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Abstract
Bayesian phylogenetics is vital for understanding
evolutionary dynamics, and requires accurate and
efficient approximation of posterior distributions
over trees. In this work, we develop a variational
Bayesian approach for ultrametric phylogenetic
trees. We present a novel variational family based
on coalescent times of a single-linkage clustering
and derive a closed-form density for the resulting
distribution over trees. Unlike existing methods
for ultrametric trees, our method performs infer-
ence over all of tree space, it does not require
any Markov chain Monte Carlo subroutines, and
our variational family is differentiable. Through
experiments on benchmark genomic datasets and
an application to the viral RNA of SARS-CoV-2,
we demonstrate that our method achieves compet-
itive accuracy while requiring significantly fewer
gradient evaluations than existing state-of-the-art
techniques.

1. Introduction
The goal of Bayesian phylogenetics is to infer the genealogy
of a collection of taxa given a genetic model and aligned
sequence data. Phylogenetics is used in fields such as epi-
demiology (Li et al., 2020), linguistics (List et al., 2014), and
ecology (Godoy et al., 2018). Bayesian phylogenetic infer-
ence quantifies uncertainty and integrates over phylogenetic
tree structures within a phylogenetic model (Zhang and Mat-
sen IV, 2019). Most Bayesian phylogenetic inference is per-
formed using Markov chain Monte Carlo (MCMC) methods
with candidate trees iteratively proposed and either accepted
or rejected based on their consistency with the observed data.
However, MCMC methods can struggle because the number
of possible trees grows super-exponentially in the number
of taxa and posteriors on trees are highly multi-modal.
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One alternative to MCMC is variational inference (VI), in
which the posterior distribution over phylogenetic tree struc-
tures is approximated using a variational distribution that
minimizes some distance metric to the true posterior distri-
bution. While VI over combinatorial spaces is also known
to be difficult due to the complexity of the constraints on
the support (Bouchard-Côté and Jordan, 2010; Linderman
et al., 2018), there have been several recent advances in VI
over phylogenetic trees that are tractable. Zhang and Mat-
sen IV (2018) represented phylogenetic trees as Bayesian
networks using subsplit Bayesian networks (SBNs), and
later used SBNs to perform variational Bayesian phyloge-
netic inference on unrooted trees (Zhang and Matsen IV,
2019). This approach has spawned many methodological ad-
vancements. To improve the distribution for branch lengths,
Zhang (2020) used normalizing flows, Molén et al. (2024)
used mixtures, and Xie et al. (2024) used semi-implicit
branch length distributions. To improve the variational fam-
ily over tree topologies, Zhang (2023) used graph neural
networks to learn topological features.

The number of parameters within an SBN grows exponen-
tially with the number of taxa, so Zhang and Matsen IV
(2019) used MCMC to find sets of most likely tree struc-
tures, and they use these sets to restrict the SBNs. Other
recent VI approaches sample tree topologies without the use
of SBNs. For example, ViaPhy (Koptagel et al., 2022) uses
a gradient-free variational inference approach and directly
sample from the Jukes and Cantor (1969) model, GeoPhy
(Mimori and Hamada, 2023) uses a distance-based met-
ric in hyperbolic space to construct unrooted phylogenetic
trees, and ARTree (Xie and Zhang, 2023) uses graph neu-
ral networks to construct a deep autogressive model for VI
over phylogenetic tree structures. Zhou et al. (2024) also
introduce PhyloGFN, a phylogenetic VI technique based
on reinforcement learning and generative flow networks
(Bengio et al., 2023).

Phylogenetic inference can also be performed using non-
Bayesian methods, including RAxML (Stamatakis, 2014),
neighbour-joining (Saitou and Nei, 1987), and more recently
Phyloformer (Nesterenko et al., 2025). Phyloformer uses
deep learning to construct pairwise representations of evo-
lutionary distances between taxa. Phyloformer then uses
pairwise distances to construct a tree using a neighbour-
joining algorithm similar to the single-linkage clustering
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algorithm described here. However, non-Bayesian methods
do not provide estimates of marginal likelihood, which are
useful for model selection.

In this work we focus on rooted ultrametric phylogenetic
trees, for which branch lengths correspond to the amount
of time between evolutionary branching events. This for-
mulation is useful when time is important, for example in
applications involving rapidly evolving pathogens (Sagu-
lenko et al., 2018). None of the aforementioned approaches
incorporate time constraints into the branch lengths of the
phylogenetic trees. To this end, Zhang and Matsen IV (2024)
generalized their SBN-based approach to ultrametric trees,
but they still rely on MCMC to restrict to a subset of tree
space upon which to perform inference over. Alternatively,
Bouckaert (2024) provides cubeVB, a method related to
the one described in our manuscript. However, because the
matrix representation of tree space in Bouckaert (2024) is
not dense, they can only express a limited number of trees.
As such, their variational family is not supported on many
tree topologies. Further, they do not perform optimization
on the tree structure, and instead rely on empirical values
derived from MCMC.

We introduce Variational phylogenetic Inference with
PRoducts over bipartitions (VIPR), a new variational family
for ultrametric trees based on coalescent theory and single-
linkage clustering (Kingman, 1982). VIPR naturally per-
forms variational inference on ultrametric trees and thus di-
rectly incorporates time into phylogenetic inference. VIPR
also performs inference over the entirety of tree space and
does not rely on MCMC subroutines. In particular, we pa-
rameterize a variational distribution over a distance matrix
and use it to derive a differentiable variational density over
trees that result from single-linkage clustering. Through a
set of experiments on standard datasets and an application
to COVID-19, we show that our simple variational formu-
lation achieves comparable results to existing methods for
ultrametric trees in fewer gradient evaluations.

2. Background
Consider a set of N taxa X = {x1, x2, . . . , xN}. A
nonempty subset X of X is referred to as a clade of X .
A clade represents a collection of taxa which share a com-
mon ancestor at a particular time in the past. Further, we
represent an evolutionary branching events using a biparti-
tion {W, Z} of the clade X (X =W ∪ Z, W ∩ Z =Ø).

We focus on ultrametric trees, in which the leaves of the
trees are all equidistant from the root. We denote an ultra-
metric tree with a rooted, binary tree topology τ and a set
of coalescent times t = {tn}N−1

n=1 , where there is one tn for
each internal node in τ . For ultrametric trees in particular,
the branch length between a child and its parent is equal to

the difference in coalescent times between the parent and the
child nodes. We measure t in backwards time, so each tn is
positive and represents a time before the present. The leaves
of τ correspond to the genomes of each measured taxon
x ∈ X . Additionally, an internal node u of τ represents the
(unobserved) genome of the most recent common ancestor
of all taxa that have u as a parent node. As a binary tree, τ
contains a total of N − 1 internal nodes (including the root
node). We can thus represent the tree with a collection of
bipartitions: τ = {{Wn, Zn}}N−1

n=1 . In this representation,
an internal node un is the most recent common ancestor
for all taxa x ∈Wn ∪ Zn, and the n-th coalescent event is
represented by the bipartition {Wn, Zn}.

Denote the set of possible characters within a set of aligned
genetic sequences by Ω (e.g., a DNA sequence may cor-
respond to Ω = {A,T,G,C} and an RNA sequence
to Ω = {A,U,G,C}). Further, denote the set of ob-
served genomes by Y(ob) = {Y (ob)

1 , . . . , Y
(ob)

M }, where
Y

(ob)
m = (Ym,x1 , . . . , Ym,xN

) corresponds to the base pairs
at site m for all observed taxa x ∈ X . In addition to the
observed genomes Y(ob), denote the unobserved genomes
of all internal nodes by Y(un) = {Y (un)

1 , . . . , Y
(un)

M }, where
Y

(un)
m = (Ym,u1 , . . . , Ym,uN−1) corresponds the base at site

m for all unobserved internal nodes u1, . . . , uN−1. Let
the index of the root node be N − 1 (so, uN−1 is the root
node). We denote the combined observed and unobserved
genomes by Y = {Y(ob), Y(un)}. For further background
on phylogenetics, we refer to Hein et al. (2004).

2.1. Phylogenetic Likelihood

For simplicity, we focus on the Jukes and Cantor (1969)
model of evolution. We denote the stationary distribution
by π, and the transition matrix by P (b) (a 4 × 4 matrix
such that the i, j-th entry is the probability of transitioning
from base i to base j given branch length b under Jukes
and Cantor 1969). With this notation, the likelihood of
an observed set of genetic sequences Y (ob) at site m is as
follows:

p(Y (ob)
m |τ, t)=

∑
Y

(un)
m

π(Ym,r)
∏

(u,v)

(P (bu,v(τ, t)))
Ym,u,Ym,v

.

