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ABSTRACT

Pediatric clinical trials are ethically complex, expensive, and often infeasible,
leading the U.S. FDA to extrapolate adult efficacy and safety data when justi-
fied. Yet no public resource systematically documents these regulatory decisions.
We introduce PED-X-Bench, the first dataset and benchmark that encodes FDA
pediatric extrapolation outcomes as a four-way classification task (Full, Partial,
None, Unlabeled). PED-X-Bench contains 737 drug-label sections (∼1M words)
spanning 2007–2024 across all therapeutic areas. A two-stage o3-mini prompt-
ing pipeline mined evidence directly from FDA labels, and nine domain experts
adjudicated a stratified sample of 135 records (κ = 0.72, macro-F1 = 0.63). For
each drug, we release the gold-standard extrapolation label, concise efficacy and
PK/safety summaries, and harmonized study metadata. We benchmark a diverse
suite of baselines from metadata-only classifiers to domain-adapted transform-
ers and show that substantial headroom remains, highlighting the task’s complex-
ity. Beyond benchmarking, PED-X-Bench enables the development of AI-assisted
regulatory decision-support tools, and safety-focused applications aimed at accel-
erating pediatric drug development and reducing off-label use. Dataset card, code,
and annotations will be released publicly upon acceptance.

1 INTRODUCTION

Despite decades of effort, off-label medicine use in pediatric populations remains high—about 40 %
overall and up to 90 % in neonates (Sachs et al., 2012). Because growth and maturation reshape
pharmacokinetics and disease biology, transplanting adult evidence into children can yield sub-
therapeutic dosing, reduced efficacy, or elevated adverse-event risk (Smits et al., 2022; Tefera et al.,
2017; Bellis et al., 2014). Conducting well-controlled pediatric trials is particularly challenging due
to small sample sizes, heightened ethical scrutiny, and substantial developmental heterogeneity, all
of which increase cost and complexity.

To address these barriers, the Best Pharmaceuticals for Children Act (BPCA) and Pediatric Research
Equity Act (PREA) (noa, 2018; 2024) were enacted in the US, requiring and incentivizing pediatric
studies. BPCA (“carrot”) grants six months of market exclusivity for conducting trials, while PREA
(“stick”) mandates them for many approvals. These policies have driven over 800 pediatric labeling
changes (Wharton et al., 2014), but many approvals still rely heavily on extrapolation—using adult
efficacy, safety, and pharmacokinetic (PK) data to support pediatric indications.

The 2024 ICH E11A guideline (International Council for Harmonisation (ICH), 2024) introduced
a structured, stepwise approach to extrapolation based on disease similarity, drug pharmacology,
and treatment response. Crucially, it reframes extrapolation as a continuum rather than a binary
decision. Yet this poses computational challenges: the continuum lacks standardization and clear
supervision signals, even though machine learning systems require consistent labels to learn pre-
dictive patterns. While clinical decisions may operate in gray areas, machine learning systems,
especially those trained on textual regulatory data, benefit from structured, consistent labels to learn
predictive patterns and support reproducibility. Moreover, in practice, regulatory decisions are often
interpreted in coarse categories full, partial, or none as formalized in FDA guidance (Dunne et al.,
2011).
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Despite its central role in pediatric drug development, no public dataset systematically encodes
these extrapolation decisions. As a result, regulatory reasoning remains opaque and inaccessible to
computational analysis. We present PED-X-Bench to address this gap: a large-scale benchmark that
couples a four-way extrapolation taxonomy with LLM-generated rationales across 737 FDA drug
labels, enabling the first structured, machine-readable study of extrapolation decisions.

To demonstrate its utility, we benchmark nine models spanning metadata-only, domain-adapted
transformers, and fusion approaches, establishing baseline performance for future work in pediatric
drug development, clinical NLP, transfer learning, and regulatory science.

Our main contributions are:

• First systematic extrapolation benchmark: 737 FDA labels annotated with four-way
decision outcomes (Full/Partial/None/Unlabeled), linked to supporting rationales, efficacy
and safety summaries, and harmonized metadata.

• Scalable annotation methodology: A two-stage LLM pipeline that achieves expert-level
performance across three model families, cutting manual labeling effort by 10× while main-
taining reliability through a gold set of 135 labels reviewed by nine experts (κ = 0.79).

• Comprehensive baseline evaluation: Nine models spanning metadata-only, domain-
adapted transformers, and fusion approaches establish initial performance benchmarks.

Figure 1: Two-stage LLM pipeline used to build PED-X-Bench.

2 RELATED WORK

Pediatric drug development and extrapolation framework. Since the introduction of BPCA
and PREA in the early 2000s, regulatory approaches to pediatric drug development have evolved
substantially. Extrapolation has become increasingly common: between 2009–2014, complete, par-
tial, or no extrapolation occurred in 34%, 29%, and 37% of drugs, respectively, shifting to 51%, 23%,
and 26% by 2015–2020 Sun et al. (2017); Samuels et al. (2023). This reflects growing confidence
in adult-to-pediatric data transfer when disease course and treatment response are sufficiently simi-
lar. Yet despite its centrality, these decisions remain undocumented in any public, machine-readable
resource, limiting systematic analysis and computational modeling of regulatory reasoning.

NLP for regulatory documents and biomedical benchmarks. Most NLP work on FDA la-
bels has targeted safety surveillance rather than regulatory decision-making. Early pipelines like
cTAKES Savova et al. (2010) and rule-based systems focused on condition extraction, while newer
models such as RxBERT achieved 86.5 F1 on regulatory classification tasks Wu et al. (2023). Other
efforts include drug product information extraction for regulatory guidance Shi et al. (2021) and
LLM-based approaches to toxicity extraction Silberg et al. (2024), adverse event detection Wu et al.
(2025), and label summarization Wu et al. (2024). However, extrapolation decision-making remains
computationally unexplored.

