
CODEV: Issue Resolving with Visual Data

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have ad-001
vanced rapidly in recent years, with their appli-002
cations in software engineering expanding to003
more complex repository-level tasks. GitHub004
issue resolving is a key challenge among these005
tasks. While recent approaches have made006
progress on this task, they focus on textual data007
within issues, neglecting visual data. However,008
this visual data is crucial for resolving issues009
as it conveys additional knowledge that text010
alone cannot. We propose CODEV, the first ap-011
proach to leveraging visual data to enhance the012
issue-resolving capabilities of LLMs. CODEV013
resolves each issue by following a two-phase014
process: data processing and patch generation.015
To evaluate CODEV, we construct a benchmark016
for visual issue resolving, namely Visual SWE-017
bench. Through extensive experiments, we018
demonstrate the effectiveness of CODEV, as019
well as provide valuable insights into leverag-020
ing visual data to resolve GitHub issues1.021

1 Introduction022

Large Language Models (LLMs) have advanced023

rapidly in recent years, with their applications in024

the field of software engineering becoming increas-025

ingly widespread (Zan et al., 2023; Zheng et al.,026

2023; Zhang et al., 2023b; Chen et al., 2024b). Cur-027

rently, LLMs’ applications in software engineering028

have gradually expanded tasks at the code line and029

function level to more challenging repository-level030

tasks (Zhang et al., 2023a; Liu et al., 2024). Within031

repository-level tasks, GitHub issue resolving is a032

key challenge, where LLMs are tasked to resolve033

the issue based on the issue description and the de-034

fective codebase. (Jimenez et al., 2024; Xia et al.,035

2024). This task can accelerate program repair and036

is crucial for improving development efficiency.037

Although recent approaches have made progress038

on this task, they focus exclusively on textual data039

1https://anonymous.4open.science/r/CodeV-4D48

PX facet labels don't respect labels kwarg #1944

                                

px.scatter(tips, x="total_bill", y="tip", facet_row="time",  facet_col="day", 
           labels={"time": "THE TIME", "day": "THE DAY"})

nicolaskruchten opened on Dec 3, 2019

#1966Closed

Figure 1: An example of a visual GitHub issue from
Plotly issue #1944. The visual data illustrates that the
label parameters (“time” and “day”) do not take effect.

in GitHub issues, neglecting visual data such as 040

screenshots, diagrams, and videos (Chen et al., 041

2024a; Yang et al., 2024a; Zhang et al., 2024; Xia 042

et al., 2024). However, this visual data is crucial 043

for resolving issues, as it conveys additional knowl- 044

edge that text alone cannot, including actual results, 045

expected results, and error messages. Figure 1 046

shows a specific example where visual data illus- 047

trates the running result. Moreover, we statistically 048

analyze SWE-bench (Jimenez et al., 2024), the 049

most popular benchmark for issue resolving. The 050

result shows that over 5% of GitHub issues contain 051

visual data, with even higher percentages in visu- 052

alization libraries like seaborn2 and matplotlib3, 053

where they reach 45.5% and 27.2% respectively. 054

This analysis further highlights the importance of 055

resolving visual GitHub issues. However, exist- 056

ing approaches struggle to resolve them effectively, 057

as they overlook visual data, which calls for new 058

solutions that leverage visual data. 059

An intuitive approach is to extract visual data 060

from the issue and include it as part of the prompt. 061

While this approach seems to leverage visual data, 062

it requires models with advanced multimodal and 063

2https://github.com/mwaskom/seaborn
3https://github.com/matplotlib/matplotlib

1

https://anonymous.4open.science/r/CodeV-4D48
https://github.com/plotly/plotly.py/issues/1944
https://github.com/mwaskom/seaborn
https://github.com/matplotlib/matplotlib


