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ABSTRACT

Spectral clustering is known as a powerful technique in unsupervised data analy-
sis. The vast majority of approaches to spectral clustering are driven by a single
modality, leaving the rich information in multi-modal representations untapped.
Inspired by the recent success of vision-language pre-training, this paper enriches
the landscape of spectral clustering from a single-modal to a multi-modal regime.
Particularly, we propose Neural Tangent Kernel Spectral Clustering that leverages
cross-modal alignment in pre-trained vision-language models. By anchoring the
neural tangent kernel with positive nouns, i.e., those semantically close to the im-
ages of interest, we arrive at formulating the affinity between images as a coupling
of their visual proximity and semantic overlap. We show that this formulation am-
plifies within-cluster connections while suppressing spurious ones across clusters,
hence encouraging block-diagonal structures. In addition, we present a regular-
ized affinity diffusion mechanism that adaptively ensembles affinity matrices in-
duced by different prompts. Extensive experiments on 16 benchmarks—including
classical, large-scale, fine-grained and domain-shifted datasets—manifest that our
method consistently outperforms the state-of-the-art by a large margin.

1 INTRODUCTION

Clustering aims to partition a set of unlabeled samples into groups such that samples within the
same group are semantically similar. Among various clustering techniques, spectral clustering has
demonstrated superior effectiveness thanks to its ability to capture non-linear pairwise affinities. By
reformulating clustering as a graph-partitioning problem, spectral clustering represents samples as
nodes and pairwise affinities as edge weights. Leveraging the spectrum of the graph Laplacian,
low-dimensional embeddings are then learned to reveal cluster structures. Despite these theoretical
advantages, most existing approaches remain confined to visual-only representations. As a result,
they often suffer from inherent limitations when semantically distinct images are visually similar,
thereby yielding sub-optimal affinity graphs and degraded clustering quality.

This paper explores a new landscape for spectral clustering by moving beyond the classical single-
modality paradigm toward a multi-modal regime. While the motivation is appealing, a core chal-
lenge arises: how to effectively utilize joint vision-language features for spectral clustering? In the
visual domain, existing methods typically require discriminative feature representations (Shaham
et al., 2018; Yang et al., 2019; Duan et al., 2019b) and a distance metric (Zhang et al., 2021b; Guo
et al., 2025; Li et al., 2022a), under which within-cluster images are relatively far from between-
cluster images. However, such approaches do not directly translate into the multi-modal regime,
where semantic alignment between modalities plays a decisive role.

On the representation learning side, the emergence of large-scale vision–language pre-training, such
as CLIP (Radford et al., 2021), provides a powerful alternative to purely visual encoders. By map-
ping textual and visual inputs into a unified hyperspherical embedding space, CLIP captures cross-
modal correspondences to enrich the semantic structure of image representations. Building on this
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capacity, recent works (Li et al., 2024; Cai et al., 2023) select positive nouns1 from large-scale lexi-
cal databases in the wild2 to serve as semantic anchors in the absence of class-name priors. Despite
promising potential, spectral clustering based on such aligned multi-modal features remains under-
explored due to the challenge of designing a principled framework to integrate textual semantics
with visual similarities in constructing an affinity matrix.

This paper addresses this research gap from a novel perspective of Neural Tangent Kernel (NTK) (Ja-
cot et al., 2018). Our method capitalizes on the compatibility between visual and textual features.
By anchoring a proxy network with features of the filtered positive nouns and computing its NTK
on pairs of image features, we formulate the affinity between two images as a multiplicative cou-
pling of (i) their visual proximity in the CLIP feature space and (ii) their semantic overlap measured
by how strongly and consistently each image aligns to the positive nouns. Our theoretical analysis
reveals that this coupling enhances within-cluster affinities (high visual proximity and shared seman-
tics) and suppresses cross-cluster links (visual proximity alone is insufficient), thus sharpening the
block-diagonal structure acknowledged by spectral clustering. Moreover, we present a Regularized
Affinity Diffusion (RAD) mechanism to adaptively ensemble various affinity matrices induced by
different prompts. In particular, RAD allows for a robust affinity matrix to be constructed through a
joint optimization of ensemble weights and the equivalent objective of the diffusion process.

Extensive experiments on 16 benchmarks empirically demonstrate the effectiveness of our proposed
method. For example, our method achieves 98.3% ACC and 84.9% ACC on STL-10 and ImageNet-
Dogs, respectively, outperforming the latest TAC (Li et al., 2024) by 3.8% and 9.8%. In addition, on
three more challenging datasets (DTD, UCF-101, and ImageNet-1K), our method surpasses TAC (Li
et al., 2024) by an average of 7.7%, 2.5%, and 6.3% w.r.t. ACC, NMI, and ARI, respectively. We also
validate our method in fine-grained and domain-shifted settings, and ours significantly outperforms
TAC (Li et al., 2024) by 5.1% on Pets and 5.3% on ImageNet-sketch w.r.t. ACC.

2 PRELIMINARY

Notation. We denote matrices and vectors as bold-faced uppercase and lowercase characters respec-
tively. In the remaining of this paper, we write A[i, j] as the ij-th element of the matrix A, ⟨·, ·⟩ as
the inner product, and vec(·) as the vectorization operator. Let e[i] be the i-th element of the vector
e ∈ RK and [K] = {1, . . . ,K}, we then define softmaxk(e) = exp (e[k])/

∑
i∈[K] exp (e[i]).

Zero-shot Classification. Let X and T be the visual and textual input space respectively, CLIP-
based models adopt a dual-stream architecture with one text encoder fT and one image en-
coder fX to map inputs of two modalities into an uni-modal hyper-spherical feature space Z ={
z ∈ Rd| ∥z∥2 = 1

}
. Considering an image classification task with known classes {c1, . . . , cK},

CLIP-based models make prediction for any input x ∈ X by computing

arg max
i=1,...K

exp
[
τfX (x)⊤fT

(
∆(ci)

)]∑K
j=1 exp

[
τfX (x)⊤fT

(
∆(cj)

)] , (1)

where τ > 0 is a temperature, ∆(ci) ∈ T with ∆(·) as the prompt template for the input class name.

Leveraging Unlabeled Textual Data in the Wild. Despite remarkable effectiveness (Radford et al.,
2021) and provable guarantees (Chen et al., 2023), the zero-shot paradigm in Eq. (1) relies on the
prior knowledge of true class names, therefore inapplicable to the unsupervised settings. In response,
advanced methods (Li et al., 2024; Cai et al., 2023) propose to select a N -sized set of positive nouns
{ĉ1, . . . , ĉN} from unlabeled “in-the-wild” textual datasets, such as WordNet (Miller, 1995).

Spectral Clustering. For a given image datasetDX = {x1, . . .xM}, one aims to group images into
K distinct clusters. Let A ∈ RM×M denote an affinity matrix where the element A[i, j] represents
the similarity between xi and xj , the classical method SC-Ncut (Shi & Malik, 2000) converts the
clustering task as a graph cut problem given by:

Y⋆ = argmin
Y∈RM×K

tr
(
Y⊤LY

)
, s.t. Y⊤Y = IK , (2)

1By definition, positive nouns are those semantically relevant/similar to any ID label.
2Generally, “in-the-wild” data are those that can be collected almost for free upon deploying machine learn-

ing models in the open world.
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Figure 1: Overview of the proposed NTK-based spectral clustering pipeline.

where IK is a K ×K identity matrix, L = IM −D−1/2AD−1/2 is a normalized Laplacian matrix,
D is a diagonal matrix of D[i, i] =

∑
j A[i, j], and tr(·) denotes the trace of a matrix. The optimal

spectral embedding matrix Y⋆ consists of the top-K minimum eigenvectors of L.

Neural Tangent Kernel. Let us define a proxy network as a function gθ(·) : Z → R differentiable
w.r.t. parameters θ ∈ RP (stretched into a single vector). In a small neighborhood region around a
initialization θ0, the function gθ can be linearly approximated by a first-order Taylor expansion:

gθ(z) ≈ ĝθ(z;θ0) = gθ0
(z) +

〈
θ − θ0,

∂gθ0
(z)

∂θ0

〉
. (3)

Eq. (3) implies that the obtained approximation ĝθ(z;θ0) can be regarded as a linearized network
that maps the weights to functions residing in a reproducible kernel Hilbert space (RKHS) deter-
mined by the empirical neural tangent kernel (Jacot et al., 2018) at θ0, i.e.,

Kθ0(zi, zj) =

〈
∂gθ0(zi)

∂θ0
,
∂gθ0(zj)

∂θ0

〉
. (4)

Intuitively, Kθ0
(·, ·) can be interpreted as a condensed representation of gradient magnitude and

gradient correlations. More concretely, the gradient magnitude governs the scale of update that each
input induces on the model during optimization, while the gradient correlations dictate the alignment
or stochasticity of update directions across inputs (Xu et al., 2021). SinceKθ0

(·, ·) directly quantifies
how two inputs interact through the dynamics of function learning, this naturally yields a higher-
order notion of affinity in function space rather than their geometric closeness in the input space of
gθ. In this rest of this paper, we abbreviate empirical Neural Tangent Kernel as NTK for simplicity.

