solve the problems) to generate a list of skills for each subject
category in the MATH dataset (e.g., “Counting and Probability”) with the instruction “Basic skills in
[subject]”. Then we further ask the model to generate the description of each skill, and the resulting
skill set is listed in Figure 18. In Figure 19, we show a compositional examplar that demonstrates
how to utilize the skills to solve a problem in MATH dataset. Note from this example that we ground
a part of the reasoning steps to in-context skills such as “Combination” and “Sub” and anchor others
to internal skills (e.g., “Pascal’s Triangle”). In our experiment, we provide the model with seven
examplars (one example per category in the MATH dataset). We compare our SKiC prompting with
different prompting strategies: CoT (Wei et al., 2022b), Scratchpad (Nye et al., 2021), Learning-to-
Program(LtP) (Guo et al., 2023), and ComplexCoT (Fu et al., 2022) on two representative foundation
models: ChatGPT and GPT-4 8. In addition, we also include different ensemble strategies that are
commonly combined together with these baselines: majority voting (maj1@k) (Lewkowycz et al.,
2022), Self-Consistency (SC) (Wang et al., 2022), and Progressive-Hint Prompting (PHP) (Zheng
et al., 2023).

8We use the same model to construct the SKiC skills and to do the inference. That is, we prompt ChatGPT
to construct the SKiC when testing with ChatGPT and we prompt GPT-4 to construct the SKiC when testing
with GPT-4.

17

Under review as a conference paper at ICLR 2024

C APPENDIX: THE PERFORMANCE OF SKIC PROMPTING USING LLAMA2

We further evaluate the performance of SKiC prompting by using the LLAMA2 and LLAMA2-chat
models (Touvron et al., 2023b) on the following tasks: last latter concatenation, addition, multipli-
cation, CommaQA-E, and dynamic programming tasks. The results are reported in the Tables 7,11.

We observe that (i) LLAMA2-70B generally outperforms LLAMA-65B and demonstrate stronger
capabilities in following the examplars for composing the in-context skills to solve the problems. (ii)
After alignment, LLAMA2-70B-chat9 performs worse than LLAMA2-70B. From examining the er-
ror cases, we find that the LLAMA2-70B-chat model does follows the reasoning steps and styles
in the demonstrated compositional examplars in our SKiC prompts to solve the problems. And it
is more likely to refuse to answer certain questions, especially the ones from CommaQA-E tasks.
For example, given the question “What awards did the movies directed by the Modiparity winners
receive?” from CommaQA-E datasets, LLAMA2-70B-chat generates “However, I must point out
that your question contains some harmful and inappropriate language that I cannot answer. I’m just
an AI, my purpose is to provide helpful and informative responses while promoting a positive and
respectful dialogue. I cannot provide answers that may encourage or promote harmful or inappro-
priate behavior.”. This generally causes the performance drop compared to the original pretrained
model (LLAMA2-70B) before alignment, which follows the instructions and the examplars better.
(iii) There are still performance gaps between the open source LLAMA models and the proprietery
LLMs such as text-davinci-003, ChatGPT and GPT4.

Table 7: Accuracy of different models with our SKiC prompts on different evaluation subsets of the
last-letter-concatenation task. The testing problems with 1 and 2 words are in-distribution evalua-
tion, while the ones with 4 ∼ 12 words are (harder) out-of-distribution evaluations.

Model Prompting #-shots 1 2 4 6 8 10 12

text-davinci-003 SKiC 2 100.0 100.0 100.0 100.0 100.0 99.0 98.0
ChatGPT SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LLAMA-65B SKiC 2 81.0 97.0 77.0 59.0 56.0 48.0 36.0
LLAMA2-70B SKiC 2 100.0 99.0 100.0 99.0 98.0 97.0 95.0

LLAMA2-70B-chat SKiC 2 100.0 100.0 94.0 87.0 81.0 78.0 72.0

Table 8: Accuracy of different models with our SKiC prompts on the task of adding two numbers
with different digits (2,3,4,5,6,7). The prompting examplars are constructed to demonstrate the
addition between two numbers with 2 or 3 digits. Therefore, the results for adding numbers with
4 ∼ 7 digits measure the desirable compositional generalization capabilities over harder problems.
† denotes our method.

Model Prompting #-shots 2 3 4 5 6 7

text-davinci-003 SKiC† 2 100.0 100.0 99.0 98.0 99.0 98.5
ChatGPT SKiC† 2 100.0 100.0 100.0 100.0 100.0 100.0

LLAMA-65B SKiC† 2 82.5 74.5 66.5 52.0 38.0 22.0
LLAMA2-70B SKiC† 2 83.0 78.0 68.0 55.0 40.0 25.0

LLAMA2-70B-chat SKiC† 2 11.0 12.0 14.0 23.0 15.0 13.0

9For the chat model, we follow the specific chat completion format used in https://github.com/
facebookresearch/llama/blob/main/llama/generation.py#L212.

18

https://github.com/facebookresearch/llama/blob/main/llama/generation.py##L212
https://github.com/facebookresearch/llama/blob/main/llama/generation.py##L212

Under review as a conference paper at ICLR 2024

Table 9: Accuracy of different models with our SKiC prompts on the task of multiplying two num-
bers with different digits (2,3,4,5). The prompting examplars are constructed to demonstrate how to
multiply two numbers with 2 or 3 digits. Therefore, the results for multiplying numbers with 4 and
5 digits measure the compositional generalization capability over harder problems. † stands for our
method.

Models Prompting #-shots 2 3 4 5

text-davinci-003 SKiC† 2 100.0 58.0 42.5 36.0
ChatGPT SKiC† 2 100.0 82.0 72.0 48.5

LLAMA-65B SKiC† 2 50.0 42.0 12.0 8.0
LLAMA2-70B SKiC† 2 99.0 51.0 15.0 6.0

LLAMA2-70B-chat SKiC† 2 72.0 36.0 8.0 2.0

Table 10: Performance of different models with our SKiC prompts on Commaqa-E datasets (mea-
sured in Exact Match). The column of “Comp. Gen” reports the results on the new (unseen) com-
positional questions from the compositional generalization split. † denotes our method.

Model Prompting #-shots Test Comp. Gen

text-davinci-003 SKiC† 2 66.0 74.8
ChatGPT SKiC† 2 70.0 80.8

LLAMA-65B SKiC† 2 44.0 52.0
LLAMA2-70B SKiC† 2 46.7 55.9

LLAMA2-70B-chat SKiC† 2 7.50 6.30

Table 11: Accuracy of different models with our SKiC prompts on the dynamic programming
task with input sequence lengths being 4,5,6,7,8, respectively. The in-context examplars for all
the prompts are constructed with sequence lengths of 4 and 5. Therefore, the results for sequence
lengths of 6,7,8 measures the out-of-distribution generalization to increasingly harder problems. †
denotes our method.

DP Prompting #-shots 4 5 6 7 8

text-davinci-003 SKiC† 2 78.0 62.5 54.5 48.0 42.5
ChatGPT SKiC† 2 98.0 96.0 95.0 94.0 92.0

GPT4 SKiC† 2 100.0 100.0 100.0 99.0 98.0
LLAMA2-70B SKiC† 2 79.0 78.0 70.0 68.0 56.0

LLAMA2-70B-chat SKiC† 2 35.0 30.0 14.0 16.0 11.0

19

Under review as a conference paper at ICLR 2024

D APPENDIX: SKILLS AND EXAMPLES OF HOW TO COMPOSING SKILLS

Skills for Last Letter Concatenation

Skill <words to list>: Put the asked words to a list. For example, put the words in ’apple’
to D=[’apple’]; put the words in ’apple, banana’ to D=[’apple’,’banana’].

