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Abstract
The GPT-4o’s excellent duplex speech interaction
ability has given users an impressive experience.
Researchers have recently proposed several mul-
timodal LLMs to achieve user-agent speech-to-
speech conversations. In this paper, we propose
a novel speech-text multimodal LLM architec-
ture called Freeze-Omni, and our main contribu-
tion is that the speech input and output modalities
can be easily connected to a textual LLM while
keeping the LLM’s parameters frozen throughout
the training process. We effectively ensure that
the intelligence of the Freeze-Omni in the speech
modality is at the same level as that in the text
modality of its backbone LLM while achieving
low latency in the end-to-end spoken response. In
addition, we also designed a method to achieve
duplex dialogue ability through multitask train-
ing, giving Freeze-Omni a more natural style of
dialogue ability between users and agents. In
summary, Freeze-Omni holds great potential to
conduct speech-to-speech dialogue based on a
multimodal LLM under the condition of a frozen
LLM, avoiding the catastrophic forgetting prob-
lem caused by limited data and training resources.

1. Introduction
Recent years have witnessed a rapid development of large
language models (LLMs). The LLM family represented by
the GPT series (Floridi & Chiriatti, 2020; Achiam et al.,
2023) of OpenAI has demonstrated extraordinary capabili-
ties. As speech interaction is one of the most natural forms
of human-computer interaction, combining speech input
and output with an LLM can bring a natural experience to
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users. The traditional method adopts a cascaded approach
of ASR + LLM + TTS to achieve interaction with LLM in
the speech modality. However, this engineering-centered
pipeline approach often leads to considerable interaction
latency. Nevertheless, GPT-4o (OpenAI, 2024) has changed
this situation – it provides an end-to-end speech interaction
mode which has significantly improved user experience,
triggering a research boom regarding multimodal LLMs for
speech-to-speech interaction.

In the field of general LLMs, many public models such as
Llama 3.2 (Dubey et al., 2024), Qwen2.5 (Team, 2024),
Mixtral (Jiang et al., 2024), etc., have provided good oppor-
tunities for researchers to develop downstream tasks. There-
fore, in the field of multimodal LLMs targeting speech-to-
speech conversation, works such as Mini-Omni2 (Xie & Wu,
2024b), LLaMA-Omni (Fang et al., 2024), Moshi (Défossez
et al., 2024) and GLM-4-Voice (Zeng et al., 2024) have
provided excellent references for researchers. These works
adopt different strategies to align the speech modality with
an LLM and design some tricks to achieve a duplex dialogue
mode.

In this research context, we found that in the process of align-
ing the LLM with the speech modality in existing public
speech-text multimodal LLMs (Chu et al., 2024; Défossez
et al., 2024; Fang et al., 2024; Fu et al., 2024; Zhang et al.,
2023; Xie & Wu, 2024a; Zeng et al., 2024), the param-
eters of the LLM are more or less fine-tuned. However,
in most cases, it is challenging for researchers to easily
collect spoken Q&A data at the million-hour level (the cor-
responding text content can be comparable to the amount
of data for training text-modal LLM). Fine-tuning the LLM
inevitably brings the catastrophic forgetting problem to the
LLM, negatively impacting its original “intelligence” ability.
In addition, only a few works have evaluated the perfor-
mance of spoken question-answering tasks for speech-to-
speech multimodal LLMs, showing an obvious gap in the
performance between spoken Q&A and text-modality Q&A.
Therefore, in this paper, we propose a speech-to-speech
dialogue LLM called Freeze-Omni, which achieves effec-
tive speech-text modality alignment while keeping the LLM
parameters frozen, obtaining low-latency speech dialogue
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Figure 1. Overview of proposed Freeze-Omni. The streaming speech input forms chunk-wise features through the speech encoder, and
then is connected to the LLM through the adapter. The LLM generates hidden states and text tokens, which are sent to the NAR prefix
speech decoder and the NAR speech decoder in the form of chunks, respectively, after chunk segmentation. Finally, the AR speech
decoder sends the generated tokens into the speech token FIFO, and the streaming codec decoder generates streaming speech output from
the FIFO according to a fixed speech token chunk size.

capabilities while maintaining the original intelligence of
the backbone LLM. Specifically, Freeze-Omni is mainly
implemented in the following steps:

Modeling of speech input We first use a large amount of
ASR data to align the speech encoder and the LLM, enabling
the LLM to understand the semantic information from the
speech. Then, with the LLM frozen, a training strategy of
prompt embedding is used to let the model have the ability
to possess speech input to text output, training on only a

small amount of Q&A data.