Here the product is over all edges (u, v) in τ . We assume
independence between sites, and so the likelihood of the
observed genomes is:

p(Y(ob) |τ, t) =
M∏

m=1
p(Y (ob)

m |τ, t). (1)

Equation (1) can be evaluated in O(NM) time using the
pruning algorithm (Felsenstein 1981, also known as the
sum-product algorithm; Koller and Friedman 2009).
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2.2. Prior Distribution over Trees

We use the Kingman coalescent (Kingman, 1982) as the
prior distribution on trees. This coalescent process pro-
ceeds backward in time with independent and exponen-
tially distributed inter-event intervals. Events occur at rate
λk =

(
k
2
)
/Ne. Here k is the number of extant taxa and Ne

is the effective population size, a parameter which governs
the rate at which taxa coalesce. We fix Ne = 5 in our ex-
periments. At each event, a pair of extant taxa are chosen
to coalesce into a single taxon uniformly at random over all
pairs of extant taxa, yielding the prior:

p(τ, t) = 2N−1

N !(N − 1)!

N∏
k=2

λk exp (−λk(tk − tk−1)) .

2.3. Variational Inference for Phylogenetic Trees

Our goal is to infer a distribution over tree structures and
coalescent times given observed genetic sequences:

p(τ, t | Y(ob)) = p(Y(ob) | τ, t) p(τ, t)/p(Y(ob)). (2)

Here p(Y(ob)) is an intractable normalizing constant. Vari-
ational inference involves defining a tractable family of
probability densities parameterized by some variational pa-
rameters ϕ. Then, the posterior density is approximated by
a variational density qϕ(τ, t) whose parameters ϕ should
minimize a divergence measure D between the posterior
p(· | Y(ob)) and qϕ. Here we use the reverse KL divergence:

DKL(qϕ || p) = E(τ,t)∼qϕ

[
log
(

qϕ (τ, t)
p(τ, t | Y(ob))

)]
. (3)

Evaluating the exact posterior p(τ, t | Y(ob)) is difficult.
Instead, we equivalently (up to a normalizing constant) max-
imize the evidence lower bound (ELBO):

ϕ∗ = arg max
ϕ

L(ϕ). (4)

L(ϕ) = Eqϕ

[
log
(

p(τ, t, Y(ob))
qϕ(τ, t)

)]
. (5)

ELBO is also known as the negative variational free energy
in statistical physics and some areas of machine learning.
The expectation over qϕ consists of a sum over tree struc-
tures τ and an integral over coalescent times t, forming the
following objective function:

L(ϕ) =
∑

τ

∫
t

qϕ(τ, t) log
(

p(τ, t, Y(ob))
qϕ(τ, t)

)
dt. (6)

Algorithm 1 Single-Linkage Clustering(T,X0)

1: Input: Distances T ∈ R(N
2 )

>0 and taxa set X0 =
{{x1}, {x2}, . . . , {xN}}.

2: for n = 1, . . . , N − 1 do
3: w∗, z∗ ← arg minw,z{t{w,z} :w,z not coalesced}
4: Set Wn ∈ X0 to be the set containing w∗

5: Set Zn ∈ X0 to be the set containing z∗

6: tn ← t{w∗,z∗}

7: Remove Wn, Zn from X0 and add Wn ∪ Zn to X0

8: end for
9: τ ← {{Wn, Zn}}N−1

n=1

10: t← {tn}N−1
n=1

11: Return (τ, t)

2.4. Matrix Representation of Tree Space

One way to construct a phylogenetic tree is to use a distance
matrix T (a symmetric N × N matrix with positive and
finite off-diagonal entries) and the single-linkage clustering
algorithm, as described in Algorithm 1. We denote the
distance between taxa u and v by t{u,v} and formulate the
algorithm to return a representation of a phylogenetic tree
using bipartitions and coalescent times that is consistent
with our notation. We consider the distance matrix as an
element of R(N

2 )
>0 by identifying the off-diagonal elements.

Algorithm 1 is a naı̈ve implementation of single-linkage
clustering with time complexityO(N3) and space complex-
ity O(N2). Sibson (1973) introduce SLINK, an implemen-
tation of Algorithm 1 with time complexity O(N2) and
space complexity O(N), and prove that both are optimal.

Bouckaert (2024) introduce cubeVB, a method that uses
single-linkage clustering to perform variational inference
over ultrametric trees. First, they note that if exactly N − 1
entries of T are finite, then single-linkage clustering im-
plies a bijection between T and (τ, t). Then, they specify
exactly N − 1 entries of T to be random and finite, setting
all other entries to infinity. Next, they run an MCMC al-
gorithm over trees to obtain an empirical distribution over
coalescent times. Finally, they estimate the parameters asso-
ciated with the N − 1 finite entries of T using the MCMC-
generated empirical distribution. This method has two main
drawbacks—all entries of T must be specified to form a
distribution supported on the entire tree space, and it is un-
clear how to select the N − 1 best entries of T to cover
the most posterior probability. To address these drawbacks,
we present a gradient-based variational inference method
for ultrametric trees based on single-linkage clustering that
specifies a variational distribution over the entire tree space.
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T =


A B C D

A ∗ 2 8 4
B ∗ ∗ 4.5 7
C ∗ ∗ ∗ 3
D ∗ ∗ ∗ ∗

, T =


A B C D

∗ 2 5 6
∗ ∗ 4 7
∗ ∗ ∗ 3
∗ ∗ ∗ ∗

,

A B C D

t1 = 2
W1 = {A}
Z1 = {B}

t2 = 3
W2 = {C}
Z2 = {D}

t3 = 4
W3 = {A, B}
Z3 = {C, D}

Figure 1. Schematic showing the sampling process for VIPR. This diagram shows two possible example matrices T (on the left) that
could be drawn using t{u,v} ∼ q

{u,v}
ϕ and result in the same phylogenetic tree (τ, t) ∼ qϕ (on the right) after running single-linkage

clustering. Entries of T that trigger a coalescence event are shown in bold. The form of q
{u,v}
ϕ is quite general and can be provided by

the practitioner, while the expression for qϕ depends upon q
{u,v}
ϕ .

3. Methods
We now present our method Variational phylogenetic
Inference with PRoducts over bipartitions (VIPR). We be-
gin by outlining a generative process for sampling from
our variational distribution qϕ. We then describe how to
evaluate the density of our variational distribution. Finally,
we describe the optimization procedure used to maximize
our variational objective function.

3.1. Generative Process for Phylogenies

We begin by describing a generative process for sampling
from qϕ, as our variational distribution is best understood
through the algorithm for sampling from it. Our algorithm
to sample an ultrametric tree with leaf nodes X proceeds
similarly to Algorithm 1 of Bouckaert (2024). Namely,
we randomly draw each element of the distance matrix T
(t{u,v} for all {u, v} with u, v ∈ X ) using a set of indepen-
dent variational distributions with densities q

{u,v}
ϕ . Then,

we run single linkage clustering on T to form (τ, t).

Algorithm 2 Sample-q(µ,σ,X )

1: Input: Parameters µ ∈ R(N
2 ) and σ ∈ R(N

2 )
>0 and taxa

set X = {{x1}, {x2}, . . . , {xN}}.
2: Draw z{u,v} ∼ N (0, 1) for all {u, v} ⊂ X
3: Define matrix T ∈ R(N

2 )
>0 such that:

log
(
t{u,v}) = µ{u,v} + z{u,v}σ{u,v}

4: Return Single-Linkage Clustering(T,X )

Note that q
{u,v}
ϕ (t{u,v}) and qϕ(τ, t) are closely related:

q
{u,v}
ϕ describes the distribution over entry t{u,v} of T,

while qϕ describes the distribution over phylogenetic trees

(τ, t) formed by running single-linkage clustering on T. Al-
gorithm 2 presents pseudocode to sample from qϕ if q

{u,v}
ϕ

is a log-normal distribution, while Figure 1 visualizes the
process of drawing T using t{u,v} ∼ q

{u,v}
ϕ and then using

single-linkage clustering to map T to (τ, t).

3.2. Density Evaluation

In this section we describe how to evaluate the density of
trees generated from Algorithm 2. The primary challenge
is that a given tree (τ, t) may have been generated from
multiple distance matrices T (see Figure 1). Luckily, this
sampling procedure still yields a density with a closed-form
solution, as shown in Proposition 1 below.

Proposition 1. If the random variables t{u,v} are mutually
independent, and all q

{u,v}
ϕ are continuous in ϕ and t for all

{u, v} with u, v ∈ X , and Q
{u,v}
ϕ is the survival function of

t{u,v}, then qϕ(τ, t) has the following form:

qϕ(τ, t)=
N−1∏
n=1


 ∑

w∈ Wn
z∈ Zn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
w∈Wn
z∈Zn

Q
{w,z}
ϕ (tn)

.

(7)

A derivation of Proposition 1 using induction is provided in
Appendix A. Every taxa pair {u, v} appears in the sum and
product terms of Equation (7) exactly once, as each taxa pair
coalesces exactly once within a rooted phylogenetic tree.
Thus, evaluating both qϕ(τ, t) and ∇ϕ log qϕ(τ, t) takes
O(N2) time.

If q
{u,v}
ϕ is continuously differentiable, then qϕ is also

continuously differentiable. In our VIPR implementation,
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q
{u,v}
ϕ is log-normal, so we can compute gradients with re-

spect to ϕ. Note however that Proposition 1 holds for any
continuous mutually independent q

{u,v}
ϕ .