coding capabilities. Currently, only the latest064

commercial models, GPT-4o (OpenAI, 2024) and065

Claude 3.5 Sonnet (Anthropic, 2024), barely meet066

these requirements, but their capabilities remain067

highly limited. Moreover, these models are less068

suitable for issue resolving due to high computa-069

tional costs. Based on our analysis, using these070

models within the popular SWE-agent approach071

(Yang et al., 2024a) to run through all issues in072

SWE-bench once is estimated to cost an average of073

over $4,700 (Xia et al., 2024), which imposes a sig-074

nificant financial burden on researchers. To address075

this, we propose CODEV, the first approach that076

leverages visual data to enhance the issue-resolving077

capabilities of LLMs at low cost. To resolve each is-078

sue, CODEV follows a two-phase process: data pro-079

cessing and patch generation. In the data process-080

ing phase, CODEV processes the visual data within081

the issue from both local and holistic perspectives.082

This phase produces fine-grained descriptions of083

the visual data and a structured summary of the084

entire issue. In the patch generation phase, CODEV085

leverages the processed information to assist LLMs086

in generating a patch to resolve the issue.087

To evaluate our approach, we construct a bench-088

mark specifically designed for evaluating visual089

GitHub issue resolving, called Visual SWE-bench.090

The benchmark comprises 133 task instances span-091

ning 11 open-source GitHub repositories, each of092

which has undergone rigorous selection. Finally,093

we conduct a series of experiments to validate the094

effectiveness of our approach. Experimental re-095

sults demonstrate that CODEV achieves a round096

63.13% relative improvement in the percentage of097

resolved instances on Visual SWE-bench compared098

to Agentless. Additionally, through case studies,099

we analyze the role of each component of CODEV,100

providing insights into leveraging visual data to101

resolve issues. Overall, the contributions of this102

paper are as follows:103

• We propose CODEV, a simple yet novel ap-104

proach that leverages visual data to enhance105

the issue-resolving capabilities of LLMs.106

• We construct a benchmark designed to eval-107

uate the performance of LLMs in resolving108

visual GitHub issues, namely Visual SWE-109

bench. The benchmark comprises 133 realis-110

tic software engineering tasks sourced from111

11 open-source GitHub repositories.112

• We validate the effectiveness of our approach113

through a series of experiments and conduct 114

in-depth analysis and summarization of the 115

experimental results. 116

2 Approach 117

Figure 2 illustrates an overview of CODEV, which 118

consists of two phases: data processing and patch 119

generation. The first phase processes visual data 120

and the second phase uses the processed informa- 121

tion to assist LLMs in generating a patch. Below is 122

a detailed description of each phase. 123

2.1 Data Processing 124

To process the issue’s visual data, we adopt two 125

components: fine-grained description and struc- 126

tured summarization. For fine-grained description, 127

the Vision-Language Model (VLM) first generates 128

an independent description for each piece of visual 129

data based on its content. It then provides a con- 130

textual description that relates this data to the issue, 131

resulting in a fine-grained description. In structured 132

summarization, the VLM produces a summary that 133

breaks down the complex issue into several clear 134

sections. Below, we detail the implementation of 135

each component. 136

2.1.1 Fine-Grained Description 137

We design the fine-grained description component 138

to generate textual representations of the visual 139

data. This component draws inspiration from how 140

humans process visual data. When encountering 141

visual data in an issue, humans first identify its raw 142

features and then analyze its function in the context 143

of the problem. Inspired by this, we design a two- 144

step process to generate fine-grained descriptions. 145

Step 1: Independent Description. In the first 146

step, we instruct the VLM to describe each piece of 147

visual data based solely on its content. For visual 148

data consisting purely of text, such as a screenshot 149

of error logs, the VLM extracts the text and out- 150

puts it in Markdown format. For other types of 151

visual data, like images or videos with non-textual 152

content, the VLM generates a detailed description 153

capturing all details. 154

Step 2: Contextual Description. In the sec- 155

ond step, the VLM is prompted with the complete 156

problem statement to establish the context. Sub- 157

sequently, it is tasked with providing a compre- 158

hensive description and analysis of the visual data 159

based on this contextual understanding. During 160

this step, the VLM tightly connects the visual data 161

with the problem’s context to analyze its function. 162

2



Fine-Grained Description

Structured Summarization

Task:
Describe each piece of
visual data independently.

Task:
Describe and analyze each
piece of visual data in the
context of the issue.

Task:
Read the entire issue and
create a structured summary.

New Issue
PX facet labels don't respect
labels kwarg...

Data Processing Patch Generation

VLM

VLM

VLM
LLM

Issue
PX facet labels don't respect
labels kwarg...

Codebase

Patch +6 -2Description

Independent Description:
The image consists of...

Contextual Description:
...This image demonstrates
a reported issue...

Summary
- problemSummary:
Facet labels in a scatter...
- stepsToReproduce: 
Create a scatter plot...
- expectedResults: 
The facet labels should... 
- actualResults: 
The facet labels do not...

Description

Independent Description:
The image consists of...

Contextual Description:
...This image demonstrates
a reported issue...

Summary
- problemSummary:
Facet labels in a scatter...
- stepsToReproduce: 
Create a scatter plot...
- expectedResults: 
The facet labels should... 
- actualResults: 
The facet labels do not...

Textual Issue
Resolving Approach

Packages

test

README.md

packages/python/plotly/plotly

express

_core.py

Figure 2: Overview of CODEV.