In parallel, biomedical NLP benchmarks such as BLUE Peng et al. (2019) and BLURB Gu et al.
(2022) have standardized tasks like named-entity recognition, classification, and relation extraction,
spurring specialized transformers such as BioBERT Lee et al. (2020), ClinicalBERT Alsentzer et al.
(2019), and PubMedBERT Gu et al. (2022). Benchmarks like MedNLI Romanov & Shivade (2018),
BioASQ Nentidis et al. (2023), and PubMedQA Jin et al. (2019) have further advanced domain-
specific reasoning. Yet none address the regulatory reasoning that underpins drug development
decisions.
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3 THE PED-X-Bench DATASET

PED-X-Bench is the first openly available corpus that encodes FDA extrapolation decisions as a
four-class classification task. The dataset comprises 737 labelling sections issued between 2007 and
2024 in which pediatric indications were considered. For each label we supply three artifact groups:
(i) a categorical extrapolation label; Full, Partial, None or Unlabeled, derived from regulatory text;
(ii) concise, large-language-model-generated summaries of pediatric efficacy, PK, and safety evi-
dence that have been manually verified for accuracy as well as rationales for its decisions; and (iii)
cleaned metadata that capture indication, approval year, brand and generic names, study design,
sample size, age range, study centres, participating countries and, where BPCA trials are involved,
race and ethnicity information.

Category definitions Our categorical definitions mirror regulatory practice. Full is assigned when
disease progression, treatment response, and exposure–response are sufficiently concordant for pe-
diatric PK (with or without targeted safety data) to substitute for efficacy evidence. None denotes
clear dissimilarity that requires at least one adequate pediatric efficacy trial. Partial occupies the
middle ground in which disease and therapeutic response appear similar but uncertainty persists
about exposure–response concordance, prompting anything from a single pediatric trial to PK/PD
bridging studies to confirm effect. Unlabeled applies when no pediatric data are available.

By transforming implicit FDA reasoning into explicit, machine-readable labels and anchoring each
to its supporting text and metadata, PED-X-Bench provides a reproducible platform for tasks rang-
ing from classification to evidence retrieval and policy analysis, and it lays a foundation for safer,
evidence-based pediatric therapeutics.

Table 1: Extrapolation categories used in PED-X-Bench.
Category Brief description
None At least one adequate, well-controlled pediatric efficacy RCT

conducted; no borrowing from adult data.
Partial Adult efficacy RCT(s) accepted; pediatric PK ± safety studies

bridge exposure–response or confirm dose.
Full pediatric evidence limited to PK (or dosing equations) and safety;

adult efficacy is fully borrowed.
Unlabeled No pediatric data reported; extrapolation status not specified in

the public label.

4 METHODS

4.1 DATA SOURCE AND PREPROCESSING

To create PED- X-Bench, we began with the FDA spreadsheet that lists every pediatric labelling
change triggered by BPCA, PREA, or the legacy pediatric Rule since 20071. Each pediatric labeling
change includes the date of the pediatric labeling change, specific drug or biological product, indi-
cation(s) studied, a summary of the labeling change, therapeutic category and type of legislation. It
also contains pediatric study characteristics for the clinical trials conducted to support each pediatric
labeling change, including the study number, type of study, study design, number of pediatric par-
ticipants, ages studied, number of study centers, number of countries and, for BPCA clinical trials,
any available racial and ethnic information.

From the most recent release we (i) removed veterinary or device entries, (ii) collapsed obvious
reformulations, and (iii) retained the 737 human drugs whose English PDF labels were available. All
PDFs were downloaded, converted to plain text with pdftotext, and lightly cleaned to preserve
page breaks and tables.

1https://www.fda.gov/science-research/pediatrics/pediatric-labeling-changes
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4.2 LLM PIPELINE FOR EXTRAPOLATING LABELS

To generate drug extrapolation categories from FDA labels, we devised a two-stage chain-of-thought
pipeline using o3-mini. A summary prompt first scans the full label and extracts every sentence that
cites pediatric efficacy, PK, or safety evidence. The resulting evidence block is then condensed
into an intermediate summary limited to ≤150 words. The condensed evidence is then passed to
a classification prompt that (i) assigns one of four outcomes (Full, Partial, None, Unlabeled), (ii)
provides the supporting rationale, and (iii) generates final efficacy and safety summaries. Figure 4
illustrates both prompts.

This summary length (≤150 words) was chosen for two practical reasons: (i) it ensures human-in-
the-loop evaluability, as prior work shows that annotator agreement and throughput decline once
summaries exceed a short paragraph Krishna et al. (2023); and (ii) it aligns with norms in biomed-
ical summarization, where major datasets and journal guidelines adopt comparable lengths (e.g.,
PubMed and arXiv scientific-paper summaries average 205 and 163 words, respectively).

We performed three ablation studies: (a) a single-stage classifier over the full label; (b) the same
two-stage pipeline run with gpt-4o-mini; and (c) the single-stage prompt plus a verifier that rereads
the label and fixes JSON formatting errors.

We also compared performance across three LLM families (GPT o3-mini, Gemini 2.5 Pro, Claude
Sonnet 3.7) using identical prompts on 135 expert-annotated labels.

4.3 EXPERT ADJUDICATION

Table 2: Per-class inter-annotator agreement
and accuracy on the expert-annotated subset
(135 labels).