Modeling of speech output Second, we use a sizable
amount of text-speech paired data to train the AR-based
speech decoder, which can generate speech tokens from
text, and a single-codebook based codec model is used to
decode the speech token into a waveform. Then, we design
a prefix kv-cache fine-tune strategy, using the hidden state
vector output by the LLM to transfer the speech decoder
into the output text space of LLM, achieving the ability of
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text input to speech output while keeping the LLM frozen.

Design for duplex dialogue Finally, we connect the
speech encoder and speech decoder from the above parts
to the backbone LLM. Then, a task of chunk-wise state
prediction is used to determine whether or not the user inter-
rupts the dialogue, achieving the duplex speech-to-speech
dialogue ability.

In conclusion, the main contributions of Freeze-Omni are
as follows:

1) The parameters of the LLM are completely frozen
throughout the training process of Freeze-Omni, maintain-
ing the original intelligence of the LLM and achieving low-
latency speech-to-speech dialogue at the same time.

2) The paired text-speech Q&A training data is at a small
scale and consumes fewer computing resources in the build-
ing of Freeze-Omni.

3) Freeze-Omni can support any (multimodal) LLM with a
text modality and retains the abilities of the LLM, such as
prompt following and role-playing. Moreover, if it is nec-
essary to change the style of the LLM’s response, it is only
required to fine-tune it with text data in the corresponding
style.

2. Model
2.1. Overview

Freeze-Omni is a speech-to-speech dialogue model, and its
architecture is shown in Fig. 1, exhibiting the characteris-
tic of being ”smart” as it is constructed upon a ”frozen”
text-modality LLM. This enables it to keep the original in-
telligence of the LLM backbone, without being affected by
the forgetting problem induced by the fine-tuning process
for integration of the speech modality. Specifically, Freeze-
Omni contains a speech encoder that supports streaming
speech input and a speech decoder that generates streaming
output speech. During the training process, Freeze-Omni
first achieves alignment between speech input and text out-
put, then between text input and speech output. Finally, by
connecting these two components to the LLM, the ability of
speech input to speech output is obtained. This section will
provide a detailed introduction to the architecture, training
strategy, and duplex dialogue design of Freeze-Omni.

2.2. Modeling of speech input

2.2.1. CHUNK-WISE STREAMING SPEECH ENCODER

To allow Freeze-Omni to support speech input and achieve
a rapid and low-latency response to input speech, it utilizes
a chunk-wise streaming speech encoder to transform the
input speech features into a high-dimensional representa-
tion. Then, an adapter module maps the high-dimensional

representation into the embedding space of the backbone
LLM. The speech encoder module here consists of sev-
eral down-sampling convolution layers and several Trans-
former (Vaswani et al., 2017) blocks, while the adapter only
comprises several down-sampling convolution layers. The
reason for using down-sampling is to reduce the frame rate
of the speech features, increase the speed of the LLM in the
prefill stage, and decrease the latency.

2.2.2. TRAINING STRATEGY

A 3-stage training strategy shown in Fig. 2 is used for the
speech encoder, allowing Freeze-Omni to acquire the ability
to understand the streaming input speech while keeping the
LLM frozen.

1) The first stage shown in Fig. 2(a) is the same as the
training process of a common speech recognition model.
The input is speech features, and the label is the transcript
corresponding to the speech. CTC (Graves et al., 2006) is
used as the loss function.

2) In the second stage shown in Fig. 2(b), we use the speech
encoder trained in the first stage as the initialization param-
eter and connect it with the LLM utilizing an adapter. The
output of the LLM still uses the transcript corresponding
to the input speech as the label. Several trainable special
tokens are added to the input part to guide the LLM in com-
pleting the training process at this stage. In this stage, except
for the frozen LLM, the parameters of other networks are
all trainable.

3) In the last stage shown in Fig. 2(c), we first construct a
dataset of multi-round questions and use the LLM backbone
relied on in the training to generate multi-round answers.
The dataset constructed in this way will be completely com-
patible with the LLM backbone. Subsequently, we use a
multi-speaker TTS system to generate data in the speech
modality for the questions part and add trainable prompt
embedding before each question in the multi-round to guide
the LLM to achieve the ability of speech input to text output.
In this stage, the trainable special tokens in stage 2 will
be dropped, only the prompt embedding part is trainable
and they use the same parameters for each question, the
speech encoder is frozen to maintain the acoustic robustness
obtained from stage 2, and the LLM is also frozen to ensure
that its intelligence is not affected.