Algorithm 3 VIPR(X , K)
1: Input: Integer K indicating number of samples to

use in gradient approximation and taxa set X =
{{x1}, {x2}, . . . , {xN}}.

2: Initialize variational parameters ϕ

3: while not converged do
4: for k = 1, . . . , K do

5: Draw T(k) ∈ R(N
2 )

>0 with t{u,v} ∼ q
{u,v}
ϕ

6:
(
τ (k), t(k))←
Single-Linkage Clustering(T(k),X )

7: end for
8: Estimate gradient ∇ϕL(ϕ) using

(
τ (k), t(k))

for k = 1, . . . , K.
9: Update ϕ using gradient estimates and a stochastic

optimization algorithm (Adam, SGD, etc.)
10: end while
11: Return ϕ

3.3. Gradient Estimators for qϕ

We now have almost everything we need to perform phy-
logenetic variational inference: an (unnormalized) phylo-
genetic posterior density p(τ, t, Y(ob)), a variational fam-
ily with density qϕ(τ, t), and an objective function L(ϕ)
to maximize in order to find a variational posterior distri-
bution. We collect these steps together in Algorithm 3.
Note that in this algorithm, optimizing L(ϕ) with stochas-
tic gradient methods such as Adam (Robbins and Monro,
1951; Kingma and Ba, 2014) requires random estimates
of the gradient ∇ϕL(ϕ). Thus, we consider three meth-
ods for gradient estimation and use them in our exper-
iments: leave-one-out REINFORCE (Mnih and Gregor,
2014; Shi et al., 2022), the reparameterization trick (Ru-
binstein, 1992; Kingma and Welling, 2014), and VIMCO
(Mnih and Rezende, 2016). An overview of these methods
are given in the remainder of this subsection, with details in
Appendix C. Our code implementing VIPR is available at
https://github.com/EvanSidrow/VIPR.

3.3.1. THE REINFORCE ESTIMATOR

Define fϕ(τ, t) ≡ log(p(τ, t, Y(ob))) − log(qϕ(τ, t)), so
that L(ϕ) = Eqϕ

[fϕ(τ, t)]. We can interchange the gradient
and the finite sum over τ in Equation (6), and we assume that
we can interchange the gradient and integral (see L’Ecuyer
1995 for technical conditions). After performing some al-
gebra (see Appendix C.1), we obtain the leave-one-out RE-

INFORCE (LOOR) estimator (Mnih and Gregor, 2014; Shi
et al., 2022). The gradient∇ϕ log qϕ(τ (k), t(k)) can be cal-
culated using automatic differentiation software such as
Autograd (Maclaurin et al., 2015) or PyTorch (Paszke et al.,
2019).

3.3.2. THE REPARAMETERIZATION TRICK

The push out estimator (Rubinstein, 1992) is popular in
machine learning literature under the name of the reparam-
eterization trick (Kingma and Welling, 2014). Recall that
in our experiments q

{u,v}
ϕ is a log-normal distribution for

all u, v ∈ X . In Algorithm (2), the candidate coalescent
times t{u,v} ∼ log-normal(µ{u,v}, σ{u,v}) ⇐⇒ t{u,v} =
exp(µ{u,v} + σ{u,v}z{u,v}) with z{u,v} ∼ N (0, 1). De-
noting the set {z{u,v}}u,v∈X by Z, we reparameterize the
expectation in Equation (5) as follows:

L(ϕ) = EZ

[
log
(

p(Y, gϕ(Z))
qϕ(gϕ(Z))

)]
. (8)

Here gϕ(Z) = Single-Linkage Clustering(exp(µ+σ⊙
Z),X ). Denoting the density of a

(
N
2
)
-dimensional standard

normal distribution as N (·; 0, I), we have:

L(ϕ) =
∫

Z
N (Z; 0, I) log

(
p(Y, gϕ(Z))
qϕ(gϕ(Z))

)
dZ. (9)

Using this formulation and some additional algebra, in Ap-
pendix C.2 we derive an estimator for the full gradient
∇ϕL(ϕ) using random samples of Z. Unfortunately, this
estimator is biased because the gradient and integral can-
not be interchanged without introducing some error (see
Appendix C.2). Therefore, this optimization procedure is
not guaranteed to converge to a local optimum of the objec-
tive function. Nonetheless, these gradient estimates tend to
perform at least comparably to the LOOR estimator.

3.3.3. THE VIMCO ESTIMATOR

One drawback of the single-sample ELBO in Equation (5) is
that variational distributions that target the ELBO tend to be
mode-seeking (i.e., they can underestimate variance of the
true posterior). As an alternative, Mnih and Rezende (2016)
suggest a K-sample ELBO (VIMCO: variational inference
for Monte Carlo objectives) that encourages mode-covering
behaviour in the posterior. We derive a VIMCO Estimator
for our model in Appendix C.3.

4. Experiments
We compared the performance of our VIPR methods with
that of Zhang and Matsen IV 2024 (denoted VBPI in this
section). We do not compare VIPR to cubeVB (Bouck-
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aert, 2024) because cubeVB does not involve maximization
and therefore is not directly comparable. However, we do
investigate how many tree topologies in the posterior fall
outside of the restricted cube space of cubeVB in Appendix
B.1. We studied eleven commonly used genetic datasets
that are listed in Lakner et al. (2008) denoted DS1 through
DS11 (these are the names that are given to these datasets
in Lakner et al. 2008).

We also studied a dataset of 72 COVID-19 genomes ob-
tained from GISAID (Global Initiative on Sharing All In-
fluenza Data; Khare et al. 2021). In particular, we obtained
COVID-19 RNA sequences that were collected in Canada
on January 2, 2025; submitted to GISAID prior to January
20, 2025; contained at least 29,000 sequenced base pairs;
and were of the strain JN.1. The 72 COVID-19 genomes
studied here are all of the COVID-19 genomes provided by
GISAID that satisfied all of these criteria. After obtaining
these genomes, we aligned them using multiple sequence
alignment in MAFFT using the FFT-NS-1 algorithm (Katoh
and Standley, 2013). Finally, we subset the genomes to
M = 3,101 non-homologous sites (i.e., we omitted all sites
that were the same across all 72 taxa). The final datasets
ranged from 27 to 72 total taxa N and 378 to 3,101 total
sites M . See Appendix B.2 for the number of taxa and sites
by dataset as well as other summary information.

For all methods considered (BEAST, VBPI and our VIPR
methods), we used a Kingman coalescent prior on the phy-
logenies. We fixed the effective population size at Ne = 5
(Kingman, 1982) and assumed the Jukes-Cantor model for
mutation (Jukes and Cantor, 1969). These assumptions are
described above in Sections 2.2 and 2.3. We also measure
the branch lengths in terms of expected mutations per site,
which is in line with BEAST and VBPI.

Each run for the experiments on the DS1 to DS11 datasets
was executed on a supercomputer node. The runs were al-
located 12 hours of wallclock time, 1 CPU, and 16GB of
RAM. The supercomputer had a heterogeneous infrastruc-
ture involving in which each CPU make and model was
Intel v4 Broadwell, Intel Caskade Lake or Skylake, or AMD
EPYC 7302. Experiments on the COVID-19 dataset were
run with identical conditions to those for DS1 to DS11, but
without the 12 hour limit on wallclock time. Instead, they
were run for 10,000 iterations (i.e., parameter updates) or
12 hours (whichever took longer).

4.1. The BEAST Gold Standard

To approximate the true posterior distribution of each dataset
we ran 10 independent MCMC chains using BEAST, each
with 10,000,000 iterations. We discarded the first 250,000
iterations as burn-in and thinned to every 1,000-th iteration.
This yielded in a total of 97,500 trees that were used as a
“gold standard.” We estimated ground-truth marginal log-

likelihood values using the stepping-stone estimator (Xie
et al., 2010). For each dataset, we ran 100 path steps of
500,000 MCMC iterations and repeated this process ten
times to obtain 10 independent estimates of the MLL.

4.2. The VBPI Baseline

We compared VIPR to the VBPI algorithm as implemented
by Zhang and Matsen IV (2024), which requires MCMC
runs to determine likely subsplits (i.e., evolutionary branch-
ing events). To provide these runs, we used BEAST to
obtain a rooted subsplit support. We ran 10 indepen-
dent MCMC chains for 1,000,000 iterations, with the first
250,000 discarded as burn-in. We then thinned to every
1,000-th iteration, yielding 7,500 trees for the VBPI subsplit
support.

To fit the VBPI baseline, we used the VIMCO gradient esti-
mator with K-sample ELBO for K = 10 and K = 20 (indi-
cated by VBPI10 and VBPI20 in our plots and tables below).
Zhang and Matsen IV (2024) use an annealing schedule dur-
ing optimization, but we omitted the annealing schedule
to be consistent with our optimization for VIPR. We used
the Adam optimization algorithm implemented in PyTorch
with four random restarts and learning rates of 0.003, 0.001,
0.0003, and 0.0001 (Kingma and Ba, 2014; Paszke et al.,
2019). We estimated the marginal log-likelihood (MLL)
every 100 iterations (i.e., parameter updates) using 500
importance-sampled particles.

