
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHICH EIGENVECTORS DO GRAPH TRANSFORMERS
NEED FOR NODE CLASSIFICATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph transformers have emerged as powerful tools for modeling complex graph-
structured data, offering the ability to capture long-range dependencies beyond the
graph adjacency. Yet their performance on node classification often lags behind
that of message passing and spectral graph networks. Unlike these methods, graph
transformers require explicit positional encodings to inject structural information,
which are most commonly derived from the eigenvectors of the graph Laplacian.
Existing methods select eigenvectors using data-agnostic heuristics, assuming one-
size-fits-all rules suffice. In contrast, we show that the spectral distribution of class
information is graph-specific. To address this, we introduce Broaden the Spectrum
(BTS), a novel, intuitive, and data-driven algorithm for selecting subsets of Lapla-
cian eigenvectors for node classification. Our method is grounded in theory: we
characterize the structure of optimal attention matrices for classification and show,
in a simplified setting, how BTS naturally emerges as the eigenvector selection
rule for achieving such attention matrices. When evaluated with standard graph
transformer architectures, it delivers substantial performance gains across a wide
range of node classification benchmarks. Our work shows that the performance
of graph transformers on node classification has been held back by the choice of
positional encodings and can be improved by employing a broader, well-chosen set
of Laplacian eigenvectors.

1 INTRODUCTION

Graph transformers provide a flexible framework for modeling graph-structured data, with global
receptive fields that can capture interactions beyond the reach of local message passing (Hoang et al.,
2024). This flexibility has made them appealing for graph-level tasks such as molecular property
prediction and long-range dependency modeling, where message-passing Graph Neural Networks
(GNNs) often struggle with phenomena like oversquashing and oversmoothing (Topping et al., 2022;
Rusch et al., 2023). Yet their performance on node classification has often lagged behind both
message-passing and spectral methods (Luo et al., 2024; Bo et al., 2023).

A central reason for this lack of performance in node-classification tasks lies in how transformers
incorporate information about the graph topology. Unlike message-passing networks, which prop-
agate information directly along edges, transformers rely on positional encodings (PEs) to inject
structural information. In practice, these encodings are commonly derived from the graph’s Laplacian
eigenvectors (Hoang et al., 2024; Dwivedi & Bresson, 2020), which most models truncate to a few
lowest-frequency components (see Table 7 in Appendix B). While this low-frequency truncation
heuristic works well for some homophilic graphs, it does not account for the fact that class-relevant
information can appear in very different parts of the spectrum depending on the dataset. Heuristics
such as fixed low-high splits in Kim et al. (2022) suggest that including a broader spectrum can help,
but their effectiveness varies on the nature of the graphs themselves.

Crucially, these heuristics are data-agnostic. In contrast, the spectral GNN literature has demonstrated
the advantages of adaptive frequency selection, combining high- and low-frequency operations based
on the task (Sun et al., 2022; Bo et al., 2021; Dong et al., 2021). This motivates the need for adaptive
methods that select graph transformer positional encodings in a task-aware manner, rather than relying
on one-size-fits-all rules.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address this, we introduce Broaden the Spectrum (BTS), a simple, data-driven, and theoretically
grounded approach for selecting Laplacian eigenvectors in graph transformers. BTS identifies the
parts of the spectrum that are most aligned with class information and uses them as positional
encodings. Empirically, BTS yields consistent gains across homophilic, heterophilic, and long-range
benchmarks. On challenging heterophilic datasets such as Chameleon and Squirrel, even a simple
transformer backbone equipped with BTS improves accuracy by more than 20%. More advanced
models such as NAGphormer (Chen et al., 2023) and GraphGPS (Rampášek et al., 2022) also see
substantial boosts when augmented with BTS, revealing the existence of performance bottlenecks
due to under-utilization of graph topology.

Our contributions are as follows:

• We introduce Broaden the Spectrum (BTS), a lightweight, architecture-agnostic, and data-
driven algorithm for selecting Laplacian eigenvectors as positional encodings specifically
for node classification.

• We provide a theoretical analysis of attention-based node classification in an illustrative
linear model, showing that the optimal attention matrix has a class-wise block structure. We
also derive the eigenvector selection criteria to achieve such optimal attention matrices.

• We demonstrate that including a broad and well-chosen spectrum of eigenvectors leads to
significant gains in node classification performance of existing graph transformers across a
wide range of benchmarks.

2 METHOD

Transformers are inherently permutation-invariant, which makes positional information essential
to break symmetry and provide meaningful structure to the model. For graphs, Laplacian position
encodings (LPE) have been identified by prior work (Dwivedi & Bresson, 2020; Hoang et al., 2024)
to be effective, and are a natural extension of the Fourier basis used in other sequence modeling
domains (Vaswani et al., 2017; Dosovitskiy et al., 2021; Nie et al., 2023). More formally, we define
the LPE as follows.

Definition 2.1 (Laplacian Position Encodings). Let G = (V, E) be a graph with |V| = n nodes, adja-
cency matrix A, and degree matrix D. The normalized graph Laplacian is L = I −D−1/2AD−1/2.
Let L = V ΛV ⊤ be its eigendecomposition with eigenvalues ordered as λ1 ≤ · · · ≤ λn. The
Laplacian positional encodings are defined as Xpos ∈ Rn×k formed by selecting any k Laplacian
eigenvectors.

2.1 CLASS-LABEL ENERGY SPECTRAL DENSITY

When using LPEs, there is a critical design choice to be made: which subset of eigenvectors should be
used? The prevailing practice is to use fixed heuristics, such as using the first k eigenvectors (Dwivedi
& Bresson, 2020; Chen et al., 2023; Rampášek et al., 2022; Kreuzer et al., 2021; Hoang et al., 2024),
or using an equal number of low- and high-frequency1 components (Kim et al., 2022). However,
Spectral GNN literature has shown the benefit of adaptively performing high- and low-frequency
operations (Sun et al., 2022; Bo et al., 2021; Dong et al., 2021). Motivated by these works, we
have developed a theoretically grounded method for adaptively selecting frequency components in a
data-driven manner. Intuitively, our method involves finding eigenvectors that are most aligned with
the class labels, which we characterize in terms of energy spectral density, defined as follows:

Definition 2.2 (Energy Spectral Density (ESD) of class-labels). Given the orthonormal Laplacian
eigenvectors V ∈ Rn×n, a one-hot class-indicator matrix Y ∈ {0, 1}n×c, and let Vi denote the ith

column of V . We define the class label ESD of the class-labels:

ESDi =
∥V ⊤

i Y ∥22∑n
j=1 ∥V ⊤

j Y ∥22
, i = 1, . . . , n

1Eigenvectors associated with small eigenvalues vary slowly across the graph, capturing “low-frequency”
global variations, while eigenvectors corresponding to large eigenvalues vary rapidly, encoding “high-frequency”
signals that change significantly across neighboring nodes (Shuman et al., 2013; Ortega et al., 2018).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Energy spectral density (ESD) of the class labels across the Laplacian spectrum for real-world
graphs. Peaks in mid- and high-frequency regions indicate that class-relevant signals are not confined to the low
end of the spectrum.

Here, ESDi measures the proportion of label energy aligned with eigenvector Vi. In Section 3, we
show using our theoretical framework that choosing the eigenvectors with the highest ESD leads to
desirable attention matrices with a class-aligned structure. Thus we rank eigenvectors by their ESD,
providing a data-driven approach for efficiently utilizing the graph spectrum as positional encodings.

ESD reveals limitations of data-agnostic selection heuristics. Figure 1 reveals that label energy
can appear in different regions of the spectrum: sometimes concentrated at low frequencies, sometimes
at high frequencies, and often distributed heterogeneously. A key limitation of current eigenvector
selection strategies is that they are data-agnostic, relying on fixed rules such as truncating to the
lowest modes, enforcing symmetric low–high splits, or sampling at random. Because no single band
is universally optimal for all graphs, such heuristics yield positional encodings that are misaligned
with the task, limiting the effectiveness of graph transformers.

