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ABSTRACT

Spectral clustering is known as a powerful technique in unsupervised data analy-
sis. The vast majority of approaches to spectral clustering are driven by a single
modality, leaving the rich information in multi-modal representations untapped.
Inspired by the recent success of vision-language pre-training, this paper enriches
the landscape of spectral clustering from a single-modal to a multi-modal regime.
Particularly, we propose Neural Tangent Kernel Spectral Clustering that leverages
cross-modal alignment in pre-trained vision-language models. By anchoring the
neural tangent kernel with positive nouns, i.e., those semantically close to the im-
ages of interest, we arrive at formulating the affinity between images as a coupling
of their visual proximity and semantic overlap. We show that this formulation am-
plifies within-cluster connections while suppressing spurious ones across clusters,
hence encouraging block-diagonal structures. In addition, we present a regular-
ized affinity diffusion mechanism that adaptively ensembles affinity matrices in-
duced by different prompts. Extensive experiments on 16 benchmarks—including
classical, large-scale, fine-grained and domain-shifted datasets—manifest that our
method consistently outperforms the state-of-the-art by a large margin.

1 INTRODUCTION

Clustering aims to partition a set of unlabeled samples into groups such that samples within the
same group are semantically similar. Among various clustering techniques, spectral clustering has
demonstrated superior effectiveness thanks to its ability to capture non-linear pairwise affinities. By
reformulating clustering as a graph-partitioning problem, spectral clustering represents samples as
nodes and pairwise affinities as edge weights. Leveraging the spectrum of the graph Laplacian,
low-dimensional embeddings are then learned to reveal cluster structures. Despite these theoretical
advantages, most existing approaches remain confined to visual-only representations. As a result,
they often suffer from inherent limitations when semantically distinct images are visually similar,
thereby yielding sub-optimal affinity graphs and degraded clustering quality.

This paper explores a new landscape for spectral clustering by moving beyond the classical single-
modality paradigm toward a multi-modal regime. While the motivation is appealing, a core chal-
lenge arises: how to effectively utilize joint vision-language features for spectral clustering? In the
visual domain, existing methods typically require discriminative feature representations (Shaham
et al., 2018; Yang et al., 2019; Duan et al., 2019b) and a distance metric (Zhang et al., 2021b; Guo
et al., 2025; Li et al., 2022a), under which within-cluster images are relatively far from between-
cluster images. However, such approaches do not directly translate into the multi-modal regime,
where semantic alignment between modalities plays a decisive role.

On the representation learning side, the emergence of large-scale vision—language pre-training, such
as CLIP (Radford et al., 2021), provides a powerful alternative to purely visual encoders. By map-
ping textual and visual inputs into a unified hyperspherical embedding space, CLIP captures cross-
modal correspondences to enrich the semantic structure of image representations. Building on this
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capacity, recent works (Li et al., 2024; Cai et al., 2023) select positive nouns' from large-scale lexi-
cal databases in the wild” to serve as semantic anchors in the absence of class-name priors. Despite
promising potential, spectral clustering based on such aligned multi-modal features remains under-
explored due to the challenge of designing a principled framework to integrate textual semantics
with visual similarities in constructing an affinity matrix.

This paper addresses this research gap from a novel perspective of Neural Tangent Kernel (NTK) (Ja-
cot et al., 2018). Our method capitalizes on the compatibility between visual and textual features.
By anchoring a proxy network with features of the filtered positive nouns and computing its NTK
on pairs of image features, we formulate the affinity between two images as a multiplicative cou-
pling of (i) their visual proximity in the CLIP feature space and (ii) their semantic overlap measured
by how strongly and consistently each image aligns to the positive nouns. Our theoretical analysis
reveals that this coupling enhances within-cluster affinities (high visual proximity and shared seman-
tics) and suppresses cross-cluster links (visual proximity alone is insufficient), thus sharpening the
block-diagonal structure acknowledged by spectral clustering. Moreover, we present a Regularized
Affinity Diffusion (RAD) mechanism to adaptively ensemble various affinity matrices induced by
different prompts. In particular, RAD allows for a robust affinity matrix to be constructed through a
joint optimization of ensemble weights and the equivalent objective of the diffusion process.