Category κ Accuracy
None 0.804 0.869 (86/99)
Partial 0.806 0.939 (93/99)
Full -0.006 0.000 (0/1)
Unlabeled 0.757 0.667 (12/18)

Overall 0.790 –

For manual review, we recruited nine annota-
tors – eight biomedical data scientists and one
clinician – who independently reviewed 135 ran-
domly sampled labels spanning a broad thera-
peutic mix (antibacterials, antihistamines, anti-
epileptics, asthma agents, oncology, antivirals).
Annotators followed a written guide, recorded an
extrapolation label, pasted verbatim efficacy and
safety evidence with page references, and flagged
uncertainties.

Each annotation required ∼45 minutes of expert
time, representing a substantial manual invest-
ment. This annotated subset constitutes ∼18% of
the entire dataset with comparable coverage to prior FDA labeling corpora Silberg et al. (2024); Wu
et al. (2025).

Inter-annotator agreement after consensus discussion was high, with an overall Cohen’s κ = 0.79,
indicating substantial agreement under the Landis and Koch (1977) scale Landis & Koch (1977).
Agreement varied by class as shown in Table 2. These 135 gold-standard labels form the test and
validation set, while the remaining 602 machine-labeled records provide silver-standard training
data.

4.4 BASELINE CLASSIFIERS

We benchmark nine complementary models on a fixed train/dev/test split of 687/85/34 labels, span-
ning metadata-only approaches, domain-adapted transformers, and fusion methods.

Metadata-based models We extracted 253-dimensional feature vectors combining z-scored nu-
meric features (patient counts, ages) and one-hot encoded categorical variables (legislation type,
therapeutic area). Logistic regression with class-balanced weights and XGBoost were tuned via grid
search to optimize macro-F1 on the development set.

Text-based models We evaluated generic (BigBird RoBERTa) and domain-adapted transformers
(ClinicalModernBERT, BioClinicalBERT) using both full fine-tuning and linear probing. All mod-
els employed early stopping on dev loss with consistent preprocessing and optimization.
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Fusion model XGBoost fusion combined ClinicalModernBERT [CLS] embeddings with struc-
tured metadata, concatenating 768-dimensional text representations with the 253-dimensional fea-
ture vectors.

Evaluation metrics. We evaluate model performance using three complementary metrics that ac-
count for the multi-class imbalance of pediatric extrapolation. Accuracy offers an overall perfor-
mance snapshot but can overestimate effectiveness given the skewed class distribution (60% None,
31% Partial, 3% Full, 6% Unlabeled). Macro-F1 averages F1 scores across all classes without
weighting by frequency, ensuring that rare but clinically important categories (particularly Full ex-
trapolation) contribute equally. AUC (one-vs-rest) measures ranking quality independent of classi-
fication thresholds, reflecting how well models separate categories.

To quantify uncertainty, we report 95% confidence intervals (CIs) for accuracy and macro-F1 using
nonparametric bootstrap resampling (1,000 iterations). Given the rarity of Full cases (22 total),
macro-F1 is particularly critical, as accuracy alone would over-reward majority-class predictions.

Detailed hyperparameters, training configurations, and computational requirements are provided in
Appendix F.4.

5 RESULTS

Here we present the details about the PED-X-Bench dataset, then we discuss our validation with
human annotated dataset and the effect of ablations on performance. Finally we illustrate the utility
of our dataset as a benchmark in data extrapolation classification tasks.

5.1 DATASET OVERVIEW

Figure 2 shows that None decisions dominate PED-X-Bench (60%, 445/737), Partial accounts for
31%, whereas Full borrowing is rare (3%) and 6% of records are Unlabeled. Outcome frequency
co-varies with the legislative route: BPCA submissions are overwhelmingly None, whereas PREA-
only programs obtain Partial or Full borrowing almost twice as often. Age coverage, rather than
study size, distinguishes the classes: Full approvals span the entire pediatric spectrum, yet even they
rarely cite more than three pediatric studies.

Study-design flags (Fig. 2) reinforce this narrative. Classical efficacy and safety trials appear in
>60 % of None labels but in <25 % of Full, indicating that when extrapolation is granted, sponsors
rely primarily on pharmacokinetic/pharmacodynamic bridging rather than new randomised efficacy
studies. Dose-escalation and neonatal studies remain scarce across the board.

5.2 ABLATION ANALYSES

Table 3: Ablation results for the LLM labelling pipeline with 95% bootstrap confidence intervals.
Variant Accuracy (95% CI) Macro-F1 (95% CI) AUC
Two-stage (o3-mini) 0.740 [0.680–0.795] 0.633 [0.521–0.716] 0.722
Two-stage (gpt-4o-mini) 0.534 [0.442–0.614] 0.294 [0.210–0.365] 0.602
Single-stage (full label) 0.725 [0.643–0.800] 0.637 [0.532–0.708] 0.619
Single-stage + verifier 0.804 [0.726–0.874] 0.538 [0.436–0.615] 0.706

Pipeline Variants Table 3 shows that swapping o3-mini for gpt-4o-mini in the two-stage pipeline
drops accuracy from 0.74 to 0.53 and macro-F1 from 0.63 to 0.29, largely due to hallucinated ra-
tionales. A single-stage prompt recovers accuracy but lowers agreement with reviewers. Adding a
verifier boosts accuracy to 0.80 but collapses many borderline cases into the majority class, lowering
balanced F1. Statistical significance testing (Appendix F.3) confirms these differences. Hence we
keep the two-stage o3-mini pipeline as the official labeller.
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Figure 2: Dataset overview and characteristics. Top: Corpus statistics showing (A) label distribu-
tion across extrapolation categories, (B) extrapolation outcomes by legislative pathway (BPCA vs.
PREA), (C) age-range coverage for each class (violins show min–max bounds), and (D) number of
pediatric studies cited per label. Bottom: Study-design and outcome flags by extrapolation class,
with bars denoting the percentage of applications with each characteristic.
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Qualitative Error Analysis To better understand the differences observed in the ablation results,
we conducted a qualitative analysis of labeling errors. Manual inspection of model outputs revealed
two primary error types:

Misinterpretation errors: Models sometimes confuse study outcomes with study conduct. For
example, CIMZIA was evaluated for pediatric Crohn’s disease in 99 subjects aged 6–17 years, but
“efficacy was not demonstrated” due to high discontinuations. The model incorrectly classified this
as “Unlabeled,” even though a pediatric efficacy study was performed. Our annotation guidelines
emphasize whether studies were conducted, not whether they succeeded, but models often struggled
with this nuance.