2.2 BROADEN THE SPECTRUM (BTS)

To overcome this limitation, we introduce Broaden the Spectrum (BTS), a principled algorithm for
selecting eigenvectors that are most informative for node classification. Rather than assuming that
useful signal lies in a particular band of frequencies, we measure the alignment between eigenvectors
and class labels, and select those with the highest label ESD. This simple yet powerful idea reframes
positional encodings as a learned spectral alignment problem, bridging the gap between graph signal
processing and transformer-based architectures.

Given a budget of k eigenvectors, BTS selects the top-k eigenvectors with the highest label ESD. This
broadens the usable spectrum to include whichever eigenvectors carry discriminative signal, rather
than assuming they reside at the bottom/top of the spectrum. Importantly, this selection is computed
only from training labels, and we employ boxcar smoothing to mitigate noise. (Algorithm 1)

2.3 ARCHITECTURAL MODIFICATIONS

When expanding the spectrum of LPEs used in transformer models, we found it critical to incorporate
a slight modification to the input encoder design. The selected eigenvectors Xpos, along with the node
features Xnode are passed through two independent MLPs, followed by concatenation to form the
transformer’s input tokens:

YGT∗ = Transformer ([MLPn(Xnode);MLPp(norm(Xpos))])Wout (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Pseudocode for BTS eigenvector selection
Input: Laplacian eigenvectors V ∈ Rn×n,

Training node indices Itrain, training labels Ytrain ∈ {0, 1}ntrain×c,
Number of eigenvectors to choose k, Smoothing window size w

Output: Indices Ik of selected eigenvectors

1: Vtrain ← V [Itrain] ▷ Restrict to training nodes
2: Ỹtrain ← V ⊤

trainYtrain ▷ Graph Fourier transform
3: for i = 1 to N do ▷ Compute energy spectrum
4: Ei ← ∥Ỹtrain,i∥22
5: ESD← E/

∑N
i=1 Ei ▷ Normalize energy

6: ESD← BoxcarSmooth(ESD, w) ▷ Smooth with window-size w
7: return TopK(ESD, k) ▷ Return top-k ESD indices

Here, norm(·) denotes row-wise ℓ2 normalization. As we show in Section 4.3, this simple modifi-
cation significantly improves performance when we increase the amount of selected eigenvectors.
Normalization is critical here because the scale of Laplacian eigenvector elements is ∼1/n, which
quickly vanishes for reasonably sized graphs. Meanwhile, independent MLPs provide a more
expressive mapping from raw inputs to transformer-compatible tokens.

3 THEORETICAL ANALYSIS

Having introduced BTS, we now present its theoretical foundations. Positional encodings play a
crucial role in shaping the attention matrices of a transformer. This motivates us to break the problem
of finding a good LPE subset into two steps: (i) we first show, through an illustrative linear model, that
the optimal attention matrix for node classification has a class-wise block structure (Section 3.1), and
(ii) we find that the Laplacian eigenvectors needed to be able to approximate such a block structure
are exactly the ones as described by our label-ESD-based criteria. (Section 3.2)

3.1 UNDERSTANDING OPTIMAL ATTENTION MATRICES FOR NODE CLASSIFICATION

Given a data matrix X ∈ Rn×d, the attention operation is defined as:

Attn(X) = softmax(XW⊤
QWKX⊤)XW⊤

V , (2)
for some learnable weights WQ, WK , and WV . Here, the attention score matrix,
softmax(XWQW

⊤
KX), is constrained by the softmax operator and the dependence on X . We

lift these constraints, simplifying the softmax-attention operation into a linear one, and ask:

Q1. What form should a general attention matrix A ∈ Rn×n take so that the resulting latents
Z := AX are most easily classifiable?

We assume a single-layer setting with a linear classifier. Given c classes, let Y ∈ {0, 1}n×c be the
one-hot class assignment matrix with Yij = 1 if node i belongs to class j and zero otherwise. The
classification objective is:

Lclass(A,WC) = CrossEntropy(AXW⊤
C | Y), (3)

where WC ∈ Rc×d are classifier weights. We assume a mixture model X = YMX + σN for class-
means MX ∈ Rc×d, noise variance σ > 0, and isotropic zero-mean noise N with E[NN⊤] = dIn
We also assume balanced classes.

We first simplify the loss formulation through the following structural lemma:

Lemma 3.1. There exists a global minimizer (A∗,W ∗
C) of Equation (3) such that all samples

from the same class are mapped to the same latent, i.e.

A∗X = YMZ for some MZ ∈ Rc×d.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Optimal Attention Matrices for Node Classification. We find the minimizer for Lclass (Equation (3))
on 2 dimensional Guassian mixture model data with 5 classes. The resulting latents and attention matrix are
plotted. Upon arranging the nodes based on their class index, we observe that the corresponding optimal attention
matrix, A∗ has an approximate class-wise block-structure of a form as predicted in A◦.

Intuitively, Lemma 3.1 (see Appendix C.1 for proof) shows that the optimal attention A∗ clusters
latents by class. Our goal is to probe the structure of such an A∗, and therefore, we study the surrogate
objective:

A◦ = argmin
A

EN

[
∥AX − YMZ∥2F

]
, (4)

which leads to the following:

Theorem 3.1 (Optimal attention has class-wise block structure). Suppose X = YMX +σN as
above with balanced classes. Then every minimizer A◦ of Equation (4) admits the representation

A◦ = YM◦
AY

⊤, for some M◦
A ∈ Rc×c.

That is, A◦
ij depends only on class memberships of nodes i and j. Theorem 3.1 (proof in Ap-

pendix C.2) formalizes the intuition that the best attention matrix acts as a block matrix over classes,
ignoring within-class differences. Simulations confirm that empirical minimizers of Equation (3)
indeed exhibit this block structure (Figure 2).

3.2 EIGENVECTOR SUBSETS FOR APPROXIMATING BLOCK ATTENTION

We now connect the block-structured optimal attention to spectral encodings. Consider a simplified
linear attention formulation using only positional encodings:

A = XposWX⊤
pos (5)

where W is a learnable full-rank matrix. Our next goal is to understand:

Q2. Which eigenvectors allow the best approximation of the block-structured optimum
A◦ = YMY ⊤, uniformly for any M ∈ Rc×c?

Essentially, our goal is to find a k-sized subset of eigenvectors so as to best approximate A ≈ YMY ⊤

uniformly for any M ∈ Rc×c. The following theorem gives a sufficient criterion as a corollary:

Theorem 3.2 (Uniform error bound for attention approximation). Let V denote the Laplacian
eigenvectors and H ∈ {0, 1}n×k denote an eigenvector selection matrix s.t. Hij = 1 iff
eigenvector i is selected at position j. Define the diagonal 0/1 projector H̃ := HH⊤, with
H̃ii = 1 iff eigenvector i was selected. Set Xpos = V H in Equation (5). Then the uniform (in
M) error functional:

Φ(H̃) := sup
∥M∥2≤1

min
W

∥∥XposWX⊤
pos − YMY ⊤∥∥

F

is bounded by the residual E := (I − H̃)V ⊤Y :

Φ(H̃) ≤ 2
√
n∥E∥F + ∥E∥2F .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 3.2 (see Appendix C.3 for proof) shows that the quality of approximation is controlled
entirely by the residual ∥E∥F , i.e., how well the selected eigenvectors capture the class-indicator
matrix Y . In other words, the smaller the projection error of Y , the closer the resulting attention
matrix is to the block-structured optimum. This is exactly what is minimized by the class-label ESD
based ranking described in our method Section 2.2, leading to the following corollary.