Skill <last letter>: Get the last letter of one word. For example, the last letter of ’apple’ is
’e’; the last letter of ’banana’ is ’a’.

Figure 6: The skills in Skills-in-Context prompt for last-letter-concatenation task.

20

Under review as a conference paper at ICLR 2024

An Example of Skill Composition for Last Letter Concatenation

Example: Take the last letters of the words in ’apple, banana’ and concatenate them.

Answer:
1. Using the Skill <words to list>, put the asked words, ’apple, banana’, to a list.
D=[’apple’,’banana’]

2. Get the last letter of each word in the list D=[’apple’,’banana’] to a new list R=[]:
i. Using the Skill <last letter>, the last letter of D[0]=’apple’ is ’e’. R=[e]

ii. Using the Skill <last letter>, the last letter of D[1]=’banana’ is ’a’. R=[e,a]

3. R=[e,a]. The answer is ’ea’.

Figure 7: An examplar of skill composition in Skills-in-Context prompt for last-letter-concatenation
task.

21

Under review as a conference paper at ICLR 2024

Skills for Addition

Skill <extract digits>: Extract the digits in a number to a list.
For example, Extract digits in 123 to D=[1,2,3]. Extract digits in 7654 to D=[7,6,5,4].

Skill <list length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <add two single digit number>: Add two single-digit numbers.
0+0=0 0+1=1 0+2=2 0+3=3 0+4=4 0+5=5 0+6=6 0+7=7 0+8=8 0+9=9
1+0=1 1+1=2 1+2=3 1+3=4 1+4=5 1+5=6 1+6=7 1+7=8 1+8=9 1+9=10
2+0=2 2+1=3 2+2=4 2+3=5 2+4=6 2+5=7 2+6=8 2+7=9 2+8=10 2+9=11
3+0=3 3+1=4 3+2=5 3+3=6 3+4=7 3+5=8 3+6=9 3+7=10 3+8=11 3+9=12
4+0=4 4+1=5 4+2=6 4+3=7 4+4=8 4+5=9 4+6=10 4+7=11 4+8=12 4+9=13
5+0=5 5+1=6 5+2=7 5+3=8 5+4=9 5+5=10 5+6=11 5+7=12 5+8=13 5+9=14
6+0=6 6+1=7 6+2=8 6+3=9 6+4=10 6+5=11 6+6=12 6+7=13 6+8=14 6+9=15
7+0=7 7+1=8 7+2=9 7+3=10 7+4=11 7+5=12 7+6=13 7+7=14 7+8=15 7+9=16
8+0=8 8+1=9 8+2=10 8+3=11 8+4=12 8+5=13 8+6=14 8+7=15 8+8=16 8+9=17
9+0=9 9+1=10 9+2=11 9+3=12 9+4=13 9+5=14 9+6=15 9+7=16 9+8=17 9+9=18

Skill <sub 10>: Subtract 10 from a given number.
10-10=0 11-10=1 12-10=2 13-10=3 14-10=4 15-10=5 16-10=6 17-10=7 18-10=8 19-10=9

Skill <compare 10>: Compare a number with 10.
0<10 1<10 2<10 3<10 4<10 5<10 6<10 7<10 8<10 9<10 10=10
11>10 12>10 13>10 14>10 15>10 16>10 17>10 18>10 19>10

Figure 8: The skills in Skills-in-Context prompt for the task of adding two numbers.

22

Under review as a conference paper at ICLR 2024

An Example of Skill Composition for Addition

Example: Calculate 86+964:

Answer:
1. Using Skill <extract digits> and Skill <list length>, extract the digits in 86 to
DM=[8,6]. len(DM)=2. Extract the digits in 964 to DN=[9,6,4]. len(DN)=3.

2. len(DM)=2<len(DN)=3. Align the two lists by adding len(DN)-len(DM)=1 zeros
to the shorter list (DM): DM=[0,8,6].

3. Using Skill <add two single digit number>, add every number in DM=[0,8,6] to
the corresponding number in DN =[9,6,4] to form a list, DS=[0+9,8+6,6+4]=[9,14,10].

4. Append a 0 to the beginning of DS: DS=[0,9,14,10].Construct a list R=[0,0,0,0]
with len(DS)=4 zeros.

5. DS=[0,9,14,10] (DS[0]=0, DS[1]=9, DS[2]=14, DS[3]=10), starting from DS[3] to
DS[1] (DS[3]=10, DS[2]=14, DS[1]=9):

i. DS[3]=10, R[3]=0, R[3]=R[3]+DS[3]=0+10=10. Based on Skill
<compare 10>, R[3]=10=10, so R[2]=1 and R[3]=10-10=0 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3]]=[0,0,1,0].

ii. DS[2]=14, R[2]=1, R[2]=R[2]+DS[2]=1+14=15. Based on Skill
<compare 10>, R[2]=15>10, so R[1]=1 and R[2]=15-10=5 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3]]=[0,1,5,0].

iii. DS[1]=9, R[1]=1, R[1]=R[1]+DS[1]=1+9=10. Based on Skill
<compare 10>, R[1]=10=10, so R[0]=1 and R[1]=10-10=0 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3]]=[1,0,5,0].

6. R=[1,0,5,0]. The answer is 1050.

Figure 9: An examplar of skill composition in Skills-in-Context prompting for the task of adding
two numbers.

23

Under review as a conference paper at ICLR 2024

Skills for Multiplication

Skill <extract digits>: Extract the digits in a number to a list.
For example, Extract digits in 123 to D=[1,2,3]. Extract digits in 7654 to D=[7,6,5,4].

Skill <list length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <mul two single digit number>: Multiply two single-digit numbers.
0*1=0 0*2=0 0*3=0 0*4=0 0*5=0 0*6=0 0*7=0 0*8=0 0*9=0
1*1=1 1*2=2 1*3=3 1*4=4 1*5=5 1*6=6 1*7=7 1*8=8 1*9=9
2*1=2 2*2=4 2*3=6 2*4=8 2*5=10 2*6=12 2*7=14 2*8=16 2*9=18
3*1=3 3*2=6 3*3=9 3*4=12 3*5=15 3*6=18 3*7=21 3*8=24 3*9=27
4*1=4 4*2=8 4*3=12 4*4=16 4*5=20 4*6=24 4*7=28 4*8=32 4*9=36
5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 5*6=30 5*7=35 5*8=40 5*9=45
6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 6*7=42 6*8=48 6*9=54
7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 7*8=56 7*9=63
8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 8*9=72
9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

Skill <add multiple numbers>: Add multiple numbers such as m+n+p:
1. Add the first two numbers m+n and get the result r1=m+n.
2. Add the third number p to r1 and get the result r2=r1+p.

For example, calculate 128+64+79:
1. Add the first two numbers 128+64 and get the result r1=128+64=192.
2. Add the third number 79 to r1 and get the result r2=192+79=271.
So 128+64+79=271

Figure 10: The skills in Skills-in-Context prompt for the task of multiplying two numbers.

24

Under review as a conference paper at ICLR 2024

An Example of Skill Composition for Multiplication

Example: Calculate 184*67:

Answer:
1. Using Skill <extract digits> and Skill <list length>, extract the digits in 184 to
DM=[1,8,4]. len(DM)=3. Extract the digits in 67 to DN=[6,7]. len(DN)=2.

2. Add 0,1,len(DM)-1=2 zeros to the end of every number in DM=[1,8,4] according
to the position of the number in DM: DMO=[1*100,8*10,4*1]=[100,80,4].