Omission errors: Models also fail to extract complete evidence, particularly pharmacokinetic and
safety data buried in complex label sections. This leads to systematic underestimation of pedi-
atric evidence and misclassification of “Partial” or “Full” cases as “None” or “Unlabeled.” Missing
PK/PD mentions in the summary stage often propagated into final classification errors.

Figure 3: Confusion matrix with normalized
values and counts.

These error types are reflected in the confusion
matrix (Fig. 3). The model performs strongly on
the majority None class but often confuses Partial
with Unlabeled, while rare Full cases remain too
sparse for robust assessment. These results highlight
the challenge of distinguishing borderline categories
and the need for class-balanced objectives. The
confusion patterns reveal that most classification er-
rors occur at the boundaries between similar extrap-
olation types, suggesting that the regulatory deci-
sion space contains inherent ambiguity that even ex-
pert annotators sometimes struggle to resolve consis-
tently. We further illustrate these “borderline” cases
with detailed qualitative examples in Appendix E.

LLM pipeline model comparison Table 4 shows
meaningful variation in performance across LLM
families, with no single model dominating all met-
rics. Gemini 2.5 Pro attains the highest accuracy (0.772), while GPT o3-mini achieves the best
macro-F1 (0.633) and AUC (0.788), indicating superior handling of rare but critical categories such
as Full. Claude Sonnet 3.7 performs consistently lower, especially on macro-F1 (0.392), suggesting
challenges in balanced classification.

Table 4: LLM pipeline performance across model families on expert-annotated labels (135 samples)
with 95% bootstrap confidence intervals.

Model Accuracy (95% CI) Macro-F1 (95% CI) AUC
Gemini 2.5 Pro 0.772 [0.694–0.841] 0.602 [0.493–0.685] 0.755
GPT o3-mini 0.740 [0.680–0.795] 0.633 [0.521–0.716] 0.788
Claude Sonnet 3.7 0.704 [0.615–0.777] 0.392 [0.301–0.470] 0.617

These results provide confidence that our annotation pipeline’s effectiveness is not an artifact of
a single model architecture, while also highlighting the importance of careful model selection for
specialized regulatory text classification tasks. We adopt GPT o3-mini as the official annotator due
to its superior balance across metrics, particularly its performance on minority classes.
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5.3 BASELINE CLASSIFIERS

Table 5: Baseline performance on the blind test split (34 labels) with 95% bootstrap confidence
intervals.

Model Accuracy (95% CI) Macro-F1 (95% CI) AUC
Logistic regression (metadata) 0.647 [0.56–0.73] 0.359 [0.26–0.45] 0.650
XGBoost (metadata) 0.676 [0.59–0.76] 0.339 [0.24–0.43] 0.660
BigBird RoBERTa (finetuning) 0.678 [0.60–0.77] 0.369 [0.28–0.47] 0.839
BigBird (linear probing) 0.610 [0.52–0.70] 0.190 [0.12–0.28] 0.829
ClinicalModernBERT (finetuning) 0.750 [0.66–0.84] 0.450 [0.35–0.54] 0.890
ClinicalModernBERT (linear probing) 0.810 [0.73–0.89] 0.525 [0.42–0.62] 0.850
BioclinicalBERT (finetuning) 0.670 [0.58–0.76] 0.300 [0.21–0.39] 0.850
BioclinicalBERT (linear probing) 0.610 [0.52–0.70] 0.490 [0.39–0.59] 0.837
XGB fusion (metadata + full text) 0.765 [0.68–0.85] 0.391 [0.30–0.49] 0.850

As shown in Table 5, domain-adapted transformers substantially outperform both metadata-only
models and generic architectures. ClinicalModernBERT achieves the best performance (0.81 ac-
curacy, 0.525 macro-F1) in linear probing mode, indicating that pretrained representations already
encode much of the relevant signal. Interestingly, linear probing often matches or exceeds full fine-
tuning, suggesting limited gains from end-to-end training at this dataset scale. The XGB fusion
model (0.765 accuracy, 0.391 macro-F1) improves on metadata-only baselines but remains below
text-only models, underscoring that most signal resides in the label text. Although logistic regres-
sion and XGBoost perform competitively using only coarse descriptors, domain-specific models
deliver a clear +0.16 accuracy gain. Together, these results validate PED-X-Bench as a challenging
benchmark and reveal significant headroom beyond current methods (best macro-F1 = 0.525). De-
tailed descriptions of baseline architectures, training configurations, and implementation specifics
are provided in Appendix F.4.

6 DISCUSSION

We presented PED-X-Bench, the first large-scale benchmark that encodes FDA pediatric extrapola-
tion decisions as a four-way classification task, linking each outcome to its supporting rationale and
study metadata. Our two-stage LLM pipeline achieves substantial agreement with domain experts
(κ = 0.79) and establishes strong baselines across metadata-based, transformer-based, and fusion
models. These results demonstrate that regulatory reasoning tasks of this complexity are tractable,
yet far from solved.

PED-X-Bench transforms over two decades of FDA regulatory decision-making into a structured,
machine-readable resource, enabling analyses and applications that were previously infeasible. The
benchmark captures well-known but poorly quantified trends—such as the rarity of full extrapola-
tion, the prevalence of partial extrapolation in PREA submissions, and persistent evidence gaps in
neonates—with far greater granularity than earlier manual reviews. By connecting categorical out-
comes to textual rationales, it turns a historically opaque decision process into a tractable learning
problem that can support the next generation of decision-support tools.