Corollary 3.2.1 (Class-label ESD based eigenvector selection). Among all k-sized eigenvector
subsets, the selector that chooses the k eigenvectors with the largest label spectral-energy
∥V ⊤

i Y ∥22 minimizes the bound in Theorem 3.2.

Corollary 3.2.1 (see Appendix C.4 for proof) tells us that our label-ESD based eigenvector selection
criteria would lead to class-wise block-structured attention matrices, which we have identified to be
desirable in Section 3.1. Moreover, in Section 4.2, we empirically validate this prediction and show
that models trained with BTS produce attention matrices with stronger class-wise block structure.

4 RESULTS

In this section, we evaluate our approach on a diverse set of node classification benchmarks, analyzing
its effectiveness across three established graph transformer architectures. Our evaluation focuses on
measuring improvements in classification performance and understanding how spectral information
is utilized.

Experimental setup. We evaluate our approach on homophilic, heterophilic, and long-range
datasets (see Appendix D for details), using three standard graph transformer backbones: GT,
NAGphormer, and GraphGPS. GT (Dwivedi & Bresson, 2020) is a direct application of transformers
to graphs. NAGphormer (Chen et al., 2023) restricts attention to K-hop neighborhoods using a
normalized adjacency matrix. GraphGPS (Rampášek et al., 2022) combines message passing with
transformer-based global attention and uses LPE for positional encoding.

We use the subscript BTS to denote models tuned and trained with our ESD-based eigenvector
selection approach (Section 2), as well as the input encoder modifications (Section 2.3), with k ≤
8192.2 Models without the subscript follow standard truncation to the k ≤ 16 lowest eigenvectors,
(Table 7). For fairness, we also expand the GT baseline to broad spectrum setting (Section 4.3), and
show that expansion alone provides little benefit without encoder modifications. Full training and
hyperparameter details are given in Appendix E.

Table 1: Node classification performance on heterophilic benchmarks. Performance numbers for GT/GTBTS,
NAGphormer/NAGphormerBTS, and GraphGPS/GraphGPSBTS were (re-)produced with our consistent experi-
mental setup. Performance for other models are reported from existing literature. “-” indicates absence of a
particular evaluation in existing literature. The top-1st, top-2nd, and top-3rd results are highlighted.

Model Chameleon Squirrel Tolokers Ratings
Accuracy ↑ Accuracy ↑ AU-ROC ↑ Accuracy ↑

GCN 38.44± 1.92 31.52± 0.71 83.64± 0.67 48.70± 0.63

GraphSAGE 58.73± 1.68 41.61± 0.74 82.43± 0.44 53.63± 0.39

GAT 48.36± 1.58 36.77± 1.68 83.70± 0.47 49.09± 0.63

NodeFormer 36.38± 3.85 38.89± 2.67 78.10± 1.03 43.79 ± 0.57

SGFormer 45.21± 3.72 42.65± 4.21 - 54.14± 0.62

Exphormer - - 83.53± 0.28 50.48± 0.34

SpExphormer - - 83.34± 0.31 50.48± 0.34

GT 50.48± 2.08 34.70± 1.77 80.30± 0.91 49.02± 0.61

GTBTS 73.09± 1.00 +22.61↑ 65.06± 1.93 +30.36↑ 84.45± 0.66 +4.15↑ 50.37± 0.48 +1.35↑
NAGphormer 52.41± 2.21 40.21± 1.77 83.69± 0.86 50.16± 0.69

NAGphormerBTS 73.90± 1.68 +21.49↑ 65.04± 1.69 +24.83↑ 85.47± 0.72 +1.78↑ 49.65± 0.65 -0.51↓
GraphGPS 60.92± 2.54 43.43± 1.46 86.29± 0.68 50.19± 0.51

GraphGPSBTS 73.16± 1.70 +12.24↑ 65.87± 1.30 +22.44↑ 86.31± 0.63 +0.02↑ 51.33± 0.58 +1.14↑

2For graphs larger than 8192 nodes, we only compute the low and high 4096 eigenvectors.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Node classification accuracy (%) on homophilic benchmarks. Results for GraphGPS/GraphGPSBTS,
NAGphormer/NAGphormerBTS, and GT/GTBTS were (re-)produced with our consistent experimental setup.
Performance for other models are reported from existing literature. The top-1st, top-2nd, and top-3rd results are
highlighted.

Model Physics CS Photo Computers WikiCS ogbn-arXiv
Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

NodeFormer 96.45± 0.28 95.64± 0.22 93.46± 0.35 86.98± 0.62 74.73± 0.94 59.90± 0.42

SGFormer 96.60± 0.18 94.78± 0.34 95.10± 0.47 91.99± 0.70 73.46± 0.56 72.63± 0.13

Exphormer 96.89± 0.09 94.93± 0.01 95.35± 0.22 91.47± 0.17 78.19± 0.29 71.27± 0.27

SpExphormer 96.70± 0.05 95.00± 0.15 95.33± 0.49 91.09± 0.08 78.20± 0.14 70.82± 0.24

GT 96.02± 0.20 94.66± 0.44 91.59± 0.68 85.65± 0.59 72.91± 0.59 55.68 ± 0.39

GTBTS 96.90± 0.18 +0.88↑ 95.44± 0.33 +0.78↑ 95.95± 0.48 +4.36↑ 91.46± 0.51 +5.81↑ 78.94± 0.26 +6.03↑ 70.30 ± 0.12 +14.62↑
NAGphormer 96.98± 0.13 95.71± 0.26 95.51± 0.41 91.39± 0.41 78.73± 0.66 69.43 ± 0.32

NAGphormerBTS 97.05± 0.18 +0.07↑ 95.42± 0.39 -0.29↓ 95.90± 0.37 +0.39↑ 91.85± 0.44 +0.46↑ 79.42± 0.55 +0.69↑ 71.29± 0.13 +1.86↑
GraphGPS 97.13± 0.17 95.70± 0.38 95.35± 0.45 91.64± 0.46 77.67± 0.73 65.16 ± 1.45

GraphGPSBTS 97.21± 0.14 +0.08↑ 95.72± 0.37 +0.02↑ 95.87± 0.42 +0.52↑ 91.87± 0.45 +0.23↑ 79.47± 0.48 +1.80↑ 70.92± 0.33 +5.76↑

4.1 MAIN RESULTS

Results on heterophilic benchmarks. We find substantial improvements when using BTS on
heterophilic graphs (Table 1). For example, on Chameleon, performance improves by over 22%,
and on Squirrel, by over 30% when BTS-filtered eigenvectors are used with a simple transformer
architecture (GT). Remarkably, this brings the vanilla transformer architecture into close competition
with, and in some cases even surpassing, more complex graph transformer models proposed in recent
literature. To the best of our knowledge, the performance reported here for Chameleon, Squirrel, and
Tolokers represents the strongest results achieved by any graph transformer model to date.

These improvements can be understood through the lens of the class-label ESD. As shown in Figure 1,
graphs like Chameleon and Squirrel exhibit significant class energy in a broad set of low and high
frequency regions. These findings highlight that the historical reliance on low-frequency truncation
was a critical bottleneck, masking the true representational and generalization potential of graph
transformers.

Results on homophilic benchmarks. As shown in Table 2, BTS improves performance even on ho-
mophilic graphs. GTBTS achieves +5.8% on Computers, +6.0% on WikiCS, and +14.4% on ogbn-arXiv.
Gains for NAGphormer and GraphGPS are smaller but consistent. These results are expectedly more

Table 3: Node classification accuracy
(%) on Long Range Benchmarks The
top-1st, top-2nd, and top-3rd results
are highlighted.