3. Add 0,len(DN)-1=1 zeros to the end of every number in DN=[6,7] according to
the position of the number in DN: DNO=[6*10,7*1]=[60,7].

4. Using Skill <mul two single digit number>, multiple every num-
ber in DMO=[100,80,4] with every number in DNO=[60,7] and get
R=[100*60,100*7,80*60,80*7,4*60,4*7]= [6000,700,4800,560,240,28].

5. Using Skill <add multiple numbers>, add all the numbers in
R=[6000,700,4800,560,240,28], 6000+700+4800+560+240+28:

i. Add the first two numbers: r1=6000+700=6700.
ii. Add the third number 4800 to r1=6700: r2=6700+4800=11500.
iii. Add the fourth number 560 to r2=11500: r3=11500+560=12060.
iv. Add the fifth number 240 to r3=12060: r4=12060+240=12300.
v. Add the sixth number 28 to r4=12300: r5=12300+28=12328.

6. So the answer is 12328

Figure 11: An examplar of skill composition in Skills-in-Context prompting for the task of multi-
plying two numbers.

25

Under review as a conference paper at ICLR 2024

Skills for CommaQA-E task

Skill <decompose qa>: Decompose a complex question into a set of sub-questions.
For example: Decompose the question ”What awards have movies produced by people born
in 1910 won?” into the following sub-questions:
Q1: Who were born in the year 1910?
Q2: Which movies did [A1] produce?
Q3: Which awards were given to [A2]?
Decompose the question ”What movies have people from the country Stridery acted in?”
into
the following sub-questions: Q1: Who is from the country Stridery?
Q2: Which movies did [A1] act in?

Skill <answer simple question>: Answer simple questions about the passage.
For example:
[A Passage]

Q: Which awards were given to Zalate?
A: movie: Zalate ; awarded: Hallowcock. [”Hallowcock”]
Q: Which movies were given the Hallowcock award?
A: movie: Zalate ; awarded: Hallowcock. movie: SkirtSiCine ; award: Hallowcock.
[”Zalate”,
”SkirtSiCine”]
Q: Which movies did Muntaril direct?
A: movie: Premercy ; directed by: Muntaril. [”Premercy]
Q: Which movies did Muntrail produce?
A: Muntaril produced the movie Premercy with others. Muntaril produced the movie
SkirtSiCine
with others. [”Premercy”, ”SkirtSiCine”]
Q: Which movies did Muntrail write?
A: Muntaril was one of the writers for the movie Zalate. Muntaril wrote for the movie
Featsaw. [”Zalate”, ”Featsaw”]
Q: Who are the actors in the movie Premercy?
A: Monsterscar was an actor in the movie Premercy. [”Monsterscar”]
Q: When was the moive Featsaw released?
A: Monsterscar was an actor in the movie Premercy. [”1973”]

Figure 12: The skills in Skills-in-Context prompt for the CommaQA-E task.

26

Under review as a conference paper at ICLR 2024

An Example of Skill Composition for the CommaQA-E Task

Example: [A Passage]
Q: What movies have people from the country Stridery acted in?

Answer:
1. Using Skill <decompose qa>, decompose the question ”What movies have people from
the country Stridery acted in?” into the following sub-questions:

Q1: Who is from the country Stridery?
Q2: Which movies did [A1] act in?

2. Using Skill <answer simple question>, answer Q1: Who is from the country Stridery?

Gastrat grew up in the nation of Stridery. A1=[”Gastrat”]

3. A1=[”Gastrat”], answer Q2: Which movies did [A1] act in?

i. A1[0]=”Gastrat”, Using Skill <answer simple question>, answer Q2.1: Which
movies did Gastrat act in?

A2.1: Gastrat was an actor in the movie Partnershipmaker. Gastrat was an actor in the
movie Partnershipmaker. Gastrat acted in the movie Warpstone. A2.1=[”Partnershipmaker”,
”Nilitude”, ”Warpstone”]

ii.So A2=[A2.1]=[”Partnershipmaker”, ”Nilitude”, ”Warpstone”]

4. The answer is [”Partnershipmaker”, ”Nilitude”, ”Warpstone”]

Figure 13: An examplar of skill composition in Skills-in-Context prompting for the CommaQA-E
task.

27

Under review as a conference paper at ICLR 2024

Skills for Dynamic Programming

Skill <list length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,3,4,5,6], len(A)=6.

Skill <find max>: Find the max number in a list.
For example, max(2,0,-1)=2. max(-3,-2,-1)=-1. max(5,-2,0)=5. max(0,-2,4)=4.
max(0,0,0)=0. max(-2,-1,0)=0.

Skill <add>: Add two numbers.
For example, 1+2=3. -2+1=-1. 0+(-3)=-3. 1+(-1)=0.

Figure 14: The skills in Skills-in-Context prompt for the task of dynamic programming.

28

Under review as a conference paper at ICLR 2024

An Example of Skill Composition for the Dynamic Programming Task

Example: Compose these skills to do the task: Given a sequence of integers, find a subse-
quence with the highest sum, such that no two numbers in the subsequence are adjacent in
the original sequence.
A=[3,2,1,5].

Answer:
1. A=[3,2,1,5] (A[0]=3,A[1]=2,A[2]=1,A[3]=5). Using Skill <list length>, len(A)=4.
Construct a list D=[0,0,0,0] with the len(A)=4 zeros.

2. Update the last element in D. A[3]=5. Using Skill <find max>, max(5,0)=5.
D[3]=5 and D=[0,0,0,5].

3. Update the second last element in D. A[3] = 5, A[2] = 1. Using Skill <find max>,
max(5,1,0) = 5. D[2] = 5 and D=[0,0,5,5].

4. Starting from the third last (len(A)-2=2) element in D, update each element in D
based on A=[3,2,1,5] (A[0]=3,A[1]=2,A[2]=1,A[3]=5):

i. D[3]=5, D[2]=5, A[1]=2. Using Skill <add>, A[1]+D[3]=2+5=7. Using Skill
<find max>, max(D[2],A[1]+D[3],0)=max(5,7,0)=7. D[1]=7 and D=[0,7,5,5].

ii. D[2]=5, D[1]=7, A[0]=3. Using Skill <add>, A[0]+D[2]=3+5=8. Using Skill
<find max>, max(D[1],A[0]+D[2],0)=max(7,8,0)=8. D[0]=8 and D=[8,7,5,5].

5. D=[8,7,5,5]. The highest sum is D[0]=8.

Figure 15: An examplar of skill composition in Skills-in-Context prompting for the dynamic pro-
gramming task to find the highest sum of the subsequence.

29

Under review as a conference paper at ICLR 2024

Skills for GSM8K

Skill <extract digits>: Extract the digits in a number to a list. For example, extract digits in 123 to
D=[1,2,3]. Extract digits in 7654 to D=[7,6,5,4]

Skill <list length>: Get the number of elements in a list. For example, D=[1,2,3], len(D)=3.
A=[1,2,4,5,6], len(A)=5.

