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ABSTRACT

Graph transformers have emerged as powerful tools for modeling complex graph-
structured data, offering the ability to capture long-range dependencies beyond the
graph adjacency. Yet their performance on node classification often lags behind
that of message passing and spectral graph networks. Unlike these methods, graph
transformers require explicit positional encodings to inject structural information,
which are most commonly derived from the eigenvectors of the graph Laplacian.
Existing methods select eigenvectors using data-agnostic heuristics, assuming one-
size-fits-all rules suffice. In contrast, we show that the spectral distribution of class
information is graph-specific. To address this, we introduce Broaden the Spectrum
(BTS), a novel, intuitive, and data-driven algorithm for selecting subsets of Lapla-
cian eigenvectors for node classification. Our method is grounded in theory: we
characterize the structure of optimal attention matrices for classification and show,
in a simplified setting, how BTS naturally emerges as the eigenvector selection
rule for achieving such attention matrices. When evaluated with standard graph
transformer architectures, it delivers substantial performance gains across a wide
range of node classification benchmarks. Our work shows that the performance
of graph transformers on node classification has been held back by the choice of
positional encodings and can be improved by employing a broader, well-chosen set
of Laplacian eigenvectors.

1 INTRODUCTION

Graph transformers provide a flexible framework for modeling graph-structured data, with global
receptive fields that can capture interactions beyond the reach of local message passing (Hoang et al.,
2024). This flexibility has made them appealing for graph-level tasks such as molecular property
prediction and long-range dependency modeling, where message-passing Graph Neural Networks
(GNNs) often struggle with phenomena like oversquashing and oversmoothing (Topping et al., 2022;
Rusch et al., 2023). Yet their performance on node classification has often lagged behind both
message-passing and spectral methods (Luo et al., 2024; Bo et al., 2023).

A central reason for this lack of performance in node-classification tasks lies in how transformers
incorporate information about the graph topology. Unlike message-passing networks, which prop-
agate information directly along edges, transformers rely on positional encodings (PEs) to inject
structural information. In practice, these encodings are commonly derived from the graph’s Laplacian
eigenvectors (Hoang et al., 2024; Dwivedi & Bresson, 2020), which most models truncate to a few
lowest-frequency components (see Table 7 in Appendix B). While this low-frequency truncation
heuristic works well for some homophilic graphs, it does not account for the fact that class-relevant
information can appear in very different parts of the spectrum depending on the dataset. Heuristics
such as fixed low-high splits in Kim et al. (2022) suggest that including a broader spectrum can help,
but their effectiveness varies on the nature of the graphs themselves.

Crucially, these heuristics are data-agnostic. In contrast, the spectral GNN literature has demonstrated
the advantages of adaptive frequency selection, combining high- and low-frequency operations based
on the task (Sun et al., 2022; Bo et al., 2021; Dong et al., 2021). This motivates the need for adaptive
methods that select graph transformer positional encodings in a task-aware manner, rather than relying
on one-size-fits-all rules.
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To address this, we introduce Broaden the Spectrum (BTS), a simple, data-driven, and theoretically
grounded approach for selecting Laplacian eigenvectors in graph transformers. BTS identifies the
parts of the spectrum that are most aligned with class information and uses them as positional
encodings. Empirically, BTS yields consistent gains across homophilic, heterophilic, and long-range
benchmarks. On challenging heterophilic datasets such as Chameleon and Squirrel, even a simple
transformer backbone equipped with BTS improves accuracy by more than 20%. More advanced
models such as NAGphormer (Chen et al., 2023) and GraphGPS (Rampášek et al., 2022) also see
substantial boosts when augmented with BTS, revealing the existence of performance bottlenecks
due to under-utilization of graph topology.

Our contributions are as follows:

• We introduce Broaden the Spectrum (BTS), a lightweight, architecture-agnostic, and data-
driven algorithm for selecting Laplacian eigenvectors as positional encodings specifically
for node classification.

• We provide a theoretical analysis of attention-based node classification in an illustrative
linear model, showing that the optimal attention matrix has a class-wise block structure. We
also derive the eigenvector selection criteria to achieve such optimal attention matrices.

• We demonstrate that including a broad and well-chosen spectrum of eigenvectors leads to
significant gains in node classification performance of existing graph transformers across a
wide range of benchmarks.

2 METHOD

Transformers are inherently permutation-invariant, which makes positional information essential
to break symmetry and provide meaningful structure to the model. For graphs, Laplacian position
encodings (LPE) have been identified by prior work (Dwivedi & Bresson, 2020; Hoang et al., 2024)
to be effective, and are a natural extension of the Fourier basis used in other sequence modeling
domains (Vaswani et al., 2017; Dosovitskiy et al., 2021; Nie et al., 2023). More formally, we define
the LPE as follows.

Definition 2.1 (Laplacian Position Encodings). Let G = (V, E) be a graph with |V| = n nodes, adja-
cency matrix A, and degree matrix D. The normalized graph Laplacian is L = I −D−1/2AD−1/2.
Let L = V ΛV ⊤ be its eigendecomposition with eigenvalues ordered as λ1 ≤ · · · ≤ λn. The
Laplacian positional encodings are defined as Xpos ∈ Rn×k formed by selecting any k Laplacian
eigenvectors.

2.1 CLASS-LABEL ENERGY SPECTRAL DENSITY

When using LPEs, there is a critical design choice to be made: which subset of eigenvectors should be
used? The prevailing practice is to use fixed heuristics, such as using the first k eigenvectors (Dwivedi
& Bresson, 2020; Chen et al., 2023; Rampášek et al., 2022; Kreuzer et al., 2021; Hoang et al., 2024),
or using an equal number of low- and high-frequency1 components (Kim et al., 2022). However,
Spectral GNN literature has shown the benefit of adaptively performing high- and low-frequency
operations (Sun et al., 2022; Bo et al., 2021; Dong et al., 2021). Motivated by these works, we
have developed a theoretically grounded method for adaptively selecting frequency components in a
data-driven manner. Intuitively, our method involves finding eigenvectors that are most aligned with
the class labels, which we characterize in terms of energy spectral density, defined as follows:

Definition 2.2 (Energy Spectral Density (ESD) of class-labels). Given the orthonormal Laplacian
eigenvectors V ∈ Rn×n, a one-hot class-indicator matrix Y ∈ {0, 1}n×c, and let Vi denote the ith

column of V . We define the class label ESD of the class-labels:

ESDi =
∥V ⊤

i Y ∥22∑n
j=1 ∥V ⊤

j Y ∥22
, i = 1, . . . , n

1Eigenvectors associated with small eigenvalues vary slowly across the graph, capturing “low-frequency”
global variations, while eigenvectors corresponding to large eigenvalues vary rapidly, encoding “high-frequency”
signals that change significantly across neighboring nodes (Shuman et al., 2013; Ortega et al., 2018).
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Figure 1: Energy spectral density (ESD) of the class labels across the Laplacian spectrum for real-world
graphs. Peaks in mid- and high-frequency regions indicate that class-relevant signals are not confined to the low
end of the spectrum.