Model Paris Shanghai

GCN 47.30± 0.20 52.40± 0.30

GraphSAGE 49.10± 0.60 60.40± 0.30

SGFormer 45.00± 0.20 53.5± 0.30

GT 15.46± 3.93 21.05± 0.51

GTBTS 53.79± 0.17 52.66± 0.83

∆ +38.33 ↑ +31.61 ↑
NAGphormer 25.26± 0.34 24.94± 0.28

NAGphormerBTS 53.68± 0.23 57.26± 0.34

∆ +28.42 ↑ +32.32 ↑
GraphGPS 28.99± 0.31 28.46± 0.31

GraphGPSBTS 54.12± 0.23 55.31± 0.33

∆ +25.13 ↑ +26.85 ↑

modest than in heterophilic settings, as the spectral energy of
class signals in many homophilic graphs is concentrated in low
frequencies. Still, BTS captures the broader spectrum whenever
useful, yielding robust improvements.

Results on long-range benchmarks. Graph transformers are
naturally suited for capturing long-range dependencies due to
their global attention mechanism. However, a number of recent
papers have shown that graph transformers suffer from overglob-
alization (Xing et al., 2024) and perform poorly on long-range
tasks. As shown in Table 3, our method achieves substantial
improvements on the long-range benchmark (Liang et al., 2025)
over baseline graph transformer architectures. These datasets ex-
hibit particularly strong gains when using BTS-selected features.
For instance, performance for GT on Paris improves by over
38%, and on Shanghai by 31%, bringing the vanilla transformer
model on par with strong baseline methods.

4.2 ATTENTION MATRICES

Our theoretical analysis (Section 3) predicts that the optimal attention matrix for node classification
should have a class-wise block structure and that using BTS-selected eigenvectors would lead to such
attention matrices. To validate this, we examine the attention matrices obtained after training. As
shown in Figure 3, models trained with BTS yield attention matrices that indeed display a substantially

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Attention matrices learned by vanilla GT and GTBTS on Chameleon (left) and Computers
(right). Incorporating BTS leads to clearer class-wise block structures, consistent with our theoretical prediction
that such attention patterns are optimal for node classification (Section 3.1). These attention matrices correspond
to the first head in the last layer, and no)es are sorted according to their classes.

stronger block-wise organization aligned with class partitions. Since BTS models perform better, this
also suggests that class-wise block structures are indeed desirable attention patterns.

4.3 ABLATIONS

We conduct ablation studies to isolate the contributions of two key factors: (i) the design of the
encoder that processes positional encodings, and (ii) the strategy used to select eigenvectors. Our
results show that architectural support is necessary to benefit from larger k, while principled selection
is essential for avoiding overfitting and consistently improving performance.

Spectral expansion and encoder design. The results in Table 4 indicate that expanding k (num.
of eigenvectors) beyond this range yields only marginal improvements without our input encoder
modifications. For example, with GT, Chameleon’s performance increases from 50.48% to 52.28%.
This partly explains why most approaches have restricted positional encodings to a small set of
low-frequency eigenvectors. However, we see substantial gains when the positional encodings are
normalized and processed with a MLP. With these modifications, performance improves to 67.83% on
Chameleon, and from 34.70% to 62.91% on Squirrel. This indicates that, while a broader spectrum
of eigenvectors provides useful signal, careful design of the encoder is needed to fully utilize them.

Table 4: Ablation of our encoder modifications. Increasing number of eigenvectors (k) beyond low
frequencies alone offers only marginal gains without our architectural modifications.

Position Encoder k Chameleon Squirrel WikiCS Computers

Baseline (linear) k ≤ 16 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

Baseline (linear) no-bound 52.28± 2.88 37.71± 1.79 73.75± 0.63 87.21± 0.55

Norm + Linear no-bound 65.07± 1.08 56.96± 1.23 77.67± 0.48 91.39± 0.40

Norm + MLP no-bound 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.66± 0.41

Eigenvector selection strategies. Next, we explore how different eigenvector selection heuristics
influence performance. Table 5 shows that simply using the full spectrum severely hurts generalization
due to overfitting, demonstrating that indiscriminate inclusion of all frequencies is detrimental. We
also tested four different selection heuristics: low-only, high-only, low+high, and low+medium+high,
each corresponding to retaining different bands of the spectrum. While all four of these heuristics
show improvements over baseline performance, we find that their effectiveness is not consistent across
datasets. For example, the best out of the four variants is high-only on both heterophilic datasets
(Chameleon, Squirrel) and low-only on homophilic datasets (WikiCS, Computers). In contrast, our
data-driven selection (BTS) consistently achieves the best results.

5 RELATED WORK

Graph Transformers and Positional Encodings. Graph Transformers (GTs) allow graph nodes to
interact globally via self-attention (Dwivedi & Bresson, 2020). Because self-attention is permutation-
invariant, GTs require positional encodings (PEs) to inject structural information. Laplacian eigen-
vectors have become a common choice (Hoang et al., 2024), providing a spectral basis that reflects

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Impact of different eigenvector selection strategies on the performance of GT∗. The top-1st, top-2nd,
and top-3rd results are highlighted.

Eigenvector Selection Chameleon Squirrel WikiCS Computers

Baseline 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

Full spectrum 48.14± 3.05 35.30± 1.61 72.35± 0.72 85.20± 0.30

Low-only 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.26± 0.41

High-only 72.79 ± 1.37 63.22 ± 1.75 73.45 ± 0.40 89.80 ± 0.55

Low + High (equal) 72.50 ± 0.93 63.19 ± 1.49 78.37 ± 0.52 90.99 ± 0.50

Low + Medium + High (equal) 66.51 ± 1.88 44.66 ± 1.59 75.38 ± 0.56 89.79 ± 0.33

BTS 73.09± 1.68 65.06± 1.93 78.94± 0.26 91.46± 0.51

graph topology. However, nearly all existing GTs adopt a heuristic truncation: retaining only the first
k low-frequency eigenvectors. The low-frequency bias is evident in models such as GT (Dwivedi
& Bresson, 2020), NAGphormer (Chen et al., 2023), GraphTrans (Wu et al., 2021), GraphGPS
(Rampášek et al., 2022), UGT (Lee et al., 2024), SAN (Kreuzer et al., 2021), and SAT (Chen et al.,
2022). Scalability-oriented variants such as ANS-GT (Zhang et al., 2022), Gapformer (Liu et al.,
2023), and Exphormer (Shirzad et al., 2023), which focus on efficient attention also retain the same
positional encoding heuristic. TokenGT (Kreuzer et al., 2021) extends beyond low frequencies by
including both low- and high-frequency eigenvectors, but relies on fixed splits rather than task-driven
selection.

The Role of High-Frequency Signals in Node Classification. In contrast, the MPNN literature
has increasingly emphasized the importance of high-frequency information for node classification,
especially in heterophilic graphs. Spectral methods explicitly operate in the frequency domain
and modulate both low- and high-frequency signals (Wu et al., 2019; Dong et al., 2020). Early
spectral models such as Spectral CNN (Bruna et al., 2013) and ChebNet (Defferrard et al., 2016)
introduced learnable filters over eigenvalues, and subsequent works demonstrated that high-frequency
information is critical for node-level expressiveness, such as adaptive propagation (Chien et al.,
2020), complete spectral filtering (Luan et al., 2020), and frequency-based feature selection (Bo et al.,
2021). These techniques explicitly exploit high-frequency modes, while adaptive approaches such
as AdaGNN (Dong et al., 2021), and spectral attention (Chang et al., 2021) dynamically balance
contributions from different parts of the spectrum.