Extensive experiments on 16 benchmarks empirically demonstrate the effectiveness of our proposed
method. For example, our method achieves 98.3% ACC and 84.9% ACC on STL-10 and ImageNet-
Dogs, respectively, outperforming the latest TAC (Li et al., 2024) by 3.8% and 9.8%. In addition, on
three more challenging datasets (DTD, UCF-101, and ImageNet-1K), our method surpasses TAC (Li
etal., 2024) by an average of 7.7%, 2.5%, and 6.3% w.r.t. ACC, NMI, and ARI, respectively. We also
validate our method in fine-grained and domain-shifted settings, and ours significantly outperforms
TAC (Li et al., 2024) by 5.1% on Pets and 5.3% on ImageNet-sketch w.r.t. ACC.

2 PRELIMINARY

Notation. We denote matrices and vectors as bold-faced uppercase and lowercase characters respec-
tively. In the remaining of this paper, we write A[i, j] as the ij-th element of the matrix A, (-,-) as
the inner product, and vec(-) as the vectorization operator. Let e[i] be the i-th element of the vector
e € RE and [K] = {1,..., K}, we then define softmaxy(e) = exp (e[k])/ > ierr) exp (e[i]).

Zero-shot Classification. Let X' and 7 be the visual and textual input space respectively, CLIP-
based models adopt a dual-stream architecture with one text encoder f7 and one image en-
coder fy to map inputs of two modalities into an uni-modal hyper-spherical feature space Z =
{z € R?|||z[|, = 1}. Considering an image classification task with known classes {c1,...,ck},
CLIP-based models make prediction for any input x € X’ by computing

arg max xp [TfX(X)TfT(A(ci))]
i=1,...K Zngl exp [TfX(X)TfT(A(Cj))]

where T > 0 is a temperature, A(c;) € T with A(+) as the prompt template for the input class name.

; ey

Leveraging Unlabeled Textual Data in the Wild. Despite remarkable effectiveness (Radford et al.,
2021) and provable guarantees (Chen et al., 2023), the zero-shot paradigm in Eq. (1) relies on the
prior knowledge of true class names, therefore inapplicable to the unsupervised settings. In response,
advanced methods (Li et al., 2024; Cai et al., 2023) propose to select a N-sized set of positive nouns
{€1,..., ¢y} from unlabeled “in-the-wild” textual datasets, such as WordNet (Miller, 1995).

Spectral Clustering. For a given image dataset Dy = {x1,...X)}, one aims to group images into
K distinct clusters. Let A € RM>*M denote an affinity matrix where the element A[i, 5] represents
the similarity between x; and x;, the classical method SC-Ncut (Shi & Malik, 2000) converts the
clustering task as a graph cut problem given by:

Y* = argmin tr (Y'LY), st Y'Y =Ig, (2)
Y ERM XK

'By definition, positive nouns are those semantically relevant/similar to any ID label.
2Generally, “in-the-wild” data are those that can be collected almost for free upon deploying machine learn-
ing models in the open world.
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Figure 1: Overview of the proposed NTK-based spectral clustering pipeline.

where I is a K x K identity matrix, L = Ip; — D~'/2AD~1/2 is a normalized Laplacian matrix,
D is a diagonal matrix of D[z, i] = >, A[i, j], and tr(-) denotes the trace of a matrix. The optimal
spectral embedding matrix Y * consists of the top-K minimum eigenvectors of L.

Neural Tangent Kernel. Let us define a proxy network as a function gg(-) : Z — R differentiable
w.r.t. parameters @ € RY (stretched into a single vector). In a small neighborhood region around a
initialization 8y, the function gg can be linearly approximated by a first-order Taylor expansion:
X 99, (z
90(z) ~ (7 60) = gou () + 6 — 60, 2222,
00,

Eq. (3) implies that the obtained approximation gg(z;8g) can be regarded as a linearized network
that maps the weights to functions residing in a reproducible kernel Hilbert space (RKHS) deter-
mined by the empirical neural tangent kernel (Jacot et al., 2018) at 8y, i.e.,

dge, (z:) Oge, (2
Kﬂo(ziazj)_< gg(b(oz)’ gge(oz])>. 4)

Intuitively, Kg,(-,-) can be interpreted as a condensed representation of gradient magnitude and
gradient correlations. More concretely, the gradient magnitude governs the scale of update that each
input induces on the model during optimization, while the gradient correlations dictate the alignment
or stochasticity of update directions across inputs (Xu et al., 2021). Since Kg, (-, ) directly quantifies
how two inputs interact through the dynamics of function learning, this naturally yields a higher-
order notion of affinity in function space rather than their geometric closeness in the input space of
ge. In this rest of this paper, we abbreviate empirical Neural Tangent Kernel as NTK for simplicity.