3 METHODOLOGY

Motivation. Eq. (2) implies that the effectiveness of spectral clustering (SC) fundamentally depends
on the quality of the affinity matrix A. To enhance the expressiveness of the affinity matrix A, prior
works (Zhong et al., 2021; Lu et al., 2024; Huang et al., 2019c) compute the affinity matrix A by
applying kernel tricks on the latent representation space. Taking the widely used RBF kernel as an
example, with pre-trained CLIP-based models, the affinity matrix can be formulated as follows:

ARBF[i, j] =

{
eΦ(fX (xi),fX (xj))/τ if fX (xi) ∈ Nq(fX (xj),Φ) ∧ fX (xj) ∈ Nq(fX (xi),Φ),

0 otherwise.
(5)

where Φ(zi, zj) = −∥zi − zj∥22 and Nq(z,Φ) represents top-q nearest neighbors of z with regard
to the metric function Φ(·, z). While Table 1 shows that CLIP(SC), which uses the precomputed
ARBF in Eq. (5) for SC, outperforms most traditional training-based competitors3, CLIP(SC) relies

3Experimental results using other kernels are provided in appendix (c.f. Table 6)
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on single-modal visual features and thus leaves the semantic knowledge embedded in text largely
unexploited. In response to this, a naive strategy is to perform the RBF-based affinity measure on
the image-text-concentrated feature space from TAC (Li et al., 2024) for SC. Unfortunately, our
experimental results (c.f. Table 1 and Table 2) reveal that TAC(SC) yields performance comparable
to TAC(KMeans). This observation means that merely incorporating text at the feature level does
not adequately guide affinity construction, prompting the research question underlying this work:

How can we effectively integrate textual semantics with visual similarities in
constructing the affinity matrix A?

3.1 NEURAL TANGENT KERNEL SPECTRAL CLUSTERING

To address this challenge, we present a novel spectral clustering framework build upon the NTK
in Eq. (4). To implement our method, we begin with extracting features from CLIP-based models
for the observed positive nouns {ĉ1, . . . , ĉN} to have W = [w1, . . . ,wN ] ∈ Rd×N where wi =
fT
(
∆(ĉi)

)
for each i ∈ [N ]. Thanks to the cross-modal alignment of pre-trained CLIP-based

models, we subsequently take θ0 = vec(W) to anchor the NTK in a semantically meaningful
parameterization. This enables the gradient ∂gθ0

(z)/∂θ0 to capture how the input z functionally
interacts with positive nouns, hence injecting the learned semantic structure of texts from CLIP-
based models into the NTK-based affinity matrix ANTK that is given as follows:

ANTK[i, j] =

{
Kθ0 (fX (xi), fX (xj)) if fX (xi) ∈ Nq(fX (xj),Kθ0) ∧ fX (xj) ∈ Nq(fX (xi),Kθ0),

0 otherwise.
(6)

While the formulation of Kθ0
(·, ·) is generic to the choice of gθ0

(·), when applying it to spectral
clustering, this paper proposes to design gθ0

(·) in a log-sum-exp form, i.e.,

gθ0

(
fX (xi)

)
= log

N∑
k=1

ew
⊤
k fX (xi)/τ . (7)

In the following, we provide a theoretical justification of Eq. (7) by showing that it can promote a
block structure in the constructed affinity matrix.

In particular, combining Eq. (7) with Eq. (4), the closed-form formulation of Kθ0(·, ·) is given by

Kθ0
(fX (xi), fX (xj)) =

1

τ2
· fX (xi)

⊤fX (xj)︸ ︷︷ ︸
Uij

·

(
N∑

k=1

si[k]sj [k]

)
︸ ︷︷ ︸

Vij

, (8)

where si[k] = softmaxk(W
⊤fX (xi)/τ). Since τ is usually set to a relatively small value (e.g.,

τ = 0.04 in this paper), each softmax probability si can be highly skewed in practice.

From Eq. (8), one can find that Kθ0
(fX (xi), fX (xj)) is multiplicative coupling of visual proximity

Uij and semantic overlap Vij . For images within the same cluster, both terms tend to be simultane-
ously large—their embeddings are close in the CLIP space and their softmax probabilities concen-
trate on positive nouns—so their affinities are strongly amplified, filling the diagonal blocks with
high values. For images across different clusters, even if Uij is moderate due to visual similarity,
their softmax probabilities would concentrate on a different subset of positive nouns, yielding a suf-
ficiently small Vij and therefore suppressing cross-cluster affinities. This multiplicative mechanism
enforces high intra-cluster and low inter-cluster similarity, thereby sharpening the block-diagonal
pattern of the NTK-induced affinity matrix ANTK.

3.2 AFFINITY ENSEMBLING VIA REGULARIZED AFFINITY DIFFUSION

In this section, we extend our method to the same multi-prompt scenario as TAC (Li et al., 2024)4.
Formally, given a B-sized pool of prompt templates {∆(1), . . . ,∆(B)}, we can construct a prompt-
specific affinity matrix A

(b)
NTK for each ∆(b) with b ∈ [B]. In view of this, our goal is to learn a

4Although the TAC paper states that a single prompt template is used, its official implementation in fact
employs multiple prompt templates indeed.
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new affinity matrix Â which 1) captures the geometry of the underlying manifold encoded in each
affinity matrix, and 2) leverages the complementarity among multiple prompt templates.

To this end, the most straightforward strategy is to simply average the B affinity matrices
A

(1)
NTK, . . . ,A

(B)
NTK, i.e., Â = 1

B

∑B
b=1 A

(b)
NTK. Despite simplicity, this naive practice ignores the

correlations among different affinities as it assigns a uniform weight to each affinity matrix. For-
tunately, Bai et al. (2016) show that weight learning can be exerted on affinity matrices to assist
neighborhood structure mining. This motivates us to formulate the weight learning and the affinity
learning as a unified optimization problem given by

min
β,Â

B∑
b=1

β[b] · ℓ(Â,A
(b)
NTK) + µ∥Â−E∥2F +

λ

2
∥β∥22 s.t. 0 ≤ β[b] ≤ 1 and

B∑
b=1

β[b] = 1, (9)

where E is a positive semi-definite matrix5 to avoid Â from being extremely smoothed6, β[b] de-
notes the contribution of A(b)

NTK to the whole affinity diffusion process, and

ℓ(Â,A
(b)
NTK) =

1

2

M∑
i,j,k,l=1

a
(b)
ij a

(b)
kl

 Â[k, i]√
d
(b)
i d

(b)
k

− Â[l, j]√
d
(b)
j d

(b)
l

 (10)

is the objective value of the affinity diffusion process (Bai et al., 2018; 2017) with a
(b)
ij = A

(b)
NTK[i, j]

and d
(b)
i =

∑M
j=1 A

(b)
NTK[i, j].

Note that the optimization problem in Eq. (9) simultaneously depends on β and Â, therefore making
it inherently complex and impractical to find a direct solution. To resolve this, we propose a numer-
ical method that decomposes the optimization problem into two sub-problems: 1) Optimize Â with
Fixed β and 2) Optimize β with Fixed Â. This allows for a systematic iterative approximation of
the optimal result through the fixed-point scheme.

Optimize Â with Fixed β. In this scenario, as we show in Appendix B, the optimization problem
in Eq. (9) can be transformed as follows:

min
Â

B∑
b=1

β[b] · vec(Â)⊤(IM2 − S(b))vec(Â) + µ∥vec(Â)− vec(E)∥22, (11)

where S(b) = S(b) ⊗ S(b) ∈ RM2×M2

is the Kronecker product of S(b) and itself with S(b) as the
row-normalized A

(b)
NTK. As we show in Appendix C, the closed-form of the solution to Eq. (11) can

be given as follows:

Â∗ =
µ

µ+ 1
· vec−1

(IM2 −
B∑

b=1

β[b]

µ+ 1
S(b)

)−1

vec (E)

 , (12)

where vec−1(·) is the inverse operator of vec(·).
Since it is computationally infeasible to directly solve the inverse of a M2 ×M2 matrix, we alter-
natively resort to an efficient iteration-based solver, i.e.,

Â←
B∑

b=1

β[b]

µ+ 1
S(b)ÂS(b)⊤ +

µ

µ+ 1
E. (13)

Appendix D proves the convergence of the iterative process in Eq. (13) to the solution in Eq. (12).

Optimize β with Fixed Â. In this case, the optimization problem in Eq. (9) can be simplified as

min
β

B∑
b=1

β[b] · ℓ(Â,A
(b)
NTK) +

λ

2
∥β∥22, s.t. 0 ≤ β[b] ≤ 1 and

B∑
b=1

β[b] = 1. (14)

5In practice, we find that simply setting E = IM helps.
6In this case, all vectors in Â are nearly identical.
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Table 1: Clustering performance (%) on widely-used datasets. The best results are shown in bold.

Dataset STL-10 CIFAR-10 CIFAR-20 ImageNet-10 ImageNet-Dogs

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

CLIP (zero-shot) 93.9 97.1 93.7 80.7 90.0 79.3 55.3 58.3 39.8 95.8 97.6 94.9 73.5 72.8 58.2

DAC 36.6 47.0 25.7 39.6 52.2 30.6 18.5 23.8 8.8 39.4 52.7 30.2 21.9 27.5 11.1
DCCM 37.6 48.2 26.2 49.6 62.3 40.8 28.5 32.7 17.3 60.8 71.0 55.5 32.1 38.3 18.2
IIC 49.6 59.6 39.7 51.3 61.7 41.1 22.5 25.7 11.7 – – – – – –
PICA 61.1 71.3 53.1 59.1 69.6 51.2 31.0 33.7 17.1 80.2 87.0 76.1 35.2 35.3 20.1
CC 76.4 85.0 72.6 70.5 79.0 63.7 43.1 42.9 26.6 85.9 89.3 82.2 44.5 42.9 27.4
IDFD 64.3 75.6 57.5 71.1 81.5 66.3 42.6 42.5 26.4 89.8 95.4 90.1 54.6 59.1 41.3
SCAN 69.8 80.9 64.6 79.7 88.3 77.2 48.6 50.7 33.3 – – – 61.2 59.3 45.7
MiCE 63.5 75.2 57.5 73.7 83.5 69.8 43.6 44.0 28.0 – – – 42.3 43.9 28.6
GCC 68.4 78.8 63.1 76.4 85.6 72.8 47.2 47.2 30.5 84.2 90.1 82.2 49.0 52.6 36.2
NNM 66.3 76.8 59.6 73.7 83.7 69.4 48.0 45.9 30.2 – – – 60.4 58.6 44.9
TCC 73.2 81.4 68.9 79.0 90.6 73.3 47.9 49.1 31.2 84.8 89.7 82.5 55.4 59.5 41.7
SPICE 81.7 90.8 81.2 73.4 83.8 70.5 44.8 46.8 29.4 82.8 92.1 83.6 57.2 64.6 47.9
SeCu 70.7 81.4 65.7 79.9 88.5 78.2 51.6 51.6 36.0 – – – – – –
DivClust – – – 71.0 81.5 67.5 44.0 43.7 28.3 85.0 90.0 81.9 51.6 52.9 37.6
RPSC 83.8 92.0 83.4 75.4 85.7 73.1 47.6 51.8 34.1 83.0 92.7 85.8 55.2 64.0 46.5
TCL 79.9 86.8 75.7 81.9 88.7 78.0 52.9 53.1 35.7 87.5 89.5 83.7 62.3 64.4 51.6
ProPos 75.8 86.7 73.7 85.1 91.6 83.5 58.2 57.8 42.3 89.6 95.6 90.6 73.7 77.5 67.5