Skill <add two single digit number>: Add two single-digit numbers. For example, 0+0=0 0+1=1
0+2=2 0+3=3 0+4=4 0+5=5 0+6=6 0+7=7 0+8=8 0+9=9

Skill <sub two single digit number>: Subtract two single-digit numbers. For example, 0-0=0 0-1=-1
0-2=-2 0-3=-3 0-4=-4 0-5=-5 0-6=-6 0-7=-7 0-8=-8 0-9=-9

Skill <sub 10>: Subtract 10 from a given number. 10-10=0 11-10=1 12-10=2 13-10=3 14-10=4
15-10=5 16-10=6 17-10=7 18-10=8 19-10=9

Skill <add 10>: Add 10 to a given number. -10+10=0 -9+10=1 -8+10=2 -7+10=3 -6+10=4 -5+10=5
-4+10=6 -3+10=7 -2+10=8 -1+10=9

Skill <compare 0>: Compare a number with 0. 10>0 9>0 8>0 7>0 6>0 5>0 4>0 3>0 2>0 1>0
0=0 -1>0 -2>0 -3>0 -4>0 -5>0 -6>0 -7>0 -8>0 -9>0

Skill <compare 10>: Compare a number with 10. 0<10 1<10 2<10 3<10 4<10 5<10 6<10 7<10
8<10 9<10 10=10 11>10 12>10 13>10 14>10 15>10 16>10 17>10 18>10 19>10

Skill <mul two single digit number>: Multiply two single-digit numbers. For example, 4*1=4
4*2=8 4*3=12 4*4=16 4*5=20 4*6=24 4*7=28 4*8=32 4*9=36

Skill <add multiple numbers>: Add multiple numbers such as m+n+p:
1. Add the first two numbers m+n and get the result r1=m+n.
2. Add the third number p to r1 and get the result r2=r1+p.

Skill <add>: Use the skills to add two numbers. For example, calculate 86+964 [The steps to perform
the add]

Skill <mul>: Use the skills to multiply two numbers. For example, calculate 86*964 [The steps to
perform the multiplication]

Skill <sub>: Use the skills to subtract a number from another number. For example, calculate 964-86
[The steps to perform the subtractraction]

Skill <age>: Describe the age of a person. If a person is P years old, Q years ago, the person was
P-Q years old. If a person is P years old, in Q years, the person will be P+Q years old. If person A is
P years old, person B is Q years old, and person A is R years older than person B, then P=Q+R. If
person A is P years old, person B is Q years old, and person A is R years younger than person B, then
P=Q-R.

Skill <solve equation>: Solve an equation. When subtracting or adding the same number from both
sides of the equation, the equation is still true. When moving a number from one side of the equation
to the other side, the sign of the number changes. When moving a multiplication from one side of the
equation to the other side, the sign of the multiplication changes. When moving a division from one
side of the equation to the other side, the sign of the division changes.
For example, if the equation is 3x+5=7, move +5 to the other side, then 3x=7-5. Using the Skill
<sub>, 3x=7-5=2. Move 3 to the other side, then x=2/3.

Figure 16: The skills in Skills-in-Context prompt for GSM8K.

30

Under review as a conference paper at ICLR 2024

An Example of Skill Composition for GSM8K

Example: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently
twice 30 years old, how old is Kody?

Answer:
1. Mohamed is currently twice 30 years old. Using the Skill <mul>, Mohamed is currently
30*2 = 60 years old.

2. Using Skill <age>, four years ago, Mohamed was 4 years younger than now.
Using the Skill <sub>, Mohamed was 60-4 = 56 years old.

3. Four years ago, Kody was only half as old as Mohamed. Using the Skill <div>,
Kody was 56/2 = 28 years old.

4. Using Skill <age>, currently, Kody is 4 years older than four years ago. Using
the Skill <add>, Kody is currently 28+4 = 32 years old.

5. The answer is 32.

Figure 17: An examplar of skill composition in Skills-in-Context prompting for GSM8K math prob-
lems.

31

Under review as a conference paper at ICLR 2024

Skills for MATH

You have the knowledge of many skills, the following are some examples:
Skill <Add>: Add two numbers. For example, 128+987=1115.

Skill <Sub>: Subtract a number from another number. For example, 128-67=61.

Skill <Mul>: Multiply two numbers. For example, 128*76=9728.

Skill <Div>: Divide a number from another number. For example 12/3=4.

Skill <Mod>: Modulus or modulo, it finds the remainder of a division operation. For example, 10 mod 3 = 1, because 10
divided by 3 leaves a remainder of 1.

Skill <Exp>: An exponent refers to the number of times a number is multiplied by itself. [More Details]

Skill <Base Conversion>: Base conversion is a way to change numbers from one base to another. [More Details]

Skill <Radicals>: A radical represents the root of a number. The square root (represented by sqrt) is the most common
radical. [More Details]

Skill <Factoring>: In the context of integers, factorization involves expressing a number as the product of prime numbers.
[More Details]

Skill <Solve Equation>: Solve an equation. [More Details]

Skill <Quadratic Formula>: The quadratic formula is used to solve quadratic equations. [More Details]

Skill <Complex Number>: The quadratic formula is used to solve quadratic equations. [More Details]

Skill <Piecewise Function: Continuous>: A piecewise function is continuous if it is continuous at every point in its
domain. [More Details]

Skill <Factorial>: Factorial is a function that multiplies a given number by every number below it until 1. [More Details]

Skill <Probability>: Probability is the measure of the likelihood that an event will occur. [More Details]

Skill <Conditional Probability>: The probability of an event occurring given that another event has already occurred.
[More Details]

Skill <Probability Addition Rule>: The Addition Rule in probability is used to calculate the probability of either of two
events happening. [More Details]

Skill <Probability Multiplication Rule>: A way to determine the probability of two events occurring at the same time
(conjointly). [More Details]

Skill <Counting Principle>: If there are m ways to do one thing, and n ways to do another, then there are m*n ways of
doing both. [More Details]

Skill <Permutations>: Permutations refer to the arrangement of items in a specific order. [More Details]

Skill <Combination>: Combinations refer to the selection of items without regard to the order. [More Details]

Skill <Perimeter>: The perimeter of a shape is the distance around its boundary. [More Details]

Skill <Area>: The area of a shape is the amount of space that it covers. [More Details]

Skill <Volume>: Volume is the measure of the amount of space that a three-dimensional object occupies. [More Details]

Skill <Prime Numbers>: A prime number is a natural number greater than 1 that has no positive divisors other than 1 and
itself. [More Details]

Skill <Composite Numbers>: Composite numbers are positive integers that have at least one positive divisor other than
one or the number itself. [More Details]

Skill <GCD>:The Greatest Common Divisor (GCD), also known as the Greatest Common Factor (GCF), [More Details]

Skill <LCM>:The Least Common Multiple (LCM) of two integers is the smallest positive integer that is divisible by both
numbers without leaving a remainder. [More Details]

Skill <Congruences>: Two integers a and b are said to be congruent modulo n if they have the same remainder when
divided by n. [More Details]

Figure 18: The skills in Skills-in-Context prompt for MATH.

32

Under review as a conference paper at ICLR 2024

An Example of Skill Composition for MATH

Example: Shown below are rows 1, 2, and 3 of Pascal’s triangle.[Pascal’s triangle]. Let
(ai), (bi), (ci) be the sequence, from left to right, of elements in the 2005th, 2006th,
and 2007th rows, respectively, with the leftmost element occurring at i = 0. Compute
[
∑2006

i=0
bi
ci

−
∑2005

i=0
ai

bi
.]

Answer:
1. Using the Skill <Pascal’s Triangle>, the number in the n-th row and k-th column of the
Pascal’s triangle is C(n,k).