The broader implications of this work extend well beyond benchmark construction. Predictive use
of PED-X-Bench could accelerate pediatric drug development by identifying cases where dedicated
efficacy trials are unnecessary, saving an estimated $10–15 million per avoided study and bringing
pediatric labeling to market two to three years faster Li et al. (2007). Systematically codifying
extrapolation precedents can also help reduce off-label prescribing which currently accounts for
over 40% of pediatric use and up to 90% in neonates — by supporting tools that convert such
prescribing into safer, evidence-based, on-label practice. Furthermore, PED-X-Bench introduces a
new level of regulatory transparency: by surfacing over 100,000 pages of FDA text in a structured,
searchable format, it enables precedent retrieval, consistency audits, and more strategic targeting of
pediatric research funding toward populations where extrapolation repeatedly fails. Beyond these
applications, PED-X-Bench could also serve as the foundation for decision-support systems that
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assist regulators and sponsors in real time, providing evidence-grounded recommendations on when
adult data are likely sufficient and when dedicated pediatric studies remain essential.

Limitations and Future Work Despite its contributions, this work has several limitations. First,
the dataset inherits the biases of publicly available labels: negative trials, interim analyses, and
unpublished regulatory correspondence are absent, so PED-X-Bench necessarily reflects the final,
public-facing narrative rather than the full deliberative record. Second, class imbalance is severe,
with only 22 fully extrapolated cases; while this mirrors real-world rarity it also constrains model
learning. Third, extrapolation decisions evolve as new pharmacology or real-world safety data
emerge; our annotations capture a single snapshot (2007-2024) and will require periodic refreshes
to stay current. And finally, the current annotations address extrapolation at the level of the entire
product rather than at the granularity of individual indications or dosage forms, a simplification that
future work could refine.

Looking forward, PED-X-Bench can serve as the foundation for more advanced decision-support
systems that integrate external evidence from clinical trial registries, population-PK models, disease-
similarity networks, and real-world safety data. Retrieval-augmented approaches, in particular,
could contextualize label text with historical precedents, while multi-modal architectures could rea-
son across pharmacologic, clinical, and regulatory signals. Such advances would not only enhance
predictive accuracy but also support more transparent, evidence-grounded decision-making — ulti-
mately accelerating pediatric drug development and improving therapeutic safety for children.

7 CONCLUSION

PED-X-Bench transforms two decades of FDA labeling into the first open, machine-readable re-
source for studying pediatric extrapolation, coupling four-way outcome labels to their precise textual
rationales and rich study metadata. Through a comprehensive suite of benchmarks, we show that
this task is both tractable and far from solved. By providing a rigorously curated corpus, baseline
scores, and an extensible LLM annotation pipeline, we lay the groundwork for future systems that
can reason across trials, pharmacology, and real-world evidence to deliver transparent, data-driven
extrapolation recommendations and thereby, advancing both clinical NLP research and pediatric
drug development.
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A APPENDIX

SUPPLEMENTARY MATERIAL

B DATASET CONSTRUCTION AND VALIDATION

B.1 SOURCE DATA AND MOTIVATION

Pediatric labeling submitted to the U.S. Food and Drug Administration (FDA) provides the most
authoritative record of how clinical evidence informs pediatric drug approvals. These updates often
include new dosing, safety, or efficacy information, sometimes representing entirely new pediatric
indications, while others introduce dosing restrictions or new safety warnings. Such changes are the
primary mechanism by which pediatric clinical evidence informs treatment decisions.

Since the introduction of the Best Pharmaceuticals for Children Act (BPCA, 2002), the Pediatric
Research Equity Act (PREA, 2003), and the Pediatric Rule (1998), the FDA has released two com-
plementary public datasets summarizing the outcomes of these legislative efforts:

• Pediatric Labeling Changes Spreadsheet: A historical summary of all pediatric label-
ing updates since 1998, including product name, indication, legislation type, and a textual
summary.

• Pediatric Study Characteristics Spreadsheet: A structured dataset describing the clinical
studies that supported each labeling change, including study design, sample size, age range,
study centers, and geographic scope.

For PED-X-Bench, we built upon the Pediatric Study Characteristics dataset because it contains
the granular, structured metadata necessary for machine learning applications. These fields enable
richer feature extraction, metadata-based classification, and model interpretability compared to the
higher-level labeling-change spreadsheet.

B.2 DOCUMENT ACQUISITION AND PROCESSING

Each entry in the FDA dataset is associated with a canonical submission identifier (canon id, e.g.,
NDA 050441 0086). Using these identifiers, we programmatically retrieved the corresponding
FDA product labeling PDFs from their public links. Our custom download pipeline implemented
content-type verification, retry logic, and user-agent spoofing to ensure reliable retrieval.

PDFs were then converted into plain-text files using pdfminer.six, preserving structure where
possible and handling encoding errors gracefully. This process yielded a parallel corpus of structured
metadata and unstructured regulatory narratives suitable for downstream NLP analysis.

B.3 GOLD-STANDARD SUBSET AND EXPERT ANNOTATION

To support robust validation and benchmarking, we curated a gold-standard subset of 135 drug
labels. Sampling was stratified across diverse therapeutic domains to capture a broad range of regu-
latory reasoning scenarios (Table 6).

Nine domain experts (eight biomedical data scientists and one clinician) independently annotated
each label following a standardized protocol. Annotators recorded: (1) the extrapolation outcome
(Full, Partial, None, or Unlabeled); (2) verbatim evidence excerpts with page references;
and (3) notes on ambiguity or uncertainty. Each annotation required ∼45 minutes due to the com-
plexity of long-form regulatory documents. Disagreements were resolved through consensus review,
yielding a gold-standard set with substantial agreement (κ = 0.79).