CLIP (KMeans) 90.1 93.8 92.4 70.3 74.2 61.6 49.9 45.5 28.3 96.9 98.2 96.1 39.8 38.1 20.1
CLIP (SC) 88.1 87.8 82.4 65.4 69.2 57.1 45.2 42.7 30.1 96.4 96.8 95.6 72.8 70.6 56.9
SIC 95.3 98.1 95.9 84.7 92.6 84.4 59.3 58.3 43.9 97.0 98.2 96.1 69.0 69.7 55.8
TAC (KMeans) 92.3 94.5 89.5 80.8 90.1 79.8 60.7 55.8 42.7 97.5 98.6 97.0 75.1 75.1 63.6
TAC (SC) 92.6 94.3 94.2 81.2 90.3 80.1 56.9 54.5 30.1 97.0 98.3 96.8 75.3 75.8 64.4
Gradnorm 95.6 98.3 96.2 82.6 91.1 81.5 61.3 60.6 43.6 98.7 99.4 98.7 81.0 81.2 70.9
Ours 95.8 98.3 96.3 83.3 92.0 83.0 63.3 59.6 43.5 97.8 99.2 98.4 82.4 84.9 71.4

Since the optimization objective in Eq. (14) takes the form of a Lasso optimization problem, the
solution to Eq. (14) can be efficiently obtained with the coordinate descent method (Wu & Lange,
2008; Wright, 2015). To keep the main text concise, we provide a detailed illustration in Appendix E.

The optimization procedure is guaranteed to converge since we obtain the optimal solution to each
subproblem. By solving two subproblems alternatively, the objective value of Eq. (9) keeps decreas-
ing monotonically, which is consistent with the visualization in Fig. 3. For clarity, the optimization
procedure is summarized in appendix (c.f. Algorithm 1). Finally, we compute clustering assignment
by performing spectral clustering on the ensembled affinity matrix Â produced by Algorithm 1.

4 EXPERIMENTS

Evaluation Metric. We evaluate clustering performance with three widely used metrics, including
Accuracy (ACC), Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI).

Baselines. We compare our method with DAC (Chang et al., 2017a), DCCM (Wu et al., 2019), IIC
(Ji et al., 2019a), PICA (Huang et al., 2020), CC (Li et al., 2021b), IDFD (Tao et al., 2020), SCAN
(Van et al., 2020), MiCE (Tsai et al., 2020), GCC (Zhong et al., 2021), NNM (Dang et al., 2021),
TCC (Shen et al., 2021), SPICE (Niu et al., 2022), SeCu (Qian, 2023), DivClust (Metaxas et al.,
2023), RPSC (Liu et al., 2024), TCL (Li et al., 2022b), ProPos (Huang et al., 2022), SIC (Cai et al.,
2023), TAC (Li et al., 2024), GradNorm (Peng et al., 2025c).

Implementation. Following prior works (Li et al., 2024; Peng et al., 2025b), we adopt the pre-
trained CLIP model with ViT-B/32 (Dosovitskiy et al., 2020) and Transformer (Vaswani et al., 2017)
as default image and text backbones, respectively. We use the positive nouns filtered by TAC (Li
et al., 2024) from WordNet (Miller, 1995). Following Li et al. (2024), we filter positive nouns based
on the train split of each dataset, followed by evaluating the clustering performance on the test split
of each dataset. We fix τ = 0.04, q = 30, µ = 0.1 and λ = 10 for all datasets.

Prompt Templates. In consistent with TAC (Li et al., 2024), we use the following B = 7 templates
to construct prompts for the filtered positive nouns: itap of a {}, a bad photo of the {}, a origami
{}, a photo of the large {}, a {} in a video game, art of the {}, a photo of the small {}.
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Table 2: Clustering performance (%) on challenging datasets. The best results are shown in bold.

Dataset DTD UCF-101 ImageNet-1K Average

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

CLIP (zero-shot) 56.5 43.1 26.9 79.9 63.4 50.2 81.0 63.6 45.4 72.5 56.7 40.8

CLIP (KMeans) 57.3 42.6 27.4 79.5 58.2 47.6 72.3 38.9 27.1 69.7 45.6 34.0
CLIP (SC) 57.9 46.7 31.8 81.7 63.3 55.1 73.9 40.0 29.8 71.2 50.0 38.9
SCAN 59.4 46.4 31.7 79.7 61.1 53.1 74.7 44.7 32.4 71.3 50.7 39.1
SIC 59.6 45.9 30.5 81.0 61.9 53.6 77.2 47.0 34.3 72.6 51.6 39.5
TAC (KMeans) 60.1 45.9 29.0 81.6 61.3 52.4 77.8 48.9 36.4 73.2 52.0 39.3
TAC (SC) 58.6 44.0 27.1 79.6 60.0 50.1 78.0 49.1 36.2 72.1 51.0 37.8
Gradnorm 63.1 50.9 34.2 82.5 62.7 53.2 79.2 52.6 39.1 74.9 55.4 41.7
Ours 61.7 52.0 33.6 83.0 67.9 59.4 79.2 56.3 39.4 74.6 58.7 44.1

4.1 MAIN RESULTS

Datasets. We evaluate the effectiveness of our method by conducting experiments over 1) five
widely-used datasets: STL-10 (Coates et al., 2011), CIFAR-10 (Krizhevsky & Hinton, 2009),
CIFAR-20 (Krizhevsky & Hinton, 2009), ImageNet-10 (Chang et al., 2017b) and ImageNet-Dogs
(Chang et al., 2017b); 2) three more complex and challenging datasets: DTD (Cimpoi et al., 2014),
UCF101 (Soomro et al., 2012) and ImageNet-1k (Deng et al., 2009).

Evaluation on Classical Datasets. Different with early baselines adopting ResNet-34 or ResNet-18
as the backbone, this paper mainly focuses on comparisons with zero-shot CLIP and CLIP-based
methods. As shown in Table 1, our methods consistently outperforms TAC (Li et al., 2024) and
zero-shot CLIP (Radford et al., 2021) on five classical datasets. Notably, our method achieves 7.8%
and 9.8% improvement in ARI and ACC on ImageNet-Dogs, respectively. On CIFAR-10 dataset,
SIC (Cai et al., 2023) is marginally superior to our method, as it entails more trainable parameters
and a more sophisticated training strategy.

Evaluation on Challenging Datasets. Since the rapid development of pre-trained models has made
clustering on relatively simple datasets such as STL-10 and CIFAR-10 no longer challenging, we
evaluate our proposed method on three more challenging datasets: DTD (Cimpoi et al., 2014),
UCF101 (Soomro et al., 2012) and ImageNet-1k (Deng et al., 2009). Our proposed method notably
achieves the state-of-the-art perfomance which is provided in Table 2. To be specific, the proposed
method outperforms TAC over 7.0% in ARI and 6.9% in ACC on UCF101. The results prove the
effectiveness of our proposed strategy in studying spectral clustering from the perspective of NTK.

(a) CLIP (NMI=72.8%) (b) TAC (NMI=75.3%) (c) Ours (NMI=82.4%)

Figure 2: Visualization of affinity matrices on ImageNet-Dogs.

4.2 VISUALIZATION

Affinity Matrix. We examine how different choices of affinity measure impact the resulting affinity
matrix in Figure 2, where rows and columns of each affinity matrix are permuted according to
the ground-truth labels of images. In contrast to affinity matrices that are computed by applying
the RBF kernel on the pre-trained CLIP features (Fig. 2(a)) and TAC’s image-text-concentrated
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Figure 3: The objective value of Eq. (9) and the clustering performance (measured by NMI) at each
optimization iteration on CIFAR-10 and DTD, respectively.

features (Fig. 2(b)) respectively, the affinity matrix in Fig. 2(c), which is computed by applying
our proposed NTK on the pre-trained CLIP features, exhibits the sharpest block-diagonal structure:
within-block entries are dense and homogeneous while off-block values are suppressed toward zero.
Visualizations on other datasets can be found in appendix (c.f. Fig. 8 and Fig. 9).

Convergence Speed. In Fig. 3, we plot the objective value of Eq. (9) and the clustering performance
at each iteration of the diffusion process. As can be clearly seen from Fig. 3, when affinities are
propagated iteratively, the objective value keeps decreasing and the clustering performance keeps
increasing until reaching the equilibrium. Moreover, Fig. 3 shows that the objective value of Eq. (9)
converges within a small number of iterations, which implies the efficiency of our proposed method.

0.020.030.04 0.06 0.08 0.1
60

70

80

90

100

Pe
rf

or
m

an
ce

 (
%

) ACC NMI ARI

0.020.030.04 0.06 0.08 0.1
30

40

50

60

70
ACC NMI ARI

0.020.030.04 0.06 0.08 0.1
50

60

70

80

90

Pe
rf

or
m

an
ce

 (
%

)ACC NMI ARI

Figure 4: Ablation analysis of clustering performance by varying the value of τ on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.
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Figure 5: Ablation analysis of clustering performance by varying the value of q on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.