2.3. Modeling of speech output

2.3.1. ARCHITECTURE

Inspired by VALL-E (Chen et al., 2024), Freeze-Omni uses
a token-based speech decoder that contains NAR prefill and
AR generation stage to achieve speech output capabilities.
The speech decoder mainly consists of the NAR decoder,
the AR decoder, and the decoder of a codec model. Both the

3



Freeze-Omni: A Speech-to-speech Dialogue Model with Frozen LLM

wav

Transcript

(a)

Speech Encoder

(b)

Speech Encoder

wav

Adapter

LLM

Special Token

Transcript

(c)

Speech Encoder

wav

Adapter

LLM

Prompt Embedding

Text of A1

Q1

Speech Encoder

wav

Adapter

Q2

Prompt Embedding

Text of A2

Figure 2. The 3-stage training method for modeling of speech input, the speech encoder in (c) is used in Freeze-Omni finally and LLM is
frozen in all 3-stage.

NAR decoder and AR decoder are built upon transformer
blocks. The NAR decoder is used to model the semantic
features from the output of LLM, and then the AR decoder
generates speech tokens based on the output of the NAR
decoder. Finally, a decoder of the codec model converts the
speech tokens into a speech stream.

2.3.2. TRAINING STRATEGY

For the modeling of speech output, we still use a 3-stage
training method as shown in Fig. 3, enabling Freeze-Omni
to obtain the ability of generate speech from the output of
LLM while keeping the LLM frozen.

1) As shown in Fig. 3(a), we first train a single-codebook-
based codec model using only speech data. Since a single
codebook is sufficient for extracting speech tokens from the
speech signal of a limited number of speakers, using a single
codebook here can reduce the complexity and latency of the

system as much as possible.

2) In the second stage shown in Fig. 3(b), we first construct
a large amount of text-speech paired data and pass the text
through the tokenizer of the backbone LLM to convert the
text into text tokens. Then, we pass the text tokens through
the embedding layer of the LLM to convert them into em-
bedding vectors as semantic features and send them to the
NAR speech decoder. The AR speech decoder predicts the
output speech tokens in the form of teacher force. The labels
here are extracted using the codec model trained in stage 1.
The NAR and AR speech decoders use the same parameters,
and the embedding layer of the LLM is frozen.

3) In the last stage, we use the same multi-round questions
and answers data set in stage 3 of Sec. 2.2.2 and use the
text tokens and hidden state sequence generated by the back-
bone LLM. As shown in Fig. 3(c), an additional NAR prefix
speech decoder is added to model the hidden state of the
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Figure 3. The 3-stage training method for modeling of speech output, the speech decoder in (c) is finally used in Freeze-Omni, and LLM
is frozen in all three stages.
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Figure 4. Method of chunk-level state prediction used in the prefill stage of the LLM. An additional classification layer is added to the
output hidden state of the LLM corresponding to the last frame of each chunk output by the speech encoder to predict the state.

LLM and pass its output kv-cache to the NAR speech de-
coder. Then the text token will be fed to the NAR speech
decoder trained in stage 2. The text token label for the AR
speech decoder is the speech data produced by the output
text of the LLM using a TTS system and converted into
speech tokens by the codec model in stage 1. In this stage,
the NAR prefix speech decoder uses different parameters
from the NAR and AR speech decoders, and only the pa-
rameters of the NAR prefix speech decoder are trainable,
while the parameters of other networks are frozen. Because
the style of the text tokens produced by the LLM is differ-
ent from that of the text in the large amount of text-speech
paired data obtainable in stage 2, the significance of the third
stage lies in closely coupling the speech decoder with the
output of the LLM to reduce the occurrence of bad cases.

2.4. Design for duplex dialogue

After the above training process, Freeze-Omni has the ability
to convert speech input to speech output. However, to better
approximate the natural form of speech-to-speech dialogue,
we use multi-task for chunk-level state prediction as shown
in Fig 4. We first use an acoustic VAD1 module to detect
the starting point of the streaming speech. When the VAD is
triggered, the speech stream will be sent into Freeze-Omni
chunk by chunk, and an additional classification layer will
be added after the last layer of the LLM to predict different
states. Three states are defined here: state 0 indicates that
the current LLM can continue to receive speech, and states 1
and 2 indicate that the current chunk is the end of the speech.