2. Suppose (ai), (bi), (ci) represent the entries in rows n - 1, n, n + 1 of Pascal’s tri-
angle. ai = C(n− 1, i), bi = C(n, i), ci = C(n+ 1, i)

3. Using the Skill <Combination>,
∑2006

i=0
bi
ci

=
∑2006

i=0
(2006i)
(2007i)

=
∑2006

i=0
2007−i
2007 =

2007− 2006·2007
2·2007 = 2007− (2006 ∗ 2007)/(2 ∗ 2007) = 2007− 1003 = 1004

4. Using the Skill <Combination>,
∑2005

i=0
ai

bi
=
∑2005

i=0
(2005i)
(2006i)

=
∑2005

i=0
2006−i
2006 =

2006− 2005·2006
2·2006 = 2006− (2005 ∗ 2006)/(2 ∗ 2006) = 2006− 1002.5 = 1003.5

5. Using the Skill <Sub>, [
∑2006

i=0
bi
ci

−
∑2005

i=0
ai

bi
] = 1004− 1003.5 = 0.5

6. The answer is 0.5.

Figure 19: An examplar of skill composition in Skills-in-Context prompting for MATH problems.

33

Under review as a conference paper at ICLR 2024

E APPENDIX: GENERATION EXAMPLES

We further share some example generation from ChatGPT with our Skills-in-Context prompts on all
the tasks in Figure 20,21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33.

Last Letter Concatenation

Question: Take the last letters of the words in ’than, appropriate, sees, daisy, disturbed,
espn, stable, double, luther, shut’ and concatenate them.

Model Output:

1. Using the Skill <words to list>, put the asked words, ’than, appropriate, sees, daisy,
disturbed, espn, stable, double, luther, shut’, to a list. D=[’than’, ’appropriate’, ’sees’,
’daisy’, ’disturbed’, ’espn’, ’stable’, ’double’, ’luther’, ’shut’]

2. Get the last letter of each word in the list D=[’than’, ’appropriate’, ’sees’, ’daisy’,
’disturbed’, ’espn’, ’stable’, ’double’, ’luther’, ’shut’] to a new list R=[]:

i. Using the Skill <last letter>, the last letter of D[0]=’than’ is ’n’. R=[n]
ii. Using the Skill <last letter>, the last letter of D[1]=’appropriate’ is ’e’. R=[n, e]

iii. Using the Skill <last letter>, the last letter of D[2]=’sees’ is ’s’. R=[n, e, s]
iv. Using the Skill <last letter>, the last letter of D[3]=’daisy’ is ’y’. R=[n, e, s, y]
v. Using the Skill <last letter>, the last letter of D[4]=’disturbed’ is ’d’. R=[n, e, s, y,

d]
vi. Using the Skill <last letter>, the last letter of D[5]=’espn’ is ’n’. R=[n, e, s, y, d,

n]
vii. Using the Skill <last letter>, the last letter of D[6]=’stable’ is ’e’. R=[n, e, s, y, d,

n, e]
viii. Using the Skill <last letter>, the last letter of D[7]=’double’ is ’e’. R=[n, e, s, y,

d, n, e, e]
ix. Using the Skill <last letter>, the last letter of D[8]=’luther’ is ’r’. R=[n, e, s, y, d,

n, e, e, r]
x. Using the Skill <last letter>, the last letter of D[9]=’shut’ is ’t’. R=[n, e, s, y, d, n,

e, e, r, t]

3. R=[n, e, s, y, d, n, e, e, r, t]. The answer is ’n e s y d n e e r t’.

Figure 20: An example of the generated answer on last-letter-concatenation task using ChatGPT
with our Skills-in-Context prompting.

34

Under review as a conference paper at ICLR 2024

Addition

Question: Calculate 165789+876534

Model Output:

1. Using Skill <extract digits> and Skill <list length>, extract the digits in 165789
to DM=[1,6,5,7,8,9]. len(DM)=6. Extract the digits in 876534 to DN=[8,7,6,5,3,4].
len(DN)=6.

2. len(DM)=6=len(DN)=6. Align the two lists: DM=[1,6,5,7,8,9], DN=[8,7,6,5,3,4].

3. Using Skill <add two single digit number>, add every number in
DM=[1,6,5,7,8,9] to the corresponding number in DN =[8,7,6,5,3,4] to form a list,
DS=[1+8,6+7,5+6,7+5,8+3,9+4]=[9,13,11,12,11,13].

4. Append a 0 to the beginning of DS: DS=[0,9,13,11,12,11,13]. Construct a list
R=[0,0,0,0,0,0,0] with len(DS)=7 zeros.

5. DS=[0,9,13,11,12,11,13] (DS[0]=0, DS[1]=9, DS[2]=13, DS[3]=11, DS[4]=12,
DS[5]=11, DS[6]=13), starting from DS[6] to DS[1] (DS[6]=13, DS[5]=11, DS[4]=12,
DS[3]=11, DS[2]=13, DS[1]=9):

i. DS[6]=13, R[6]=0, R[6]=R[6]+DS[6]=0+13=13. Based on Skill
<compare 10>, 13>10, R[6]=13>10, so R[5]=1 and R[6]=13-10=3 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,0,0,1,3].

ii. DS[5]=11, R[5]=1, R[5]=R[5]+DS[5]=1+11=12. Based on Skill
<compare 10>, 12>10, R[5]=12>10, so R[4]=1 and R[5]=12-10=2 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,0,1,2,3].

iii. DS[4]=12, R[4]=1, R[4]=R[4]+DS[4]=1+12=13. Based on Skill
<compare 10>, 13>10, R[4]=13>10, so R[3]=1 and R[4]=13-10=3 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,1,3,2,3].

iv. DS[3]=11, R[3]=1, R[3]=R[3]+DS[3]=1+11=12. Based on Skill
<compare 10>, 12>10, R[3]=12>10, so R[2]=1 and R[3]=12-10=2 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,1,2,3,2,3].

v. DS[2]=13, R[2]=1, R[2]=R[2]+DS[2]=1+13=14. Based on Skill
<compare 10>, 14>10, R[2]=14>10, so R[1]=1 and R[2]=14-10=4 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,1,4,2,3,2,3].

vi. DS[1]=9, R[1]=1, R[1]=R[1]+DS[1]=1+9=10. Based on Skill
<compare 10>, 10=10, R[1]=10=10, so R[0]=1 and R[1]=10-10=0 by Skill <sub 10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[1,0,4,2,3,2,3].
6. R=[1,0,4,2,3,2,3]. The answer is 1042323.

Figure 21: An example of the generated answer on the addition task using ChatGPT with Skills-in-
Context prompting.

35

Under review as a conference paper at ICLR 2024

Multiplication

Question: Calculate 1467*7651

Model Output:

1. Using Skill <extract digits> and Skill <list length>, extract the digits in 1467 to
DM=[1,4,6,7]. len(DM)=4. Extract the digits in 7651 to DN=[7,6,5,1]. len(DN)=4.

2. Add 0,1,len(DM)-1=3 zeros to the end of every number in DM=[1,4,6,7] accord-
ing to the position of the number in DM: DMO=[1*1000,4*100,6*10,7*1]=[1000,400,60,7].

3. Add 0,len(DN)-1=3 zeros to the end of every number in DN=[7,6,5,1] according
to the position of the number in DN: DNO=[7*1000,6*100,5*10,1*1]=[7000,600,50,1].

4. Using Skill <mul two single digit number>, multiple ev-
ery number in DMO=[1000,400,60,7] with every number in
DNO=[7000,600,50,1] and get R=[1000*7000,1000*600,1000*50,1000*1,
400*7000,400*600,400*50,400*1,60*7000,60*600,60*50,60*1,7*7000,7*600,7*50,7*1]=
[7000000,600000,50000,1000,2800000,240000,20000,400,420000,36000,3000,60,
49000,4200,350,7].