4.3 ABLATION STUDY

Ablation on Hyper-parameters. We evaluate the hyper-parameters most essential to our algorithm
design, including the temperature τ in Eq. (6), the number of nearest neighbors q in Eq. (8), and the
weighting parameters µ and λ in Eq. (9). Fig. 4 and Fig. 5 show that having a large or small value
of τ and q does not necessarily improve the performance. As can be found in Fig. 6 and Fig. 7, our
method is stable across a wide range of the weighting parameters µ and λ.

Ablation on Visual Encoder. We evaluate it with two different visual encoders, ViT-B/16 and ViT-
L/14, and report the clustering results in Table 3. It can be seen that the clustering performance can
be enhanced by more powerful visual encoders. While our proposed method consistently outper-
forms TAC across both backbones, indicating better generalization.
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Figure 6: Ablation analysis of clustering performance by varying the value of µ on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.
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Figure 7: Ablation analysis of clustering performance by varying the value of λ on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.

4.4 DOMAIN-GENERALIZABLE IMAGE CLUSTERING.

To assess the transferability of our method, we perform clustering on several versions of ImageNet-
1K variants, including ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-V2 (Kornblith et al.,
2019) and ImageNet-S (Wang et al., 2019). As observed in Table 4, both TAC and our method suffer
performance drops under these shifts, underscoring the challenge of clustering in such settings.
Even so, our method consistently surpasses TAC across the in-distribution variants, highlighting its
stronger robustness to domain shifts.

4.5 FINE-GRAINED IMAGE CLUSTERING.

We validate our method under the fine-grained scenario by conducting experiments on five fine-
grained datasets, including Aircraft (Maji et al., 2013), Food (Bossard et al., 2014), Flowers (Nils-
back & Zisserman, 2008), Pets (Parkhi et al., 2012) and Cars (Krause et al., 2013). As shown in
Table 5, our proposed method consistently outperforms the state-of-the-art, which highlights the
superiority of text-informed affinities for image clustering.

5 RELATED WORK

Deep Spectral Clustering. Deep spectral clustering integrates traditional spectral clustering with
deep neural networks for effective clustering. Tian et al. (2014) observe the similarity between
the optimization objectives of autoencoders and spectral clustering. They thus propose replacing
spectral embedding with a deep autoencoder that is trained to reconstruct the pre-defined affinity
matrix. However, obtaining such an affinity matrix can be challenging for complex data, and the
matrix size can become prohibitively large for large datasets. SpectralNet (Shaham et al., 2018)
proposes to directly embed raw data into the eigenspace of a given affinity matrix, which has inspired
numerous extensions. Yang et al. (2019) enhance the robustness of SpectralNet’s embeddings using
a dual autoencoder. Huang et al. (2019b;a), respectively, extend SpectralNet to handle multi-view
data. Another line of works (Duan et al., 2019a; Affeldt et al., 2020; Golikov et al., 2022) highlight
the benefits of joint optimization and propose joint spectral embedding learning and clustering.

Image Clustering with Vision-Language Representations. The seminar work called SIC (Cai
et al., 2023) uses textual semantics to enhance image pseudo-labeling, followed by performing im-
age clustering with consistency learning in both image space and semantic space. Note that, SIC
essentially pulls image embeddings closer to embeddings in semantic space, while ignoring the im-
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Table 3: Clustering performance (%) on five widely-used datasets. The best results are in bold.

Backbone Dataset STL-10 CIFAR-10 CIFAR-20 ImageNet-Dogs DTD
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

ViT-B/16
TAC (KMeans) 95.1 96.1 93.6 82.9 91.2 80.5 62.6 60.4 45.7 82.3 81.9 72.9 62.6 50.4 33.6
TAC (SC) 92.9 96.3 92.3 83.1 91.3 82.0 63.0 60.0 45.1 82.1 81.5 73.0 63.1 51.7 34.6
Ours 97.2 99.0 97.4 86.0 93.1 85.4 65.7 64.4 49.1 84.9 86.7 75.0 66.3 55.8 37.2

ViT-L/14 TAC (KMeans) 95.4 96.7 94.2 89.1 93.9 86.7 64.8 62.9 47.6 84.3 84.0 75.4 64.7 52.9 35.1
TAC (SC) 93.8 96.7 93.8 89.4 94.1 88.0 65.0 63.0 47.5 84.0 84.0 75.0 65.1 53.5 35.9
Ours 97.7 99.5 98.1 92.1 96.6 90.7 66.9 66.1 50.8 86.2 88.3 79.0 68.1 58.0 38.9

Table 4: Clustering performance (%) robustness to domain shift. The best results are in bold.

Dataset ImageNet-C ImageNet-V2 ImageNet-S Average

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

TAC (KMeans) 71.4 39.2 25.6 71.7 38.5 23.0 70.7 34.8 22.1 71.3 37.5 23.6
TAC (SC) 70.9 39.0 25.5 72.0 39.0 23.6 70.1 33.7 21.6 71.0 37.2 23.6
Ours 75.0 44.0 28.1 74.5 42.7 27.2 72.7 40.1 25.3 74.1 42.3 26.9

Table 5: Clustering performance (%) on five fine-grained datasets. The best results are in bold.

Dataset Aircraft Food Flowers Pets Cars

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

TAC (KMeans) 47.7 20.1 10.4 69.4 59.2 43.9 86.0 66.9 58.5 80.4 66.9 59.2 64.7 33.2 21.7
TAC (SC) 47.1 20.3 10.0 68.9 59.0 43.4 86.0 67.0 59.5 79.9 66.0 58.5 65.0 33.9 22.0
GradNorm 50.3 24.0 13.1 75.0 67.8 52.4 86.7 70.8 64.2 81.5 72.0 62.8 68.3 38.0 26.6
Ours 51.9 24.2 14.2 72.1 61.8 47.2 88.3 69.4 61.0 84.9 72.0 64.0 67.7 39.0 26.4

provement of text semantic embeddings. Differently, Li et al. (2024) and Peng et al. (2025b;c) focus
on leveraging textual semantics to enhance the feature discriminability by either simply concentrat-
ing textual and visual features or its proposed cross-modal mutual distillation strategy

Due to space limitation, more related work to this paper is discussed in Appendix A.

6 CONCLUSION

In this paper, we advance spectral clustering into the multi-modal era by presenting Neural Tan-
gent Kernel Spectral Clustering, which anchors the NTK with positive textual semantics to couple
visual similarity and semantic overlap in defining affinities. This design sharpens block-diagonal
structures by amplifying intra-cluster connections and suppressing cross-cluster noise, while our
proposed regularized affinity diffusion further enhances robustness through adaptive ensembling of
prompt-specific affinities. Empirically, our method achieves strong performance compared to com-
petitive baselines on 16 datasets, which echoes our theoretical insights. Besides, extensive ablations
provide further understandings of our proposed method. We hope this work could serve as a cata-
lyst, motivating future studies on spectral clustering with vision-language representations, which is
believable to be a promising direction for methodology improvement and real-world application.
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A MORE RELATED WORK

Deep Clustering. Due to its ability to reveal the inherent semantic structure underlying the data
without requiring laborious and trivial data labeling work, clustering has been shown to benefit
downstream tasks (Zhu et al., 2024; 2020; Zhang et al., 2024; Chen et al., 2022a; Zhu et al., 2023b;a;
Peng et al., 2020; 2024a; Chen et al., 2022b; Peng et al., 2025d; Zhou et al., 2025; Zhu & Peng, 2022;
Peng et al., 2024b; 2025a) in computer vision. The popularity of deep image clustering can be at-
tributed to the fact that distributional assumptions in classic clustering methods, e.g., compactness
(Ester et al., 1996), connectivity (Wang et al., 2020; Zhu et al., 2025), sparsity (Elhamifar & Vidal,
2013; Zhu et al., 2021) and low rankness (Liu et al., 2012; Zhu & Peng, 2020), can not be necessarily
conformed by high-dimensional structural RGB images. To exploit the powerful representative abil-
ity of deep neural networks in an unsupervised manner, the earliest attempts seek self-supervision
signals by considering image reconstruction (Ghasedi Dizaji et al., 2017; Peng et al., 2016; Xie et al.,
2016; Jiang et al., 2016; Mukherjee et al., 2019; Radford et al., 2015; Peng & Zhu, 2021) and mu-
tual information maximization (Hu et al., 2017; Ji et al., 2019b) as proxy tasks. Despite remarkable
progresses, the learned representations may not be discriminative enough to capture the semantic
similarity between images. More recently, the advance in self-supervised representation learning
have led to major breakthroughs in deep image clustering. On the one hand, IDFD (Tao et al., 2020)
proposes to perform both instance discrimination and feature de-correlation while MICE (Tsai et al.,
2020) proposes a unified latent mixture model based on contrastive learning to tackle the clustering
task. On the other hand, CC (Li et al., 2021b) and its followers TCC (Shen et al., 2021) perform
contrastive learning at both instance and cluster levels. Differently, ProPos (Huang et al., 2022)
performs non-contrastive learning on the instance level and contrastive learning on the cluster level,
which results in enjoying the strengths of both worlds.

Vision-language Models (VLMs). Pretraining on large-scale image–text pairs has made VLMs a
standard backbone for multi-modal transfer. Regarding the type of architectures, existing VLMs
can be divided into two categories: (i) single-stream models that process concatenated visual and
textual features into one transformer, such as VisualBERT (Li et al., 2019), ViLT (Kim et al., 2021),
and (ii) dual-stream models that keep visual and text encoders seperate while learning cross-modal
alignment through contrastive pairing, e.g., CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
SigLIP (Yao et al., 2021) and FILIP (Yao et al., 2021). More importantly, CLIP based models are
widely adopted and has motivated a series of follow-ups aimed to improve data efficiency and better
adaptation on downstream tasks (Li et al., 2021a; Zhang et al., 2021a; Zhou et al., 2022). This
paper uses CLIP as the pre-trained model, but our method can be generally applicable to contrastive
models that promote vision-language alignment.