Of the 16 runs for each VBPI batch size condition (4 learn-
ing rates and 4 random restarts), we retained the run with
the highest average MLL in the last 10 estimates of the
run. This run (with highest average MLL) was included
in our plots and figures. We used the primary subsplit pair
(PSP) parameterization of VBPI. Code for these experi-
ments was adapted from https://github.com/zcrabbit/

vbpi-torch/tree/main/rooted. See Zhang and Matsen
IV (2024), Section 6 for more implementation details.

4.3. The VIPR Methods

For our VIPR methods, we set the variational distribu-
tions q

{u,v}
ϕ to be log-normal, so the variational parameters

ϕ were the means and standard deviations corresponding
to the logarithm of the entries log(t{u,v}) of the matrix
T. After running BEAST, we plotted histograms of pair-
wise coalescent times across sampled trees for all datasets.
In most cases these histograms looked approximately
log-normal, motivating our choice of log-normal distri-
butions (see https://github.com/EvanSidrow/VIPR/

tree/main/supmat/hists for the histograms). We also
simulated data and ran posterior predictive checks in Ap-
pendix B.3 for model checking.

To initialize the parameters ϕ, we computed the empirical
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distribution of coalescent times between taxa {u, v} from
the short MCMC runs used to establish the support for the
VBPI baseline. We then set the initial mean and standard
deviation of q

{u,v}
ϕ to be the mean and standard deviation

of the empirical distribution.

We experimented with three gradient estimation techniques.
We estimated ∇ϕL(ϕ) using (1) the LOOR estimator and
(2) the reparameterization trick, both with batch sizes of 10
samples. We also estimated ∇ϕLK(ϕ) using the VIMCO
estimator with a batch size of K = 10.

For each gradient estimation technique, we used the Adam
optimizer in PyTorch with ten random restarts and learning
rates of 0.001, 0.003, 0.01, and 0.03. We recorded the
estimated MLL every 10 iterations (i.e., parameter updates)
with 50 Monte Carlo samples. Of the 40 runs (4 learning
rates and 10 random restarts), we retained the run with the
highest average MLL in the last 10 estimates of the run. As
for VBPI, the retained run (for each dataset and technique)
is reported in the plots and figures below.

4.4. Simulated Datasets

To explore the runtime and asymptotic complexity of the
methods as a function of the number of taxa, we created a
series of simulated datasets. Through this simulation, we
could keep the number of sites and the underlying tree dis-
tribution and substitution model all constant. We simulated
seven datasets using the ms software (Hudson, 2002) with
1,000 sites, an infinite sites model (Kimura, 1969), a neutral
model of evolution, and the Kingman coalescent. These
assumptions imply the software command ‘ms ⟨N⟩ 1 -T

-s 1000.’ Here ⟨N⟩ indicates the number of taxa, which we
varied in the set {8, 16, 32, 64, 128, 256, 512}. We refer to
these datasets as the MS datasets.

5. Results
Tables 1 and 2 show the estimated MLLs and ELBOs for
our variational inference experiments after 12 hours of com-
pute time. Results for VBPI with K = 20 (VBPI20) are
in Appendix B.4. The stepping-stone algorithm is not a
variational method, and so it has no entry in Table 2.

The MLLs in Table 1 are reported by the gap between
the MLL of the gold standard (BEAST/stepping stone run)
and the method’s MLL (the difference between the MLLs).
Methods with smaller gaps are therefore closer to the gold
standard, and the method with the highest MLL is bolded.
Note that some VI methods surpass the gold standard, likely
due to Monte Carlo error.

VBPI tends to slightly outperform our VIPR methods in
terms of MLL, but all methods are comparable in terms
ELBO (with our methods outperforming VBPI on exactly

half of the datasets). This is likely because VBPI targets
a multi-sample ELBO for optimization, which produces
mode-covering behaviour. In contrast, our VIPR methods
target the single-sample ELBO.

Table 1. Gap between gold standard and estimated marginal log-
likelihoods for variational inference methods (in nats). Marginal
log-likelihoods for VI methods were estimated using importance
sampling with 1,000 random samples from each variational dis-
tribution. Values indicate difference between gold standard MLLs
and each method’s MLLs. Gold standard MLLs (indicated by the
BEAST column) are derived from 10 independent chains of the
stepping-stone algorithm in BEAST. Datasets (DATA column) DS1
to DS11 are from Lakner et al. (2008). Dataset COV is the COVID-
19 dataset obtained from GISAID. VI methods are specified by
columns: Variational Bayesian Phylogenetic Inference with K-
sample ELBO, K = 10 (VBPI10; Zhang and Matsen IV 2024);
VIPR using the leave-one-out REINFORCE estimator (LOOR);
VIPR using the reparameterization trick (REP); VIPR using the
Variational Inference for Monte Carlo Objectives estimator with
K = 10 (VIMCO). Results for VBPI20 and standard errors are
in Appendix B.4.

DATA BEAST VBPI10 LOOR REP VIMCO

DS1 −7154.26 −0.53 −2.29 −1.83 −0.95
DS2 −26566.42 0.16 −0.76 −0.14 −0.37
DS3 −33787.62 −0.44 −3.66 −1.91 −2.63
DS4 −13506.05 0.03 −2.48 −0.47 −1.73
DS5 −8271.26 −1.70 −0.29 −4.01 0.94
DS6 −6745.31 −0.76 −3.96 −3.26 −2.72
DS7 −37323.88 0.27 −2.73 −2.82 −10.42
DS8 −8650.20 −0.82 −3.28 −4.95 −2.88
DS9 −4072.66 −5.32 −3.12 −5.79 −7.60
DS10 −10102.65 −0.88 −5.38 −3.98 −6.82
DS11 −6272.57 −18.79 −6.79 −7.31 −9.62
COV −7861.61 −39.1 −611 −374 −214

Figure 2 shows the trace of estimated log-likelihood ver-
sus iteration number for all VI methods on DS1 and on the
COVID-19 dataset. See Appendix B.4 for results on DS2-11.
These figures also display empirical distributions of tree met-
rics for each VI method’s learned variational distribution in
addition to the BEAST gold standard run (plotted with mat-
plotlib’s kde function with default parameters; Hunter 2007).
We removed 2 of the 1,000 trees sampled from VBPI20 for
the COVID-19 experiment because they had extremely low
log-likelihoods (< −90,000), resulting in flat densities.

VIPR tended to underestimate the variance of tree length
compared to BEAST, while VBPI tended to overestimate.
In addition, the reinforce and reparameterization gradient
estimates result in variational distributions with higher tree
log-likelihoods on average, while VBPI and our VIPR with
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 2. Variational inference results for DS1 (left) and the COVID-19 dataset (right). (a–b) Density estimation for tree lengths. (c–d)
Density estimation for tree log-likelihoods. Estimates are formed from 1,000 samples from the variational posterior of each VI method
and 97,500 samples from the BEAST gold standard. (e–f) Trace plots of estimated marginal log-likelihood vs. iteration number. The
number of importance samples used to estimate the marginal log-likelihood was 500 for VBPI and 50 for VIPR.

VIMCO tended to produce trees with more variable log-
likelihood values. Again, this is likely because the multi-
sample ELBO results in mode-covering behaviour.

VIPR converged quickly on DS1 because its parameters
were initialized in a region of high ELBO, while VIPR con-
verged slower for the COVID-19 dataset since its parameters
were initialized in a region of low ELBO. The optimization
may have been caught in relatively flat regions of the param-
eter space, highlighting the need for intelligent parameter
initializations or annealing schedules.

5.1. Computational Complexity

To compare the time complexity of our algorithm against
VBPI, we considered the MS datasets (described in Sec-
tion 4.4) with 1,000 sites and between 8 and 512 taxa. We
ran each method for either 5 minutes or 1,000 iterations
(whichever came first) and plotted the wall clock time per
1,000 iterations. These experiments were run on a 2019

Macbook Pro with 16GB of RAM and a 2.6 GHz 6-core In-
tel i7 CPU. The wallclock time in seconds for each method
versus the number of taxa is shown in Figure 3. This is also
plotted in terms of log ratios in Appendix B.5 (with slope
indicating complexity). Our method is approximately twice
as slow as VBPI per iteration for 8 taxa, but it scales better
and outperforms VBPI for 512 taxa. Even though evaluating
the variational density of VIPR takes O(N2) time, VIPR
has an empirical time complexity of roughly O(N), indicat-
ing that the primary bottleneck is calculating the likelihood,
which takes O(NM) time. We also demonstrated that the
number of parameters for VBPI grows super-linearly with
the number of taxa N (see Appendix B.5), so the asymptotic
computational complexity of VBPI may also be super-linear.