1https://github.com/snakers4/silero-vad
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State 1 means that the user will interrupt the dialogue and the
LLM will perform a new generation stage; State 2 means
that there is no need to interrupt the conversation. Both
states will stop sending speech streams to Freeze-Omni and
reset the VAD module. The training process of this part
is completed in stage 3 of Sec. 2.2.2, using a multi-task
method to optimize the cross-entropy loss of both the state
classification layer and the LLM. It should be noted that
the state labels here are only valid on the last frame of each
chunk.

In addition, we used a ”model as a server” strategy to im-
plement the speech-to-speech dialogue system. First, we
started several models simultaneously and regarded them
as a server. Then, when a user’s VAD was triggered, the
speech would be sent to the server in the form of chunks,
and the server would be responsible for scheduling which
idle model should respond to the current chunk. Since we
separated all the kv-cache and CNN cache of the speech
encoder and LLM during the inference process, the server
only needs to save the inference cache for each user. In this
way, any model on the server could respond to any chunk
of any user, and there was no need to specify which model
was used as a monitor or a generator.

3. Experiments
3.1. Setups

3.1.1. DATASETS

In this paper, we only randomly selected 60,000 multi-round
Q&A data from moss-003-sft-data 2 and used the backbone
LLM to generate new answers to replace its original one.
We used a zero-shot TTS system to synthesize its text into
speech. For the modeling of speech input of Freeze-Omni,
we used 110,000h of internal speech-text paired ASR data,
including both Chinese and English, in stage 1 and stage
2. In stage 3, we used the pairing of speech input and text
output of the multi-round Q&A data mentioned above. For
the modeling of the speech output of Freeze-Omni, we used
about 3,000h of text-speech paired data generated by a zero-
shot TTS system in stages 1 and 2. In stage 3, we used the
pairing of text input and speech output of the multi-round
Q&A data mentioned above.

3.1.2. MODEL CONFIGURATION

LLM backend For experiments in this paper, we used
Qwen2-7B-Instruct3 as our backbone LLM. As an outstand-
ing 7B-level public LLM, it is beneficial for us to verify

2https://huggingface.co/datasets/fnlp/
moss-003-sft-data

3https://huggingface.co/Qwen/
Qwen2-7B-Instruct

our method. Besides, Freeze-Omni can use any LLM as a
backbone because its training process does not update any
of the LLM’s parameters.

Speech Encoder We used a multi-layer convolution with
4-times downsampling and 24 layers of transformers with
a hidden size of 1024. The adapter consists of a multi-
convolution layer with 2 times downsampling. The num-
ber of parameters for the speech encoder is approximately
350M, with an output frame rate of 12.5 Hz. The input
of the speech encoder is the mel-filter bank feature with a
25ms window size and 10ms shift.

Speech Decoder We used TiCodec4 (Ren et al., 2023) as
the codec model, and we customized the configuration so
that the size of the codebook is 1024 with a single-codebook
and the frequency of the speech token 40Hz. For the speech
decoder part, the NAR (Prefix) speech decoder and the
AR speech decoder are 4-layer Llama decoder layers with a
hidden size of 896. The number of parameters for the speech
decoder is approximately 120M, and the output sample rate
of the codec model is 24000Hz.

3.1.3. TRAINING

In the training process, we used the Adamw (Loshchilov
& Hutter, 2017) optimizer with a warm-up learning rate
scheduler, and different learning rates were used in differ-
ent stages. The learning rates used in the three stages of
the modeling of speech input are 2e-4, 1e-4, and 6e-4 re-
spectively. The learning rates used in stages 2 and 3 of the
modeling of speech output are both 5e-5, and the training
hyperparameters used in stage 1 are the same as those in
TiCodec. All the experiments were completed on 8 GPUs.