Neural Tangent Kernel. Neural tangent kernel (NTK) (Golikov et al., 2022) is a kernel that reveals
the connections between infinitely wide neural networks trained by gradient descent and kernel
methods. NTK enables the study of neural networks using theoretical tools from the perspective
of kernel methods. There have been several studies that have explored the properties of NTK:
Jacot et al. (2018) propose the concept of NTK and showed that it could be used to explain the
generalization of neural networks. Lee et al. (2019) expand on this work and demonstrated that the
dynamics of training wide but finite-width NNs with gradient descent can be approximated by a
linear model obtained from the first-order Taylor expansion of that network around its initialization.
This paper, rather than exploring the interpretability of infinite width neural networks, explores
empirical (i.e., finite width) NTK to construct a text-informed affinity matrix for spectral clustering.

B DERIVATION OF EQ. (11)

We consider the following optimization problem

min
β,Â

B∑
b=1

β[b] · ℓ(Â,A
(b)
NTK) + µ∥Â−E∥2F +

λ

2
∥β∥22 s.t. 0 ≤ β[b] ≤ 1 and

B∑
b=1

β[b] = 1, (15)

With fixed β, we can simplify Eq. (15) as follows:

min
Â

B∑
b=1

β[b] · ℓ(Â,A
(b)
NTK) + µ∥Â−E∥2F , (16)
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Table 6: Spectural clustering performance (%) using different kernels for affinity measurement based
on either CLIP image features or TAC image-text-concentrated features. The best results are high-
lighted in bold. † indicates our reproduced results.

Dataset STL-10 CIFAR-10 CIFAR-20 ImageNet-10 ImageNet-Dogs DTD UCF101 ImageNet-1K Average

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
Using CLIP image features

KMeans 90.1 93.8 92.4 70.3 74.2 61.6 49.9 45.5 28.3 96.9 98.2 96.1 39.8 38.1 20.1 57.3 42.6 27.4 79.5 58.2 47.6 72.3 38.9 27.1 69.5 61.2 50.1
KMeans† 91.7 93.3 89.1 70.3 74.2 61.6 49.5 42.9 27.3 95.1 95.4 94.6 70.9 60.9 54.7 58.5 44.6 28.5 80.8 59.7 50.8 72.2 38.3 26.6 73.6 63.7 54.2
Linear 85.1 85.1 79.0 64.0 68.3 55.8 44.0 41.2 29.0 96.6 96.0 95.8 67.9 65.1 53.3 57.6 47.1 32.3 80.8 62.0 54.1 70.6 37.1 28.3 70.8 62.7 53.5
Polynomial 85.1 85.3 79.2 64.7 69.3 56.6 44.5 42.2 29.6 96.1 95.4 94.9 68.7 66.8 55.7 57.3 45.4 31.5 81.2 62.9 55.4 70.3 38.4 29.5 71.0 63.2 54.1
RBF 88.1 87.8 82.4 65.4 69.2 57.1 45.2 42.7 30.1 96.4 96.8 95.6 72.8 70.6 56.9 57.9 46.7 31.8 81.7 63.3 55.1 73.9 40.0 29.8 72.7 64.6 54.9
Exponential 83.6 87.8 80.2 66.6 70.0 58.3 45.4 43.3 30.3 96.3 94.4 94.1 70.3 68.5 54.0 58.9 46.3 33.3 81.4 62.4 54.8 72.9 39.3 29.3 71.9 64.0 54.3
Laplacian 83.7 87.4 79.3 67.0 69.6 58.5 45.4 43.2 30.7 96.8 96.6 94.0 70.6 69.2 53.9 59.7 46.1 34.3 81.2 62.6 54.7 69.7 36.1 27.3 71.8 63.9 54.1
Sigmoid 85.1 85.1 79.0 64.0 68.3 55.8 43.7 41.1 28.8 96.5 96.0 94.8 67.9 65.1 53.7 57.1 46.2 31.8 80.7 61.5 53.6 68.1 36.2 27.8 70.4 62.4 53.2

Using TAC image-text-concentrated features
KMeans 92.3 94.5 89.5 80.8 90.1 79.8 60.7 55.8 42.7 97.5 98.6 97.0 75.1 75.1 63.6 60.1 45.9 29.0 81.6 61.3 52.4 77.8 48.9 36.4 78.2 71.3 61.3
Linear 90.0 90.8 91.1 79.8 88.8 79.3 56.1 54.0 29.9 96.8 97.5 96.9 71.9 71.0 62.1 59.0 45.6 30.9 80.1 61.5 53.9 76.5 47.8 34.3 76.3 69.6 59.8
Polynomial 90.2 90.6 94.0 81.5 90.0 79.8 56.6 54.5 30.1 96.9 97.6 96.8 73.0 73.6 63.1 59.4 46.3 29.8 80.0 61.6 52.3 77.0 48.0 34.5 76.8 70.3 60.1
RBF 92.6 94.3 94.2 81.2 90.3 80.1 56.9 54.5 30.1 97.0 98.3 96.8 75.3 75.8 64.4 58.6 44.0 27.1 79.6 60.0 50.1 78.0 49.1 36.2 77.4 70.8 59.9
Exponential 91.5 94.5 94.0 81.6 90.5 80.5 57.2 54.6 30.3 96.9 98.0 95.0 74.5 73.6 62.5 59.0 45.8 28.8 79.9 62.1 53.5 77.5 50.0 36.0 77.3 71.1 60.1
Laplacian 92.0 94.0 93.6 82.3 90.9 80.3 57.0 54.9 31.0 97.2 98.1 95.9 75.0 74.2 62.8 59.5 46.0 32.0 80.1 63.0 54.9 74.6 47.0 35.1 77.2 71.0 60.7
Sigmoid 93.6 94.4 93.1 80.1 88.5 76.9 55.7 52.3 29.0 96.8 97.5 95.3 72.2 70.9 60.1 58.0 46.2 32.3 80.5 61.9 53.2 72.9 46.6 35.8 76.2 69.8 59.5

Ours 95.8 98.3 96.3 83.3 92.0 83.0 63.3 59.6 43.5 97.8 99.2 98.4 82.4 84.9 71.4 61.7 52.0 33.6 83.0 67.9 59.4 79.2 56.3 39.4 80.8 76.3 65.6

where

ℓ(Â,A
(b)
NTK) =

1

2

M∑
i,j,k,l=1

a
(b)
ij a

(b)
kl

 Â[k, i]√
d
(b)
i d

(b)
k

− Â[l, j]√
d
(b)
j d

(b)
l

 (17)

with a
(b)
ij = A

(b)
NTK[i, j] and d

(b)
i =

∑M
j=1 A

(b)
NTK[i, j].

Let us define
W(b) = A

(b)
NTK ⊗A

(b)
NTK ∈ RM2×M2

T(b) = D
(b)
NTK ⊗D

(b)
NTK ∈ RM2×M2

with D
(b)
NTK as a diagonal matrix of D(b)

NTK[i, i] =
∑M

j=1 A
(b)
NTK[i, j], and

S(b) = S
(b)
NTK ⊗ S

(b)
NTK ∈ RM2×M2

with S
(b)
NTK as the row-normalized A

(b)
NTK, i.e., S(b)

NTK =
(
D

(b)
NTK

)−1/2

A
(b)
NTK

(
D

(b)
NTK

)−1/2

One can easily check that ∥Â−E∥2F = ∥vec(Â)− vec(E)∥22.

By introducing two identical coordinate transformations: ε ≡M(i− 1)+ k and δ ≡M(j − 1)+ l,
we have the following:

ℓ(Â,A
(b)
NTK) =

1

2

M2∑
ε,δ=1

w
(b)
ε,δ

 â[ε]√
t
(b)
εε

− â[δ]√
t
(b)
δδ

2

=

M2∑
ε,δ=1

w
(b)
ε,δ

â[ε]
2

t
(b)
εε

−
M2∑

ε,δ=1

â[ε]
w

(b)
ε,δ√

t
(b)
εε t

(b)
δδ

â[δ]

=

M2∑
ε=1

â[ε]
2 − â⊤T(b)−1/2

W(b)T(b)−1/2
â

= â⊤
(
IM2 − T(b)−1/2

W(b)T(b)−1/2
)
â

= â⊤
(
IM2 − S(b)

)
â,

(18)

where â = vec(Â), w(b)
ε,δ = W(b)[ε, δ] and t

(b)
δδ = T(b)[δ, δ].