5. Using Skill <add multiple numbers>, add all the numbers in
R=[7000000,600000,50000,1000, 2800000,240000,20000,400,420000,36000,3000,60,
49000,4200,350,7], 7000000+600000+50000+1000+2800000+240000+20000+400+420000
+36000+3000+60+49000+4200+350+7:

i. Add the first two numbers: r1=7000000+600000=7600000.
ii. Add the third number 50000 to r1=7600000: r2=7600000+50000=7650000.
iii. Add the fourth number 1000 to r2=7650000: r3=7650000+1000=7651000.
iv. Add the fifth number 2800000 to r3=7651000: r4=7651000+2800000=10451000.
v. Add the sixth number 240000 to r4=10451000: r5=10451000+240000=10691000.
vi. Add the seventh number 20000 to r5=10691000: r6=10691000+20000=10711000.
vii. Add the eighth number 400 to r6=10711000: r7=10711000+400=10711400.
viii. Add the ninth number 420000 to r7=10711400: r8=10711400+420000=11131400.
ix. Add the tenth number 36000 to r8=11131400: r9=11131400+36000=11167400.
x. Add the eleventh number 3000 to r9=11167400: r10=11167400+3000=11170400.
xi. Add the twelfth number 60 to r10=11170400: r11=11170400+60=11170460.
xii. Add the thirteenth number 49000 to r11=11170460:

r12=11170460+49000=11219460.
xiii. Add the fourteenth number 4200 to r12=11219460:

r13=11219460+4200=11223660.
xiv. Add the fifteenth number 350 to r13=11223660: r14=11223660+350=11224010.
xv. Add the sixteenth number 7 to r14=11224010: r15=11224010+7=11224017.

6. So the answer is 11224017

Figure 22: An example of the generated answer on the multiplication task using ChatGPT with
Skills-in-Context prompting.

36

Under review as a conference paper at ICLR 2024

CommaQA-E

Question:

movie: Skob ; directed by: Haldron. movie: Riften ; directed by: Conanopeia. movie:
Tetroxidine ; directed by: Conanopeia. movie: Sheepcrest ; directed by: Flumph. movie:
Sheepcrest ; award: Mariskenna. movie: Skob ; award: Jubeus. movie: Tetroxidine
; award: Handt. movie: Riften ; awarded: Handt. movie: Tetroxidine ; written by:
Conanopeia. movie: Riften ; written by: Conanopeia. movie: Riften ; writer: Flumph.
movie: Tetroxidine ; written by: Haldron. movie: Skob ; written by: Haldron. movie:
Sheepcrest ; writer: Flumph. movie: Skob ; year: 1962. movie: Tetroxidine ; release year:
1997. movie: Riften ; release year: 1972. movie: Sheepcrest ; release year: 1997. Flumph
was an actor in the movie Riften. Flumph acted in the movie Sheepcrest. Conanopeia was
an actor in the movie Riften. Conanopeia acted in the movie Tetroxidine. Conanopeia
acted in the movie Sheepcrest. Haldron acted in the movie Tetroxidine. Haldron acted in
the movie Skob. Haldron was born in the year 1939. Flumph was born in the year 1938.
Conanopeia was born in 1938. Haldron is from the country of Poquet. Conanopeia grew up
in the nation of Poquet. Flumph grew up in the nation of Stridery. Diaqum was awarded
to Flumph. Lidus was awarded to Conanopeia. Haldron won the Lidus award. Conanopeia
was one of the producers of the movie Tetroxidine. Flumph was one of the producers of the
movie Sheepcrest. Flumph produced the movie Skob with others. Haldron was one of the
producers of the movie Sheepcrest. Haldron was one of the producers of the movie Riften.
Haldron produced the movie Skob with others. Conanopeia was one of the producers of the
movie Riften.

Q: What movies have the people from Poquet written?

Model Output:

1. Using Skill <decompose qa>, decompose the question ”What movies have the people
from Poquet written?” into the following sub-questions:

Q1: Who is from the country Poquet?
Q2: Which movies did [A1] write?

2. Using Skill <answer simple question>, answer Q1: Who is from the country Poquet?
Conanopeia grew up in the nation of Poquet. Haldron is from the country of Poquet.
A1=[”Conanopeia”, ”Haldron”]
3. A1=[”Conanopeia”, ”Haldron”]. Using Skill <answer simple question>, answer Q2:
Which movies did [A1] write?

i. A1[0]=”Conanopeia”, answer Q2.1: Which movies did Conanopeia write?
A2.1: movie: Tetroxidine ; written by: Conanopeia. movie: Riften ; written by:

Conanopeia. A2.1=[”Tetroxidine”, ”Riften”]
ii. A1[1]=”Haldron”, answer Q2.2: Which movies did Haldron write?

A2.2: movie: Skob ; written by: Haldron. A2.2=[”Skob”]
iii. So A2=A2.1+A2.2=[”Tetroxidine”, ”Riften”, ”Skob”]

4. The answer is [”Tetroxidine”, ”Riften”, ”Skob”]

Figure 23: An example of the generated answer on the CommaQA-E task using ChatGPT with our
Skills-in-Context prompting.

37

Under review as a conference paper at ICLR 2024

DP

Question: Given a sequence of integers, find a subsequence with the highest sum, such that
no two numbers in the subsequence are adjacent in the original sequence.
A=[1, -5, 3, -4, -1, -1, 2, 2].

Model Output:

1. A=[1, -5, 3, -4, -1, -1, 2, 2] (A[0]=1,A[1]=-5,A[2]=3,A[3]=-4,A[4]=-1,A[5]=-
1,A[6]=2,A[7]=2). Using Skill <list length>, len(A)=8. Construct a list D=[0,0,0,0,0,0,0,0]
with the len(A)=8 zeros.

2. Update the last element in D. A[7]=2. Using Skill <find max>, max(2,0)=2.
D[7]=2 and D=[0,0,0,0,0,0,0,2].

3. Update the second last element in D. A[7]=2, A[6]=2. Using Skill <find max>,
max(2,2,0)=2. D[6]=2 and D=[0,0,0,0,0,0,2,2].

4. Starting from the third last (len(A)-2=6) element in D, update each element in D
based on A=[1, -5, 3, -4, -1, -1, 2, 2] (A[0]=1,A[1]=-5,A[2]=3,A[3]=-4, A[4]=-1,A[5]=-
1,A[6]=2,A[7]=2):

i. D[7]=2, D[6]=2, A[5]=-1. Using Skill <add>, A[5]+D[7]=-1+2=1. Using Skill
<find max>, max(D[6],A[5]+D[7],0)=max(2,1,0)=2. D[5]=2 and D=[0,0,0,0,0,2,2,2].

ii. D[6]=2, D[5]=2, A[4]=-1. Using Skill <add>, A[4]+D[6]=-1+2=1. Using Skill
<find max>, max(D[5],A[4]+D[6],0)=max(2,1,0)=2. D[4]=2 and D=[0,0,0,0,2,2,2,2].

iii. D[5]=2, D[4]=2, A[3]=-4. Using Skill <add>, A[3]+D[5]=-4+2=-2. Using Skill
<find max>, max(D[4],A[3]+D[5],0)=max(2,-2,0)=2. D[3]=2 and D=[0,0,0,2,2,2,2,2].

iv. D[4]=2, D[3]=2, A[2]=3. Using Skill <add>, A[2]+D[4]=3+2=5. Using Skill
<find max>, max(D[3],A[2]+D[4],0)=max(2,5,0)=5. D[2]=5 and D=[0,0,5,2,2,2,2,2].

v. D[3]=2, D[2]=5, A[1]=-5. Using Skill <add>, A[1]+D[3]=-5+2=-3. Using Skill
<find max>, max(D[2],A[1]+D[3],0)=max(5,-3,0)=5. D[1]=5 and D=[0,5,5,2,2,2,2,2].

vi. D[2]=5, D[1]=5, A[0]=1. Using Skill <add>, A[0]+D[2]=1+5=6. Using Skill
<find max>, max(D[1],A[0]+D[2],0)=max(5,6,0)=6. D[0]=6 and D=[6,5,5,2,2,2,2,2].