3.2. Results on speech input

To measure the understanding ability of Freeze-Omni for
input speech, as shown in Tab. 1, we verified the accuracy
of ASR on different evaluation sets for the model in stage 2
of the modeling of speech input. Since the parameters of the
speech encoder and adapter used in stage 3 are unchanged
compared to those in stage 2, it can be considered that these
results can represent the input speech understanding ability
of Freeze-Omni. In the training of stage 2, we used a dy-
namic chunk training method (Yao et al., 2021) to enhance
the robustness of the model so that different chunk sizes can
be used in stage 3. From the results, it can be seen that in the
case of dynamic chunk training, decoding with chunk = ∞
shows better performance compared to chunk = 4. If dy-
namic chunk training is not used but chunk = 4 decoding
is used, better results can be obtained, but this also means
that the chunk size cannot be changed in stage 3. In this
paper, to pursue the best performance, all experiments are

4https://github.com/y-ren16/TiCodec
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Table 1. The ASR performance of the model corresponding to stage 2 in the modeling of speech input, where {aishell-1 (Bu et al.,
2017),test net (Zhang et al., 2022), test meeting (Zhang et al., 2022)} are Mandarin evaluation sets, measured in CER (%), while
{dev-clean,dev-other,test-clean,test-other} (Panayotov et al., 2015) are English evaluation sets, measured in WER (%).

Model aishell-1 test net test meeting dev-clean dev-other test-clean test-other

Wav2vec2-base (Baevski et al., 2020) - - - 6.0 13.4 - -
Mini-Omni2 (Xie & Wu, 2024b) - - - 4.8 9.8 4.7 9.4
VITA-1.5 (Fu et al., 2025) 2.16 8.4 10.0 3.3 7.2 3.4 7.5

Freeze-Omni
+ chunk = ∞ 2.15 8.57 10.09 3.29 7.4 3.24 7.68
+ chunk = 4 2.79 12.6 14.2 4.16 10.21 4.05 10.48

+ w/o dynamic 2.48 11.8 13.46 4.03 9.45 3.82 9.79

Table 2. The CER(%) of the speech decoder on 1,000 evaluation utterances under different top-k.

top-k

Method 1 2 3 4 5

Speech Decoder w/o Prefix 5.27 4.64 4.76 4.66 5.03
+ pre-network 3.11 2.75 2.77 2.84 2.94

Speech Decoder 3.9 3.65 3.53 3.62 3.71
+ pre-network 2.19 1.69 1.85 1.9 1.99

completed on the model with this configuration of the last
row in Tab. 1.

3.3. Results on speech output

Because we investigated the speech-out performance of
Freeze-Omni in a single-speaker case in this paper, we ran-
domly selected 1,000 utterances of text tokens and hidden
states output by the LLM as the input of the speech de-
coder and compared the ASR accuracy of the synthesized
speech with the label text. As shown in Tab 2, the perfor-
mance of the model in stage 2 of the modeling of speech
output (Speech Decoder w/o Prefix) and the model in stage 3
(Speech Decoder) under different AR decoding parameters
top-k are presented respectively, and CER (%) is evaluated
using paraformer-zh5 (Gao et al., 2022). From the results, it
can be concluded that after introducing the hidden state of
the LLM as the input of the NAR prefix speech decoder, the
speech decoder can be more completely aligned with the
LLM, reducing the occurrence of bad cases and get a lower
CER (%). In addition, the increasing top-k shows better
robustness of the speech decoder with a prefix fine-tune be-
cause a larger top-k means a higher quality requirement on
the posterior probability distribution output by the model.

In addition, the NAR and AR speech decoders need to model
the LLM embedding outputs and speech tokens simultane-
ously, but the spaces represented by these two are different.

5https://huggingface.co/funasr/
paraformer-zh

Therefore, to verify whether the generation quality would
be improved if the NAR speech decoder had additional pa-
rameters for modeling the outputs of the LLM embedding
layer compared to the AR speech decoder, we added an
extra pre-network between the NAR speech decoder and the
LLM embedding layer. This pre-network consists of two
Llama decoder layers with the same configuration as the
NAR speech decoder. As shown in Tab 2, this method can
significantly improve the speech quality generated by the
speech decoder.