Here, ESDi measures the proportion of label energy aligned with eigenvector Vi. In Section 3, we
show using our theoretical framework that choosing the eigenvectors with the highest ESD leads to
desirable attention matrices with a class-aligned structure. Thus we rank eigenvectors by their ESD,
providing a data-driven approach for efficiently utilizing the graph spectrum as positional encodings.

ESD reveals limitations of data-agnostic selection heuristics. Figure 1 reveals that label energy
can appear in different regions of the spectrum: sometimes concentrated at low frequencies, sometimes
at high frequencies, and often distributed heterogeneously. A key limitation of current eigenvector
selection strategies is that they are data-agnostic, relying on fixed rules such as truncating to the
lowest modes, enforcing symmetric low–high splits, or sampling at random. Because no single band
is universally optimal for all graphs, such heuristics yield positional encodings that are misaligned
with the task, limiting the effectiveness of graph transformers.

2.2 BROADEN THE SPECTRUM (BTS)

To overcome this limitation, we introduce Broaden the Spectrum (BTS), a principled algorithm for
selecting eigenvectors that are most informative for node classification. Rather than assuming that
useful signal lies in a particular band of frequencies, we measure the alignment between eigenvectors
and class labels, and select those with the highest label ESD. This simple yet powerful idea reframes
positional encodings as a learned spectral alignment problem, bridging the gap between graph signal
processing and transformer-based architectures.

Given a budget of k eigenvectors, BTS selects the top-k eigenvectors with the highest label ESD. This
broadens the usable spectrum to include whichever eigenvectors carry discriminative signal, rather
than assuming they reside at the bottom/top of the spectrum. Importantly, this selection is computed
only from training labels, and we employ boxcar smoothing to mitigate noise. (Algorithm 1)

2.3 ARCHITECTURAL MODIFICATIONS

When expanding the spectrum of LPEs used in transformer models, we found it critical to incorporate
a slight modification to the input encoder design. The selected eigenvectors Xpos, along with the node
features Xnode are passed through two independent MLPs, followed by concatenation to form the
transformer’s input tokens:

YGT∗ = Transformer ([MLPn(Xnode);MLPp(norm(Xpos))])Wout (1)

3
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Algorithm 1 Pseudocode for BTS eigenvector selection
Input: Laplacian eigenvectors V ∈ Rn×n,

Training node indices Itrain, training labels Ytrain ∈ {0, 1}ntrain×c,
Number of eigenvectors to choose k, Smoothing window size w

Output: Indices Ik of selected eigenvectors

1: Vtrain ← V [Itrain] ▷ Restrict to training nodes
2: Ỹtrain ← V ⊤

trainYtrain ▷ Graph Fourier transform
3: for i = 1 to N do ▷ Compute energy spectrum
4: Ei ← ∥Ỹtrain,i∥22
5: ESD← E/

∑N
i=1 Ei ▷ Normalize energy

6: ESD← BoxcarSmooth(ESD, w) ▷ Smooth with window-size w
7: return TopK(ESD, k) ▷ Return top-k ESD indices

Here, norm(·) denotes row-wise ℓ2 normalization. As we show in Section 4.3, this simple modifi-
cation significantly improves performance when we increase the amount of selected eigenvectors.
Normalization is critical here because the scale of Laplacian eigenvector elements is ∼1/n, which
quickly vanishes for reasonably sized graphs. Meanwhile, independent MLPs provide a more
expressive mapping from raw inputs to transformer-compatible tokens.

3 THEORETICAL ANALYSIS

Having introduced BTS, we now present its theoretical foundations. Positional encodings play a
crucial role in shaping the attention matrices of a transformer. This motivates us to break the problem
of finding a good LPE subset into two steps: (i) we first show, through an illustrative linear model, that
the optimal attention matrix for node classification has a class-wise block structure (Section 3.1), and
(ii) we find that the Laplacian eigenvectors needed to be able to approximate such a block structure
are exactly the ones as described by our label-ESD-based criteria. (Section 3.2)

3.1 UNDERSTANDING OPTIMAL ATTENTION MATRICES FOR NODE CLASSIFICATION

Given a data matrix X ∈ Rn×d, the attention operation is defined as:

Attn(X) = softmax(XW⊤
QWKX⊤)XW⊤

V , (2)
for some learnable weights WQ, WK , and WV . Here, the attention score matrix,
softmax(XWQW

⊤
KX), is constrained by the softmax operator and the dependence on X . We

lift these constraints, simplifying the softmax-attention operation into a linear one, and ask:

Q1. What form should a general attention matrix A ∈ Rn×n take so that the resulting latents
Z := AX are most easily classifiable?

We assume a single-layer setting with a linear classifier. Given c classes, let Y ∈ {0, 1}n×c be the
one-hot class assignment matrix with Yij = 1 if node i belongs to class j and zero otherwise. The
classification objective is:

Lclass(A,WC) = CrossEntropy(AXW⊤
C | Y ), (3)

where WC ∈ Rc×d are classifier weights. We assume a mixture model X = YMX + σN for class-
means MX ∈ Rc×d, noise variance σ > 0, and isotropic zero-mean noise N with E[NN⊤] = dIn
We also assume balanced classes.

We first simplify the loss formulation through the following structural lemma:

Lemma 3.1. There exists a global minimizer (A∗,W ∗
C) of Equation (3) such that all samples

from the same class are mapped to the same latent, i.e.

A∗X = YMZ for some MZ ∈ Rc×d.

4
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Figure 2: Optimal Attention Matrices for Node Classification. We find the minimizer for Lclass (Equation (3))
on 2 dimensional Guassian mixture model data with 5 classes. The resulting latents and attention matrix are
plotted. Upon arranging the nodes based on their class index, we observe that the corresponding optimal attention
matrix, A∗ has an approximate class-wise block-structure of a form as predicted in A◦.

Intuitively, Lemma 3.1 (see Appendix C.1 for proof) shows that the optimal attention A∗ clusters
latents by class. Our goal is to probe the structure of such an A∗, and therefore, we study the surrogate
objective:

A◦ = argmin
A

EN

[
∥AX − YMZ∥2F

]
, (4)

which leads to the following:

Theorem 3.1 (Optimal attention has class-wise block structure). Suppose X = YMX +σN as
above with balanced classes. Then every minimizer A◦ of Equation (4) admits the representation

A◦ = YM◦
AY

⊤, for some M◦
A ∈ Rc×c.

That is, A◦
ij depends only on class memberships of nodes i and j. Theorem 3.1 (proof in Ap-

pendix C.2) formalizes the intuition that the best attention matrix acts as a block matrix over classes,
ignoring within-class differences. Simulations confirm that empirical minimizers of Equation (3)
indeed exhibit this block structure (Figure 2).

3.2 EIGENVECTOR SUBSETS FOR APPROXIMATING BLOCK ATTENTION

We now connect the block-structured optimal attention to spectral encodings. Consider a simplified
linear attention formulation using only positional encodings:

A = XposWX⊤
pos (5)

where W is a learnable full-rank matrix. Our next goal is to understand:

Q2. Which eigenvectors allow the best approximation of the block-structured optimum
A◦ = YMY ⊤, uniformly for any M ∈ Rc×c?