6 CONCLUSION

In this paper, we introduced Broaden the Spectrum (BTS), a lightweight and architecture-agnostic
algorithm for selecting Laplacian eigenvectors as positional encodings. We show that spectral
distribution of class information is unique for each graph, making fixed heuristics for eigenvector
selection (such as low-frequency truncation) inherently limited. BTS addresses this by selecting
eigenvectors in a data-driven way, consistently improving the performance of graph transformers
across homophilic, heterophilic, and long-range benchmarks. In several cases, BTS elevates even
simple transformer architectures to state-of-the-art levels.

To ground our method, we also developed a theoretical framework for attention-based node clas-
sification, showing that the optimal attention matrix exhibits a class-wise block structure and that
eigenvectors most correlated with labels are best suited to approximate it. While we focus on the
Laplacian spectrum, our framework is general and can be extended to other orthonormal bases. How-
ever, both BTS and our theoretical analysis are tailored to the supervised node classification setting,
and it remains an open direction to adapt similar principles to other tasks such as link prediction,
graph classification, or self-supervised pretraining.

Overall, our work highlights that the performance bottleneck of graph transformers on node classifi-
cation lies in how positional encodings are chosen. By broadening the spectrum with a data-driven,
theoretically grounded selection, we show that this bottleneck can be overcome and that even simple
graph transformers are competitive and reach near state-of-the-art performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In The 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2623–2631, 2019.

Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran Liu, Michal
Valko, Petar Veličković, and Eva L Dyer. Half-hop: A graph upsampling approach for slowing down message
passing. In International Conference on Machine Learning, pp. 1341–1360. PMLR, 2023.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 24. Curran Associates,
Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph convolutional
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 3950–3957, 2021.

A survey on spectral graph neural networks, 2023. URL https://arxiv.org/abs/2302.05631.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Somayeh Sojoudi, Junzhou Huang, and Wenwu Zhu.
Spectral graph attention network with fast eigen-approximation. In Proceedings of the 30th ACM international
conference on information & knowledge management, pp. 2905–2909, 2021.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph representation
learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR, 2022.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer for node
classification in large graphs. 2023. URL https://arxiv.org/abs/2206.04910.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph neural
network. arXiv preprint arXiv:2006.07988, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.

Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, and Pascal Frossard. Graph signal processing
for machine learning: A review and new perspectives. IEEE Signal processing magazine, 37(6):117–127,
2020.

Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Adagnn: Graph neural networks with
adaptive frequency response filter. In Proceedings of the 30th ACM international conference on information
& knowledge management, pp. 392–401, 2021.

An image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL https://arxiv.
org/abs/2010.11929.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Van Thuy Hoang, O Lee, et al. A survey on structure-preserving graph transformers. arXiv preprint
arXiv:2401.16176, 2024.

Pure transformers are powerful graph learners, 2022. URL https://arxiv.org/abs/2207.02505.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking
graph transformers with spectral attention. 2021. URL https://arxiv.org/abs/2106.03893.

O-Joun Lee et al. Transitivity-preserving graph representation learning for bridging local connectivity and
role-based similarity. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
12456–12465, 2024.

Huidong Liang, Haitz Sáez de Ocáriz Borde, Baskaran Sripathmanathan, Michael Bronstein, and Xiaowen
Dong. Towards quantifying long-range interactions in graph machine learning: a large graph dataset and a
measurement. arXiv preprint arXiv:2503.09008, 2025.

10

https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://arxiv.org/abs/2302.05631
https://arxiv.org/abs/2206.04910
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2207.02505
https://arxiv.org/abs/2106.03893

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer: Graph
transformer with graph pooling for node classification. In Proceedings of the 32nd International Joint
Conference on Artificial Intelligence (IJCAI-23), pp. 2196–2205, 2023.

Decoupled weight decay regularization, 2019. URL https://arxiv.org/abs/1711.05101.

Sitao Luan, Mingde Zhao, Chenqing Hua, Xiao-Wen Chang, and Doina Precup. Complete the missing half:
Augmenting aggregation filtering with diversification for graph convolutional networks. arXiv preprint
arXiv:2008.08844, 2020.

Classic gnns are strong baselines: Reassessing gnns for node classification, 2024. URL https://arxiv.
org/abs/2406.08993.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommendations
on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and
development in information retrieval, pp. 43–52, 2015.

Wiki-cs: A wikipedia-based benchmark for graph neural networks, 2022. URL https://arxiv.org/abs/
2007.02901.

A time series is worth 64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.
org/abs/2211.14730.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José M. F. Moura, and Pierre Vandergheynst. Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828, 2018. doi:
10.1109/JPROC.2018.2820126.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A critical look
at the evaluation of gnns under heterophily: Are we really making progress? arXiv preprint arXiv:2302.11640,
2023.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini.
Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing
Systems, 35:14501–14515, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of Complex
Networks, 9(2):cnab014, 2021.

A survey on oversmoothing in graph neural networks, 2023. URL https://arxiv.org/abs/2303.
10993.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop. Exphormer:
Sparse transformers for graphs. In International Conference on Machine Learning, pp. 31613–31632. PMLR,
2023.

Hamed Shirzad, Honghao Lin, Balaji Venkatachalam, Ameya Velingker, David Woodruff, and Danica Sutherland.
Even sparser graph transformers. arXiv preprint arXiv:2411.16278, 2024.

David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013. doi: 10.1109/MSP.2012.2235192.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan Wang. An overview
of microsoft academic service (mas) and applications. In Proceedings of the 24th international conference on
world wide web, pp. 243–246, 2015.

Jiaqi Sun, Lin Zhang, Shenglin Zhao, and Yujiu Yang. Improving your graph neural networks: A high-frequency
booster. In 2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 748–756. IEEE,
2022.

Understanding over-squashing and bottlenecks on graphs via curvature, 2022. URL https://arxiv.org/
abs/2111.14522.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. 2017. URL https://arxiv.org/pdf/1706.03762.pdf.

11

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2406.08993
https://arxiv.org/abs/2406.08993
https://arxiv.org/abs/2007.02901
https://arxiv.org/abs/2007.02901
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2111.14522
https://arxiv.org/abs/2111.14522
https://arxiv.org/pdf/1706.03762.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In International conference on machine learning, pp. 6861–6871. PMLR, 2019.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica. Represent-
ing long-range context for graph neural networks with global attention. Advances in Neural Information
Processing Systems, 34:13266–13279, 2021.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-globalizing problem in
graph transformers. arXiv preprint arXiv:2405.01102, 2024.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with adaptive node
sampling. Advances in Neural Information Processing Systems, 35:21171–21183, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A ABLATIONS FOR ALL ARCHITECTURES

We conducted an ablation study in Section 4.3 to evaluate the impact of higher-order spectral
components, encoder design, and label-aware selection on the Graph Transformer (GT). Here, we
extend this analysis to all baseline transformer architectures. As shown in Table 6, the same trends
hold across models, showing that access to more eigenvectors and a better encoder design can improve
performance.

Table 6: Node classification performance with full eigenvector spectrum vs with left-truncated
spectrum but tuned K.