Through these two steps, we obtain fine-grained163

descriptions of all visual data in the issue. These164

descriptions capture not only the intrinsic features165

of the visual data but also its critical function in the166

problem’s context.167

2.1.2 Structured Summarization168

Some GitHub issues are described in a structured169

format, including reproduction steps, expected re-170

sults, actual results, and so on. This format en-171

hances clarity and makes the key aspects of issues172

easier to understand. Inspired by this, we propose173

generating a structured summary to enrich issues174

and reduce the difficulty of understanding them.175

In the structured summarization component, the176

VLM is prompted with the complete problem state-177

ment, including the visual data. It is then tasked178

with understanding and analyzing the issue to gen-179

erate a structured summary. To guide this process,180

we supply the VLM with a template that consists181

of the following fields: a brief problem summary,182

background information, reproduction steps, ex-183

pected results, actual results, descriptions of visual184

data, and additional notes. However, not all issues185

may fit perfectly with this template. Therefore, we186

allow the VLM to skip irrelevant or unclear fields.187

Additionally, the summary can also include new188

fields if needed, as long as it remains clear and189

useful for resolving the issue.190

Unlike fine-grained description, which focuses191

on generating representations of visual data, struc-192

tured summarization aims to provide an overview193

of the entire issue. It not only covers visual data but194

also gives a deeper understanding of the problem.195

These two components complement each other: 196

fine-grained description captures the detailed fea- 197

tures of local visual data, while structured summa- 198

rization synthesizes global information. Through 199

these components, we ensure that visual data is 200

processed effectively to support LLMs in under- 201

standing and resolving the issue. Prompts related 202

to these components are listed in Appendix A. 203

2.2 Patch Generation 204

After generating fine-grained descriptions and a 205

structured summary in the data processing phase, 206

the patch generation phase leverages this informa- 207

tion to generate a patch. To support LLMs in effi- 208

ciently utilizing this information, we splice them 209

into the original issue. Specifically, the visual data 210

is converted into fine-grained descriptions, and the 211

issue is enriched with a structured summary, with 212

an example provided in Appendix B. 213

To enhance the ability of LLMs to resolve tex- 214

tual issues, various approaches have been proposed. 215

These approaches take different forms: some are 216

agent-based, equipping LLMs with a set of tools 217

that allow the agent to autonomously perform ac- 218

tions (Chen et al., 2024a; Yang et al., 2024a; Zhang 219

et al., 2024); others are agentless (Xia et al., 2024). 220

Regardless of their form, they typically input the 221

issue and codebase, with the output being a gen- 222

erated patch. CODEV combines these approaches 223

through a unified interface, automating patch gen- 224

eration. At this point, the newly generated issue 225

and its corresponding codebase are fed into the tex- 226

tual issue-resolving approach, where LLMs follow 227

predefined instructions to generate a patch. 228

3



3 Visual SWE-bench Benchmark229

In current benchmarks for the issue-resolving task,230

only the recently released SWE-bench Multimodal231

(Yang et al., 2024b) focuses on visual issues. How-232

ever, as of writing, SWE-bench Multimodal 4 lacks233

evaluation fields, and its evaluation script has not234

been made public, making it unsuitable for evalua-235

tion. To evaluate CodeV, we construct a benchmark236

for resolving visual GitHub issues, namely Visual237

SWE-bench. Below, we detail our benchmark con-238

struction process and its key features.239

3.1 Construction240

To ensure the high quality of our benchmark, we241

follow a rigorous five-stage construction process.242

1. Filtering SWE-bench data. From the 2,294243

instances in SWE-bench, we identify 128244

task instances whose problem statement con-245

tains visual data. These data are presented246

through hyperlinks, with images embedded247

using HTML or Markdown syntax and videos248

provided as plain text hyperlinks.249

2. Repositories selection and pull requests250

Collection. We analyze the 128 task instances251

identified in Stage 1, and the results show that252

most of them originate from visualization li-253

braries. To expand our benchmark, we select254

three additional popular open-source visual-255

ization libraries and crawl all their pull re-256

quests (PRs) from GitHub. Since SWE-bench257

only includes PRs created before August 2023,258

we select repositories with at least 10 visual259

task instances from SWE-bench and collect re-260

cent PRs from these repositories. This process261

yields approximately 10,000 PRs.262

3. Candidate instance construction. Candidate263

instances are constructed from the collected264

PRs through the following steps:265

(1) We select only merged PRs that resolve266

at least one issue and include modifica-267

tions to test files.268

(2) For each PR, we extract the text of all269

resolved issues, retaining only those PRs270

where the issue text contained hyperlinks271

to images or videos.272

(3) For qualifying PRs, we gather detailed273

information, including “instance ID”,274

“patch”, “test patch”, and so on.275

4https://www.swebench.com/multimodal.html

This process results in 38 candidate instances 276

from approximately 10,000 PRs. 277

4. Execution verification. For each candidate 278

instance, we meticulously set up the runtime 279

environment and testing commands, removing 280

any instances that failed due to installation or 281

runtime errors. Next, we apply the test patch 282

to each instance and record the test results 283

both before and after applying the gold patch. 284

Instances without any tests where the status 285

changes from fail to pass are excluded. This 286

process leaves 31 viable candidate instances. 287

5. Human verification. We conduct human ver- 288

ification on 159 instances, comprising 128 289

task instances from Stage 1 and 31 candidate 290

instances filtered through Stages 2–4. Each 291

instance is evaluated based on the following 292

criteria: 293

(1) Whether the visual data can be fully con- 294

verted to text. 295

(2) Whether the visual data is essential for 296

resolving the instance. 297

(3) Whether the problem description con- 298

tains sufficient information for effective 299

resolution. 300

The first two criteria ensure the necessity of 301

visual data, while the third guarantees that the 302

problem information is sufficiently detailed. 303

Using these criteria, we exclude 4 instances 304

where visual data can be fully converted to 305

text via Optical Character Recognition (OCR). 306

We also remove 4 instances where visual data 307

is not essential for resolution. Additionally, 308

we exclude 18 instances with insufficient prob- 309

lem descriptions, which cannot be resolved 310

due to missing information. This process re- 311

sults in a curated, high-quality benchmark of 312

133 task instances. 313

3.2 Features 314

As shown in Figure 3, Visual SWE-bench com- 315

prises 133 visual task instances sourced from 11 316

open-source GitHub repositories. These instances 317

cover a wide range of functionalities, including but 318

not limited to data visualization, machine learning, 319

and document generation. This diverse set of tasks 320

provides a comprehensive benchmark for evaluat- 321

ing the performance of LLMs in resolving visual 322

issues automatically. 323

4

https://www.swebench.com/multimodal.html


Repository CodeBase Issue Text Gold Patch Tests Images

# Files # Lines # Length # Lines # Files # Func. # Lines # File Size # Resolution
altair 499 90K 98.5 27 2.5 3 15 24.12 99K
astropy 1578 445K 1352.5 10 1 2 69 19.76 170K
matplotlib 2388 592K 175 9 1 2 89.5 23.58 307K
networkx 849 108K 155 23 1 1 26 21.38 307K
plotly.py 14302 587K 44 15 2 1 11.5 23.58 307K
pylint 2712 92K 100 126 4 9 10 23.46 307K
scikit-learn 1343 277K 641 22 1 2 12 23.58 307K
seaborn 295 70K 143.5 13.5 2 3 109.5 23.1 307K
sphinx 1436 308K 157 8 1 2 35 27.08 286K
sympy 1907 477K 125 21 1 2 36 24.26 275K
xarray 320 123K 220.5 5 1 2 229.5 25.08 275K
mean 2512 288K 292 25.40 1.59 2.63 58.45 23.54 268K
max 14302 592K 1352.5 126 4 9 229.5 27.08 307K

Table 1: Summary statistics for Visual SWE-bench. The term “CodeBase # Files and # Lines” denotes the total
count of files and lines within the codebase. “Issue Text # Length” indicates the median word count in the problem
statement. “Gold Patch # Lines, # Files, and # Func.” reflects the median number of lines, files, and functions
modified per patch stored in the repository. “Tests # Lines” signifies the median line count of code present in test
cases. “Images # File Size and # Resolution” represents both the median image file size (KB) and resolution (pixels).

matplotlib (50)

sphinx (31)

pylint (1)
sympy (15)

altair (4) 

seaborn (12)
 scikit-learn (3)

astropy (4)

plotly.py (4)

networkx (7)

xarray (2)

Figure 3: Distribution of Visual SWE-bench task in-
stances across 11 open-source GitHub repositories.

Data statistics. Table 1 summarizes key statistics324

for the repositories in Visual SWE-bench, empha-325

sizing their diversity and representativeness. Repos-326

itory sizes range from 295 to 14,302 files and 70K327

to 592K lines of code, illustrating structural vari-328

ation. Problem statements vary widely in length,329

with median word counts from 44 to 1,353, reflect-330

ing differences in task comprehension demands.331

Gold patches show diverse modification scopes,332

with median changes spanning 5 to 126 lines, indi-333

cating varying solution complexities. This broad334

spectrum of task characteristics provides a robust335

benchmark for evaluating LLMs’ performance in336

resolving visual issues.337

Visual data distribution. Across all Visual338

SWE-bench tasks, we identify 217 images and339

2 videos, spanning a diverse range of visual pro- 340

cessing challenges grouped into seven categories. 341

These include code screenshots (21), error mes- 342

sages (8), and system information (2), which are 343

linked to specific code library entities to facilitate 344

error identification. Other categories include data 345

visualizations (140), documentation results (33), 346

function formulas (13), and keyboard shortcuts (2), 347

illustrating challenges such as generating complex 348

statistics and utilizing code functions within spe- 349

cific libraries. Additionally, two instances feature 350

GIFs (matplotlib_matplotlib-19763) and videos 351

(matplotlib_matplotlib-25631), providing more dy- 352

namic and detailed depictions of these challenges. 353

4 Experiments 354

4.1 Experimental Setup 355

Models. To execute CODEV for resolving visual 356

issues, two model types are required: a VLM for 357

processing visual data and an LLM for generat- 358

ing patches. To demonstrate the effectiveness of 359

CODEV, we specifically avoid commercial models 360

and use open-source models in our experiments. 361

For the VLM, we select Qwen2-VL (Wang et al., 362

2024), a model renowned for its robust visual 363

understanding capabilities, using three versions: 364

2B, 7B, and 72B. For the LLM, we choose two 365

models: DeepSeek-V2.5 (DeepSeek-AI, 2024) and 366

Qwen2.5-Coder-32B (Hui et al., 2024), both recog- 367

nized for their powerful coding capabilities. 368

5

https://github.com/vega/altair
https://github.com/astropy/astropy
https://github.com/matplotlib/matplotlib
https://github.com/networkx/networkx
https://github.com/plotly/plotly.py
https://github.com/pylint-dev/pylint
https://github.com/scikit-learn/scikit-learn
https://github.com/mwaskom/seaborn
https://github.com/sphinx-doc/sphinx
https://github.com/sympy/sympy
https://github.com/pydata/xarray
https://github.com/matplotlib/matplotlib/issues/19633
https://github.com/matplotlib/matplotlib/issues/25608