Essentially, our goal is to find a k-sized subset of eigenvectors so as to best approximate A ≈ YMY ⊤

uniformly for any M ∈ Rc×c. The following theorem gives a sufficient criterion as a corollary:

Theorem 3.2 (Uniform error bound for attention approximation). Let V denote the Laplacian
eigenvectors and H ∈ {0, 1}n×k denote an eigenvector selection matrix s.t. Hij = 1 iff
eigenvector i is selected at position j. Define the diagonal 0/1 projector H̃ := HH⊤, with
H̃ii = 1 iff eigenvector i was selected. Set Xpos = V H in Equation (5). Then the uniform (in
M ) error functional:

Φ(H̃) := sup
∥M∥2≤1

min
W

∥∥XposWX⊤
pos − YMY ⊤∥∥

F

is bounded by the residual E := (I − H̃)V ⊤Y :

Φ(H̃) ≤ 2
√
n∥E∥F + ∥E∥2F .

5
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Theorem 3.2 (see Appendix C.3 for proof) shows that the quality of approximation is controlled
entirely by the residual ∥E∥F , i.e., how well the selected eigenvectors capture the class-indicator
matrix Y . In other words, the smaller the projection error of Y , the closer the resulting attention
matrix is to the block-structured optimum. This is exactly what is minimized by the class-label ESD
based ranking described in our method Section 2.2, leading to the following corollary.

Corollary 3.2.1 (Class-label ESD based eigenvector selection). Among all k-sized eigenvector
subsets, the selector that chooses the k eigenvectors with the largest label spectral-energy
∥V ⊤

i Y ∥22 minimizes the bound in Theorem 3.2.

Corollary 3.2.1 (see Appendix C.4 for proof) tells us that our label-ESD based eigenvector selection
criteria would lead to class-wise block-structured attention matrices, which we have identified to be
desirable in Section 3.1. Moreover, in Section 4.2, we empirically validate this prediction and show
that models trained with BTS produce attention matrices with stronger class-wise block structure.

4 RESULTS

In this section, we evaluate our approach on a diverse set of node classification benchmarks, analyzing
its effectiveness across three established graph transformer architectures. Our evaluation focuses on
measuring improvements in classification performance and understanding how spectral information
is utilized.

Experimental setup. We evaluate our approach on homophilic, heterophilic, and long-range
datasets (see Appendix D for details), using three standard graph transformer backbones: GT,
NAGphormer, and GraphGPS. GT (Dwivedi & Bresson, 2020) is a direct application of transformers
to graphs. NAGphormer (Chen et al., 2023) restricts attention to K-hop neighborhoods using a
normalized adjacency matrix. GraphGPS (Rampášek et al., 2022) combines message passing with
transformer-based global attention and uses LPE for positional encoding.

We use the subscript BTS to denote models tuned and trained with our ESD-based eigenvector
selection approach (Section 2), as well as the input encoder modifications (Section 2.3), with k ≤
8192.2 Models without the subscript follow standard truncation to the k ≤ 16 lowest eigenvectors,
(Table 7). For fairness, we also expand the GT baseline to broad spectrum setting (Section 4.3), and
show that expansion alone provides little benefit without encoder modifications. Full training and
hyperparameter details are given in Appendix E.

Table 1: Node classification performance on heterophilic benchmarks. Performance numbers for GT/GTBTS,
NAGphormer/NAGphormerBTS, and GraphGPS/GraphGPSBTS were (re-)produced with our consistent experi-
mental setup. Performance for other models are reported from existing literature. “-” indicates absence of a
particular evaluation in existing literature. The top-1st, top-2nd, and top-3rd results are highlighted.

Model Chameleon Squirrel Tolokers Ratings
Accuracy ↑ Accuracy ↑ AU-ROC ↑ Accuracy ↑

GCN 38.44± 1.92 31.52± 0.71 83.64± 0.67 48.70± 0.63

GraphSAGE 58.73± 1.68 41.61± 0.74 82.43± 0.44 53.63± 0.39

GAT 48.36± 1.58 36.77± 1.68 83.70± 0.47 49.09± 0.63

NodeFormer 36.38± 3.85 38.89± 2.67 78.10± 1.03 43.79 ± 0.57

SGFormer 45.21± 3.72 42.65± 4.21 - 54.14± 0.62

Exphormer - - 83.53± 0.28 50.48± 0.34

SpExphormer - - 83.34± 0.31 50.48± 0.34

GT 50.48± 2.08 34.70± 1.77 80.30± 0.91 49.02± 0.61

GTBTS 73.09± 1.00 +22.61↑ 65.06± 1.93 +30.36↑ 84.45± 0.66 +4.15↑ 50.37± 0.48 +1.35↑
NAGphormer 52.41± 2.21 40.21± 1.77 83.69± 0.86 50.16± 0.69

NAGphormerBTS 73.90± 1.68 +21.49↑ 65.04± 1.69 +24.83↑ 85.47± 0.72 +1.78↑ 49.65± 0.65 -0.51↓
GraphGPS 60.92± 2.54 43.43± 1.46 86.29± 0.68 50.19± 0.51

GraphGPSBTS 73.16± 1.70 +12.24↑ 65.87± 1.30 +22.44↑ 86.31± 0.63 +0.02↑ 51.33± 0.58 +1.14↑

2For graphs larger than 8192 nodes, we only compute the low and high 4096 eigenvectors.
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Table 2: Node classification accuracy (%) on homophilic benchmarks. Results for GraphGPS/GraphGPSBTS,
NAGphormer/NAGphormerBTS, and GT/GTBTS were (re-)produced with our consistent experimental setup.
Performance for other models are reported from existing literature. The top-1st, top-2nd, and top-3rd results are
highlighted.

Model Physics CS Photo Computers WikiCS ogbn-arXiv
Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

NodeFormer 96.45± 0.28 95.64± 0.22 93.46± 0.35 86.98± 0.62 74.73± 0.94 59.90± 0.42

SGFormer 96.60± 0.18 94.78± 0.34 95.10± 0.47 91.99± 0.70 73.46± 0.56 72.63± 0.13

Exphormer 96.89± 0.09 94.93± 0.01 95.35± 0.22 91.47± 0.17 78.19± 0.29 71.27± 0.27

SpExphormer 96.70± 0.05 95.00± 0.15 95.33± 0.49 91.09± 0.08 78.20± 0.14 70.82± 0.24

GT 96.02± 0.20 94.66± 0.44 91.59± 0.68 85.65± 0.59 72.91± 0.59 55.68 ± 0.39

GTBTS 96.90± 0.18 +0.88↑ 95.44± 0.33 +0.78↑ 95.95± 0.48 +4.36↑ 91.46± 0.51 +5.81↑ 78.94± 0.26 +6.03↑ 70.30 ± 0.12 +14.62↑
NAGphormer 96.98± 0.13 95.71± 0.26 95.51± 0.41 91.39± 0.41 78.73± 0.66 69.43 ± 0.32