For SBNs, as the number of taxa grows, the number of
parameters grows with the number of trees in the SBN.
There is no closed form for this number—it depends on the
MCMC and the posterior concentration. In Table 3 we show

8
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Table 2. Estimated evidence lower bounds for variational infer-
ence methods (in nats). ELBOs were estimated using importance
sampling on 1,000 random samples from each variational distri-
bution. Our VIPR methods beat the VBPI baseline on half of the
datasets. Dataset names, method acronyms, and conditions are
the same as those described in the caption for Table 1.

DATA VBPI10 LOOR REP VIMCO

DS1 −7157.99 −7159.56 −7159.54 −7161.60
DS2 −26573.03 −26569.56 −26569.50 −26570.74
DS3 −33793.96 −33794.96 −33794.77 −33796.53
DS4 −13541.39 −13512.54 −13512.60 −13513.41
DS5 −8281.03 −8279.93 −8280.35 −8282.03
DS6 −6751.77 −6754.36 −6755.29 −6756.10
DS7 −37331.12 −37333.36 −37332.04 −37352.10
DS8 −8657.78 −8662.26 −8661.88 −8664.54
DS9 −4088.64 −4085.61 −4087.25 −4090.52
DS10 −10111.81 −10114.76 −10115.16 −10119.70
DS11 −6329.37 −6289.60 −6289.70 −6294.31
COV −8100.96 −8489.82 −8244.41 −8087.43

the number of parameters in the SBNs for VBPI on each
of the seven MS datasets. We compare to VIPR, showing
quadratic behaviour for VIPR and that VBPI uses more
parameters when the number of taxa is greater than 128.

6. Discussion
In this work, we introduce a new variational family over
ultrametric, time-measured phylogenies that models the coa-
lescent time between each pair of taxa. The family is formed
by deriving a closed-form expression for the marginal distri-
bution on phylogenies induced by single linkage clustering
on a distance matrix. Methods using this variational family
require only O(

(
N
2
)
) parameters in total, and each param-

eter has an intuitive interpretation as a description of the
distribution on pairwise coalescents. For example, in this
work we place independent log-normal distributions on the
entries of the distance matrix, yielding 2

(
N
2
)

parameters
(one mean and one standard deviation for each pair of taxa).
VIPR is unique in that it does not require aspects of MCMC
runs in its iterations in order to make inference computa-
tionally tractable. In contrast, Zhang and Matsen IV (2024)
used MCMC to fix the support of the trees described by their
variational family. (Note that we also used short MCMC
runs to initialize our parameters.)

Our methods may be further developed in many ways—for
example, by moving from the log-normal distribution on
pairwise coalescent times to mixture distributions Molén
et al. (2024), or by using normalizing flows similar to Zhang
(2020). We could also directly enforce sparsity in the prior

Table 3. Number of tree structure parameters versus number of
taxa (NTAXA) on simulated data with 1,000 sites.

NTAXA VBPI VIPR

8 4 56

16 44 240

32 55 992

64 3,826 4,032

128 29,939 16,256

256 127,217 65,280

512 319,533 261,632

Figure 3. Seconds per 1,000 iterations vs. number of taxa. Each
VI method was run for 1,000 iterations or 5 minutes (whichever
took less) on simulated datasets.

by fixing the distribution on the time to coalescence of taxa
u and v that are far away in genetic space at infinity, thus
reducing the number of parameters to learn. Expanding the
variational family to include conditional parameters may
also improve performance: if taxa u and v coalesce first,
we may define a new parameter ϕ({u,v},w) describing the
coalesce between a clade containing {u, v} and another
taxon w. Further, fast and accurate parameter initializations
and well-tuned annealing are essential for top performance
in variational Bayesian phylogenetics. Our experiments
may be improved by using an annealing schedule similar
to Zhang and Matsen IV (2024) to prevent convergence to
local maxima.

We have focused on the difficult task of inferring tree topol-
ogy and branch lengths. Inference for aspects such as a
relaxed clock (see Douglas et al., 2021) and effective pop-
ulations size can also be done starting from this new varia-
tional family. Our method is thus a promising foundation
on which more intricate variational families can be built.
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Bouchard-Côté, A. and Jordan, M. I. (2010). Variational
inference over combinatorial spaces. In Proceedings of
the 23rd Conference on Advances in Neural Information
Processing Systems.

Bouckaert, R. R. (2024). Variational Bayesian phyloge-
nies through matrix representation of tree space. PeerJ,
12:e17276.

Douglas, J., Zhang, R., and Bouckaert, R. R. (2021). Adap-
tive dating and fast proposals: Revisiting the phyloge-
netic relaxed clock model. PLOS Computational Biology,
17(2).

Felsenstein, J. (1981). Evolutionary trees from DNA se-
quences: A maximum likelihood approach. Journal
Molecular Evolution, 17(6).

Godoy, B. S., Camargos, L. M., and Lodi, S. (2018). When
phylogeny and ecology meet: Modeling the occurrence
of Trichoptera with environmental and phylogenetic data.
Ecology and Evolution, 8(11).

Hein, J., Schierup, M., and Wiuf, C. (2004). Gene Genealo-
gies, Variation and Evolution: A Primer in Coalescent
Theory. Oxford University Press.

Hudson, R. R. (2002). Generating samples under a
Wright–Fisher neutral model of genetic variation. Bioin-
formatics, 18(2).

Hunter, J. D. (2007). Matplotlib: A 2D graphics environ-
ment. Computing in Science & Engineering, 9(3).

Jukes, T. H. and Cantor, C. R. (1969). Evolution of Protein
Molecules. Academic Press.

Katoh, K. and Standley, D. M. (2013). MAFFT multiple
sequence alignment software version 7: Improvements
in performance and usability. Molecular Biology and
Evolution, 30(4).

Khare, S., Gurry, C., Freitas, L., Schultz, M. B., Bach, G.,
Diallo, A., Akite, N., Ho, J., Lee, R. T., Yeo, W., GISAID
Core Curation Team, and Maurer-Stroh, S. (2021). GI-
SAID’s role in pandemic response. China CDC Weekly,
3(49).

Kimura, M. (1969). The number of heterozygous nucleotide
sites maintained in a finite population due to steady flux
of mutations. Genetics, 61(4).

Kingma, D. and Welling, M. (2014). Autoencoding vari-
ational Bayes. In Proceedings of the 31st International
Conference on Learning Representations.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arxiv preprint 1412.6980.

Kingman, J. (1982). The coalescent. Stochastic Processes
and their Applications, 13(3).

Koller, D. and Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques—Adaptive Computa-
tion and Machine Learning. MIT Press.

Koptagel, H., Kviman, O., Melin, H., Safinianaini, N., and
Lagergren, J. (2022). VaiPhy: A variational inference
based algorithm for phylogeny. In Proceedings of the
36th Conference on Advances in Neural Information Pro-
cessing Systems.

Lakner, C., van der Mark, P., Huelsenbeck, J. P., Larget,
B., and Ronquist, F. (2008). Efficiency of Markov chain
Monte Carlo tree proposals in Bayesian phylogenetics.
Systematic Biology, 57(1).

L’Ecuyer, P. (1995). On the interchange of derivative and ex-
pectation for likelihood ratio derivative estimators. Man-
agement Science, 41(4).

Li, T., Liu, D., and Yang, Y. (2020). Phylogenetic supertree
reveals detailed evolution of SARS-CoV-2. Scientific
Reports, 10, 22366.

Linderman, S., Mena, G., Cooper, H., Paninski, L., and
Cunningham, J. (2018). Reparameterizing the Birkhoff
polytope for variational permutation inference. In Pro-
ceedings of the 21st International Conference on Artificial
Intelligence and Statistics.

10



Variational Inference with Products over Bipartitions

List, J., Nelson-Sathi, S., Geisler, H., and Martin, W. (2014).
Networks of lexical borrowing and lateral gene transfer
in language and genome evolution. Bioessays, 36(2).

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015).
Autograd: Effortless gradients in numpy. In the ICML
2015 Workshop on AutoML.

Metz, C. (2023). ‘The Godfather of A.I.’ leaves Google and
warns of danger ahead. The New York Times.

Mimori, T. and Hamada, M. (2023). GeoPhy: Differentiable
phylogenetic inference via geometric gradients of tree
topologies. In Proceedings of the 37th Conference on
Advances in Neural Information Processing Systems.

Mnih, A. and Gregor, K. (2014). Neural variational infer-
ence and learning in belief networks. In Proceedings of
the 31st International Conference on Machine Learning.

Mnih, A. and Rezende, D. (2016). Variational inference
for Monte Carlo objectives. In Proceedings of the 33rd
International Conference on Machine Learning.

Molén, R., Kviman, O., and Lagergren, J. (2024). Im-
proved variational Bayesian phylogenetic inference using
mixtures. Transactions on Machine Learning Research,
3353.

Nesterenko, L., Blassel, L., Veber, P., Boussau, B., and Ja-
cob, L. (2025). Phyloformer: Fast, accurate, and versatile
phylogenetic reconstruction with deep neural networks.
Molecular Biology and Evolution, 42(4).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. (2019). PyTorch: An im-
perative style, high-performance deep learning library.
In Proceedings of the 32nd Conference on Advances in
Neural Information Processing Systems.