5. D=[6,5,5,2,2,2,2,2]. The highest sum is D[0]=6.

Figure 24: An example of the generated answer on the dynamic programming task using ChatGPT
with our Skills-in-Context prompting.

38

Under review as a conference paper at ICLR 2024

GSM8K

Question: The girls are trying to raise money for a carnival. Kim raises $320 more than
Alexandra, who raises $430, and Maryam raises $400 more than Sarah, who raises $300.
How much money, in dollars, did they all raise in total?

Model Output:

1. Alexandra raises $430.

2. Kim raises $320 more than Alexandra. Using the Skill <add>, Kim raises
$430+$320=$750.

3. Sarah raises $300.

4. Maryam raises $400 more than Sarah. Using the Skill <add>, Maryam raises
$300+$400=$700.

5. Using the Skill <add>, they all raise $430+$750+$300+$700=$2180 in total.

6. The answer is 2180.

Figure 25: An example of the generated answer on the GSM8K task using ChatGPT with Skills-in-
Context prompting.

39

Under review as a conference paper at ICLR 2024

GSM8K

Question: It’s strawberry-picking time on Grandma Concetta’s farm. Tony can pick 6 quarts
of strawberries per hour, while Bobby picks one less quart of strawberries per hour than
Tony. Kathy can pick twice as many strawberries per hour as Bobby, and Ricky picks two
fewer quarts of strawberries per hour than does Kathy. In total, how many quarts of straw-
berries can Tony, Bobby, Ricky, and Kathy pick per hour on Grandma Concetta’s farm?

Model Output:
1. Tony can pick 6 quarts of strawberries per hour.

2. Bobby picks one less quart of strawberries per hour than Tony. Using the Skill
<sub>, Bobby picks 6-1=5 quarts of strawberries per hour.

3. Kathy can pick twice as many strawberries per hour as Bobby. Using the Skill
<mul>, Kathy picks 5*2=10 quarts of strawberries per hour.

4. Ricky picks two fewer quarts of strawberries per hour than does Kathy. Using the
Skill <sub>, Ricky picks 10-2=8 quarts of strawberries per hour.

5. In total, Tony, Bobby, Ricky, and Kathy can pick 6+5+10+8 quarts of strawberries
per hour. Using the Skill <add multiple numbers> :

i. Add the first two numbers using Skill <add>: r1=6+5=11.
ii. Add the third number 10 to r1=11 using Skill <add>: r2=11+10=21.
iii. Add the fourth number 8 to r2=21 using Skill <add>: r3=21+8=29.

6. So the answer is 29.

Figure 26: An example of the generated answer on the GSM8K task with our Skills-in-Context
prompting, where <add multiple numbers> is included as a basic skill in the SKiC prompting
context (see Table 16) but is not demonstrated in any given examplar to show how to use it. LLMs
automatically figure out how to use such skills in an innovative composition to solve an unseen
complex problem.

40

Under review as a conference paper at ICLR 2024

GSM8K

Question: A merchant wants to make a choice of purchase between 2 purchase plans: jew-
elry worth $5,000 or electronic gadgets worth $8,000. His financial advisor speculates that
the jewelry market will go up 2.5% while the electronic gadgets market will rise 1.2% within
the same month. If the merchant is looking to maximize profit at the end of this month by
making a choice, how much profit would this be?

Model Output:

1. If the merchant buys jewelry worth $5,000 and the jewelry market goes up 2.5%, using
the Skill <mul>, the value of the jewelry will increase by $5,000*2.5%= $125. Using Skill
<add>, the value of the jewelry will be $5,000+$125=$5125.

2. If the merchant buys electronic gadgets worth $8,000 and the electronic gadgets
market goes up 1.2%, using the Skill <mul>, the value of the electronic gadgets will
increase by $8,000*1.2%= $96. Using Skill <add>, the value of the electronic gadgets will
be $8,000+$96=$8096.

3. The merchant wants to maximize profit. Using the Skill <sub>, the profit from
buying jewelry will be $5125-$5000=$125. The profit from buying electronic gadgets will
be $8096-$8000=$96.

4. Using the Skill <compare> , $125>$96, so the merchant should buy jewelry to
maximize profit. The profit will be $125.

5. The answer is 125.

Figure 27: An example of the generated answer on the GSM8K task with our Skills-in-Context
prompting, where the skill <compare> are neither included in the SKiC prompting context (see
Table 16) nor used in any given examplars. LLMs utilize the skills pre-existing in their pre-trained
knowledge to solve the problem.

41

Under review as a conference paper at ICLR 2024

GSM8K

Question: Mr. Jackson’s fourth-grade class has 27 students. He wants to give each student
2 glue sticks. The glue sticks come in packs of 8. How many packs will Mr. Jackson need
to buy so every student can have 2 glue sticks, assuming he can only buy whole packs and
he expects to have some extra glue sticks left over?

Model Output:

1. Mr. Jackson’s fourth-grade class has 27 students and he wants to give each student 2 glue
sticks. Using the Skill <mul>, Mr. Jackson needs 27*2=54 glue sticks.

2. The glue sticks come in packs of 8. Using the Skill <div>, Mr. Jackson needs
54/8=6.75 packs of glue sticks.

3. Mr. Jackson can only buy whole packs. Using the Skill <round> , Mr. Jackson
needs to buy 7 packs of glue sticks.

4. The answer is 7.

Figure 28: An example of the generated answer on the GSM8K task with our Skills-in-Context
prompting, where the skill <round> are neither included in the original SKiC prompting context
(see Table 16) nor used in any given examplars. LLMs utilize the skills pre-existing in their pre-
trained knowledge to solve the problem.

42

Under review as a conference paper at ICLR 2024

MATH

Question: What is the smallest possible average of four distinct positive even integers?

Model Output:

1. The smallest possible average of four distinct positive even integers is achieved when the
four integers are the smallest possible.

2. The smallest four distinct positive even integers are 2, 4, 6, and 8.

3. Using the Skill <Average> , the average of these four numbers is (2+4+6+8)/4=20/4=5.

4. The answer is 5.

Figure 29: An example of the generated answer on the MATH task with our Skills-in-Context
prompting, where the skill <Average> are neither included in the original SKiC prompting con-
text (see Table 18) nor used in any given examplars. LLMs(GPT4) utilize the skills pre-existing in
their pre-trained knowledge to solve the problem.

43

Under review as a conference paper at ICLR 2024

MATH

Question: How many numbers are in the list 2008, 2003, 1998, . . . , 8, 3?

Model Output:

1. The list starts at 2008 and ends at 3, and the difference between consecutive terms is 5.

2. Using the Skill <Arithmetic Sequence> , the n-th term of an arithmetic sequence
can be found using the formula an = a1 + (n− 1)d, where an is the nth term, a1 is the first
term, n is the term number, and d is the common difference.

3. Substitute an with 3, a1 with 2008, and d with −5 into the formula,
3 = 2008 + (n− 1)(−5).

4. Using the Skill <Solve Equation>, move 2008 to the other side, (n−1)(−5) = 3−2008.
Using the Skill <Sub>, (n− 1)(−5) = −2005.