NAGphormerBTS 97.05± 0.18 +0.07↑ 95.42± 0.39 -0.29↓ 95.90± 0.37 +0.39↑ 91.85± 0.44 +0.46↑ 79.42± 0.55 +0.69↑ 71.29± 0.13 +1.86↑
GraphGPS 97.13± 0.17 95.70± 0.38 95.35± 0.45 91.64± 0.46 77.67± 0.73 65.16 ± 1.45

GraphGPSBTS 97.21± 0.14 +0.08↑ 95.72± 0.37 +0.02↑ 95.87± 0.42 +0.52↑ 91.87± 0.45 +0.23↑ 79.47± 0.48 +1.80↑ 70.92± 0.33 +5.76↑

4.1 MAIN RESULTS

Results on heterophilic benchmarks. We find substantial improvements when using BTS on
heterophilic graphs (Table 1). For example, on Chameleon, performance improves by over 22%,
and on Squirrel, by over 30% when BTS-filtered eigenvectors are used with a simple transformer
architecture (GT). Remarkably, this brings the vanilla transformer architecture into close competition
with, and in some cases even surpassing, more complex graph transformer models proposed in recent
literature. To the best of our knowledge, the performance reported here for Chameleon, Squirrel, and
Tolokers represents the strongest results achieved by any graph transformer model to date.

These improvements can be understood through the lens of the class-label ESD. As shown in Figure 1,
graphs like Chameleon and Squirrel exhibit significant class energy in a broad set of low and high
frequency regions. These findings highlight that the historical reliance on low-frequency truncation
was a critical bottleneck, masking the true representational and generalization potential of graph
transformers.

Results on homophilic benchmarks. As shown in Table 2, BTS improves performance even on ho-
mophilic graphs. GTBTS achieves +5.8% on Computers, +6.0% on WikiCS, and +14.4% on ogbn-arXiv.
Gains for NAGphormer and GraphGPS are smaller but consistent. These results are expectedly more

Table 3: Node classification accuracy
(%) on Long Range Benchmarks The
top-1st, top-2nd, and top-3rd results
are highlighted.

Model Paris Shanghai

GCN 47.30± 0.20 52.40± 0.30

GraphSAGE 49.10± 0.60 60.40± 0.30

SGFormer 45.00± 0.20 53.5± 0.30

GT 15.46± 3.93 21.05± 0.51

GTBTS 53.79± 0.17 52.66± 0.83

∆ +38.33 ↑ +31.61 ↑
NAGphormer 25.26± 0.34 24.94± 0.28

NAGphormerBTS 53.68± 0.23 57.26± 0.34

∆ +28.42 ↑ +32.32 ↑
GraphGPS 28.99± 0.31 28.46± 0.31

GraphGPSBTS 54.12± 0.23 55.31± 0.33

∆ +25.13 ↑ +26.85 ↑

modest than in heterophilic settings, as the spectral energy of
class signals in many homophilic graphs is concentrated in low
frequencies. Still, BTS captures the broader spectrum whenever
useful, yielding robust improvements.

Results on long-range benchmarks. Graph transformers are
naturally suited for capturing long-range dependencies due to
their global attention mechanism. However, a number of recent
papers have shown that graph transformers suffer from overglob-
alization (Xing et al., 2024) and perform poorly on long-range
tasks. As shown in Table 3, our method achieves substantial
improvements on the long-range benchmark (Liang et al., 2025)
over baseline graph transformer architectures. These datasets ex-
hibit particularly strong gains when using BTS-selected features.
For instance, performance for GT on Paris improves by over
38%, and on Shanghai by 31%, bringing the vanilla transformer
model on par with strong baseline methods.

4.2 ATTENTION MATRICES

Our theoretical analysis (Section 3) predicts that the optimal attention matrix for node classification
should have a class-wise block structure and that using BTS-selected eigenvectors would lead to such
attention matrices. To validate this, we examine the attention matrices obtained after training. As
shown in Figure 3, models trained with BTS yield attention matrices that indeed display a substantially

7
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Figure 3: Attention matrices learned by vanilla GT and GTBTS on Chameleon (left) and Computers
(right). Incorporating BTS leads to clearer class-wise block structures, consistent with our theoretical prediction
that such attention patterns are optimal for node classification (Section 3.1). These attention matrices correspond
to the first head in the last layer, and no)es are sorted according to their classes.

stronger block-wise organization aligned with class partitions. Since BTS models perform better, this
also suggests that class-wise block structures are indeed desirable attention patterns.

4.3 ABLATIONS

We conduct ablation studies to isolate the contributions of two key factors: (i) the design of the
encoder that processes positional encodings, and (ii) the strategy used to select eigenvectors. Our
results show that architectural support is necessary to benefit from larger k, while principled selection
is essential for avoiding overfitting and consistently improving performance.

Spectral expansion and encoder design. The results in Table 4 indicate that expanding k (num.
of eigenvectors) beyond this range yields only marginal improvements without our input encoder
modifications. For example, with GT, Chameleon’s performance increases from 50.48% to 52.28%.
This partly explains why most approaches have restricted positional encodings to a small set of
low-frequency eigenvectors. However, we see substantial gains when the positional encodings are
normalized and processed with a MLP. With these modifications, performance improves to 67.83% on
Chameleon, and from 34.70% to 62.91% on Squirrel. This indicates that, while a broader spectrum
of eigenvectors provides useful signal, careful design of the encoder is needed to fully utilize them.

Table 4: Ablation of our encoder modifications. Increasing number of eigenvectors (k) beyond low
frequencies alone offers only marginal gains without our architectural modifications.

Position Encoder k Chameleon Squirrel WikiCS Computers

Baseline (linear) k ≤ 16 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

Baseline (linear) no-bound 52.28± 2.88 37.71± 1.79 73.75± 0.63 87.21± 0.55

Norm + Linear no-bound 65.07± 1.08 56.96± 1.23 77.67± 0.48 91.39± 0.40

Norm + MLP no-bound 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.66± 0.41

Eigenvector selection strategies. Next, we explore how different eigenvector selection heuristics
influence performance. Table 5 shows that simply using the full spectrum severely hurts generalization
due to overfitting, demonstrating that indiscriminate inclusion of all frequencies is detrimental. We
also tested four different selection heuristics: low-only, high-only, low+high, and low+medium+high,
each corresponding to retaining different bands of the spectrum. While all four of these heuristics
show improvements over baseline performance, we find that their effectiveness is not consistent across
datasets. For example, the best out of the four variants is high-only on both heterophilic datasets
(Chameleon, Squirrel) and low-only on homophilic datasets (WikiCS, Computers). In contrast, our
data-driven selection (BTS) consistently achieves the best results.