Heterophilic Homophilic

Model Eigenvectors Chameleon Squirrel WikiCS Computers

GT K ∈ [4, 16] (tuned) 50.48± 2.08 34.70± 1.77 72.91± 0.59 85.65± 0.59

GT K ∈ [4, N] (tuned) 52.28± 2.88 37.71± 1.79 73.75± 0.63 87.21± 0.55

GT∗ Linear K ∈ [4, N] (tuned) 65.07± 1.08 56.96± 1.23 77.67± 0.48 91.39± 0.40

GT∗ MLP K ∈ [4, N] (tuned) 67.83± 1.82 62.91± 1.04 78.46± 0.56 91.66± 0.41

GT* full spectrum (fixed) 48.14± 3.05 35.30± 1.61 72.35± 0.72 85.20± 0.30

GTBTS BTS, K ∈ [4, N] (tuned) 73.09± 1.68 65.06± 1.93 78.94± 0.26 91.46± 0.51

NAGphormer K ∈ [4, 16] (tuned) 52.41± 2.21 40.21 ± 1.77 78.73± 0.66 91.39± 0.41

NAGphormer K ∈ [4, N] (tuned) 57.06± 1.96 40.89± 2.06 79.70± 0.50 91.61± 0.42

NAGphormer* Linear K ∈ [4, N] (tuned) -± - -± - 79.33± 0.44 92.16± 0.48

NAGphormer* MLP K ∈ [4, N] (tuned) 70.07± 2.33 63.87± 1.51 79.83± 0.63 91.96± 0.37

NAGphormer* full spectrum (fixed) 59.63± 2.06 52.27± 1.28 79.63± 0.63 91.53± 0.47

NAGphormerBTS BTS, K ∈ [4, N] (tuned) 73.90± 1.68 65.04± 1.69 79.42± 1.55 91.85± 0.44

GraphGPS K ∈ [4, 16] (tuned) 60.92± 2.54 43.43± 1.46 77.67± 0.73 91.64± 0.46

GraphGPS K ∈ [4, N] (tuned) 64.67± 2.98 47.12± 4.21 77.40± 0.45 91.60± 0.45

GraphGPS* Linear K ∈ [4, N] (tuned) 68.8± 2.13 57.67± 0.97 78.92± 0.53 91.96± 0.22

GraphGPS* MLP K ∈ [4, N] (tuned) 70.24± 2.08 63.40± 1.16 78.68± 0.46 91.80± 0.40

GraphGPS* full spectrum (fixed) 59.14± 1.95 42.88± 1.77 77.42± 0.98 91.24± 0.40

GPSBTS BTS, K ∈ [4, N] (tuned) 73.16± 1.70 65.87± 1.30 79.47± 0.48 91.87± 0.45

B HIGHEST MAXIMUM FREQUENCIES USED IN THE LITERATURE

Table 7: Maximum number of eigenvectors (Kmax) used by recent graph transformer models, based
on publicly available code.

Model Kmax

NAGphormer (Chen et al., 2023) 15
GraphGPS (Rampášek et al., 2022) 10
SAN (Kreuzer et al., 2021) 10
GT (Dwivedi & Bresson, 2020) 10
UGT (Lee et al., 2024) 10
Exphormer (Shirzad et al., 2023) 10

To better understand the typical frequency truncation choices in existing graph transformer models,
we compile representative values of the maximum number of Laplacian eigenvectors (k) used across
a range of published works. As shown in Table 7, most methods restrict k to a small number—often
below 16—reinforcing the low-pass inductive bias observed in current practice.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PROOFS

C.1 PROOF FOR LEMMA 3.1

Proof. Given a data matrix X ∈ Rn×d and the minimization problem:

min
A,WC

Lclass(A,WC), (6)

our goal is to characterize the associated latents Z∗ := A∗X of an optimal solution (A∗,W ∗
C).

Let (A,WC) be an arbitrary candidate solution to the minimization problem (6) and define the
resulting latents Z := AX consisting of rows zi ∈ Rd. Let Y ∈ {0, 1}n×c denote the one-hot class
indicator matrix, yi denote the class index of node i, and nj is the number of points in class j. First
we write the cross entropy classification objective:

Lclass(A,WC) =

n∑
i=1

ℓ (WCzi, yi) , (7)

with ℓ(u, yi) = −uyi
+log

∑c
j=1 e

uj for any predicted logits u ∈ Rc. We note that ℓ(·, yi) is convex
in u.

Now define the jth-class mean-latent:

zj :=
1

nj

∑
i:yi=j

zi. ∀ j ∈ {1 . . . c} (8)

By Jensen’s inequality, since ℓ is convex and z 7→WCz is linear, we have

1

nj

∑
i:yi=j

ℓ (WCzi, yi) ≥ ℓ

WC

 1

nj

∑
i:yi=j

zi

 , yi

 ∀ j ∈ {1 . . . c}

≜ ℓ (WCzj , yi) , (9)

i.e. ∑
i:yi=j

ℓ(WCzi, yi) ≥ njℓ (WCzj , yi) . ∀ j ∈ {1 . . . c} (10)

Hence, if we define Z∗ as the latent matrix with every row z∗i set to zyi , then we have for any WC :

Lclass(Z
∗,WC) ≤ Lclass(Z,WC). (11)

In particular, if we minimize over all WC , we have:

min
WC

Lclass(Z
∗,WC) ≤ min

WC

Lclass(Z,WC). (12)

Thus, from any (approximately) optimal Z we can construct a collapsed Z∗ (with z∗i := zyi
) that is

at least as good as Z. This relationship holds for any WC , therefore after solving the minimization
problem in Equation (6) we obtain a global minimizer (A∗,W ∗

C) with:

A∗X ≜ Z∗ = YMZ (13)

where MZ ∈ Rc×d is the matrix of class mean-latents with rows zj ∈ Rd.

C.2 PROOF FOR THEOREM 3.1

Proof. Given X and Y defined as in the proof from Appendix C.1, assume a mixture model for the
data matrix:

X = YMX + σN (14)
where MX ∈ Rc×d is a matrix of class-means, σ > 0 denotes noise variance, and N denotes isotropic
zero-mean noise with E[NNT] = dIn.

Consider the noise-averaged surrogate objective defined in Equation (4):

min
A
Lattn(A) = EN

[
∥AX − YMZ∥2F

]
(15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where MZ ∈ Rc×d is the class mean-latent matrix as defined in Lemma 3.1 and Appendix C.1. We
shall omit the N subscript from EN for notational convenience. The purpose of the surrogate loss is
to probe the structure of an attention matrix that attempts to solves the classification problem defined
in Equation (12).

Assume Y is defined such that the classes are balanced, i.e. Y ⊤Y = n
c Ic. Then define the orthogonal

projector onto col(Y):
P := Y (Y ⊤Y)−1Y ⊤ =

c

n
Y Y ⊤ (16)

Note that P is symmetric and idempotent. Our goal is to reveal class-wise block structure of attention
matrices that minimize the surrogate objective.

First, let the attention A ∈ Rn×n be arbitrary. Since YMZ ∈ col(Y) = range(P), we have the
orthogonal decomposition:

∥AX − YMZ∥2F = ∥P (AX − YMZ) + (In − P)(AX − YMZ)∥2F
= ∥P (AX − YMZ)∥2F + ∥(In − P)AX∥2F (17)

Now define Ã := PA and notice that, by idempotency of P , the first term in the decomposition stays
the same while the second term vanishes. Hence, we have:

∥∥∥ÃX − YMZ

∥∥∥2
F
= ∥P (AX − YMZ)∥2F ≤ ∥AX − YMZ∥2F (18)

Thus, since the inequality is preserved under expectation, we have Lattn(PA) ≤ Lattn(A) for all
A. In particular, given a minimizer A◦ of Lattn, we have Lattn(PA◦) = Lattn(A

◦). But then by the
decomposition, we know that

0 = E
[
∥(In − P)A◦X∥2F

]
≥ σ2d ∥(In − P)A◦∥2F (19)

using the data model assumption X = YMX + σN . Hence, we have PA◦ = A◦.

Similarly, for any A, we can again using the data model assumption to expand the surrogate loss:

Lattn(A) = ∥AYMX − YMZ∥2F + σ2d ∥A∥2F (20)
By definition of P , since YMX ∈ col(Y), we have PYMX = YMX , i.e. the signal term stays
the same if we make the substitution Ã := AP . Hence, by idempotency of P (and consequently
idempotency of In − P),

Lattn(A)− Lattn(AP) = σ2d
(
∥A∥2F − ∥AP∥2F

)
= σ2d

(
tr(AA⊤)− tr(APA⊤)

)
= σ2d

(
tr(A(In − P)A⊤)

)
= σ2d ∥A(In − P)∥2F ≥ 0 (21)

Again, if we take a minimizer A◦ of Lattn, then this tells us that Lattn(A
◦) = Lattn(A

◦P), i.e.
∥A◦(In − P)∥F = 0, i.e. A◦ = A◦P .