B.4 VALIDATION AND DISAGREEMENT ANALYSIS

Inter-annotator agreement varied by category, with highest concordance for None (κ = 0.804)
and Partial (κ = 0.806), and lower scores for Unlabeled (κ = 0.757) and Full (κ =
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−0.006) due to rarity and intrinsic ambiguity. Approximately 21% of cases showed disagreement,
highlighting the nuanced and context-dependent nature of pediatric extrapolation decisions.

These disagreement patterns align closely with model errors (see Section E) and underscore the
inherent interpretive complexity of extrapolation decisions — particularly at category boundaries
where even domain experts diverge.

Table 6: Therapeutic area distribution of the 135 manually annotated labels used for expert adjudi-
cation.

Therapeutic Area Count
Oncology Support / Biologic 32
Gastrointestinal & Motility 28
Antivirals 24
Respiratory (Asthma / RSV) 20
Endocrine / Metabolic 18
Central Nervous System / Psychiatry 13

B.5 DATASET

B.5.1 DATASET STRUCTURE

Label Distribution. PED-X-Bench contains 737 labeled drug applications annotated into four
extrapolation categories (Table 7). The majority of submissions have sufficient pediatric data to
support independent approval, while Partial cases rely on a mix of adult efficacy and pediatric
PK/safety bridging. Full cases remain rare, reflecting the limited situations in which adult evidence
alone is considered adequate.

Table 7: Label distribution in PED-X-Bench.
Label Count % Definition
None 445 60.4% Independent pediatric evidence; no ex-

trapolation required
Partial 228 30.9% Mixed evidence; partial extrapolation

from adult data
Unlabeled 50 6.8% Insufficient information for classifica-

tion
Full 14 1.9% Adult data considered sufficient for pe-

diatric use

Study Types. Most submissions are supported by randomized controlled trials (RCTs), often com-
plemented by pharmacokinetic and safety bridging studies (Table 8). The relatively small number
of PK-only submissions reflects the limited circumstances in which exposure-matching alone is suf-
ficient for regulatory approval.

Table 8: Study type distribution in PED-X-Bench.
Study Type Count %
Randomized Controlled Trials (RCT) 459 62.3%
PK + Safety Studies 211 28.6%
PK-Only Studies 14 1.9%
Other / Unspecified 53 7.2%

Data Fields. Each PED-X-Bench entry links three complementary data layers that together enable
structured modeling of regulatory decisions:
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• Classification Fields: Canonical FDA identifier (canon id), extrapolation label, gold-
standard indicator, and expert confidence level.

• Evidence Fields: Summaries of efficacy results, pharmacokinetic and safety findings, and
rationale for the assigned extrapolation outcome.

• Metadata Fields: Drug name, indication, therapeutic category, approval date, pediatric age
range, sample size, and study design characteristics (e.g., randomization, blinding, control
type).

Together, these structured fields and textual rationales enable both supervised learning tasks (e.g.,
classification and retrieval) and exploratory analyses (e.g., evidence mapping, multi-modal model-
ing, and explainable NLP).

C ANNOTATION GUIDELINES

This section reproduces the detailed annotation protocol that was shared with domain experts prior to
manual review. The guidelines were designed to ensure consistency in interpreting pediatric labeling
language, standardize evidence extraction, and align all annotators on the definitions and decision
rules used throughout the project. They formed the basis of the gold-standard adjudication process
described in Section D

C.1 EXTRAPOLATION TAXONOMY

Our four-way classification system captures the spectrum of pediatric extrapolation decisions based
on the evidence patterns present in FDA drug labels.

Table 9: Extrapolation category definitions with evidence patterns and typical phrases.
Category Evidence Pattern Required Conceptual Frame-

work
Typical Phrases

None Pediatric efficacy RCT or adequate
& well-controlled study per 21 CFR
314.126 measuring clinical endpoints.
Adult trials may be cited but pediatric
efficacy is proven independently.

No extrapolation
needed

“randomized, double-blind,
placebo-controlled trial
in patients 1 month–16
years”; “adequate and well-
controlled pediatric study
met primary endpoint”

Partial No stand-alone pediatric efficacy
RCT. Label includes pediatric PK,
exposure–response modeling, or
safety-only cohorts. Efficacy inferred
from adult RCTs with pediatric bridg-
ing data.

Adult RCTs provide
efficacy evidence; pe-
diatric data bridges
dose/exposure or con-
firms safety

“population pharmacoki-
netic study in 24 pediatric
patients”; “open-label
safety cohort”; “dosing
selected to match adult
AUC”

Full No pediatric trials. Label provides
only PK simulations, allometric scal-
ing, or weight-based dosing tables.
Both efficacy and safety extrapolated
from adults.

PK-only bridge “Dose in children derived
by allometric scaling”;
“Exposures in pediatric
patients expected to match
adults”

Unlabeled Label states “Safety and effectiveness
in pediatric patients have not been es-
tablished” with no PK or dosing infor-
mation provided.

No pediatric informa-
tion

Exact phrase or very similar
with no other pediatric sec-
tions

C.2 ANNOTATION PROTOCOL

Annotators followed a systematic five-step process for each drug label:
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Step 1: Label Access Access FDA drug labels via provided URLs or search FDA’s Drugs@FDA
database using application numbers for broken links.