Approach Model Resolved (%)
Evaluation results on 111 instances from Visual SWE-bench

Honeycomb (Honeycomb, 2024) µ NA 10.81 (12)
Amazon Q Developer Agent (AWS, 2024) µ NA 9.01 (10)
Factory Code Droid (Factory, 2024) µ NA 9.01 (10)
AutoCodeRover (Zhang et al., 2024) GPT 4o (2024-05-13) 10.81 (12)
AppMap Navie (AppMap, 2024) µ GPT 4o (2024-05-13) 9.01 (10)
SWE-agent (Yang et al., 2024a) Claude 3.5 Sonnet 6.31 (7)

GPT 4 (1106) 8.11 (9)
GPT 4o (2024-05-13) 1.80 (2)

RAG (Jimenez et al., 2024) Claude 3 Opus 2.70 (3)
Claude 2 0.90 (1)

CODEV + Agentless (Ours) Qwen2-VL-72B + DeepSeek-V2.5 11.71 (13)
Qwen2-VL-2B + Qwen2.5-Coder-32B 13.51 (15)
Qwen2-VL-7B + Qwen2.5-Coder-32B 13.51 (15)
Qwen2-VL-72B + Qwen2.5-Coder-32B 11.71 (13)

Evaluation results on all instances from Visual SWE-bench
Agentless (Xia et al., 2024) DeepSeek-V2.5 6.02 (8)

Qwen2.5-Coder-32B 7.52 (10)
Agentless Plus Qwen2-VL-72B 0.75 (1)
CODEV + Agentless (Ours) Qwen2-VL-72B + DeepSeek-V2.5 9.77 (13)

Qwen2-VL-2B + Qwen2.5-Coder-32B 12.78 (17)
Qwen2-VL-7B + Qwen2.5-Coder-32B 12.78 (17)
Qwen2-VL-72B + Qwen2.5-Coder-32B 11.28 (15)

Table 2: Results on Visual SWE-bench. The 111 instances are the overlapping instances between Visual SWE-bench
and SWE-bench. µ indicates closed-source approaches.

Baselines. In the patch generation phase, CODEV369

combines textual issue-resolving approaches. We370

specifically adopt the open-source Agentless ap-371

proach (Xia et al., 2024), which resolves issues372

through a simple localization and repair process.373

We also compare CODEV with several textual issue-374

resolving approaches, including open-source and375

closed-source commercial products. These ap-376

proaches have demonstrated strong performance on377

SWE-bench. To further contrast with VLM-based378

approaches, we design Agentless Plus, a modified379

version of Agentless that supports VLMs in pro-380

cessing visual data in issues to resolve them.381

Metrics. We use Resolved (%) as our evaluation382

metric. The metric represents the percentage of Vi-383

sual SWE-bench instances that have been success-384

fully resolved. More details about the experiments385

can be found in Appendix C.386

4.2 Evaluation387

4.2.1 Main Results388

Table 2 presents the results of all approaches. The389

results show that CODEV significantly enhances390

the issue-resolving capabilities of the LLM by 391

leveraging visual data. Compared to all bench- 392

marks, CODEV achieves the best performance. 393

When combined with Agentless, CODEV achieves 394

over a 50% relative improvement, whether using 395

DeepSeek-V2.5 or Qwen2.5-Coder-32B to resolve 396

issues. The performance of CodeV highlights the 397

value of leveraging visual data to help LLMs un- 398

derstand and resolve issues. 399

Figure 4(a) depicts the distribution of issues re- 400

solved by CODEV compared to both closed-source 401

and open-source baseline approaches. Notably, 402

CODEV can resolve certain issues that either open- 403

source or closed-source approaches cannot resolve. 404

Furthermore, CODEV successfully resolves some 405

complex issues that neither category of approaches 406

could solve. This highlights not only the advan- 407

tages of CODEV but also the importance of lever- 408

aging visual data to resolve issues. 409

From Table 2, it is evident that the performance 410

of the VLM does not significantly impact CODEV. 411

Among the three versions of Qwen2-VL, the 72B 412

model is the most powerful, while the 7B and 413

6



5

7 1
10

541

closed-source open-source

CodeV + Agentless

(a) All approaches on 111 in-
stances.

1

0 2
12

123

Qwen2-VL-7B Qwen2-VL-2B

Qwen2-VL-72B

(b) CODEV with VLMs of
different model sizes on all in-
stances.

Figure 4: Venn diagrams of issues resolved from Visual
SWE-bench.

Approach Resolved (%)
CODEV + Agentless 11.28 (15)
w/o Fine-Grained Description 9.77 (13)
w/o Independent Description 9.02 (12)
w/o Contextual Description 9.02 (12)
w/o Structured Summarization 7.52 (10)

Table 3: Ablation studies on Visual SWE-bench (133
instances). The VLM is Qwen2-VL-72B and the LLM
is Qwen2.5-Coder-32B.

2B models exhibit progressively weaker capabili-414

ties. However, even with the lower-performing 7B415

and 2B models, CODEV maintained robust issue-416

resolving capabilities, even outperforming the 72B417

model. Additionally, Figure 4(b) further illustrates418

the distribution of resolved issues across different419

VLMs. The issues resolved do not overlap entirely,420

indicating that each VLM has its strengths in pro-421

cessing different types of issues. This indicates that422

despite differences in VLM performance, CODEV423

can still exert the capabilities of VLM, resolve is-424

sues stably, and demonstrate strong robustness.425

Additionally, we observe that using the VLM426

alone, while it leverages visual data, does not yield427

satisfactory results. For example, Agentless Plus428

combined with Qwen2-VL-72B resolves only one429

issue. This is primarily due to its weak coding430

capabilities. In comparison, CODEV effectively431

combines the VLM’s visual understanding ability432

with the LLM’s coding capabilities. This integra-433

tion allows LLMs to leverage visual data to resolve434

issues at a low cost, making it a promising solution.435

436

4.2.2 Analysis of Ablation Studies437

We conduct a series of ablation studies on Visual438

SWE-bench, and the results in Table 3 show that439

Issue: heatmap(..., norm=None, ...) has different behaviour...
Specifically, if I use sns.heatmap(..., vmin=0.0, vmax=1.0, ...) I get something like this:

but when I use sns.heatmap(..., vmin=0.0, vmax=1.0, norm=None, ...), vmin and vmax are lost:

- Image ID: 1
- Independent Description: The image is a confusion matrix, which is a table used to evaluate...
- Contextual Description: ...This image demonstrates the expected behavior of a heatmap when
the `norm` argument is not specified.The heatmap is correctly normalized, with the color scale ...
- Image ID: 2
- Independent Description: The image is a confusion matrix, which is a table used to evaluate...
- Contextual Description: ...This image illustrates the observed behavior of a heatmap when the
`norm` argument is set to `None`. It shows a heatmap with values ranging from 0.0 to 1.0, but the
color scale does not reflect the specified `vmin` and `vmax` values. Instead, the color scale ...