Robbins, H. and Monro, S. (1951). A stochastic approxi-
mation method. The Annals of Mathematical Statistics,
22(3).

Rubinstein, R. Y. (1992). Sensitivity analysis of discrete
event systems by the ‘push out’ method. Annals of Oper-
ations Research, 39(1).

Sagulenko, P., Puller, V., and Neher, R. A. (2018). TreeTime:
Maximum-likelihood phylodynamic analysis. Virus Evo-
lution, 4(1).

Saitou, N. and Nei, M. (1987). The neighbor-joining
method: a new method for reconstructing phylogenetic
trees. Molecular Biology and Evolution, 4(4).

Shi, J., Zhou, Y., Hwang, J., Titsias, M., and Mackey, L.
(2022). Gradient estimation with discrete Stein operators.
In Proceedings of the 35th Conference on Advances in
Neural Information Processing Systems.

Sibson, R. (1973). SLINK: An optimally efficient algorithm
for the single-link cluster method. The Computer Journal,
16(1).

Stamatakis, A. (2014). RAxML version 8: A tool for phylo-
genetic analysis and post-analysis of large phylogenies.
Bioinformatics, 30(9).

Xie, T., Matsen IV, F. A., Suchard, M. A., and Zhang, C.
(2024). Variational Bayesian phylogenetic inference with
semi-implicit branch length distributions. arxiv preprint
2408.05058.

Xie, T. and Zhang, C. (2023). ARTree: A deep autoregres-
sive model for phylogenetic inference. In Proceedings of
the 36th Conference on Advances in Neural Information
Processing Systems.

Xie, W., Lewis, P. O., Fan, Y., Kuo, L., and Chen, M.-
H. (2010). Improving marginal likelihood estimation
for Bayesian phylogenetic model selection. Systematic
Biology, 60(2).

Zhang, C. (2020). Improved variational Bayesian phyloge-
netic inference with normalizing flows. In Proceedings of
the 33rd Conference on Advances in Neural Information
Processing Systems.

Zhang, C. (2023). Learnable topological features for phylo-
genetic inference via graph neural networks. In Proceed-
ings of the 11th International Conference on Learning
Representations.

Zhang, C. and Matsen IV, F. A. (2018). Generalizing tree
probability estimation via Bayesian networks. In Pro-
ceedings of the 31st Conference on Advances in Neural
Information Processing Systems.

Zhang, C. and Matsen IV, F. A. (2019). Variational Bayesian
phylogenetic inference. In Proceedings of the 7th Inter-
national Conference on Learning Representations.

Zhang, C. and Matsen IV, F. A. (2024). A variational ap-
proach to Bayesian phylogenetic inference. Journal of
Machine Learning Research, 25(145).

Zhou, M. Y., Yan, Z., Layne, E., Malkin, N., Zhang, D., Jain,
M., Blanchette, M., and Bengio, Y. (2024). PhyloGFN:
Phylogenetic inference with generative flow networks.
In Proceedings of the 12th International Conference on
Learning Representations.

11



Variational Inference with Products over Bipartitions

A. Proof for Proposition 1
We provide a proof by induction for the derivation of Equation (7). Consider the coalescent events in Algorithm 2. For
1 ≤ K ≤ N − 1, let t1:K be the times of the first K coalescent events (t1:K = {tn}K

n=1). Let τ1:K be the bipartitions of the
first K coalescent events (τ1:K = {{Wn, Zn}}K

n=1). Let qϕ,K(τK , tK) be the probability density function of the marginal
distribution on the times and the bipartitions of the first K coalescent events. Let Sn be the set {{w, z} : w ∈Wn, z ∈ Zn}
(here {Wn, Zn} is the n-th bipartition). Note that Sn is the set of all unordered pairs of taxa that have not coalesced before
tn and that coalesce at tn. Let S1:K be

⋃K
n=1 Sn (i.e., S1:K is the set of all unordered pairs of taxa that coalesce by time tn).

By the definition of Sn, a sum
∑

w∈Wn,z∈Zn
· is equal to the same sum indexed by {w, z} ∈ Sn. (And the same is true of

products.) Our induction hypothesis for 1 ≤ K ≤ N − 1 is as follows:

qϕ,K(τ1:K , t1:K) =
K∏

n=1

 ∑
{w,z}∈Sn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
{w,z}∈Sn

Q
{w,z}
ϕ (tn)

 ∏
{w,z}/∈S1:K

Q
{w,z}
ϕ (tK). (10)

In Equation (10), the product over {w, z} /∈ S1:K is outside of the product over n = 1, . . . , K. (Throughout this derivation,
if a product has more than one factor in its operand, they are all enclosed by the pair of brackets appearing immediately after
the product sign.) Consider the base case of the induction where K = 1. There exists an unordered pair of taxa {w∗, z∗}
such that {W1, Z1} = {{w∗}, {z∗}}. The probability density qϕ,1(τ1:1, t1:1) is the density of the event that taxa w∗ and z∗

coalesce at time t1 (this density is q{w∗,z∗}(t1)) times the probability that all other taxa coalesce after time t1 (as {W1, Z1}
is the first bipartition). Therefore, we have:

qϕ,1(τ1:1, t1:1) = q
{w∗,z∗}
ϕ (t1)

∏
{w,z}̸={w∗,z∗}

Q
{w,z}
ϕ (t1) (11)

=
q

{w∗,z∗}
ϕ (t1)

Q
{w∗,z∗}
ϕ (t1)

Q
{w∗,z∗}
ϕ (t1)

∏
{w,z}/∈S1

Q
{w,z}
ϕ (t1) (12)

=

 ∑
{w,z}∈S1

q
{w,z}
ϕ (t1)

Q
{w,z}
ϕ (t1)

 ∏
{w,z}∈S1

Q
{w,z}
ϕ (t1)

 ∏
{w,z}/∈S1:1

Q
{w,z}
ϕ (t1). (13)

Here in Equation (11) we use the mutual independence of t(·,·) to split the joint probability of all taxa coalescing after t1,
other than {w∗, z∗}, into a product. Thus, the base case (where K = 1) is established. Assume that the induction hypothesis
in Equation (10) holds for a given K − 1 (here 1 ≤ K − 1 < N − 1). Consider the conditional probability density function
qϕ,K({WK , ZK}, tK | τ1:K−1, t1:K−1). When we condition on τ1:K−1, t1:K−1, the K-th coalescent event with bipartition
{WK , ZK} occurs at time tK if and only if the following hold:

1. There exists an unordered pair of taxa {w∗, z∗} ∈ SK such that t{w∗,z∗} = tK . (We are conditioning on the event that
taxa w∗ and z∗ have not coalesced before time tK−1.) The conditional probability density of the event that w∗ and z∗

coalesce at time tK is thus q
{w∗,z∗}
ϕ (tK)/Q

{w∗,z∗}
ϕ (tK−1).

2. All other taxa pairs that have not coalesced by time tK−1 coalesce after time tK . (As the q
{·,·}
ϕ ’s are continuously

differentiable, they are continuous and so {w∗, z∗} is unique almost surely.) Note that we are conditioning on the event
that all taxa pairs {w, z} /∈ S1:K−1 have not coalesced before time tK−1. The conditional probability density of the
event that w∗ and z∗ have not coalesced by time tK is thus Q

{w∗,z∗}
ϕ (tK)/Q

{w∗,z∗}
ϕ (tK−1).

The conditional probability density is thus:

12
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qϕ,K({WK , ZK}, tK | τ1:K−1, t1:K−1) (14)

=
∑

{w∗,z∗}∈SK

 q
{w∗,z∗}
ϕ (tK)

Q
{w∗,z∗}
ϕ (tK−1)

∏
{w,z}/∈S1:K−1

{w,z}̸={w∗,z∗}

Q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK−1)

 (15)

=

 ∑
{w,z}∈SK

q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK)

 ∏
{w,z}/∈S1:K−1

Q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK−1)

(16)

=

 ∑
{w,z}∈SK

q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK)

 ∏
{w,z}∈SK

Q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK−1)

 ∏
{w,z}/∈S1:K

Q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK−1)

. (17)

Note that we drop the stars on the taxa w and z after Equation (15) because the indices no longer need to be distinguished
once the sum is isolated. Also, in Equation (15) we use the mutual independence of t(·,·) to form the product. Multiplying
this conditional probability with the induction hypothesis Equation (10) for K − 1 yields the total probability density:

qϕ,K(τ1:K , t1:K) = qϕ,K({WK , ZK}, tK | τ1:K−1, t1:K−1) · qϕ,K−1(τ1:K−1, t1:K−1) (18)

=

 ∑
{w,z}∈SK

q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK)

 ∏
{w,z}∈SK

Q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK−1)

 ∏
{w,z}/∈S1:K

Q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK−1)

 (19)

·
K−1∏
n=1

 ∑
{w,z}∈Sn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
{w,z}∈Sn

Q
{w,z}
ϕ (tn)