Step 2: Section Identification Use text search (“pediatric”) to locate relevant sections, typically
found in:

• Adverse Reactions section

• Section 8.4 – Pediatric Use

• Clinical Studies sections (§14.x)

• Clinical Pharmacology §12.3 (for PK data)

Step 3: Evidence Extraction Extract verbatim text (1–3 sentences, ≤600 characters) document-
ing:

• Efficacy evidence: Phrases indicating randomized, controlled trials or adequate studies
with clinical endpoints

• PK/dosing evidence: Pharmacokinetic studies, weight-based dosing tables, exposure-
matching statements, or simulation results

Step 4: Classification Assign study type (RCT, PK+Safety, PK Only, or custom descriptor) and
extrapolation category using the taxonomy above.

Step 5: Quality Control Cross-reference extracted information with metadata fields (e.g., “Ages
Studied”) and flag ambiguous cases for expert adjudication.

C.3 EDGE CASES AND DECISION RULES

Age boundaries: Participants ≥17 years treated as adults; pediatric-specific labeling ignored.

Mixed study designs:

• Pediatric arm within adult efficacy RCT: None if randomized with efficacy analysis; Partial
if safety/PK only

• Safety-only randomized studies: Partial (randomization does not imply efficacy assess-
ment)

• Open-label safety cohorts: Partial (never Full when pediatric data exist)

Multiple indications: If any pediatric indication relies on adult efficacy plus pediatric bridging
data, classify entire label as Partial.

All annotators received training on these guidelines and completed practice annotations before in-
dependent review of assigned drug labels.

D INTER-ANNOTATOR AGREEMENT ANALYSIS

Table 10 summarizes representative cases of disagreement between expert annotators, illustrating
key sources of ambiguity and boundary challenges in pediatric extrapolation decisions.

E EXPERT–LLM DISAGREEMENT CASE STUDIES

Table 11 presents representative examples of disagreement between expert annotations and LLM
predictions, highlighting key failure modes and their clinical implications.
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Table 10: Representative sources of expert disagreement, illustrating the nature of regulatory ambi-
guity and boundary challenges.

Disagreement Type Example Summary and Implications
Pediatric Studies vs.
Adult Extrapolation
(None → Partial)

Zinplava (bezlo-
toxumab)

Experts disagreed on whether language such as “supported
by evidence from adult trials with additional pediatric PK
and safety data” constituted extrapolation. One annotator
interpreted the pediatric data as independent establishment
of efficacy (None), while another viewed the adult evidence
as central to approval (Partial).

Ambiguity in Evi-
dence Completeness
(Unlabeled ↔ None /
Partial)

Multiple cases Disagreement often arose when limited pediatric data ex-
isted (e.g., PK bridging or safety studies) but were insuf-
ficient for efficacy demonstration. Annotators differed on
whether to label such cases as Unlabeled (insufficient evi-
dence) or Partial (some evidence bridging).

Extreme Rarity and
Definition Uncer-
tainty
(Full)

Rare instances The single “Full” case showed total disagreement due to in-
sufficient precedent and lack of clear criteria for complete
extrapolation. Experts disagreed on whether PK and safety
data alone were sufficient to support efficacy without pedi-
atric efficacy data.

Table 11: Representative disagreement cases between expert adjudication and LLM predictions,
illustrating key failure modes and clinical implications.

Case True Label LLM Pre-
diction

Summary and Implications

1. Under-
classification
of Evidence
Require-
ments
Ramucirumab
(Cyramza)

Partial None LLM misclassified a case with pediatric PK and
safety data (N=23) as None, failing to account for
the need for randomized efficacy data in oncology
and additional evidence due to juvenile growth
plate toxicity signals.

2. Over-
conservative
Evidence
Assessment
Dupilumab
(Dupixent)

None Unlabeled Robust pediatric evidence from a Phase 3 RCT
(N=408, ages 6–11) demonstrated significant ef-
ficacy and safety comparable to adults. The LLM
misinterpreted complexity from multi-indication
approvals and age-specific dosing adjustments as
evidence insufficiency.

3. Bor-
derline
Evidence
Complexity
Bedaquiline

Unlabeled None Compassionate use data showed culture conver-
sion but lacked controlled trials and raised QT
prolongation concerns. Experts deemed the ev-
idence insufficient (Unlabeled), while the LLM
over-interpreted surrogate outcomes.

F LLM PIPELINE DETAILS

F.1 MODEL CONFIGURATION AND HYPERPARAMETERS

We evaluated three large language model (LLM) families using identical two-stage prompting
pipelines with structured function or tool calling to ensure consistent JSON output formatting.

GPT o3-mini (Azure OpenAI)

• API Version: 2024-02-15-preview

• Max Completion Tokens: 12,000 per call
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• Function Calling: Enforced via function call parameter

• Inter-request Delay: 0.3 seconds (time.sleep(0.3))

GPT-4o-mini (Azure OpenAI)

• API Version: 2024-02-15-preview

• Max Completion Tokens: 12,000 per call

• Function Calling: Enforced via function call parameter

• Inter-request Delay: 0.3 seconds (time.sleep(0.3))

Gemini 2.5 Pro (Google AI)

• Temperature: 0.1, Top-p: 0.95, Top-k: 64

• Max Output Tokens: 8,192

• Safety Settings: All categories set to BLOCK NONE

• Text Truncation: 150,000 characters with intelligent break points

• Inter-request Delay: 2.0 seconds (configurable via --sleep)

Claude Sonnet 3.7 (Anthropic)

• Model: claude-3-7-sonnet-20241022

• Max Tokens: 4,096

• Tool Choice: Forced tool selection for structured output

• Rate Limit Handling: Exponential backoff (60s, 120s, 180s) with streaming fallback

• Text Truncation: 50,000 characters with sentence-boundary preservation

• Inter-request Delay: 5.0 seconds (configurable via --sleep)

All models processed text files with UTF-8 encoding and error tolerance. JSON serialization used
compact formatting (separators=(’,’,’:’)) to minimize token consumption.
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F.2 PROMPT ENGINEERING

Prompt:
You are scanning an FDA product label. Return JSON ONLY via the function call.  Follow this schema exactly.
- Summarize ≤150 words. 
- DO NOT invent data.