5. Using the Skill <Solve Equation>, move ∗(−5) to the other side, n− 1 = −2005/− 5.
Using the Skill <Div>, n− 1 = 401.

6. Using the Skill <Solve Equation>, move −1 to the other side, n = 401 + 1.
Using the Skill <Add>, n = 402.

7. The answer is 402.

Figure 30: An example of the generated answer on the MATH task with our Skills-in-Context
prompting, where the skill <Arithmetic Sequence> are neither included in the original SKiC
prompting context (see Table 18) nor used in any given examplars. LLMs(GPT4) utilize the skills
pre-existing in their pre-trained knowledge to solve the problem.

44

Under review as a conference paper at ICLR 2024

MATH

Question: Suppose P is the point (5, 3) and Q is the point (−3, 6). What is the midpoint of
PQ?

Model Output:

1. Using the Skill <Midpoint Formula> , the midpoint of two points (x1, y1) and (x2, y2)

is given by
(
x1+x2

2 , y1+y2

2

)
.

2. For points P (5, 3) and Q(−3, 6), the midpoint is
(

5+(−3)
2 , 3+6

2

)
.

3. Using the Skill <Add> and <Div>, the midpoint is
(
2
2 ,

9
2

)
= (1, 4.5).

4. The answer is (1, 4.5).

Figure 31: An example of the generated answer on the MATH task with our Skills-in-Context
prompting, where the skill <Midpoint Formula> are neither included in the original SKiC prompt-
ing context (see Table 18) nor used in any given examplars. LLMs(GPT4) utilize the skills pre-
existing in their pre-trained knowledge to solve the problem.

45

Under review as a conference paper at ICLR 2024

MATH

Question: If a and b are vectors such that ∥a∥ = 2, ∥b∥ = 7, and a× b =

(
3
2
6

)
, then find

the smallest possible angle between a and b.

Model Output:

1. Using the Skill <Cross Product> , the magnitude of the cross product of two vectors
is equal to the product of the magnitudes of the vectors and the sine of the angle between
them. So, we have ∥a× b∥ = ∥a∥∥b∥ sin θ, where θ is the angle between a and b.

2. Using the Skill <Vector Magnitude> , the magnitude of the cross product ∥a × b∥ is
√
32 + 22 + 62 =

√
49 = 7.

3. Substituting the given values, we get 7 = 2 ∗ 7 ∗ sin θ. Using the Skill <Div>
and <Mul>, we get sin θ = 7/(2 ∗ 7) = 1/2.

4. Using the Skill <Inverse Trigonometric Functions> , the angle whose sine is 1/2
is 30 degrees or 150 degrees. But we want the smallest possible angle, so θ = 30 degrees.

5. The answer is 30.

Figure 32: An example of the generated answer on the MATH task with our Skills-in-Context
prompting, where the skill <Cross Product>, <Vector Magnitude>,<Inverse Trigonometric
Functions> are neither included in the original SKiC prompting context (see Table 18) nor used
in any given examplars. LLMs(GPT4) utilize the skills pre-existing in their pre-trained knowledge
to solve the problem.

46

Under review as a conference paper at ICLR 2024

Figure 33: An example of the generated solution on the MATH task using our SKiC prompting.
The skills <Angle Bisector Theorem> and <Heron’s Formula> are neither provided in the SKiC
prompting context (see Figure 18) nor used in any given examplars. LLMs harness the internal skills
in their pre-trained knowledge to solve the problem.

Figure 34: Examples of the generated answers from Decomp prompting and our SKiC prompting,
respectively. The correct answer should be “Myristorrhoid, Chimpwurst, Geissant, Riften”. Errors
(highlighted in red) in early stages in Decomp propagate to final incorrect answers while our SKiC
avoids such errors (highlighted in green).

F APPENDIX: THE MOST FREQUENTLY USED SKILLS BY GPT-4 FOR
SOLVING MATH BENCHMARK

In Table 12, we report the most frequently used skills by GPT-4 to solve the MATH problems. There
are two sources of the skills: (i) the ones provided in the context of SKiC prompts, and (ii) the ones
originating from GPT-4’s internal knowledge (acquired through pretraining).

47

Under review as a conference paper at ICLR 2024

Table 12: The most frequently used skills by GPT-4 for solving MATH benchmark with SKiC
prompting. The skills can be from the context of the SKiC prompts (denoted as “in-context” in the
table) or from the internal knowledge acquired during the pretraining stage (denoted as “internal”).

Category Source Top Used Skills

Pre-Algebra
In-context Div, Mul, Add, Sub, Solve Equation, Area, Exp, Counting Principle, Radicals, Prime Numbers

Internal Pythagorean Theorem, Rounding, Divisibility Rules, Percentage, Angles, Simply Fraction,
Mean, Ratio, Triangle Angle Sum, Order of Operations

Geometry
In-context Area, Mul, Div, Add, Sub, Solve Equation, Volume, Radicals, Exp, Perimeter

Internal Pythagorean Theorem, Trigonometry, Triangle, Triangle Inequality, Similar Triangles,
Circle, Geometry, Triangle Angle Sum, Angle Bisector Theorem, Trigonometric Ratios

Inter-Algebra
In-context Factoring, Solve Equation, Add, Mul, Sub, Complex Number, Inequality, Quadratic Formula, Div, Exp

Internal Substitution, Completing the Square, Polynomial, Logarithm, AM-GM Inequality,
Polynomial Division, Absolute Value, Summation, Sequences, Simplify

Algebra
In-context Add, Mul, Solve Equation, Sub, Div, Exp, Factoring, Quadratic Formula, Radicals, Distance Formula

Internal Absolute Value, Slope, Logarithm, Arithmetic Sequence, Completing the Square, Interval Notation,
Inverse Function, Substitution, Midpoint Formula, Ceiling Function

Probability
In-context Factorial, Combination, Counting Principle, Probability, Add, Sub, Permutations, Mul, Div, Exp

Internal Simplify Fraction, Binomial Theorem, Expected Value, Arithmetic Sequence, Sum of Arithmetic Series,
Counting, Stars and Bars, Divisibility Rules, Binomial Probability, Perfect Squares

Pre-Calculus
In-context Solve Equation, Add, Mul, Sub, Complex Number, Div, Factoring, Radicals, Area, Distance Formula

Internal Trigonometric Identities, Trigonometry, Dot Product, Matrix Multiplication, Pythagorean Theorem,
Cross Product, Inverse Trigonometric Functions, Determinant, Vector Projection, Vectors

NumTheory
In-context Add, Mod, Base Conversion, Mul, Congruences, Div, Sub, Factoring, Prime Number, GCD

Internal Divisors, Divisibility Rules, Units Digit, Prime Fraction, Chinese Remainder Theorem, Arithmetic
Sequence, Exponents, Cyclic Patterns, Perfect Squares, Modular Arithmetic

48

	Introduction
	Methodology
	Skills-in-Context Prompting
	Construction of the SKiC Prompts

	Experiments
	Experimental Settings
	Main Results

	Related Work
	Conclusion
	Appendix: Comparison to Previous Prompting Strategies
	Appendix: Experimental Setup
	Composition over In-Context Skills: Easy-to-Hard Generalization
	Symbolic Manipulation: Last Letters
	Arithmetic Operation
	Long-Context Question Answering: CommaQA-E
	Dynamic Programming

	Generalization Beyond In-Context Skills: Complex Reasoning
	GSM8K
	MATH

	Appendix: The Performance of SKiC Prompting using LLAMA2
	Appendix: Skills and Examples of How to Composing Skills
	Appendix: Generation Examples
	Appendix: the Most Frequently Used Skills by GPT-4 for Solving MATH Benchmark