...

Issue

Description

Figure 5: Fine-grained description example for the in-
stance mwaskom_seaborn-3276, offering detailed in-
sights into the visual data.

Issue Summary
- problemSummary: The issue is about the HTML output of DataArray/Variable in xarray,
specifically whether the array data and attributes should be expanded...
- context: The current HTML representation for DataArray/Variable requires users to click on an
icon to expand and view the array data and attributes. There is a proposal to pre-expand these...
- expectedResults: The expected result of the proposal is to improve user experience by making it
easier to discover and view the array data and attributes directly in the HTML output...
- actualResults: The actual results before the proposal are that users must click on icons...
- additionalNotes: The proposal aims to address a potential usability issue by making the...

Issue: Pre-expand data and attributes in DataArray/Variable HTML repr...
Currently the HTML repr for DataArray/Variable looks like this:

To see array data, you have to click on the       icon...

Issue

Summary

Figure 6: Structured summarization example for the
instance pydata_xarray-4182, demonstrating a concise
representation of its key information.

removing any component of CODEV leads to a 440

decline in performance. This led us to further in- 441

vestigate the functions of the components in the 442

data processing phase. 443

Analysis of Fine-Grained Description. The 444

fine-grained description process consists of two 445

steps: independent description and contextual de- 446

scription. In the independent description, the VLM 447

captures the raw features of visual data, providing 448

a direct and detailed representation. However, why 449

is contextual description also necessary? Figure 5 450

shows an issue that is difficult to resolve without 451

the contextual description. The figure shows two 452

images, and the contextual description analyzes 453

their respective function, explaining the informa- 454

tion conveyed by each. In contrast, the indepen- 455

dent description provides only a general overview, 456

7

https://github.com/mwaskom/seaborn/issues/3275
https://github.com/pydata/xarray/issues/4176