Combining the results so far, we can conclude that any minimizer A◦ admits the representation
A◦ = PA◦P

= YM◦
AY

⊤ (22)

with M◦
A := c2

n2 (Y
⊤AY). Since we know a minimizer will admit such a representation, we can

restrict the surrogate loss in terms of the kernel matrix MA:

Lattn(YMAY
⊤) = E

[∥∥YMAY
⊤(YMX + σN)− YMZ

∥∥2
F

]
=

∥∥∥Y (n
c
MAMX −MZ

)∥∥∥2
F
+ σ2E

[∥∥YMAY
⊤N

∥∥2
F

]
=

n

c

∥∥∥n
c
MAMX −MZ

∥∥∥2
F
+

σ2n2d

c2
∥MA∥2F (23)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lastly, we show that M◦
A := c

nMZM
⊤
X (MXM⊤

X + c
nσ

2dIc)
−1 yields a closed-form minimizer for

the surrogate loss, and it is in fact the unique minimizer. To do so, consider another candidate solution
specified by MA := M◦

A +∆. We expand the loss:

Lattn
(
YMAY

⊤) = n

c

∥∥∥n
c
M◦

AMX −MZ +
n

c
∆MX

∥∥∥2
F
+

σ2n2d

c2
∥M◦

A +∆∥2F

= Lattn
(
YM◦

AY
⊤)+ n

c

∥∥∥n
c
∆MX

∥∥∥2
F
+

σ2n2d

c2
∥∆∥2F + 2R(∆) (24)

whereR(∆) is given by:

R(∆) =
n

c

〈n
c
∆MX ,

n

c
M◦

AMX −MZ

〉
F
+

σ2n2d

c2
⟨∆,M◦

A⟩F

=
n2

c2

[〈
∆,

(n
c
M◦

AMX −MZ

)
M⊤

X + σ2dM◦
A

〉
F

]
(25)

We can expand the right term in the Frobenius inner product using the proposed solution M◦
A:

(n
c
M◦

AMX −MZ

)
M⊤

X + σ2dM◦
A

= MZM
⊤
X

(
MXM⊤

X +
c

n
σ2dIc

)−1

MXM⊤
X +

c

n
σ2dMZM

⊤
X

(
MXM⊤

X +
c

n
σ2dIc

)−1

−MZM
⊤
X

= MZM
⊤
X

(
MXM⊤

X +
c

n
σ2dIc

)−1 (
MXM⊤

X +
c

n
σ2dIc

)
−MXM⊤

X

= MZ(M
⊤
X −M⊤

X)

= 0 (26)

Hence,R(∆) = 0, i.e. Lattn(YMAY
⊤) ≤ Lattn(YM◦

AY
⊤) with equality iff ∆ = 0. Indeed, M◦

A is
the unique solution.

C.3 PROOF FOR THEOREM 3.2

Proof. To reiterate the setup, we consider the simplified linear attention formulation using only
positional encodings, as in Equation (5). Let V denote the Laplacian eigenvectors and H ∈ {0, 1}n×k

denote an eigenvector selection matrix s.t. Hij = 1 iff eigenvector i is selected at position j. Define
the diagonal 0/1 projector H̃ := HH⊤, with H̃ii = 1 iff eigenvector i was selected, and set
Xpos := V H in the formulation. Then define the error functional over all M ∈ Rc×c within the unit
ball ∥M∥2 ≤ 1:

Φ(H̃) := sup
∥M∥2≤1

min
W

∥∥XposWX⊤
pos − YMY ⊤∥∥

F

= sup
∥M∥2≤1

min
W
∥V HWH⊤V ⊤ − YMY ⊤∥F . (27)

The error functional defines the quality of an approximation of the block-structured representation
YMY ⊤, uniformly across all kernels M . Our goal is to provide a uniform error bound for this
functional.

We first observe that since eigenvectors are chosen without replacement, V H will have full column
rank. Hence, the inner optimization problem is a well-defined classical linear least squares problem
that can be solved exactly for W :

W ∗(H̃) := H⊤V ⊤YMY ⊤V H. (28)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hence, the functional becomes:

Φ(H̃) = sup
∥M∥2≤1

∥V HH⊤V ⊤YMY ⊤V HH⊤V ⊤ − YMY ⊤∥F

= sup
∥M∥2≤1

∥H̃V ⊤YMY ⊤V H̃ − V ⊤YMY ⊤V ∥F

= sup
∥M∥2≤1

∥H̃V ⊤YM(H̃V ⊤Y)⊤ − V ⊤YMY ⊤V ∥F (29)

since H̃ is symmetric. Define the residual E := (In − H̃)V ⊤Y . Then we can rewrite the inner norm
and bound it:

∥H̃V ⊤YM(H̃V ⊤Y)⊤ − V ⊤YMY ⊤V ∥F = ∥(V ⊤Y − E)M(V ⊤Y − E)⊤ − V ⊤YMY ⊤V ∥F
= ∥EMY ⊤V + V ⊤YME⊤ − EME⊤∥F
≤ ∥M∥2

(
2∥E∥F ∥V ⊤Y ∥F + ∥E∥2F

)
≤ ∥M∥2

(
2
√
n∥E∥F + ∥E∥2F

)
(30)

since V is orthonormal. Hence, within the unit ball ∥M∥2 ≤ 1, we have the upper bound:

∥H̃V ⊤YM(H̃V ⊤Y)⊤ − V ⊤YMY ⊤V ∥F ≤ 2
√
n∥E∥F + ∥E∥2F . (31)

By definition, we have:

Φ(H̃) ≤ 2
√
n∥E∥F + ∥E∥2F . (32)

Thus, ∥E∥F gives us uniform control over the upper error bound of the given H̃ over all ∥M∥2 ≤ 1.

C.4 PROOF FOR COROLLARY 3.2.1

Proof. Following the conclusion of Theorem 3.2, we showed that the uniform error bound for
attention approximation is controlled by the residual ∥E∥F , where E := (I − H̃)V ⊤Y . To minimize
∥E∥F , we first observe that:

∥E∥2F ≜
n∑

i=1

(
1− H̃ii

)
∥V ⊤

i Y ∥22 (33)

where H̃ii indicates whether or not eigenvector i was included, and si := ∥V ⊤
i Y ∥22 is the ℓ2-norm

of the ith row of V ⊤Y . Thus, to minimize ∥E∥F , we should include eigenvectors corresponding to
the k largest si’s (in terms of spectral-energy ||si||22), i.e. the optimal selector H̃∗ that minimizes the
upper error bound is exactly the one based on the top k indices of the si’s.

D BASELINE SOURCES

D.1 HETEROPHILIC DATASETS

We use five real-world datasets with graphs that have a homophily level ≤ 0.30: Actor (Pei et al.,
2020), Chameleon and Squirrel (Rozemberczki et al., 2021), as well as Ratings and Tolokers (Platonov
et al., 2023). Key statistics for these datasets are listed in Table 8. We follow the experimental setup
in (Pei et al., 2020) for Actor, Chameleon, and Squirrel, and for Ratings and Tolokers, we adopt the
setup described in (Platonov et al., 2023), using the 10 train/validation/test splits provided.