5 RELATED WORK

Graph Transformers and Positional Encodings. Graph Transformers (GTs) allow graph nodes to
interact globally via self-attention (Dwivedi & Bresson, 2020). Because self-attention is permutation-
invariant, GTs require positional encodings (PEs) to inject structural information. Laplacian eigen-
vectors have become a common choice (Hoang et al., 2024), providing a spectral basis that reflects

8
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Table 5: Impact of different eigenvector selection strategies on the performance of GT∗. The top-1st, top-2nd,
and top-3rd results are highlighted.

Eigenvector Selection Chameleon Squirrel WikiCS Computers

Baseline 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

Full spectrum 48.14± 3.05 35.30± 1.61 72.35± 0.72 85.20± 0.30

Low-only 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.26± 0.41

High-only 72.79 ± 1.37 63.22 ± 1.75 73.45 ± 0.40 89.80 ± 0.55

Low + High (equal) 72.50 ± 0.93 63.19 ± 1.49 78.37 ± 0.52 90.99 ± 0.50

Low + Medium + High (equal) 66.51 ± 1.88 44.66 ± 1.59 75.38 ± 0.56 89.79 ± 0.33

BTS 73.09± 1.68 65.06± 1.93 78.94± 0.26 91.46± 0.51

graph topology. However, nearly all existing GTs adopt a heuristic truncation: retaining only the first
k low-frequency eigenvectors. The low-frequency bias is evident in models such as GT (Dwivedi
& Bresson, 2020), NAGphormer (Chen et al., 2023), GraphTrans (Wu et al., 2021), GraphGPS
(Rampášek et al., 2022), UGT (Lee et al., 2024), SAN (Kreuzer et al., 2021), and SAT (Chen et al.,
2022). Scalability-oriented variants such as ANS-GT (Zhang et al., 2022), Gapformer (Liu et al.,
2023), and Exphormer (Shirzad et al., 2023), which focus on efficient attention also retain the same
positional encoding heuristic. TokenGT (Kreuzer et al., 2021) extends beyond low frequencies by
including both low- and high-frequency eigenvectors, but relies on fixed splits rather than task-driven
selection.

The Role of High-Frequency Signals in Node Classification. In contrast, the MPNN literature
has increasingly emphasized the importance of high-frequency information for node classification,
especially in heterophilic graphs. Spectral methods explicitly operate in the frequency domain
and modulate both low- and high-frequency signals (Wu et al., 2019; Dong et al., 2020). Early
spectral models such as Spectral CNN (Bruna et al., 2013) and ChebNet (Defferrard et al., 2016)
introduced learnable filters over eigenvalues, and subsequent works demonstrated that high-frequency
information is critical for node-level expressiveness, such as adaptive propagation (Chien et al.,
2020), complete spectral filtering (Luan et al., 2020), and frequency-based feature selection (Bo et al.,
2021). These techniques explicitly exploit high-frequency modes, while adaptive approaches such
as AdaGNN (Dong et al., 2021), and spectral attention (Chang et al., 2021) dynamically balance
contributions from different parts of the spectrum.

6 CONCLUSION

In this paper, we introduced Broaden the Spectrum (BTS), a lightweight and architecture-agnostic
algorithm for selecting Laplacian eigenvectors as positional encodings. We show that spectral
distribution of class information is unique for each graph, making fixed heuristics for eigenvector
selection (such as low-frequency truncation) inherently limited. BTS addresses this by selecting
eigenvectors in a data-driven way, consistently improving the performance of graph transformers
across homophilic, heterophilic, and long-range benchmarks. In several cases, BTS elevates even
simple transformer architectures to state-of-the-art levels.

To ground our method, we also developed a theoretical framework for attention-based node clas-
sification, showing that the optimal attention matrix exhibits a class-wise block structure and that
eigenvectors most correlated with labels are best suited to approximate it. While we focus on the
Laplacian spectrum, our framework is general and can be extended to other orthonormal bases. How-
ever, both BTS and our theoretical analysis are tailored to the supervised node classification setting,
and it remains an open direction to adapt similar principles to other tasks such as link prediction,
graph classification, or self-supervised pretraining.

Overall, our work highlights that the performance bottleneck of graph transformers on node classifi-
cation lies in how positional encodings are chosen. By broadening the spectrum with a data-driven,
theoretically grounded selection, we show that this bottleneck can be overcome and that even simple
graph transformers are competitive and reach near state-of-the-art performance.

9
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APPENDIX

A ABLATIONS FOR ALL ARCHITECTURES

We conducted an ablation study in Section 4.3 to evaluate the impact of higher-order spectral
components, encoder design, and label-aware selection on the Graph Transformer (GT). Here, we
extend this analysis to all baseline transformer architectures. As shown in Table 6, the same trends
hold across models, showing that access to more eigenvectors and a better encoder design can improve
performance.

Table 6: Node classification performance with full eigenvector spectrum vs with left-truncated
spectrum but tuned K.

Heterophilic Homophilic

Model Eigenvectors Chameleon Squirrel WikiCS Computers

GT K ∈ [4, 16] (tuned) 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

GT K ∈ [4, N ] (tuned) 52.28± 2.88 37.71± 1.79 73.75± 0.63 87.21± 0.55

GT∗ Linear K ∈ [4, N ] (tuned) 65.07± 1.08 56.96± 1.23 77.67± 0.48 91.39± 0.40

GT∗ MLP K ∈ [4, N ] (tuned) 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.66± 0.41

GT* full spectrum (fixed) 48.14± 3.05 35.30± 1.61 72.35± 0.72 85.20± 0.30

GTBTS BTS, K ∈ [4, N ] (tuned) 73.09± 1.68 65.06± 1.93 78.94± 0.26 91.46± 0.51

NAGphormer K ∈ [4, 16] (tuned) 52.41± 2.21 40.21 ± 1.77 78.73± 0.66 91.39± 0.41

NAGphormer K ∈ [4, N ] (tuned) 57.06± 1.96 40.89± 2.06 79.70± 0.50 91.61± 0.42

NAGphormer* Linear K ∈ [4, N ] (tuned) -± - -± - 79.33± 0.44 92.16± 0.48

NAGphormer* MLP K ∈ [4, N ] (tuned) 70.07± 2.33 63.87± 1.51 79.83± 0.63 91.96± 0.37

NAGphormer* full spectrum (fixed) 59.63± 2.06 52.27± 1.28 79.63± 0.63 91.53± 0.47

NAGphormerBTS BTS, K ∈ [4, N ] (tuned) 73.90± 1.68 65.04± 1.69 79.42± 1.55 91.85± 0.44

GraphGPS K ∈ [4, 16] (tuned) 60.92± 2.54 43.43± 1.46 77.67± 0.73 91.64± 0.46

GraphGPS K ∈ [4, N ] (tuned) 64.67± 2.98 47.12± 4.21 77.40± 0.45 91.60± 0.45

GraphGPS* Linear K ∈ [4, N ] (tuned) 68.8± 2.13 57.67± 0.97 78.92± 0.53 91.96± 0.22

GraphGPS* MLP K ∈ [4, N ] (tuned) 70.24± 2.08 63.40± 1.16 78.68± 0.46 91.80± 0.40

GraphGPS* full spectrum (fixed) 59.14± 1.95 42.88± 1.77 77.42± 0.98 91.24± 0.40

GPSBTS BTS, K ∈ [4, N ] (tuned) 73.16± 1.70 65.87± 1.30 79.47± 0.48 91.87± 0.45

B HIGHEST MAXIMUM FREQUENCIES USED IN THE LITERATURE

Table 7: Maximum number of eigenvectors (Kmax) used by recent graph transformer models, based
on publicly available code.