missing critical details needed for a complete un-457

derstanding of the issue. These details are essential458

for LLMs to grasp the issue accurately. Thus, while459

the independent description captures the raw fea-460

tures of the visual data, the contextual description461

extracts deeper, more nuanced information. To-462

gether, these two steps work in tandem to provide463

a comprehensive understanding of the visual data.464

Analysis of Structured Summarization. As465

shown in Table 3, removing structured summariza-466

tion significantly undermines the performance of467

CODEV. To explain this phenomenon, Figure 6468

presents an issue that is more easily resolved with469

a summary. The summary generated by CODEV470

breaks down the complex issue into clear, di-471

gestible sections, providing LLMs with a full un-472

derstanding of the issue’s background, expected473

outcomes, and actual results. This structured for-474

mat also helps LLMs grasp the core content more475

effectively. While the fine-grained description com-476

ponent attempts to convey the meaning of the visual477

data, relying solely on this still presents challenges478

in fully understanding the issue. By combining vi-479

sual and textual data, the structured summary offers480

LLMs a more holistic understanding of the issue.481

5 Related Works482

Issue Resolving Approaches. To assist LLMs483

in resolving GitHub issues, many approaches have484

already been proposed. Retrieval Augmented Gen-485

eration (RAG) (Jimenez et al., 2024) is a direct486

approach that resolves the issue by first extract-487

ing relevant code snippets from the repository and488

then using them to prompt LLMs to generate a489

patch. SWE-agent (Yang et al., 2024a) meticu-490

lously designs an agent-computer interface (ACI)491

that enables LLM agents to interact with reposi-492

tory environments to solve software engineering493

tasks. AutoCodeRover (Zhang et al., 2024) com-494

bines LLMs with code search, utilizes program495

structure, and conducts iterative searches for pro-496

gram improvement. CodeR (Chen et al., 2024a) is497

a multi-agent approach for issue-resolving tasks,498

adopting a multi-agent framework and pre-defined499

task graphs. Agentless (Xia et al., 2024) points500

out the limitations of using agents and proposes a501

simple two-phase process of localization and repair502

to solve software development problems. How-503

ever, these existing approaches overlook visual504

data within issues. CODEV bridges this gap by505

processing visual data from both local and holistic506

perspectives, enhancing the capabilities of LLMs 507

to resolve complex visual issues. 508

Code Generation Benchmarks. Code genera- 509

tion has long been a measure of LLMs perfor- 510

mance (Austin et al., 2021). The emergence of 511

HumanEval (Chen et al., 2021) provides a stan- 512

dardized framework for evaluating code generation 513

models. In subsequent years, various benchmarks 514

have been developed to enhance HumanEval by 515

adding extensions to different languages (Cassano 516

et al., 2022; Athiwaratkun et al., 2023; Orlanski 517

et al., 2023), introducing variations in edit scope 518

(Yu et al., 2024; Du et al., 2023), presenting simi- 519

lar yet novel code completion tasks (Muennighoff 520

et al., 2024), and conducting more extensive test- 521

ing (Liu et al., 2023). With the development of 522

LLMs, existing benchmarks struggle to explore 523

the boundaries of state-of-the-art LLMs’ capabili- 524

ties. To address this, SWE-bench (Jimenez et al., 525

2024) offers a direction by researching real-world 526

GitHub issues, serving as a challenging benchmark 527

for evaluating next-generation LLMs. Building on 528

this, SWE-bench-Java (Zan et al., 2024) extends 529

the benchmark to the Java ecosystem, creating a 530

multilingual benchmark. Similarly, the latest work, 531

SWE-bench Multimodal (Yang et al., 2024b) offers 532

a multimodal upgrade to the benchmark, focusing 533

on visual JavaScript problems. Given Python’s in- 534

creasing role in fields like data science, machine 535

learning, and visualization, where visual data is 536

crucial, we construct Visual SWE-bench focusing 537

on visual issues in Python. By incorporating real- 538

world visual issues, Visual SWE-bench encourages 539

researchers to leverage visual data in solving com- 540

plex software challenges. 541

6 Conclusion 542

We propose CODEV, an approach that leverages 543

visual data to resolve issues automatically. It pro- 544

cesses visual data and provides LLMs with valu- 545

able information that enhances their ability to re- 546

solve issues. To evaluate CODEV, we construct a 547

benchmark for visual issue resolving, namely Vi- 548

sual SWE-bench. Through extensive experiments, 549

we demonstrate the effectiveness of CODEV and 550

find that it maintains robust performance across 551

VLMs with varying model sizes. Additionally, 552

through case studies, we analyze the function of 553

each component of CODEV, offering insights on 554

leveraging visual data to resolve issues. 555

8



Limitations556

Although this study offers valuable insights into557

leveraging visual data to resolve GitHub issues,558

several limitations should be acknowledged:559

• Due to the randomness in the responses gen-560

erated by LLMs, there is a potential threat to561

the experimental results. Despite repeating562

each experiment twice to mitigate this, minor563

fluctuations in results may still occur.564

• Due to the lack of suitable benchmarks, our565

experiments are conducted solely on the self-566

constructed benchmark. However, we conduct567

comprehensive experiments and analyses to568

validate our approach, and we hope future569

research will develop more publicly available570

benchmarks to further explore this direction.571

• Due to the high costs of GPT-4o and Claude572

3.5 Sonnet, we don’t include them in our com-573

parative experiments. Based on our estimates,574

using these models within the SWE-agent ap-575

proach under similar experimental conditions576

would cost thousands of dollars. Neverthe-577

less, we evaluate CODEV using two LLMs578

and three VLMs, conducting extensive experi-579

ments that confirm its effectiveness.580

References581

Anthropic. 2024. Introducing claude 3.5 son-582
net. https://www.anthropic.com/news/583
claude-3-5-sonnet.584

AppMap. 2024. Appmap speedruns to the top of the swe585
bench leaderboard. https://appmap.io/blog/586
2024/06/20/appmap-navie-swe-bench-leader.587

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,588
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin589
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-590
jan Kumar Gonugondla, Hantian Ding, Varun Ku-591
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain,592
Robert Giaquinto, Haifeng Qian, Murali Krishna593
Ramanathan, and Ramesh Nallapati. 2023. Multi-594
lingual evaluation of code generation models. In The595
Eleventh International Conference on Learning Rep-596
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,597
2023. OpenReview.net.598

Jacob Austin, Augustus Odena, Maxwell I. Nye,599
Maarten Bosma, Henryk Michalewski, David Dohan,600
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,601
and Charles Sutton. 2021. Program synthesis with602
large language models. CoRR, abs/2108.07732.603

AWS. 2024. Amazon q developer the most capable 604
generative ai–powered assistant for software develop- 605
ment. https://aws.amazon.com/q/developer. 606

Federico Cassano, John Gouwar, Daniel Nguyen, Syd- 607
ney Nguyen, Luna Phipps-Costin, Donald Pinckney, 608
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, 609
Molly Q Feldman, et al. 2022. Multipl-e: A scal- 610
able and extensible approach to benchmarking neural 611
code generation. arXiv preprint arXiv:2208.08227. 612

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, 613
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu, 614
Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, 615
Guangtai Liang, Yuchi Ma, Pan Bian, Tao Xie, and 616
Qianxiang Wang. 2024a. Coder: Issue resolving with 617
multi-agent and task graphs. CoRR, abs/2406.01304. 618

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 619
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka- 620
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 621
Greg Brockman, Alex Ray, Raul Puri, Gretchen 622
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 623
try, Pamela Mishkin, Brooke Chan, Scott Gray, 624
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 625
Kaiser, Mohammad Bavarian, Clemens Winter, 626
Philippe Tillet, Felipe Petroski Such, Dave Cum- 627
mings, Matthias Plappert, Fotios Chantzis, Eliza- 628
beth Barnes, Ariel Herbert-Voss, William Hebgen 629
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 630
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 631
William Saunders, Christopher Hesse, Andrew N. 632
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 633
Morikawa, Alec Radford, Matthew Knight, Miles 634
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 635
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 636
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 637
ing large language models trained on code. CoRR, 638
abs/2107.03374. 639

Xiangping Chen, Xing Hu, Yuan Huang, He Jiang, 640
Weixing Ji, Yanjie Jiang, Yanyan Jiang, Bo Liu, Hui 641
Liu, Xiaochen Li, et al. 2024b. Deep learning-based 642
software engineering: Progress, challenges, and op- 643
portunities. arXiv preprint arXiv:2410.13110. 644

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi- 645
cal, and efficient mixture-of-experts language model. 646
Preprint, arXiv:2405.04434. 647

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 648
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 649
Sha, Xin Peng, and Yiling Lou. 2023. Classeval: A 650
manually-crafted benchmark for evaluating llms on 651
class-level code generation. CoRR, abs/2308.01861. 652

Factory. 2024. Factory bringing autonomy to software 653
engineering. https://www.factory.ai. 654

Honeycomb. 2024. Honeycomb. https://honeycomb. 655
sh. 656

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 657
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 658
Bowen Yu, Kai Dang, et al. 2024. Qwen2.5-coder 659
technical report. arXiv preprint arXiv:2409.12186. 660

9

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://appmap.io/blog/2024/06/20/appmap-navie-swe-bench-leader
https://appmap.io/blog/2024/06/20/appmap-navie-swe-bench-leader
https://appmap.io/blog/2024/06/20/appmap-navie-swe-bench-leader
https://openreview.net/forum?id=Bo7eeXm6An8
https://openreview.net/forum?id=Bo7eeXm6An8
https://openreview.net/forum?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://aws.amazon.com/q/developer
https://doi.org/10.48550/ARXIV.2406.01304
https://doi.org/10.48550/ARXIV.2406.01304
https://doi.org/10.48550/ARXIV.2406.01304
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://doi.org/10.48550/ARXIV.2308.01861
https://www.factory.ai
https://honeycomb.sh
https://honeycomb.sh
https://honeycomb.sh


Carlos E. Jimenez, John Yang, Alexander Wettig,661
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.662
Narasimhan. 2024. Swe-bench: Can language mod-663
els resolve real-world github issues? In The Twelfth664
International Conference on Learning Representa-665
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.666
OpenReview.net.667

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-668
ming Zhang. 2023. Is your code generated by chatgpt669
really correct? rigorous evaluation of large language670
models for code generation. In Advances in Neural671
Information Processing Systems 36: Annual Confer-672
ence on Neural Information Processing Systems 2023,673
NeurIPS 2023, New Orleans, LA, USA, December 10674
- 16, 2023.675

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang,676
Haiyan Zhao, Zhi Jin, and Qianxiang Wang. 2024.677
Graphcoder: Enhancing repository-level code com-678
pletion via code context graph-based retrieval and679
language model. CoRR, abs/2406.07003.680

Niklas Muennighoff, Qian Liu, Armel Randy Ze-681
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,682
Swayam Singh, Xiangru Tang, Leandro von Werra,683
and Shayne Longpre. 2024. Octopack: Instruction684
tuning code large language models. In The Twelfth685
International Conference on Learning Representa-686
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.687
OpenReview.net.688