 ∏
{w,z}/∈S1:K−1

Q
{w,z}
ϕ (tK−1). (20)

We then move the first component of Line (19) into the first component of Line (20), and we move the numerator of the
second component of Line (19) into the second component of Line (20). These rearrangements yield the following:

qϕ,K(τ1:K , t1:K) =

 ∏
{w,z}∈SK

1
Q

{w,z}
ϕ (tK−1)

 ∏
{w,z}/∈S1:K

Q
{w,z}
ϕ (tK)

Q
{w,z}
ϕ (tK−1)


·

K∏
n=1

 ∑
{w,z}∈Sn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
{w,z}∈Sn

Q
{w,z}
ϕ (tn)

 ∏
{w,z}/∈S1:K−1

Q
{w,z}
ϕ (tK−1). (21)

For the final display, in Equation (22) we split the numerator and denominator of Q
{w,z}
ϕ (tK)/Q

{w,z}
ϕ (tK−1) into separate

products. And in Equation (23) we cancel the Q
{w,z}
ϕ (tK−1) factors involving {w, z} ∈ SK . And in Equation (24) we

cancel the Q
{w,z}
ϕ (tK−1) factors involving {w, z} /∈ S1:K−1.
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qϕ,K(τ1:K , t1:K) =

 ∏
{w,z}∈SK

1
Q

{w,z}
ϕ (tK−1)

 ∏
{w,z}/∈S1:K

1
Q

{w,z}
ϕ (tK−1)

 ∏
{w,z}/∈S1:K

Q
{w,z}
ϕ (tK)


·

K∏
n=1

 ∑
{w,z}∈Sn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
{w,z}∈Sn

Q
{w,z}
ϕ (tn)

 ∏
{w,z}/∈S1:K−1

Q
{w,z}
ϕ (tK−1) (22)

=

 ∏
{w,z}/∈S1:K−1

1
Q

{w,z}
ϕ (tK−1)

 ∏
{w,z}/∈S1:K

Q
{w,z}
ϕ (tK)


·

K∏
n=1

 ∑
{w,z}∈Sn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
{w,z}∈Sn

Q
{w,z}
ϕ (tn)

 ∏
{w,z}/∈S1:K−1

Q
{w,z}
ϕ (tK−1) (23)

=
K∏

n=1

 ∑
{w,z}∈Sn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
{w,z}∈Sn

Q
{w,z}
ϕ (tn)

 ∏
{w,z}/∈S1:K

Q
{w,z}
ϕ (tK). (24)

Thus, the inductive step is established and Equation (10) holds for all 1 ≤ K ≤ N − 1. To complete the derivation, note
that qϕ,N−1 = qϕ; and S1:N−1 =

⋃N−1
n=1 Sn = {{w, z} : w, z ∈ X} (all taxa coalesce after N − 1 coalescent events); and

indices over w ∈Wn, z ∈ Zn are equivalent to indices over {w, z} ∈ Sn. Thus, for K = N − 1 the last term of Equation
(24) is an empty product yielding the desired result:

qϕ(τ, t) = qϕ,N−1(τ1:N−1, t1:N−1) (25)

=
N−1∏
n=1

 ∑
{w,z}∈Sn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
{w,z}∈Sn

Q
{w,z}
ϕ (tn)

 (26)

=
N−1∏
n=1


 ∑

w∈ Wn
z∈ Zn

q
{w,z}
ϕ (tn)

Q
{w,z}
ϕ (tn)

 ∏
w∈Wn
z∈Zn

Q
{w,z}
ϕ (tn)

 . (27)
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B. Additional Results
B.1. Coverage of cubeVB

Our main comparison is between our method VIPR and the method of Zhang and Matsen IV (2024). Both of these methods
are based on optimization. However, another variational inference method for ultrametric phylogenetic trees is described by
Bouckaert (2024). We do not compare to this method in terms of likelihood estimation because it is not optimization-based.
Nonetheless, to compare VIPR with Bouckaert (2024), we constructed the maximum clade credibility (MCC) tree using our
gold standard BEAST run, selected an ordering of taxa at random using the MCC tree, and calculated the percentage of tree
topologies from the BEAST gold-standard that are within the “cube space” implied by the ordering. This process estimates
the percentage of the posterior that is impossible to reach using the restricted tree space from Bouckaert (2024):

Table 4. Percentage of trees sampled from BEAST that are outside of cube space as defined by Bouckaert (2024). Percentages are listed
for each dataset considered in our likelihood experiments. In many cases, the coverage of cube space is extremely small. Dataset sizes are
provided below in Table 5.

DATA % OUTSIDE CUBE SPACE

DS1 29.2

DS2 15.2

DS3 76.8

DS4 79.7

DS5 98.0

DS6 94.7

DS7 69.9

DS8 42.7

DS9 99.9

DS10 84.6

DS11 99.9

COV 99.9

Some datasets correspond to posteriors where 99.9% of sampled trees lie outside of cube space. Although these results are
striking, the discussion of Bouckaert (2024) mentions that CubeVB may struggle on high-entropy posteriors.
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B.2. Dataset Characteristics

To understand the characteristics of each dataset, we calculated pairwise Hamming distances between each taxa for each
dataset (dropping sites with missingness). These dataset features may be cross referenced with the likelihood estimation in
Section 5 to better understand relative model performance.

Table 5. Number of taxa N , number of sites M , and the average Hamming distance between sites for each dataset. Values in parentheses
indicate standard deviations.

DATA N M HAMMING DISTANCE / M

DS1 27 1949 .040(.017)

DS2 29 2520 .214(.057)

DS3 36 1812 .230(.051)

DS4 41 1137 .138(.055)

DS5 50 378 .192(.041)

DS6 50 1133 .056(.029)

DS7 59 1824 .203(.069)

DS8 64 1008 .082(.031)

DS9 67 955 .025(.014)

DS10 67 1098 .070(.026)

DS11 71 1082 .082(.053)

COV 72 3101 .008(.003)
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B.3. Posterior Predictive Checks

In this Appendix, we run simple posterior predictive checks using 10 trees simulated from a Kingman coalescent model with
N = 8 taxa and an effective population size of Ne = 1.0. For each tree, we simulated genomes using the Jukes-Cantor
model of evolution with M = 1, 000 sites. We then ran VIPR using the leave-one-out reinforce estimator for 10, 000
iterations and the same optimization parameters as the primary experiments. Figure 4 displays histograms of sampling
10, 000 trees from the resulting variational distributions. Our method tends to underestimate tree length (the sum of all
branch lengths) for trees of length 8 or greater. This is likely because the posterior distribution for very long branch lengths
is approximately exponential, but we use log-normal distributions for pair-wise distances in VIPR. Besides that notable
exception, the true tree length and log-likelihood fit comfortably within the posterior distribution estimated by VIPR.

Figure 4. Posterior predictive checks for VIPR. Checks include tree lengths (the sum of all branch lengths) and log-likelihoods. True
trees were generated using N = 8 taxa and a Kingman coalescent with Ne = 1.0. Genomes were sampled using a Juke-Cantor model of
evolution and M = 1, 000 sites. Results are shown for 10, 000 samples from the variational posterior (histograms) and the true tree used
to generate the genomes (vertical black lines).
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B.4. Marginal Log Likelihood and ELBO Values

In this Appendix, we include more complete versions of Tables 1 and 2 from the main text. In particular, Tables 6 and
7 below include the number of taxa and sites for each dataset, results for VBPI with a batch size of K = 20 (VBPI20),
and estimated standard errors using 100 bootstrapped samples. Further, Figure 5 below shows trace plots of marginal
log-likelihood versus iteration number for all 12 datasets.

Table 6. Gap between gold standard and estimated marginal log-likelihoods for variational inference methods (in nats). Marginal
log-likelihoods for VI methods were estimated using importance sampling with 1,000 random samples from each variational distribution.
Values indicate differences between gold standard MLLs and each method’s MLLs. Gold standard MLLs (indicated by the BEAST column)
are derived from 10 independent chains of the stepping-stone algorithm in BEAST. Datasets (DATA column) DS1 to DS11 are from Lakner
et al. (2008). Dataset COV is the COVID-19 dataset obtained from GISAID. VI methods are specified by columns: Variational Bayesian
Phylogenetic Inference with K-sample ELBO, K = 10 (VBPI10; Zhang and Matsen IV 2024); Variational Bayesian Phylogenetic
Inference with K-sample ELBO, K = 20 (VBPI20; Zhang and Matsen IV 2024); VIPR using the leave-one-out REINFORCE estimator
(LOOR); VIPR using the reparameterization trick (REP); VIPR using the Variational Inference for Monte Carlo Objectives estimator
with K = 10 (VIMCO). Standard errors were estimated using 100 bootstrapped samples and are shown in parentheses.