The results for GCN-based methods and heterophily-based methods in Table 8 for Actor, Chameleon,
and Squirrel have been sourced from (Azabou et al., 2023). Similarly, results for Ratings and Tolokers
are sourced from (Platonov et al., 2023), while results for transformer-based methods across all
datasets are obtained from (Shirzad et al., 2024).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Statistics of heterophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

CHAMELEON 2,277 31,421 5 0.23
SQUIRREL 5,201 198,493 5 0.22
TOLOKERS 11,758 519,000 2 0.09
RATINGS 244,92 39,402 5 0.14

Table 9: Statistics of homophilic datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

PHYSICS 34,493 495,924 5 0.92
CS 18,333 81,894 15 0.83
PHOTO 7,650 238,162 8 0.84
COMPUTERS 13,752 491,722 10 0.79
WIKICS 11,701 216,123 10 0.66
OGBN-ARXIV 169,343 1,166,243 40 0.65

D.2 HOMOPHILIC DATASETS

We use five real-world datasets: Amazon Computers and Amazon Photos (McAuley et al., 2015),
Coauthor CS and Coauthor Physics (Sinha et al., 2015), and WikiCS (Mernyei & Cangea, 2022).
Key statistics for these datasets are listed in Table 9. The experimental setup follows that of (Shirzad
et al., 2024), where the datasets are split into development and test sets. All hyperparameter tuning is
performed on the development set, and the best models are subsequently evaluated on the test set.

We use a 60:20:20 train/validation/test split for the Amazon and Coauthor datasets. The results
reported for all datasets in Table 2 are sourced from (Shirzad et al., 2024).

D.3 LONG RANGE BENCHMARK DATASETS

To evaluate the ability of models to capture long-range dependencies, we use the City-Networks
benchmark (Liang et al., 2025), which consists of large-scale road network graphs derived from
OpenStreetMap data. We focus on two representative cities—Paris and Shanghai—which feature
grid-like topology, low clustering coefficients, and large diameters. These characteristics make them
particularly well-suited for studying long-range signal propagation. Key statistics for these datasets
are provided in Table 10.

Following the experimental protocol in (Liang et al., 2025), we perform transductive node classifica-
tion using a 10:10:80 train/validation/test split. The node labels are defined by eccentricity-based
quantiles, ensuring that the task inherently depends on information from distant nodes.

Table 10: Statistics of City-Networks datasets used in our experiments.

DATASET NODES EDGES CLASSES HOMOPHILY RATIO

PARIS 114,127 182,511 10 0.70
SHANGHAI 183,917 262,092 10 0.75

D.4 BASELINE MODEL PERFORMANCE ACROSS DATASETS FROM EXISTING LITERATURE

The previously reported performance of baseline models (GT, GraphGPS, and NAGphormer) on
multiple graph datasets is summarized in Table 11. The reported values, sourced from existing
literature.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Performance across datasets for GT, GraphGPS, and NAGphormer models previously
reported in existing literature.

Dataset GT GraphGPS NAGphormer

Chameleon - 40.79 ± 4.03 -
Squirrel - 39.67 ± 2.84 -
Tolokers - 83.71 ± 0.48 78.32 ± 0.95
Ratings - 53.10 ± 0.42 51.26 ± 0.72

Physics 97.05 ± 0.05 97.12 ± 0.19 97.34 ± 0.03
CS 94.64 ± 0.13 93.93 ± 0.12 95.75 ± 0.09
Photo 94.74 ± 0.13 95.06 ± 0.13 95.49 ± 0.11
Computers 91.18 ± 0.17 91.19 ± 0.54 91.22 ± 0.14
WikiCS - 78.66 ± 0.49 77.16 ± 0.72
Arxiv - 70.97 ± 0.41 70.13 ± 0.55

E ADDITIONAL TRAINING DETAILS

Optimizer. We use the AdamW optimizer (Loshchilov & Hutter, 2019) for all runs, and fixed the
number of epochs to 200. We additionally employ the linear-warmup-cosine-decay learning rate
schedule. Linear rate warmup happens over 10 epochs (fixed), and cosine decay happens over the
remaining 190 epochs (also fixed). All other hyperparameters are chosen by the tuning algorithm
explained below.

Hyperparameter tuning. We optimize hyperparameters using the Tree-structured Parzen Estimator
(TPE) algorithm (Bergstra et al., 2011), as implemented in Optuna (Akiba et al., 2019). The complete
hyperparameter space used in our experiments is detailed in Table 12. The number of tuning trials is
adjusted based on the size of each dataset: for graphs with up to 7,500 nodes, we perform 300 tuning
trials; for graphs with up to 15,000 nodes, we allow 200 trials; and for larger graphs, we limit the
number of trials to 100. Performing complete hyperparameter tuning, on a machine with 4 × NVidia
L40S GPUs takes 2-4 hours depending on the size of the dataset. Hyperparameters are selected
based on validation-set performance, and all reported results correspond to test-set performance using
the best configurations found. The scripts used for hyperparameter tuning are also included in our
codebase.

F LLM USAGE DISCLOSURE

We used LLMs solely for the purpose of editing and polishing the paper.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Complete hyperparameter search space for all model variants presented in this paper.

HYPERPARAMETER SEARCH SPACE SAMPLING TYPE

COMMON PARAMETERS

LEARNING RATE [10−4 , 10−1] LOGARITHMIC
WEIGHT DECAY [10−7 , 10−2] LOGARITHMIC
DROPOUT [0, 0.5] LINEAR
ATTENTION DROPOUT [0, 0.5] LINEAR
WINDOW LENGTH {256, 512, 1024, 2048, 4096}
TRANSFORMER DEPTH {1, 2, . . . , 8} LINEAR
NUMBER OF ATTENTION HEADS {0, 1, 2, 4, 8}
COMMON FOR GTBTS /NAGPHORMERBTS /GRAPHGPSBTS

NUMBER OF EIGENVECTORS (K) {4, 8, 16, . . . , 1024}
POS. FEATURE ENCODER - OUTPUT DIMENSION {8, 16, 32, 64, 128}
POS. FEATURE ENCODER - HIDDEN DIMENSION {16, 32, 64, . . . , 2048}
POS. FEATURE ENCODER - # HIDDEN LAYERS {1, 2, 3, 4}
NODE FEATURE ENCODER - OUTPUT DIMENSION {8, 16, 32, 64, 128}
NODE FEATURE ENCODER - HIDDEN DIMENSION {16, 32, 64, 128}
NODE FEATURE ENCODER - # HIDDEN LAYERS {1}
SPECIFIC FOR GT
NUMBER OF EIGENVECTORS (K) {4, 8, 16}
TOKEN DIMENSION {64, 128, 256, 512}
SPECIFIC FOR NAGPHORMER

NUMBER OF EIGENVECTORS (K) {4, 8, 16}
TOKEN DIMENSION {64, 128, 256, 512}
NUMBER OF HOPS (SAME FOR NAGPHORMERBTS) {1, 2, 3, . . . , 20}
SPECIFIC FOR GRAPHGPS
NUMBER OF EIGENVECTORS (K) {4, 8, 16}
LPE - NUMBER OF LAYERS {1, 2, 3, . . . , 8}
LPE - NUMBER OF POST-LAYERS {0, 1, 2, 3, 4}

20

	Introduction
	Method
	Class-Label Energy Spectral Density
	Broaden the Spectrum (BTS)
	Architectural Modifications

	Theoretical Analysis
	Understanding Optimal Attention Matrices for node classification
	Eigenvector Subsets for Approximating Block Attention

	Results
	Main Results
	Attention Matrices
	Ablations

	Related Work
	Conclusion
	Ablations for all architectures
	Highest Maximum Frequencies Used in the Literature
	Proofs
	Proof for lemma:clustering
	Proof for theorem:classwiseblockform
	Proof for theorem:eigselection
	Proof for corollary:eigselection

	Baseline Sources
	Heterophilic Datasets
	Homophilic Datasets
	Long Range Benchmark Datasets
	Baseline Model Performance Across Datasets from existing literature

	Additional Training Details
	LLM Usage Disclosure