3.4. Results on spoken question answering

To demonstrate the intelligence of Freeze-Omni, we verified
the accuracy of spoken question answering on three sets:
LlaMA-Questions6 (Nachmani et al., 2023), Web Ques-
tions7 (Berant et al., 2013), and Trivia QA8 (Joshi et al.,
2017). Since Web Questions and Trivia QA only have text,
we used the edge-tts9 tool with voice at en-US-BrianNeural
to synthesize them into spoken modality. Tab. 3 shows
the accuracy of Freeze Omni and its used backbone LLM
Qwen2-7B-Instruct on these three sets. From the results, it
can be observed that Freeze-Omni exhibits excellent perfor-
mance compared to other models because the accuracy gap
between it and the backbone LLM is smaller than that of

6https://github.com/
google-research-datasets/LLAMA1-Test-Set

7https://huggingface.co/datasets/
Stanford/web_questions

8https://nlp.cs.washington.edu/triviaqa/
9https://github.com/rany2/edge-tts
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Table 3. The accuracy (%) of different models in question answering on three sets. The models in the first four rows all use speech as input,
while the models in the last two rows use text as input. The backbone LLM of Freeze-Omni is Qwen2-7B-Instruct, and the backbone
LLM of Moshi is Helium. Both Freeze-Omni and Qwen2-7B-Instruct use greedy search in the generation stage with zero-shot, and the
accuracy is calculated using the output text. Except for Freeze-Omni and Qwen2-7B-Instruct, previous evaluation results are derived from
corresponding references.

Model Modality Web Q. LlaMA Q. Audio Trivia QA

SpeechGPT (7B) (Zhang et al., 2023) Audio&Text 6.5 21.6 14.8
Spectron (1B) (Nachmani et al., 2023) Audio&Text 6.1 22.9 -
Moshi (7B) (Défossez et al., 2024) Audio&Text 26.6 62.3 22.8
GLM-4-Voice (9B) (Zeng et al., 2024) Audio&Text 32.2 64.7 39.1
Freeze-Omni (7B) Audio&Text 44.73 72 53.88

Helium (Défossez et al., 2024) Text Only 32.3 75 56.4
Qwen2-7B-Instruct Text Only 45.13 77.67 63.93

Table 4. Detailed information of statistical latency. Among them, 50% represents the median, and 90% represents the percentile at 90.
The unit of the results in the table is (ms). All results are completed using pytorch with bfloat16 inference.

Latency description Avg. 50% 90%

LLM interrupted → LLM generate first text token chunk 478 468 750
First text token chunk → Prefill of speech decoder 15 15 17
Prefill of speech decoder → Generate first speech token chunk 237 235 252
First speech token Chunk → Decode first PCM chunk 11 11 13

Total 745 753 1020

Moshi, which also verifies that Freeze-Omni has the same
level of intelligence in text and speech modalities. It is
worth mentioning that thanks to the freezing of LLM dur-
ing the training process, Freeze-Omni’s performance on
the spoken question answering task even surpasses that of
GLM-4-Voice, which uses speech training data far more
than Freeze-Omni.

3.5. Analysis on end-to-end latency

To verify the latency of Freeze-Omni for speech-to-speech
dialogue, we defined two parts of latency, namely statistical
latency and non-statistical latency. The statistical latency
refers to the time from the LLM being interrupted to the
first PCM chunk of speech generated. Specifically, it can
be divided into four parts as shown in Fig 4, these results
are based on a speech token chunk size of 40 and the use
of text token chunk segmentation based on the sentence-
split strategy. The non-statistical latency refers to the time
from the real endpoint of speech to the LLM outputting the
interrupt state. This part needs to be measured manually
and cannot be counted automatically. According to our case
analysis conclusion, the non-statistical latency is about one
to two speech encoder chunk sizes, and according to the
experiment configuration above, this time is about 160ms
to 320ms. In summary, if we consider the influence of

network latency (about 200 to 300ms), the average latency
of Freeze-Omni used in real scenarios will be controlled
at about 1.2 seconds. This result means Freeze-Omni can
deliver a low-latency speech-to-speech dialogue experience
for users.

4. Conclusion and future work
In this paper, we propose Freeze-Omni, a text-audio multi-
modal LLM capable of low-latency speech-to-speech dia-
logue, which does not need fine-tuning the LLM backbone,
showing excellent performance in various tasks, especially
in the spoken question answering. In the future, to explore
more speech dialogue capabilities, we plan to do the follow-
ing:

• We will upgrade the speech encoder to a general audio
encoder to complete tasks like emotion understanding and
audio captioning.

• Under the condition of a frozen LLM, we will add more
tasks to make the LLM complete more downstream tasks
in speech dialogue, like the state prediction ability.

• We plan to support multiple voices and instruction-
following ability in the speech decoder part so that it
can obtain more instruction information from the hidden
state of the LLM and provide richer speaking styles.
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