Model Kmax

NAGphormer (Chen et al., 2023) 15
GraphGPS (Rampášek et al., 2022) 10
SAN (Kreuzer et al., 2021) 10
GT (Dwivedi & Bresson, 2020) 10
UGT (Lee et al., 2024) 10
Exphormer (Shirzad et al., 2023) 10

To better understand the typical frequency truncation choices in existing graph transformer models,
we compile representative values of the maximum number of Laplacian eigenvectors (k) used across
a range of published works. As shown in Table 7, most methods restrict k to a small number—often
below 16—reinforcing the low-pass inductive bias observed in current practice.
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C PROOFS

C.1 PROOF FOR LEMMA 3.1

Proof. Given a data matrix X ∈ Rn×d and the minimization problem:

min
A,WC

Lclass(A,WC), (6)

our goal is to characterize the associated latents Z∗ := A∗X of an optimal solution (A∗,W ∗
C).

Let (A,WC) be an arbitrary candidate solution to the minimization problem (6) and define the
resulting latents Z := AX consisting of rows zi ∈ Rd. Let Y ∈ {0, 1}n×c denote the one-hot class
indicator matrix, yi denote the class index of node i, and nj is the number of points in class j. First
we write the cross entropy classification objective:

Lclass(A,WC) =

n∑
i=1

ℓ (WCzi, yi) , (7)

with ℓ(u, yi) = −uyi
+log

∑c
j=1 e

uj for any predicted logits u ∈ Rc. We note that ℓ(·, yi) is convex
in u.

Now define the jth-class mean-latent:

zj :=
1

nj

∑
i:yi=j

zi. ∀ j ∈ {1 . . . c} (8)

By Jensen’s inequality, since ℓ is convex and z 7→WCz is linear, we have

1

nj

∑
i:yi=j

ℓ (WCzi, yi) ≥ ℓ

WC

 1

nj

∑
i:yi=j

zi

 , yi

 ∀ j ∈ {1 . . . c}

≜ ℓ (WCzj , yi) , (9)

i.e. ∑
i:yi=j

ℓ(WCzi, yi) ≥ njℓ (WCzj , yi) . ∀ j ∈ {1 . . . c} (10)

Hence, if we define Z∗ as the latent matrix with every row z∗i set to zyi , then we have for any WC :

Lclass(Z
∗,WC) ≤ Lclass(Z,WC). (11)

In particular, if we minimize over all WC , we have:

min
WC

Lclass(Z
∗,WC) ≤ min

WC

Lclass(Z,WC). (12)

Thus, from any (approximately) optimal Z we can construct a collapsed Z∗ (with z∗i := zyi
) that is

at least as good as Z. This relationship holds for any WC , therefore after solving the minimization
problem in Equation (6) we obtain a global minimizer (A∗,W ∗

C) with:

A∗X ≜ Z∗ = YMZ (13)

where MZ ∈ Rc×d is the matrix of class mean-latents with rows zj ∈ Rd.

C.2 PROOF FOR THEOREM 3.1

Proof. Given X and Y defined as in the proof from Appendix C.1, assume a mixture model for the
data matrix:

X = YMX + σN (14)
where MX ∈ Rc×d is a matrix of class-means, σ > 0 denotes noise variance, and N denotes isotropic
zero-mean noise with E[NNT ] = dIn.

Consider the noise-averaged surrogate objective defined in Equation (4):

min
A
Lattn(A) = EN

[
∥AX − YMZ∥2F

]
(15)
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where MZ ∈ Rc×d is the class mean-latent matrix as defined in Lemma 3.1 and Appendix C.1. We
shall omit the N subscript from EN for notational convenience. The purpose of the surrogate loss is
to probe the structure of an attention matrix that attempts to solves the classification problem defined
in Equation (12).

Assume Y is defined such that the classes are balanced, i.e. Y ⊤Y = n
c Ic. Then define the orthogonal

projector onto col(Y ):
P := Y (Y ⊤Y )−1Y ⊤ =

c

n
Y Y ⊤ (16)

Note that P is symmetric and idempotent. Our goal is to reveal class-wise block structure of attention
matrices that minimize the surrogate objective.

First, let the attention A ∈ Rn×n be arbitrary. Since YMZ ∈ col(Y ) = range(P ), we have the
orthogonal decomposition:

∥AX − YMZ∥2F = ∥P (AX − YMZ) + (In − P )(AX − YMZ)∥2F
= ∥P (AX − YMZ)∥2F + ∥(In − P )AX∥2F (17)

Now define Ã := PA and notice that, by idempotency of P , the first term in the decomposition stays
the same while the second term vanishes. Hence, we have:

∥∥∥ÃX − YMZ

∥∥∥2
F
= ∥P (AX − YMZ)∥2F ≤ ∥AX − YMZ∥2F (18)

Thus, since the inequality is preserved under expectation, we have Lattn(PA) ≤ Lattn(A) for all
A. In particular, given a minimizer A◦ of Lattn, we have Lattn(PA◦) = Lattn(A

◦). But then by the
decomposition, we know that

0 = E
[
∥(In − P )A◦X∥2F

]
≥ σ2d ∥(In − P )A◦∥2F (19)

using the data model assumption X = YMX + σN . Hence, we have PA◦ = A◦.

Similarly, for any A, we can again using the data model assumption to expand the surrogate loss:

Lattn(A) = ∥AYMX − YMZ∥2F + σ2d ∥A∥2F (20)
By definition of P , since YMX ∈ col(Y ), we have PYMX = YMX , i.e. the signal term stays
the same if we make the substitution Ã := AP . Hence, by idempotency of P (and consequently
idempotency of In − P ),

Lattn(A)− Lattn(AP ) = σ2d
(
∥A∥2F − ∥AP∥2F

)
= σ2d

(
tr(AA⊤)− tr(APA⊤)

)
= σ2d

(
tr(A(In − P )A⊤)

)
= σ2d ∥A(In − P )∥2F ≥ 0 (21)

Again, if we take a minimizer A◦ of Lattn, then this tells us that Lattn(A
◦) = Lattn(A

◦P ), i.e.
∥A◦(In − P )∥F = 0, i.e. A◦ = A◦P .