The following three facts are applied for the derivation of Eq. (18):

1. W(b) is symmetric since W(b) is symmetric.
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2. T(b)[δ, δ] =
∑M2

ε=1 W(b)[δ, ε] since

T(b)[δ, δ] = D(b)
NTK [i, i]D(b)

NTK [k, k]

=

 M∑
j=1

A
(b)
NTK[i, j]

( M∑
l=1

A
(b)
NTK[k, l]

)

=

M∑
j=1

M∑
l=1

A
(b)
NTK[i, j]A

(b)
NTK[k, l] =

M2∑
ε=1

W(b)[δ, ε]

(19)

3. S(b) = T(b)−1/2W(b)T(b)−1/2
since

S(b)[δ, ε] = S
(b)
NTK [i, j]S

(b)
NTK [k, l]

= D
(b)
NTK [i, i]−0.5A

(b)
NTK [i, j]D

(b)
NTK [j, j]−0.5D

(b)
NTK [k, k]−0.5A

(b)
NTK [k, l]D

(b)
NTK [l, l]−0.5

= D
(b)
NTK [i, i]−0.5D

(b)
NTK [k, k]−0.5A

(b)
NTK [i, j]A

(b)
NTK [k, l]D

(b)
NTK [j, j]−0.5D

(b)
NTK [l, l]−0.5

= T(b)[δ, δ]−0.5W(b)[δ, ε]T(b)[ε, ε]−0.5

(20)

In summary, the objective function in Eq. (15) can be rewritten as follows:

J =

B∑
b=1

β[b] · â⊤
(
IM2 − S(b)

)
â+ µ∥â− vec(E)∥22 (21)

C DERIVATION OF EQ. (12)

By taking the partial derivative of J in Eq. (21) with regard to â, we have the following:

∂J

∂â
=

B∑
b=1

β[b] · ∂

∂â

{
â⊤
(
IM2 − S(b)

)
â
}
+ µ

∂

∂â

{
∥â− vec(E)∥22

}
=

B∑
b=1

β[b] ·
[
2
(
IM2 − S(b)

)
â
]
+ 2µ (â− vec(E))

(22)

By setting ∂J/∂â = 0, we have the following:

vec(Â) = â =
µ

µ+ 1
·

(
IM2 −

B∑
b=1

β[b]

µ+ 1
S(b)

)−1

vec (E) . (23)

Applying vec−1(·) to both sides of Eq. (23) results in the following:

Â =
µ

µ+ 1
· vec−1

(IM2 −
B∑

b=1

β[b]

µ+ 1
S(b)

)−1

vec (E)

 , (24)

D CONVERGENCE OF EQ. (13) TO EQ. (12)

Lemma 1. Let A ∈ Rn×n, the spectral radius of A is denoted as ρ(A) = max{|λ|, λ ∈ σ(A)},
where σ(A) is the spectrum of A that represents the set of all the eigenvalues. Let ∥ · ∥ be a matrix
norm on Rn×n, given a square matrix A ∈ Rn×n, λ is an arbitrary eigenvalue of A, then we have
|λ| ≤ ρ(A) ≤ ∥A∥.
Lemma 2. Let A ∈ Rm×m, B ∈ Rn×n, denote {λi,xi}mi=1 and {µi,yi}ni=1 as the eigen-pairs of
A and B respectively. The set of mn eigen-pairs of A⊗B is given by:

{λiµj ,xi ⊗ yj}i=1,...,m, j=1,...n.

Lemma 3. Let A ∈ Rm×n, X ∈ Rn×p and B ∈ Rp×q respectively, then

vec(AXB) = (B⊤ ⊗A)vec(X).
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Lemma 4. Let A ∈ Rn×n, then limk→∞ Ak = 0 if and only if ρ(A) < 1.
Lemma 5. Given a matrix A ∈ Rn×n and ρ(A) < 1, the Neumann series In + A + A2 + · · ·
converges to (In −A)−1.

To get started, we first consider the matrix
(
D

(b)
NTK

)−1

A
(b)
NTK, whose induced l∞-norm is equal to 1,

i.e., ∥
(
D

(b)
NTK

)−1

A
(b)
NTK∥∞ = 1, since the i-th diagonal element in matrix D

(b)
NTK equal to the summa-

tion of the corresponding i-th row in matrix A
(b)
NTK. Lemma 1 gives that ρ

((
D

(b)
NTK

)−1

A
(b)
NTK

)
≤ 1.

As for the matrix S
(b)
NTK =

(
D

(b)
NTK

)−1/2

A
(b)
NTK

(
D

(b)
NTK

)−1/2

we are concerned about, since

we can rewrite it as S
(b)
NTK =

(
D

(b)
NTK

)1/2 (
D

(b)
NTK

)−1

A
(b)
NTK

(
D

(b)
NTK

)−1/2

, thus it is similar to(
D

(b)
NTK

)−1

A
(b)
NTK. This implies that the two matrices share the same eigenvalues, such that

ρ
(
S
(b)
NTK

)
≤ 1. By applying Lemma 2, we can conclude that both the spectral radius of the Kro-

necker product S(b) = S
(b)
NTK ⊗ S

(b)
NTK is no larger than 1, i.e., ρ

(
S(b)

)
≤ 1.

By applying Lemma 3, Eq. (13) can be vectorized as the following:

â(p+1) =

B∑
b=1

β[b]

µ+ 1

(
S(b)

)⊤
⊗ S(b)â(p) +

µ

µ+ 1
vec(E)

=

B∑
b=1

β[b]

µ+ 1
S(b) ⊗ S(b)â(p) +

µ

µ+ 1
vec(E)

=

B∑
b=1

β[b]

µ+ 1
S(b)â(p) +

µ

µ+ 1
vec(E)

=

B∑
b=1

β[b]

µ+ 1
S(b)

(
B∑

b=1

β[b]

µ+ 1
S(b)â(p) +

µ

µ+ 1
vec(E)

)
+

µ

µ+ 1
vec(E)

=

(
B∑

b=1

β[b]

µ+ 1
S(b)

)p

â(1) +
µ

µ+ 1

p−1∑
i=0

(
B∑

b=1

β[b]

µ+ 1
S(b)

)i

vec(E)

(25)

where the second step is derived based on the fact that S(b) is symmetric.

Since we have already proved that ρ
(
S(b)

)
≤ 1, we have the spectral radius of

∑B
b=1

β[b]
µ+1S

(b) to be

upper-bounded by
∑B

b=1
β[b]
µ+1 . Moreover, since µ > 0, we have

ρ

(
B∑

b=1

β[b]

µ+ 1
S(b)

)
≤

B∑
b=1

β[b]

µ+ 1
=

∑B
b=1 β[b]

µ+ 1
=

1

µ+ 1
< 1 (26)

By taking advantage of Lemma 4 and 5, we can easily demonstrate that the following two expres-
sions hold true:

lim
p→∞

(
B∑

b=1

β[b]

µ+ 1
S(b)

)p

= 0, (27)

p−1∑
i=0

(
B∑

b=1

β[b]

µ+ 1
S(b)

)i

=

(
IM2 −

m∑
v=1

β[b]

µ+ 1
S(b)

)−1

. (28)

Therefore, the iterative sequence of â(p+1) asymptotically approaches a stable solution, converging
to:

lim
p→∞

â(p+1) =
µ

µ+ 1

(
IM2 −

m∑
v=1

β[b]

µ+ 1
S(b)

)−1

vec(E). (29)
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By performing the inverse operator vec−1(·) on the right side of Eq. (29), we have the following

Â∗ =
µ

µ+ 1
· vec−1

(IM2 −
B∑

b=1

β[b]

µ+ 1
S(b)

)−1

vec (E)

 , (30)

E OPTIMIZE β WITH FIXED Â

Again, we consider the following optimization problem

min
β,Â

B∑
b=1

β[b] · ℓ(Â,A
(b)
NTK) + µ∥Â−E∥2F +

λ

2
∥β∥22 s.t. 0 ≤ β[b] ≤ 1 and

B∑
b=1

β[b] = 1, (31)

When F is fixed, the objective value of ℓ(Â,A
(b)
NTK) for each adjacency matrix A

(b)
NTK in Eq. (31) can

be directly computed. As a result, the optimization of β reduces to solving the following problem:

min
β

B∑
b=1

β[b] · ℓ(Â,A
(b)
NTK) +

λ

2
∥β∥22, s.t. 0 ≤ β[b] ≤ 1 and

B∑
b=1

β[b] = 1. (32)

Specifically, the objective function in Eq. (32) takes the form of a Lasso optimization problem,
which can be solved by utilizing the coordinate descent method.

In each iteration of the coordinate descent, two elements β[i] and β[j] are selected to be updated,
while the others are fixed. Taking into account the Lagrange function for the constraint

∑B
b=1 β[b] =

1, we have the following updating scheme:

β∗[i]← λ(β[i] + β[j]) + (H(j) −H(i))

2λ
(33)

β∗[j]← β[i] + β[j]− β∗[i], (34)

where H(b) = ℓ(Â,A
(b)
NTK). To avoid the obtained β∗[i] and β∗[j] to violate the constraint 0 ≤ β[b],

we set β∗[i] = 0 if λ(β[i] + β[j]) + (H(j) −H(i)) < 0, and β∗[j] = 0 otherwise.

However, this strategy requires multiple iterations since only a pair of elements of β can be updated
together. To address this issue, we propose a more efficient solution that allows updating all elements
of β simultaneously, explicitly eliminating the need for iteration.

By taking advantage of the coordinate descent method, we can filter out the valid elements that are
not governed by the boundary constraints, formally denoting the valid index set as B. Consequently,
the inequality constraints of 0 ≤ β[i] ≤ 1 are slack to the weight set {β[b]}b∈B and the optimization
problem can be directly solved.

In particular, by introducing a Lagrangian multiplier η, the Lagrangian function L(β, η) can be
formally defined as:

L(β, η) =
∑
b∈B

β[b] ·H(b) +
λ

2
∥β∥22 + η(1−

∑
b∈B

β[b]). (35)

The corresponding Karush-Kuhn-Tucker (KKT) conditions can then be formulated as:
∇β[b]L(β, η) =

∂L(β, η)
∂β[b]

= H(b) + λβ[b]− η = 0, b ∈ B,

∇ηL(β, η) =
∂L(β, η)

∂η
= 1−

∑
b∈B β[b] = 0.