OpenAI. 2024. Hello gpt-4o. https://openai.com/689
index/hello-gpt-4o.690

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey691
Hui, Joshua Howland, Jonathan Malmaud, Jacob692
Austin, Rishabh Singh, and Michele Catasta. 2023.693
Measuring the impact of programming language dis-694
tribution. In International Conference on Machine695
Learning, ICML 2023, 23-29 July 2023, Honolulu,696
Hawaii, USA, volume 202 of Proceedings of Machine697
Learning Research, pages 26619–26645. PMLR.698

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-699
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin700
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei701
Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang702
Zhou, Jingren Zhou, and Junyang Lin. 2024. Qwen2-703
vl: Enhancing vision-language model’s perception704
of the world at any resolution. arXiv preprint705
arXiv:2409.12191.706

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and707
Lingming Zhang. 2024. Agentless: Demystify-708
ing llm-based software engineering agents. CoRR,709
abs/2407.01489.710

John Yang, Carlos E. Jimenez, Alexander Wettig, Kil-711
ian Lieret, Shunyu Yao, Karthik Narasimhan, and712
Ofir Press. 2024a. Swe-agent: Agent-computer inter-713
faces enable automated software engineering. CoRR,714
abs/2405.15793.715

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kil-716
ian Lieret, Joyce Yang, Xindi Wu, Ori Press,717

Niklas Muennighoff, Gabriel Synnaeve, Karthik R. 718
Narasimhan, Diyi Yang, Sida I. Wang, and Ofir 719
Press. 2024b. Swe-bench multimodal: Do AI sys- 720
tems generalize to visual software domains? CoRR, 721
abs/2410.03859. 722

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, 723
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, 724
and Tao Xie. 2024. Codereval: A benchmark of prag- 725
matic code generation with generative pre-trained 726
models. In Proceedings of the 46th IEEE/ACM Inter- 727
national Conference on Software Engineering, ICSE 728
2024, Lisbon, Portugal, April 14-20, 2024, pages 729
37:1–37:12. ACM. 730

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, 731
Bingchao Wu, Bei Guan, Yongji Wang, and Jian- 732
Guang Lou. 2023. Large language models meet 733
nl2code: A survey. In Proceedings of the 61st Annual 734
Meeting of the Association for Computational Lin- 735
guistics (Volume 1: Long Papers), ACL 2023, Toronto, 736
Canada, July 9-14, 2023, pages 7443–7464. Associa- 737
tion for Computational Linguistics. 738

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, 739
Yifan Shi, Wei Liu, Dong Chen, Zongshuai Qi, Hao 740
Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan 741
Bian, Guangtai Liang, Bei Guan, Pengjie Huang, Tao 742
Xie, Yongji Wang, and Qianxiang Wang. 2024. Swe- 743
bench-java: A github issue resolving benchmark for 744
java. CoRR, abs/2408.14354. 745

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 746
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 747
Weizhu Chen. 2023a. Repocoder: Repository-level 748
code completion through iterative retrieval and gen- 749
eration. In Proceedings of the 2023 Conference on 750
Empirical Methods in Natural Language Process- 751
ing, EMNLP 2023, Singapore, December 6-10, 2023, 752
pages 2471–2484. Association for Computational 753
Linguistics. 754

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik 755
Roychoudhury. 2024. Autocoderover: Autonomous 756
program improvement. In Proceedings of the 33rd 757
ACM SIGSOFT International Symposium on Soft- 758
ware Testing and Analysis, ISSTA 2024, Vienna, 759
Austria, September 16-20, 2024, pages 1592–1604. 760
ACM. 761

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, 762
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023b. 763
A survey on language models for code. CoRR, 764
abs/2311.07989. 765

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen 766
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen. 767
2023. A survey of large language models for code: 768
Evolution, benchmarking, and future trends. CoRR, 769
abs/2311.10372. 770

10

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://doi.org/10.48550/ARXIV.2406.07003
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openai.com/index/hello-gpt-4o
https://openai.com/index/hello-gpt-4o
https://openai.com/index/hello-gpt-4o
https://proceedings.mlr.press/v202/orlanski23a.html
https://proceedings.mlr.press/v202/orlanski23a.html
https://proceedings.mlr.press/v202/orlanski23a.html
https://doi.org/10.48550/ARXIV.2407.01489
https://doi.org/10.48550/ARXIV.2407.01489
https://doi.org/10.48550/ARXIV.2407.01489
https://doi.org/10.48550/ARXIV.2405.15793
https://doi.org/10.48550/ARXIV.2405.15793
https://doi.org/10.48550/ARXIV.2405.15793
https://doi.org/10.48550/ARXIV.2410.03859
https://doi.org/10.48550/ARXIV.2410.03859
https://doi.org/10.48550/ARXIV.2410.03859
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.18653/V1/2023.ACL-LONG.411
https://doi.org/10.18653/V1/2023.ACL-LONG.411
https://doi.org/10.18653/V1/2023.ACL-LONG.411
https://doi.org/10.48550/ARXIV.2408.14354
https://doi.org/10.48550/ARXIV.2408.14354
https://doi.org/10.48550/ARXIV.2408.14354
https://doi.org/10.48550/ARXIV.2408.14354
https://doi.org/10.48550/ARXIV.2408.14354
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.151
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.151
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.151
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.151
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.151
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.48550/ARXIV.2311.07989
https://doi.org/10.48550/ARXIV.2311.10372
https://doi.org/10.48550/ARXIV.2311.10372
https://doi.org/10.48550/ARXIV.2311.10372


Appendix771

A Prompts772

Figures 7–10 show the prompts we use for images.773

The prompts for videos are almost identical, with774

"image" replaced by "video" in the text.775

A.1 Independent Description776

Figure 7 illustrates the prompt we use to generate777

independent descriptions, instructing the VLM to778

provide descriptions based on the image content.779

A.2 Contextual Description780

Figure 8 and Figure 9 present the prompts used for781

generating contextual descriptions. The prompt in782

Figure 8 instructs the VLM to describe images783

based on the contextual information, while the784

prompt in Figure 9 guides the VLM to analyze785

the function of images.786

A.3 Structured Summary787

Figure 10 illustrates the prompt designed for gener-788

ating a structured summary. It instructs the VLM789

to produce a summary of the issue based on a ref-790

erenced format.791

B Example792

Figure 11 presents an example where visual data is793

processed by the VLM, and the resulting informa-794

tion is appended to the original issue.795

C Other Experimental Details796

For models like Qwen2-VL and Qwen2.5-Coder-797

32B, we use vLLM for deployment on servers798

equipped with four NVIDIA H800 GPUs (each799

with 80GB of memory). For the DeepSeek-V2.5800

model, we utilize the official API service provided801

by its developers. All experiments are conducted802

twice to determine the maximum number of in-803

stances that can be resolved. When using the Agent-804

less approach, we employ version 1.0.