Variables Extracted:
- PediatricSummary

▪ section (string)
▪ summary (string)

- AllAges (array of strings)
- Comments (string)

Step 1: Extract from FDA Label

Prompt:
You are an expert in FDA pediatric extrapolation. Use the decision tree: 
- None – ≥1 pediatric efficacy RCT
- Partial – pediatric PK and/or safety evidence but NO efficacy RCT
- Full – only PK / exposure modelling; no pediatric safety cohort
- Unlabeled – no pediatric evidence.

Variables Extracted:
- resolved_label (string: "None", "Partial", "Full", "Unlabeled")
- peds_study_type (string: "RCT", "PK+Safety", "PK Only", "None")
- efficacy_summary (string)
- pk_summary (string)
- lowest_age_band (string)
- highest_age_band (string)
- rationale (string)
- confidence (string: "high", "medium", "low")

Step 2: Classify Extrapolation Type

Figure 4: Summary and classification prompts used in the two-stage pipeline.

F.3 STATISTICAL SIGNIFICANCE TESTING

Table 12: McNemar’s exact test for pairwise comparisons of pipeline variants.
Comparison p-value Significant (p < 0.05)
Two-stage (o3-mini) vs Single-stage 0.013 Yes
Two-stage (o3-mini) vs GPT-4o-mini 0.002 Yes
Two-stage (o3-mini) vs Single-stage + Verifier 0.072 No
Single-stage vs GPT-4o-mini 0.241 No
Single-stage + Verifier vs GPT-4o-mini 0.031 Yes

McNemar’s exact test confirms that the two-stage o3-mini pipeline significantly outperforms both
single-stage and gpt-4o-mini variants, while differences with the verifier-augmented model are not
statistically significant.

F.4 BASELINE MODEL IMPLEMENTATION DETAILS

Text-Based Models All transformer models utilized Hugging Face’s transformers li-
brary with consistent preprocessing: UTF-8 text encoding with error tolerance, early stopping
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(patience=2-4), and AdamW optimization. Models differed in tokenization limits and training
paradigms:

BigBird RoBERTa (google/bigbird-roberta-base) processed 4,096 tokens with gradient
checkpointing, batch size 1, and 8-step gradient accumulation. Fine-tuning used 2e-5 learning rate
for 4 epochs with FP16 precision.

ClinicalModernBERT (Simonlee711/Clinical ModernBERT) handled 8,192 tokens with
two training modes: (1) full fine-tuning with 2e-5 learning rate and batch size 1, and (2) linear
probing with frozen encoder and 1e-3 learning rate for the classification head only, using larger
batch sizes (4) due to reduced memory requirements.

BioClinicalBERT (emilyalsentzer/Bio ClinicalBERT) was limited to 512 tokens due to
memory constraints, trained with batch size 4 and 2-step gradient accumulation. Both fine-tuning
(2e-5 LR) and linear probing (scikit-learn LogisticRegression with L2 penalty, C=1.0) variants were
implemented.

Fusion Model The XGBoost fusion baseline combined ClinicalModernBERT [CLS] embeddings
(768-dimensional) with structured metadata features. Metadata processing included: (1) standard-
ized numeric features (patient counts, ages, study statistics), (2) binary flags for study characteristics
(randomization, blinding, design type), and (3) one-hot encoded categorical variables (legislation
type, therapeutic category, administration routes). The final feature vector concatenated text em-
beddings with 253-dimensional metadata, trained using XGBoost (max depth=6, learning rate=0.1,
n estimators=300) with early stopping on development loss.

Metadata-Only Baselines Logistic regression employed multinomial classification with class-
balanced weights, tuning penalty type (L1/L2/elastic-net) and regularization strength (C ∈ 0.01, 0.1,
1, 3, 10) via grid search optimizing macro-F1 on the development set. XGBoost metadata baseline
used identical preprocessing with hyperparameter search over tree depth (3, 6, 10), learning rates
(0.01, 0.1, 0.3), and estimator counts (100, 300, 500).

Computational Requirements Training times varied significantly: metadata-only models com-
pleted in under 60 seconds on CPU, while transformer fine-tuning required 2-4 hours on single A100
GPUs. Linear probing reduced training time by 60-70% compared to full fine-tuning while often
achieving comparable performance, suggesting that pretrained biomedical representations already
captured much of the regulatory reasoning signal.

All models used consistent train/dev/test splits with identical preprocessing pipelines to ensure fair
comparison. Random seeds were fixed (seed=42) for reproducibility across all experiments.

G ADDITIONAL RESULTS AND ANALYSIS

G.1 PER-CLASS PERFORMANCE ANALYSIS

Table 13: Per-class performance of the best LLM pipeline (two-stage o3-mini) on the expert-
annotated test set, with 95% bootstrap confidence intervals.

Class F1 (95% CI) Accuracy / Recall (95% CI)
None 0.815 [0.770–0.857] 0.824 [0.752–0.888]
Partial 0.708 [0.600–0.808] 0.614 [0.491–0.737]
Full 0.667 [0.000–1.000] 1.000 [1.000–1.000]
Unlabeled 0.341 [0.167–0.512] 0.312 [0.125–0.562]

Per-class results reveal the model’s performance dynamics across extrapolation decisions. The clas-
sifier achieves high precision and recall on the dominant None class and reasonable performance on
Partial labels, but struggles with rare categories.
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G.2 TEMPORAL TRENDS ANALYSIS

Figure 5: Trends in extrapolation outcomes over time (1998–2025). Vertical dashed line marks the
adoption of ICH E11A (2024).
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