Combining the results so far, we can conclude that any minimizer A◦ admits the representation
A◦ = PA◦P

= YM◦
AY

⊤ (22)

with M◦
A := c2

n2 (Y
⊤AY ). Since we know a minimizer will admit such a representation, we can

restrict the surrogate loss in terms of the kernel matrix MA:

Lattn(YMAY
⊤) = E

[∥∥YMAY
⊤(YMX + σN)− YMZ

∥∥2
F

]
=

∥∥∥Y (n
c
MAMX −MZ

)∥∥∥2
F
+ σ2E

[∥∥YMAY
⊤N

∥∥2
F

]
=

n

c

∥∥∥n
c
MAMX −MZ

∥∥∥2
F
+

σ2n2d

c2
∥MA∥2F (23)
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Lastly, we show that M◦
A := c

nMZM
⊤
X (MXM⊤

X + c
nσ

2dIc)
−1 yields a closed-form minimizer for

the surrogate loss, and it is in fact the unique minimizer. To do so, consider another candidate solution
specified by MA := M◦

A +∆. We expand the loss:

Lattn
(
YMAY

⊤) = n

c

∥∥∥n
c
M◦

AMX −MZ +
n

c
∆MX

∥∥∥2
F
+

σ2n2d

c2
∥M◦

A +∆∥2F

= Lattn
(
YM◦

AY
⊤)+ n

c

∥∥∥n
c
∆MX

∥∥∥2
F
+

σ2n2d

c2
∥∆∥2F + 2R(∆) (24)

whereR(∆) is given by:

R(∆) =
n

c

〈n
c
∆MX ,

n

c
M◦

AMX −MZ

〉
F
+

σ2n2d

c2
⟨∆,M◦

A⟩F

=
n2

c2

[〈
∆,

(n
c
M◦

AMX −MZ

)
M⊤

X + σ2dM◦
A

〉
F

]
(25)

We can expand the right term in the Frobenius inner product using the proposed solution M◦
A:

(n
c
M◦

AMX −MZ

)
M⊤

X + σ2dM◦
A

= MZM
⊤
X

(
MXM⊤

X +
c

n
σ2dIc

)−1

MXM⊤
X +

c

n
σ2dMZM

⊤
X

(
MXM⊤

X +
c

n
σ2dIc

)−1

−MZM
⊤
X

= MZM
⊤
X

(
MXM⊤

X +
c

n
σ2dIc

)−1 (
MXM⊤

X +
c

n
σ2dIc

)
−MXM⊤

X

= MZ(M
⊤
X −M⊤

X )

= 0 (26)

Hence,R(∆) = 0, i.e. Lattn(YMAY
⊤) ≤ Lattn(YM◦

AY
⊤) with equality iff ∆ = 0. Indeed, M◦

A is
the unique solution.

C.3 PROOF FOR THEOREM 3.2

Proof. To reiterate the setup, we consider the simplified linear attention formulation using only
positional encodings, as in Equation (5). Let V denote the Laplacian eigenvectors and H ∈ {0, 1}n×k

denote an eigenvector selection matrix s.t. Hij = 1 iff eigenvector i is selected at position j. Define
the diagonal 0/1 projector H̃ := HH⊤, with H̃ii = 1 iff eigenvector i was selected, and set
Xpos := V H in the formulation. Then define the error functional over all M ∈ Rc×c within the unit
ball ∥M∥2 ≤ 1:

Φ(H̃) := sup
∥M∥2≤1

min
W

∥∥XposWX⊤
pos − YMY ⊤∥∥

F

= sup
∥M∥2≤1

min
W
∥V HWH⊤V ⊤ − YMY ⊤∥F . (27)

The error functional defines the quality of an approximation of the block-structured representation
YMY ⊤, uniformly across all kernels M . Our goal is to provide a uniform error bound for this
functional.

We first observe that since eigenvectors are chosen without replacement, V H will have full column
rank. Hence, the inner optimization problem is a well-defined classical linear least squares problem
that can be solved exactly for W :

W ∗(H̃) := H⊤V ⊤YMY ⊤V H. (28)
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Hence, the functional becomes:

Φ(H̃) = sup
∥M∥2≤1

∥V HH⊤V ⊤YMY ⊤V HH⊤V ⊤ − YMY ⊤∥F

= sup
∥M∥2≤1

∥H̃V ⊤YMY ⊤V H̃ − V ⊤YMY ⊤V ∥F

= sup
∥M∥2≤1

∥H̃V ⊤YM(H̃V ⊤Y )⊤ − V ⊤YMY ⊤V ∥F (29)

since H̃ is symmetric. Define the residual E := (In − H̃)V ⊤Y . Then we can rewrite the inner norm
and bound it:

∥H̃V ⊤YM(H̃V ⊤Y )⊤ − V ⊤YMY ⊤V ∥F = ∥(V ⊤Y − E)M(V ⊤Y − E)⊤ − V ⊤YMY ⊤V ∥F
= ∥EMY ⊤V + V ⊤YME⊤ − EME⊤∥F
≤ ∥M∥2

(
2∥E∥F ∥V ⊤Y ∥F + ∥E∥2F

)
≤ ∥M∥2

(
2
√
n∥E∥F + ∥E∥2F

)
(30)

since V is orthonormal. Hence, within the unit ball ∥M∥2 ≤ 1, we have the upper bound:

∥H̃V ⊤YM(H̃V ⊤Y )⊤ − V ⊤YMY ⊤V ∥F ≤ 2
√
n∥E∥F + ∥E∥2F . (31)

By definition, we have:

Φ(H̃) ≤ 2
√
n∥E∥F + ∥E∥2F . (32)

Thus, ∥E∥F gives us uniform control over the upper error bound of the given H̃ over all ∥M∥2 ≤ 1.

C.4 PROOF FOR COROLLARY 3.2.1

Proof. Following the conclusion of Theorem 3.2, we showed that the uniform error bound for
attention approximation is controlled by the residual ∥E∥F , where E := (I − H̃)V ⊤Y . To minimize
∥E∥F , we first observe that:

∥E∥2F ≜
n∑

i=1

(
1− H̃ii

)
∥V ⊤

i Y ∥22 (33)

where H̃ii indicates whether or not eigenvector i was included, and si := ∥V ⊤
i Y ∥22 is the ℓ2-norm

of the ith row of V ⊤Y . Thus, to minimize ∥E∥F , we should include eigenvectors corresponding to
the k largest si’s (in terms of spectral-energy ||si||22), i.e. the optimal selector H̃∗ that minimizes the
upper error bound is exactly the one based on the top k indices of the si’s.

D BASELINE SOURCES

D.1 HETEROPHILIC DATASETS

We use five real-world datasets with graphs that have a homophily level ≤ 0.30: Actor (Pei et al.,
2020), Chameleon and Squirrel (Rozemberczki et al., 2021), as well as Ratings and Tolokers (Platonov
et al., 2023). Key statistics for these datasets are listed in Table 8. We follow the experimental setup
in (Pei et al., 2020) for Actor, Chameleon, and Squirrel, and for Ratings and Tolokers, we adopt the
setup described in (Platonov et al., 2023), using the 10 train/validation/test splits provided.