You are a technical image descriptor. For the given image:
1. If it contains only text, present the exact text in markdown format
2. If it contains visual elements:
- Describe the main technical content
- Include specific measurements, numbers, and text
- State the relationships between visual elements
- Focus on technical details over visual style

Your description should be detailed enough for an AI model to understand the technical
content without seeing the image.

Figure 7: Prompt for generating independent descrip-
tions of images.

805

You are a technical image descriptor for software issues. Your task is to create detailed
descriptions of ALL images in the issue that will help other AI models understand the
issue without seeing the actual images.
For EACH image in the issue:
1. Read and understand the entire issue context including:
- Bug description
- Code samples
- Error messages
- Expected behavior
- Actual results

2. Create a comprehensive description that:
- Details exactly what is shown in the image
- Connects the image content to the issue context
- Includes any visible technical information that's crucial for understanding the issue
- Provides enough detail that an AI model could understand the issue's visual aspects
without seeing the image

Please provide your descriptions in this specific JSON format:
{
  "images": [
    {
      "image_id": "<sequential number>",
      "description": "<detailed technical description that fully captures the image content
and its relationship to the issue>"
    }
  ]
}

CRITICAL: Ensure you describe EVERY image present in the issue - missing any image
would make the issue harder to understand for AI models that cannot see the images.

Figure 8: Prompt for generating descriptions of images
based on the contextual information.

You are a specialized technical image analyst for software issues. Your task is to analyze
how each image connects to and supports the reported issue. Focus on providing a
comprehensive analysis that explains the image's role and value in the issue context.

For each image, analyze:

1. Direct Issue Connection
    - How does this image specifically demonstrate or relate to the reported issue?
    - What aspects of the issue does this image capture or verify?
    - Why was including this image necessary for documenting this issue?

2. Technical Value
    - What key technical details does this image reveal about the issue?
    - How do specific elements in the image help understand the problem?
    - What insights does this image provide for troubleshooting or resolution?

3. Documentation Importance
    - What unique information does this image convey that text alone couldn't?
    - How does this image strengthen the overall issue documentation?
    - What critical details should developers focus on when reviewing this image?

Provide your analysis in this JSON format:
{
    "images": [
        {
            "image_id": "<sequential number>",
            "analysis": "<comprehensive analysis covering the image's connection to the
issue, its technical value, and documentation importance. Focus on explaining why this
image matters for understanding and resolving the specific issue at hand. Include relevant
technical details and their significance to the issue context.>"
        }
    ]
}

Key Guidelines:
- Create a narrative that clearly connects the image to the issue context
- Focus on why this image is necessary for understanding the specific issue
- Include relevant technical details and their significance
- Explain how the image contributes to issue documentation and resolution
- Be thorough but concise in your analysis

Figure 9: Prompt for analyzing the function of images
within the given issue.

11



You are an issue organizer and analyzer. The user will provide you with an issue that
includes text descriptions and images. Your task is to analyze this information thoroughly
and output a structured summary of the issue in JSON format.

The output should include relevant elements as applicable, but you are not required to fill
in every field if the information is not available or cannot be accurately summarized. Aim
to include:

```json
{
    "problemSummary": "<a concise summary of the problem>",
    "context": "<any relevant background information>",
    "stepsToReproduce": [
        "<step 1: describe the action taken>",
        "<step 2: describe the next action>",
        "...<more steps as necessary>"
    ],
    "expectedResults": "<what the user expected to happen>",
    "actualResults": "<what actually happened>",
    "supplementaryImages": [
        "<descriptions of the images provided>"
    ],
    "additionalNotes": "<any other relevant information or notes>"
}

Feel free to omit any fields that are not applicable or where information is uncertain, while
ensuring the output remains clear and informative to assist other models in understanding
and resolving the issue effectively.

Figure 10: Prompt for generating a structured summary.

PX facet labels don't respect labels kwarg
```python
px.scatter(tips, x="total_bill", y="tip", facet_row="time",  facet_col="day", 
          labels={"time": "THE TIME", "day": "THE DAY"})
```
This image is part of the problem description. Here is the relevant information:
**Image Details:**
---
- **Image ID**: 1
- **Raw Description**: 
The image consists of four scatter plots, each representing the relationship between the total bill
and the tip amount for different days and times. The plots are arranged in...
- **Contextual Description**: 
The image is a scatter plot with multiple facets, showing the relationship between 'total_bill' and 'tip'
across different days and times. The x-axis is labeled 'total_bill' and ranges from 8 to 16...
- **Analysis**: 
This image demonstrates a reported issue with the Plotly Express library where facet labels do not
respect the labels keyword argument. The scatter plot is intended to show the relationship between
'total_bill' and 'tip' for different days and times, with facet labels set to 'THE TIME' and 'THE DAY'...
---
Reported in https://github.com/plotly/plotly_express/pull/164
### Issue Summary (Structured)
- **problemSummary**: Facet labels in a scatter plot do not respect the labels keyword argument.
- **context**: The issue was reported in a GitHub pull request.
- **stepsToReproduce**: ['Create a scatter plot using Plotly Express.', 'Use the `facet_row` and
`facet_col` parameters to create facets.', 'Use the `labels` parameter to specify custom labels for
the facets.']
- **expectedResults**: The facet labels should reflect the custom labels provided in the `labels`
parameter.
- **actualResults**: The facet labels do not change and display the default labels.
- **supplementaryImages**: ['A scatter plot with facets showing the default labels instead of the
custom labels.']
- **additionalNotes**: The issue was reported in a GitHub pull request, indicating it is a known bug.

PX facet labels don't respect labels kwarg
```python
px.scatter(tips, x="total_bill", y="tip", facet_row="time",  facet_col="day", 
          labels={"time": "THE TIME", "day": "THE DAY"})
```

Issue

New Issue

Reported in https://github.com/plotly/plotly_express/pull/164

Figure 11: An example of a processed visual issue. The
issue from Plotly issue #1944.

12

https://github.com/plotly/plotly.py/issues/1944

	Introduction
	Approach
	Data Processing
	Fine-Grained Description
	Structured Summarization

	Patch Generation

	Visual SWE-bench Benchmark
	Construction
	Features

	Experiments
	Experimental Setup
	Evaluation
	Main Results
	Analysis of Ablation Studies


	Related Works
	Conclusion
	Prompts
	Independent Description
	Contextual Description
	Structured Summary

	Example
	Other Experimental Details