DATA (N, M) BEAST VBPI10 VBPI20 LOOR REP VIMCO

DS1 (27, 1949) −7154.26(0.19) −0.53(0.09) 0.36(0.13) −2.29(0.15) −1.83(0.21) −0.95(0.46)
DS2 (29, 2520) −26566.42(0.26) 0.16(0.24) 0.01(0.20) −0.76(0.14) −0.14(0.43) −0.37(0.29)
DS3 (36, 1812) −33787.62(0.36) −0.44(0.12) −0.38(0.13) −3.66(0.53) −1.91(0.99) −2.63(0.50)
DS4 (41, 1137) −13506.05(0.32) 0.03(0.53) 0.46(0.43) −2.48(0.43) −0.47(1.21) −1.73(0.23)
DS5 (50, 378) −8271.26(0.39) −1.70(0.35) −5.69(0.48) −0.29(1.82) −4.01(0.28) 0.94(2.08)
DS6 (50, 1133) −6745.31(0.55) −0.76(0.20) −0.32(0.35) −3.96(0.34) −3.26(0.60) −2.72(0.37)
DS7 (59, 1824) −37323.88(0.66) 0.27(0.26) −0.24(0.17) −2.73(0.30) −2.82(0.31) −10.42(0.70)
DS8 (64, 1008) −8650.20(0.77) −0.82(0.27) 0.47(0.64) −3.28(0.99) −4.95(0.47) −2.88(0.60)
DS9 (67, 955) −4072.66(0.53) −5.32(0.31) −4.12(0.46) −3.12(1.21) −5.79(0.74) −7.60(0.44)
DS10 (67, 1098) −10102.65(0.65) −0.88(0.20) −1.44(0.22) −5.38(0.42) −3.98(1.14) −6.82(0.49)
DS11 (71, 1082) −6272.57(0.68) −18.79(0.41) −16.28(0.46) −6.79(0.89) −7.31(0.71) −9.62(1.46)
COV (72, 3101) −7861.61(0.74) −39.08(0.58) −33.26(0.76) −611.84(1.80) −374.62(0.48) −214.25(0.42)
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Table 7. Estimated evidence lower bounds for variational inference methods (in nats). ELBOs were estimated using importance sampling
on 1,000 random samples from each variational distribution. Our VIPR methods beat the VBPI baseline on half of the datasets. Dataset
names, method acronyms, and conditions match Table 6. Standard errors were estimated using 100 bootstrapped samples and are shown
in parentheses.

DATA (N, M) VBPI10 VBPI20 LOOR REP VIMCO

DS1 (27, 1949) −7157.99(0.15) −7158.18(0.16) −7159.56(0.10) −7159.54(0.09) −7161.60(0.20)
DS2 (29, 2520) −26573.03(0.28) −26573.60(0.30) −26569.56(0.06) −26569.50(0.08) −26570.74(0.13)
DS3 (36, 1812) −33793.96(0.20) −33794.75(0.28) −33794.96(0.08) −33794.77(0.07) −33796.53(0.15)
DS4 (41, 1137) −13541.39(13.12) −13613.68(22.18) −13512.54(0.11) −13512.60(0.11) −13513.41(0.14)
DS5 (50, 378) −8281.03(0.26) −8298.64(5.97) −8279.93(0.11) −8280.35(0.11) −8282.03(0.17)
DS6 (50,1133) −6751.77(0.22) −6752.60(0.21) −6754.36(0.12) −6755.29(0.14) −6756.10(0.21)
DS7 (59, 1824) −37331.12(0.22) −37331.82(0.31) −37333.36(0.19) −37332.04(0.14) −37352.10(0.42)
DS8 (64, 1008) −8657.78(0.30) −8658.83(0.22) −8662.26(0.16) −8661.88(0.16) −8664.54(0.26)
DS9 (67, 955) −4088.64(0.39) −4091.21(0.52) −4085.61(0.18) −4087.25(0.20) −4090.52(0.22)
DS10 (67, 1098) −10111.81(0.29) −10112.80(0.28) −10114.76(0.15) −10115.16(0.16) −10119.70(0.26)
DS11 (71, 1082) −6329.37(9.90) −6559.24(54.99) −6289.60(0.17) −6289.70(0.18) −6294.31(0.20)
COV (72, 3101) −8100.96(109.62) −7913.84(0.93) −8489.82(0.21) −8244.41(0.21) −8087.43(0.30)
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DS1 DS2

DS3 DS4

DS5 DS6

DS7 DS8

DS9 DS10

DS11 COV

Figure 5. Trace plots for all datasets. Trace plot of estimated marginal log-likelihood vs. iteration number (i.e., parameter update number).
Marginal log-likelihood was estimated using 500 importance samples for VBPI and 50 importance samples for VIPR methods.
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B.5. Computational Complexity Results

We provide an additional plot for the results described on the MS datasets in Section 5.1. Computing the variational density
of VBPI is linear in the number of taxa, but normalizing the SBN scales with the number of parameters. Therefore, the
computational complexity of VBPI scales with the number of parameters. Figure 6 below further illustrates this by plotting
the slope of a log-log curve against the number of taxa, where the y-axis represents the computational complexity of each
algorithm.

Figure 6. Slope of the logarithm of seconds-per-iteration vs. the logarithm of the number of taxa. Each VI method was run for 1,000
iterations on subsets of the COVID-19 dataset. The y-axis corresponds to the computational complexity of the algorithm as a function of
number of taxa (i.e., 1 corresponds to linear complexity, 2 corresponds to quadratic complexity, etc.)
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C. Gradient Estimators for qϕ

C.1. The REINFORCE Estimator

Working from the definitions in Section 3.3.1, the leave-one-out REINFORCE estimator for VIPR is derived as follows:

∇ϕL(ϕ) ≈ 1
K

K∑
k=1

w(k)∇ϕ log qϕ(τ (k), t(k)), (28)

w(k) = fϕ(τ (k), t(k))− f̂ (−k), (29)

f̂ (−k) = 1
K − 1

∑
ℓ̸=k

fϕ(τ (ℓ), t(ℓ)) (30)

(τ (k), t(k)) ∼ qϕ. (31)

C.2. The Reparameterization Trick

We continue the derivation of the reparameterization trick for VIPR. Working from Equation 9 in Section 3.3.2, we proceed
by summing over the tree structures τ and then integrating over Zτ (ϕ), the space of all values of Z that are consistent with τ
given the parameters ϕ. This yields the following:

L(ϕ) =
∑

τ

∫
Z∈Zτ (ϕ)

N (Z; 0, I) log
(

p(Y, gϕ(Z))
qϕ(gϕ(Z))

)
dZ. (32)

Note that the region of integration Zτ (ϕ) depends upon ϕ, so interchanging the integral and the gradient introduces some
error due to the Leibniz integral rule. Nonetheless, we proceed with the interchange and approximate the full gradient as
follows:

∇ϕL(ϕ) ≈ EZ

[
∇ϕ log

(
p(Y, gϕ(Z))
qϕ(gϕ(Z))

)]
. (33)

Finally, we define a biased estimate of∇ϕL(ϕ) as the following:

∇̂ϕL(ϕ) ≈ 1
K

K∑
k=1
∇ϕ log

(
p(Y, gϕ(Z(k)))
qϕ(gϕ(Z(k)))

)
(34)

Z(k) ∼ N (·; 0, I). (35)

As with the LOOR estimator, the gradient∇ϕ log
(

p(Y,gϕ(Z(k)))
qϕ(gϕ(Z(k)))

)
can be calculated using automatic differentiation software

such as Autograd (Maclaurin et al., 2015) or PyTorch (Paszke et al., 2019).

C.3. The VIMCO Estimator

We derive the VIMCO Estimator for VIPR described in Section 3.3.3. For our model, the k-sample ELBO (Mnih and
Rezende, 2016) is defined as follows:

LK(ϕ) = Eqϕ

[
log
(

1
K

K∑
i=1

p(τ (k), t(k), Y(ob))
qϕ(τ (k), t(k))

)]
. (36)

Here, (τ (k), t(k)) ∼ qϕ for k = 1, . . . , K. This is the objective function used by Zhang and Matsen IV (2024) to perform
VBPI. When using the K-sample ELBO objective from Equation (36), the VIMCO estimator is an analogous gradient
estimator to the LOOR estimator for the single-sample ELBO, and is defined as follows:
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∇ϕLK(ϕ) ≈
K∑

k=1

(
L̂

(−k)
K (ϕ)− w̃(k)

)
∇ϕ log qϕ(τ (k), t(k)) (37)

w̃(k) = fϕ(τ (k), t(k))∑K
ℓ=1 fϕ(τ (ℓ), t(ℓ))

(38)

L̂
(−k)
K (ϕ) = L̂K(ϕ)− log 1

K

∑
ℓ ̸=k

fϕ(τ (ℓ), t(ℓ)) + f̂
(−ℓ)
ϕ

 (39)

L̂K(ϕ) = log
(

1
K

K∑
k=1

fϕ(τ (k), t(k))
)

(40)

f̂ (−ℓ) = 1
K − 1

∑
j ̸=ℓ

fϕ(τ (j), t(j)) (41)

(τ (k), t(k)) ∼ qϕ. (42)
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