(36)

Note that we have already taken the equation constraint
∑

b∈B β[b] = 1 into consideration when
deriving the representation of ∇β[b]L(β, η). The optimal result can be obtained by solving the
|B|+1 equations. By summing up all the∇β[b]L(β, η) along b within B, the Lagrangian multiplier
η can be obtained as:

η =

∑
b∈B H(b) + λ

|B|
. (37)
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Algorithm 1: Affinity Ensembling via Regularized Affinity Diffusion

Input: Affinity matrices {A(b)
NTK}Bb=1, the reference matrix E, max number of iterations

maxiter, weighting parameter µ and λ

Output: The ensembled affinity matrix Â

1. initialize t = 0, Â = E, and β[b] = 1/B for each b = 1, . . . , B

2. repeat

3. update Â with fixed β following Eq. (13)

4. compute H(b) = ℓ(Â,A
(b)
NTK) for each b = 1, . . . , B

5. set β[b] = 0 for each b = 1, . . . , B

6. filter the valid index set B following Eq. (39)

7. update β[b] with fixed Â following Eq. (40) for each b ∈ B
9. t← t+ 1

10. until convergence or t = maxiter

Therefore, by taking η back into the KKT conditions, we can obtain the optimal solution of β∗[b],
following:

β∗[b] =

∑
b′∈B Hb′ − |B|Hb + λ

λ|B|
, v ∈ I. (38)

Since all the element β∗[b] should satisfy the inequality constraint 0 ≤ β∗[b] ≤ 1, the above rela-
tionships provide an effective strategy to determine the valid index set B, i.e., the corresponding Hb

in B should satisfy Hb ≤ (
∑

b′∈B Hb′ + λ)/|B|. Therefore, we can develop a formalize definition
of the valid index set, as follows:

B =
{
v|Hv < (

∑
b′∈B

Hb′ + λ)/|B|, v = 1, 2, . . . ,m
}
. (39)

In practical implementation, we first sort all Hb in descending order and then sequentially remove
the indices that fail to satisfy the constraint of Eq. (39), leading to the valid set B. The optimal result
can be obtained in a single round of iteration, with the resulting weight vector β∗ given by:

β∗[b] =


∑

b′∈B Hb′ − |B|Hb + λ

λ|B|
, v ∈ B,

0, v ∈ {1, 2, . . . , B}/I.
(40)

F ABLATION ON REGULARIZED AFFINITY DIFFUSION

In this section, we conduct ablation study on our proposed Regularized Affinity Diffusion (RAD)
mechanism in Section 3.2. To examine the effectiveness of RAD, we consider the following two
alternatives to RAD.

The first alternative is to naively average the obtained B affinity matrices A(1)
NTK, . . . ,A

(B)
NTK, i.e.,

Â =
1

B

B∑
b=1

A
(b)
NTK. (41)

We refer this alternative as Ours (naive).

The second alternative, motivated by Prompt Ensembling (PE), uses Eq. (6) and Eq. (7) to construct
the ensembled affinity matrix Â except that θ0 = vec

(
W̄
)
= vec

(
1
B

∑B
b=1 W

(b)
)

where W(b) is

the CLIP features of positive nouns induced by b-th prompt template ∆(b)(·). Formally, Â computed
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Table 7: Clustering performance (%) on eight image clustering datasets between prompt ensemble
and our methods. The best results are in bold.

Dataset STL-10 CIFAR-10 CIFAR-20 ImageNet-10 ImageNet-Dogs DTD UCF101 ImageNet-1K Average

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
TAC (Kmeans) 92.3 94.5 89.5 80.8 90.1 79.8 60.7 55.8 42.7 97.5 98.6 97.0 75.1 75.1 63.6 60.1 45.9 29.0 81.6 61.3 52.4 77.8 48.9 36.4 78.3 71.3 61.3
TAC (SC) 92.6 94.3 94.2 81.2 90.3 80.1 56.9 54.5 30.1 97.0 98.3 96.8 75.3 75.8 64.4 58.6 44.0 27.1 79.6 60.0 50.1 78.0 49.1 36.2 77.4 70.8 59.9
Ours (naive) 87.0 91.2 84.0 71.4 74.7 56.8 45.1 42.6 29.9 86.1 90.4 80.9 70.5 69.0 56.1 56.2 45.6 30.2 82.2 64.9 57.9 77.1 51.0 35.4 72.0 66.2 53.9
Ours (PE) 93.1 97.9 89.6 82.9 91.3 82.4 60.9 55.0 43.4 97.6 98.9 97.4 82.3 81.3 72.3 60.7 50.6 32.1 81.5 66.8 58.9 79.2 53.3 38.4 79.8 74.4 64.3
Ours (RAD) 95.8 98.3 96.3 83.3 92.0 83.0 63.3 59.6 43.5 97.8 99.2 98.4 82.4 84.9 71.4 61.7 52.0 33.6 83.0 67.9 59.4 79.2 56.3 39.4 80.8 76.3 65.6

by the second alternative, called Ours (PE), can be given as follows:

Â[i, j] =

{
KW̄ (fX (xi), fX (xj)) if fX (xi) ∈ Nq(fX (xj),KW̄) ∧ fX (xj) ∈ Nq(fX (xi),KW̄).

0 otherwise.
(42)

where

gW̄
(
fX (xi)

)
= log

N∑
k=1

ew̄
⊤
k fX (xi)/τ (43)

with w̄k = 1
B

∑B
b=1 fT

(
∆(b)(ĉk)

)
.

Table 7 shows that Ours (RAD) achieves the best clustering performance, which validates the ef-
fectiveness. Besides, one can also find that Ours (PE) significantly outperforms TAC (SC) and
TAC (KMeans), which implies the effectiveness of our proposed NTK-induced affinity measure.

G BROADER IMPACT

This work proposes a new deep clustering paradigm by leveraging external knowledge. As a funda-
mental problem in machine learning, clustering has a wide range of applications, such as anomaly
detection, person re-identification, community detection, etc. The proposed method is evaluated
on public image datasets that are not at risk. However, just like any learning method, the perfor-
mance of our method depends on data bias and cannot be guaranteed in more complex real-world
applications. In this sense, it might bring some disturbances in decision-making and thus should be
carefully used, especially in areas such as health care, autonomous vehicles, etc.

H USAGE CLAIM OF LLMS.

We use ChatGPT for grammar and spelling checks only, with prompt ”Proofread the sentences”.

I LIMITATION

The proposed method requires manually setting the target cluster number. In real-world applications,
one may resort to other cluster number estimation methods in the lack of a cluster number prior.

J ABLATION STUDY ON PROMPT TEMPLATES

To investigate how much has been prompt ensembling contributing to the performance compared to
using only one prompt, we report the clustering performance under single-prompt setting in Table 8.

Even with a single prompt template, ours is still outperforms TAC with multiple prompt templates
and achieves comparable performance to ours with multiple prompt templates, which implies that
the performance gains do NOT come from prompt engineering. Compared with TAC, the clustering
performance of ours is less sensitive to the choice of a single prompt template. Ours consistently
and significantly outperforms TAC (where the kernel way is not used), which implies the advantage
of our proposed NTK-based graph construction still holds with a single prompt template.
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(a) CLIP (NMI=57.9%) (b) TAC (NMI=58.6%) (c) Ours (NMI=61.7%)

Figure 8: Visualization of affinity matrices on DTD.

(a) CLIP (NMI=88.1%) (b) TAC (NMI=92.6%) (c) Ours (NMI=95.8%)

Figure 9: Visualization of affinity matrices on STL-10.

Table 8: Ablation Study on Prompt Templates

Dataset STL-10 CIFAR-10 CIFAR-20 ImageNet-10 ImageNet-Dogs DTD UCF101 ImageNet-1K Average

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
itap of a {}

TAC (Kmeans) 91.0 93.8 87.3 76.9 80.7 70.5 56.8 48.7 36.3 97.0 97.6 95.8 70.5 70.5 57.3 60.2 45.5 28.4 80.7 59.8 50.8 75.1 46.4 33.6 76.0 67.9 57.5
TAC (SC) 93.3 95.9 93.2 78.5 88.4 76.5 53.0 47.2 35.4 95.1 97.0 95.8 75.3 74.6 61.7 57.5 42.5 24.1 81.2 61.4 54.4 77.4 48.0 35.6 76.4 69.4 59.6
Ours 94.3 97.5 94.5 83.2 90.6 81.1 62.4 56.3 39.9 96.9 98.2 97.4 82.5 84.5 71.0 61.6 51.8 32.7 81.8 67.5 58.8 78.6 54.6 38.9 80.2 75.1 64.3

a bad photo of the {}
TAC (Kmeans) 88.5 80.2 78.4 81.8 90.0 79.3 60.8 54.6 41.1 96.0 97.4 96.4 73.9 74.5 62.6 58.2 44.6 28.5 80.7 60.0 50.9 76.9 47.6 36.0 77.1 68.6 59.1
TAC (SC) 92.5 95.0 90.2 81.3 90.3 80.1 54.5 52.7 38.9 96.0 97.6 95.4 64.0 65.6 52.8 58.5 43.9 26.8 81.7 61.9 55.6 76.8 48.2 35.7 75.7 69.4 59.4
Ours 95.4 98.1 95.9 83.1 91.6 82.1 62.3 56.4 40.9 97.1 98.2 97.2 82.1 84.3 70.6 61.5 52.0 32.0 82.9 67.5 58.2 78.9 55.6 39.4 80.4 75.5 64.5

a origami {}
TAC (Kmeans) 90.4 83.3 82.7 79.6 87.9 74.8 58.4 51.4 37.2 94.8 95.6 95.1 73.6 74.3 62.8 58.3 44.8 28.4 80.7 59.9 50.7 72.2 38.4 26.8 76.0 67.0 57.3
TAC (SC) 93.2 94.4 91.4 79.1 88.1 75.4 55.2 54.1 39.2 95.6 97.8 96.9 72.3 73.5 61.1 58.1 44.0 26.9 81.8 63.2 55.9 70.2 40.5 3.5 75.7 69.4 56.3
Ours 94.9 97.8 95.3 82.9 91.1 81.7 63.6 58.7 40.3 96.7 98.8 96.7 81.7 84.5 70.7 60.6 51.0 33.0 83.1 66.6 57.9 76.5 53.7 33.1 80.0 75.3 63.6