The results for GCN-based methods and heterophily-based methods in Table 8 for Actor, Chameleon,
and Squirrel have been sourced from (Azabou et al., 2023). Similarly, results for Ratings and Tolokers
are sourced from (Platonov et al., 2023), while results for transformer-based methods across all
datasets are obtained from (Shirzad et al., 2024).
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Table 8: Statistics of heterophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

CHAMELEON 2,277 31,421 5 0.23
SQUIRREL 5,201 198,493 5 0.22
TOLOKERS 11,758 519,000 2 0.09
RATINGS 244,92 39,402 5 0.14

Table 9: Statistics of homophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

PHYSICS 34,493 495,924 5 0.92
CS 18,333 81,894 15 0.83
PHOTO 7,650 238,162 8 0.84
COMPUTERS 13,752 491,722 10 0.79
WIKICS 11,701 216,123 10 0.66
OGBN-ARXIV 169,343 1,166,243 40 0.65

D.2 HOMOPHILIC DATASETS

We use five real-world datasets: Amazon Computers and Amazon Photos (McAuley et al., 2015),
Coauthor CS and Coauthor Physics (Sinha et al., 2015), and WikiCS (Mernyei & Cangea, 2022).
Key statistics for these datasets are listed in Table 9. The experimental setup follows that of (Shirzad
et al., 2024), where the datasets are split into development and test sets. All hyperparameter tuning is
performed on the development set, and the best models are subsequently evaluated on the test set.

We use a 60:20:20 train/validation/test split for the Amazon and Coauthor datasets. The results
reported for all datasets in Table 2 are sourced from (Shirzad et al., 2024).

D.3 LONG RANGE BENCHMARK DATASETS

To evaluate the ability of models to capture long-range dependencies, we use the City-Networks
benchmark (Liang et al., 2025), which consists of large-scale road network graphs derived from
OpenStreetMap data. We focus on two representative cities—Paris and Shanghai—which feature
grid-like topology, low clustering coefficients, and large diameters. These characteristics make them
particularly well-suited for studying long-range signal propagation. Key statistics for these datasets
are provided in Table 10.

Following the experimental protocol in (Liang et al., 2025), we perform transductive node classifica-
tion using a 10:10:80 train/validation/test split. The node labels are defined by eccentricity-based
quantiles, ensuring that the task inherently depends on information from distant nodes.

Table 10: Statistics of City-Networks datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

PARIS 114,127 182,511 10 0.70
SHANGHAI 183,917 262,092 10 0.75

D.4 BASELINE MODEL PERFORMANCE ACROSS DATASETS FROM EXISTING LITERATURE

The previously reported performance of baseline models (GT, GraphGPS, and NAGphormer) on
multiple graph datasets is summarized in Table 11. The reported values, sourced from existing
literature.
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Table 11: Performance across datasets for GT, GraphGPS, and NAGphormer models previously
reported in existing literature.

Dataset GT GraphGPS NAGphormer

Chameleon - 40.79 ± 4.03 -
Squirrel - 39.67 ± 2.84 -
Tolokers - 83.71 ± 0.48 78.32 ± 0.95
Ratings - 53.10 ± 0.42 51.26 ± 0.72

Physics 97.05 ± 0.05 97.12 ± 0.19 97.34 ± 0.03
CS 94.64 ± 0.13 93.93 ± 0.12 95.75 ± 0.09
Photo 94.74 ± 0.13 95.06 ± 0.13 95.49 ± 0.11
Computers 91.18 ± 0.17 91.19 ± 0.54 91.22 ± 0.14
WikiCS - 78.66 ± 0.49 77.16 ± 0.72
Arxiv - 70.97 ± 0.41 70.13 ± 0.55

E ADDITIONAL TRAINING DETAILS

Optimizer. We use the AdamW optimizer (Loshchilov & Hutter, 2019) for all runs, and fixed the
number of epochs to 200. We additionally employ the linear-warmup-cosine-decay learning rate
schedule. Linear rate warmup happens over 10 epochs (fixed), and cosine decay happens over the
remaining 190 epochs (also fixed). All other hyperparameters are chosen by the tuning algorithm
explained below.

Hyperparameter tuning. We optimize hyperparameters using the Tree-structured Parzen Estimator
(TPE) algorithm (Bergstra et al., 2011), as implemented in Optuna (Akiba et al., 2019). The complete
hyperparameter space used in our experiments is detailed in Table 12. The number of tuning trials is
adjusted based on the size of each dataset: for graphs with up to 7,500 nodes, we perform 300 tuning
trials; for graphs with up to 15,000 nodes, we allow 200 trials; and for larger graphs, we limit the
number of trials to 100. Performing complete hyperparameter tuning, on a machine with 4 × NVidia
L40S GPUs takes 2-4 hours depending on the size of the dataset. Hyperparameters are selected
based on validation-set performance, and all reported results correspond to test-set performance using
the best configurations found. The scripts used for hyperparameter tuning are also included in our
codebase.

F LLM USAGE DISCLOSURE

We used LLMs solely for the purpose of editing and polishing the paper.
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Table 12: Complete hyperparameter search space for all model variants presented in this paper.

HYPERPARAMETER SEARCH SPACE SAMPLING TYPE

COMMON PARAMETERS

LEARNING RATE [10−4 , 10−1] LOGARITHMIC
WEIGHT DECAY [10−7 , 10−2] LOGARITHMIC
DROPOUT [0, 0.5] LINEAR
ATTENTION DROPOUT [0, 0.5] LINEAR
WINDOW LENGTH {256, 512, 1024, 2048, 4096}
TRANSFORMER DEPTH {1, 2, . . . , 8} LINEAR
NUMBER OF ATTENTION HEADS {0, 1, 2, 4, 8}
COMMON FOR GTBTS /NAGPHORMERBTS /GRAPHGPSBTS

NUMBER OF EIGENVECTORS (K) {4, 8, 16, . . . , 1024}
POS. FEATURE ENCODER - OUTPUT DIMENSION {8, 16, 32, 64, 128}
POS. FEATURE ENCODER - HIDDEN DIMENSION {16, 32, 64, . . . , 2048}
POS. FEATURE ENCODER - # HIDDEN LAYERS {1, 2, 3, 4}
NODE FEATURE ENCODER - OUTPUT DIMENSION {8, 16, 32, 64, 128}
NODE FEATURE ENCODER - HIDDEN DIMENSION {16, 32, 64, 128}
NODE FEATURE ENCODER - # HIDDEN LAYERS {1}
SPECIFIC FOR GT
NUMBER OF EIGENVECTORS (K) {4, 8, 16}
TOKEN DIMENSION {64, 128, 256, 512}
SPECIFIC FOR NAGPHORMER

NUMBER OF EIGENVECTORS (K) {4, 8, 16}
TOKEN DIMENSION {64, 128, 256, 512}
NUMBER OF HOPS (SAME FOR NAGPHORMERBTS) {1, 2, 3, . . . , 20}
SPECIFIC FOR GRAPHGPS
NUMBER OF EIGENVECTORS (K) {4, 8, 16}
LPE - NUMBER OF LAYERS {1, 2, 3, . . . , 8}
LPE - NUMBER OF POST-LAYERS {0, 1, 2, 3, 4}
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