a photo of the large {}
TAC (Kmeans) 92.6 93.6 89.7 80.8 89.0 77.4 60.3 54.3 39.2 95.2 96.6 95.5 74.2 74.3 62.8 60.0 45.6 28.2 80.7 59.7 50.8 74.2 45.4 35.7 77.2 69.8 59.9
TAC (SC) 93.3 94.1 93.9 81.3 90.2 79.9 54.6 48.3 36.5 96.6 95.0 94.6 74.6 75.6 62.0 57.9 43.8 26.6 80.5 60.2 53.2 74.3 46.5 34.1 76.6 69.2 60.1
Ours 95.5 98.2 96.0 83.0 91.6 82.0 62.4 59.1 41.9 96.8 98.4 97.5 81.8 84.9 70.5 61.0 51.5 33.7 84.8 70.3 61.8 77.4 54.4 35.2 80.3 76.1 64.8

a {} in a video game
TAC (Kmeans) 91.4 83.9 83.8 81.4 90.0 79.0 61.9 55.5 40.1 96.0 94.6 94.9 71.8 73.7 63.2 59.1 45.5 28.3 80.8 59.9 50.8 75.2 45.4 35.7 77.2 68.6 59.5
TAC (SC) 91.4 93.2 92.0 80.3 89.3 77.7 54.6 51.6 37.5 96.4 95.6 94.8 73.6 74.6 63.4 58.6 43.9 26.7 81.4 62.2 54.7 75.8 44.3 35.0 76.5 69.3 60.2
Ours 95.3 98.1 95.8 83.1 91.3 82.2 62.5 57.1 38.3 97.7 99.0 97.4 80.9 83.9 70.1 60.9 51.2 33.4 82.9 67.8 59.2 77.7 54.3 36.2 80.1 75.3 64.1

art of the {}
TAC (Kmeans) 91.2 83.6 83.7 81.1 89.7 78.7 59.1 52.4 37.3 96.0 98.2 97.0 72.3 72.8 60.3 58.4 44.6 28.6 80.8 59.9 51.0 75.2 44.5 33.6 76.8 68.2 58.8
TAC (SC) 92.4 93.1 91.9 80.5 89.6 78.5 54.4 54.2 38.2 97.0 97.0 95.4 74.9 75.1 62.9 56.9 42.3 26.7 80.8 62.2 53.6 78.1 48.4 35.5 76.9 70.2 60.3
Ours 95.5 98.2 96.1 83.0 91.6 82.2 63.0 58.9 43.0 97.3 98.8 97.1 81.3 83.2 70.2 60.7 51.4 32.5 82.5 67.3 58.1 78.3 55.1 38.9 80.2 75.6 64.8

a photo of the small {}
TAC (Kmeans) 87.6 79.9 77.5 78.0 80.6 70.9 60.1 55.2 39.2 95.9 96.0 95.0 74.6 74.1 63.9 58.0 44.7 28.3 80.7 59.9 50.8 72.2 38.3 26.6 75.9 66.1 56.5
TAC (SC) 92.3 94.8 90.0 80.7 89.7 79.0 55.7 54.3 40.3 97.0 97.6 96.4 74.6 74.0 63.9 57.3 43.4 25.2 80.9 62.0 54.2 70.1 40.5 30.5 76.1 69.6 59.9
Ours 94.8 97.8 95.3 82.9 90.9 81.4 63.1 58.8 41.8 97.6 98.8 96.3 82.2 84.0 70.3 61.7 51.4 33.3 83.4 66.9 57.9 79.1 56.1 39.3 80.6 75.6 64.4

Prompt Ensembling
TAC (Kmeans) 92.3 94.5 89.5 80.8 90.1 79.8 60.7 55.8 42.7 97.5 98.6 97.0 75.1 75.1 63.6 60.1 45.9 29.0 81.6 61.3 52.4 77.8 48.9 36.4 78.3 71.3 61.3
TAC (SC) 92.6 94.3 94.2 81.2 90.3 80.1 56.9 54.5 30.1 97.0 98.3 96.8 75.3 75.8 64.4 58.6 44.0 27.1 79.6 60.0 50.1 78.0 49.1 36.2 77.4 70.8 59.9
Ours 95.8 98.3 96.3 83.3 92.0 83.0 63.3 59.6 43.5 97.8 99.2 98.4 82.4 84.9 71.4 61.7 52.0 33.6 83.0 67.9 59.4 79.2 56.3 39.4 80.8 76.3 65.6

K VALIDATION OF IMAGE DATA LEAKAGE

It should be noted that many evaluation datasets used in this work have appeared in the training
of the vision-language foundation models, which can raise a data-leakage problem since the rep-
resentations under interest has been well obtained. To maximally prevent data-leakage problem in
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Table 9: Clustering performance with OpenCLIP’s pretrained models. The best results are in bold.

Dataset STL-10 CIFAR-10 CIFAR-20 ImageNet-10 ImageNet-Dogs DTD UCF101 ImageNet-1K Average

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
TAC (Kmeans) 93.1 95.9 93.4 84.7 91.9 83.4 67.4 63.3 50.3 97.9 97.0 96.8 73.4 73.8 60.3 65.6 52.3 36.4 81.1 61.6 52.9 76.8 47.5 34.7 80.0 72.9 63.5
TAC (SC) 93.6 96.2 92.8 86.1 93.3 85.9 62.0 57.6 45.3 97.7 98.0 96.9 74.4 74.5 61.2 65.2 53.8 36.7 81.2 64.8 56.2 76.7 47.3 35.1 79.7 73.2 62.8
Ours 96.1 99.1 97.3 89.9 95.4 90.9 66.5 64.2 51.8 97.3 99.6 98.8 81.5 83.2 70.7 66.2 56.4 40.6 82.8 67.1 58.0 78.8 55.0 39.0 82.4 77.5 68.4

Table 10: Validation of label-name leakage.

Dataset CIFAR-10 CIFAR-20 ImageNet-1K

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI

WordNet w/o ground-truth class name 83.3 91.8 83.1 63.4 59.8 43.7 79.3 56.2 39.6
Full WordNet 83.3 92.0 83.0 63.3 59.6 43.5 78.8 56.3 39.4

the OpenAI’s pretrained CLIP models, we additionally conduct experiments using the pretrained
CLIP models in OpenCLIP on CIFAR-10, CIFAR-100, ImageNet-A and ImageNet-1K, where the
overlap percentage with the pre-trained dataset is 0.02%, 0.03%, 0.04% and 1.02%, respectively.
It can be found from Table 9 that using OpenCLIP’s checkpoints contribut to better or compara-
ble performance than OpenAI’s checkpoints, which means that performance benefit of CLIP-based
clustering does not result from the data-leakage problem. Besides, we note that, using both kinds of
checkpoints, our method consistently outperforms TAC.

L VALIDATION OF LABEL-NAME LEAKAGE

To further rule out potential label-name leakage, we additionally conducted experiment where we
remove all words that exactly match any ground-truth class name from WordNet and re-run our
method. As shown in Table 10, the clustering performance (averaged over 5 runs) of our method
remains essentially the same (ACC / NMI / ARI differences are small), indicating that our emprical
advantages do not rely on the presence of true label names but on the richer semantic structure
provided by generic “in-the-wild” nouns and their interactions via our proposed NTK-based affinity.

M STATISTIC SIGNIFICANCE

We report the statistical significance of our method via statistical comparisons over 8 benchmarks
used in Table 1 and Table 2. To this end, a very common practice yields the paired t-test . So before
we list the results, let’s define the following hypothesis to test.

• p0 : The compared two models may not have significant statistical differences regarding
their clustering performance.

• p1 : The compared two models may have significant statistical differences regarding their
clustering performance.

Table 11 reports the p-value of Wilcoxon Signed-Ranks Test where the clustering performance is
measured by NMI. According to the p-values of our method against all the compared CLIP-based
baselines, one can conclude our method consistently rejects the null hypothesis with p ≪ 0.05,
which means our clustering performance is statistically significant enough to be distinguished from
the others.

Table 11: Paired hypothesis test p-values.

TAC SIC CLIP (Kmeans)

Ours 0.0078 0.0039 0.0078
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Table 12: Computation cost of our method and spectral clustering on ImageNet-1K.

NTK-induced graph construction RAD Spectral clustering

1.1 mins 8.2 mins 3.6 mins

N TIME AND SPACE COMPLEXITY

The time and space complexity of the proposed method can be broken down into two main compo-
nents: (a) NTK-induced graph construction and (b) Regularized Affinity Diffusion (RAD).

For NTK-induced graph construction, one can easily check from Eq. (8) that time and space com-
plexity is O(BM2(d +N)) and O((M + BN)d) where B is the number of prompt template, d is
the CLIP feature dimension, N and M is the number of positve nouns and images.

For RAD, it seems that we need space complexity is O(BM2) space to store the B prompt-specific
affinity matrices. However, since the affinity matrices share a sparse mutual q-nn pattern (each
row has O(q) nonzeros), the space complexity accordingly drops to O(BMq), which is linearly
dominated by M since q,B ≪ M . In practice, by storing the affinity matrices as Torch sparse
tensor, the total memory usage is around 30 MB.

Regarding to the time complexity of RAD, it has two parts. The first one is updating Âvia Eq.
(13). Since each S(b) (the row-normalized A

(b)
NTK) has O(q) nonzeros, each multiplication is around

O(Mq2), giving O(t1BMq2) for computing Eq. (13) for t1 steps. The second part is updating β
in O(t2B

2) with t2-step coordinate descent shown in Appendix E. Considering the overall iteration
number T in alternating optimization, the final space complexity of RAD is O(T (t1BMq2+t2B

2)).
Since t1, t2, T, B2, q2 ≪M , we can conclude that the over time complexity is dominated by O(M).

Table 12 reports computation cost of our method and spectral clustering on ImageNet-1K on a
single Nvidia A100, where one can find that RAD takes 8 mins and spectral clustering takes 3.6
mins. Therefore, we argue that our method and spectral clustering can be scaled to large datasets.
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