3)

3 METHODOLOGY

Motivation. Eq. (2) implies that the effectiveness of spectral clustering (SC) fundamentally depends
on the quality of the affinity matrix A. To enhance the expressiveness of the affinity matrix A, prior
works (Zhong et al., 2021; Lu et al., 2024; Huang et al., 2019¢) compute the affinity matrix A by
applying kernel tricks on the latent representation space. Taking the widely used RBF kernel as an
example, with pre-trained CLIP-based models, the affinity matrix can be formulated as follows:

Angpli,g] = LeTURCDICNT G f (i) € Ny(f (), @) A e (x5) € Nolfe (i), @), (5
7 0 otherwise.
where ®(z;,z;) = —||z; — 2z;||3 and N, (z, ®) represents top-¢ nearest neighbors of z with regard

to the metric function ®(-,z). While Table 1 shows that CLIP(SC), which uses the precomputed
Aggr in Eq. (5) for SC, outperforms most traditional training-based competitors®, CLIP(SC) relies

3Experimental results using other kernels are provided in appendix (c.f. Table 6)
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on single-modal visual features and thus leaves the semantic knowledge embedded in text largely
unexploited. In response to this, a naive strategy is to perform the RBF-based affinity measure on
the image-text-concentrated feature space from TAC (Li et al., 2024) for SC. Unfortunately, our
experimental results (c.f. Table | and Table 2) reveal that TAC(SC) yields performance comparable
to TAC(KMeans). This observation means that merely incorporating text at the feature level does
not adequately guide affinity construction, prompting the research question underlying this work:

How can we effectively integrate textual semantics with visual similarities in
constructing the affinity matrix A?

3.1 NEURAL TANGENT KERNEL SPECTRAL CLUSTERING

To address this challenge, we present a novel spectral clustering framework build upon the NTK
in Eq. (4). To implement our method, we begin with extracting features from CLIP-based models
for the observed positive nouns {¢;,...,¢x} to have W = [wy,...,wy]| € RN where w; =
fr(A(&;)) for each i € [N]. Thanks to the cross-modal alignment of pre-trained CLIP-based
models, we subsequently take 8y = vec(W) to anchor the NTK in a semantically meaningful
parameterization. This enables the gradient dgg,(z)/00, to capture how the input z functionally
interacts with positive nouns, hence injecting the learned semantic structure of texts from CLIP-
based models into the NTK-based affinity matrix Antx that is given as follows:

Antxli ] = Koo (fx(xi), fx(x5)) if fa(xi) € No(fa(x5), Koo) A fx(x5) € Ny(fa(x:), Key),
NTKI® 7] = 0 otherwise.

(6)
While the formulation of Kg, (-, -) is generic to the choice of gg, (), when applying it to spectral
clustering, this paper proposes to design gg, (+) in a log-sum-exp form, i.e.,

N
g0 (f(xi)) =log D et Fx(x)/, (7)
k=1
In the following, we provide a theoretical justification of Eq. (7) by showing that it can promote a
block structure in the constructed affinity matrix.

In particular, combining Eq. (7) with Eq. (4), the closed-form formulation of Ko, (-, -) is given by

N
1
Koo (fx(xi), fx(xj)) = — - foe(xi) T foe () - (Z Si[k]sj[k]>7 (8)
i >
where s;[k] = softmax,(W T fx(x;)/7). Since 7 is usually set to a relatively small value (e.g.,

7 = 0.04 in this paper), each softmax probability s; can be highly skewed in practice.

From Eq. (8), one can find that Kg, ( fx (x;), fx(x;)) is multiplicative coupling of visual proximity
U;; and semantic overlap V;;. For images within the same cluster, both terms tend to be simultane-
ously large—their embeddings are close in the CLIP space and their softmax probabilities concen-
trate on positive nouns—so their affinities are strongly amplified, filling the diagonal blocks with
high values. For images across different clusters, even if U;; is moderate due to visual similarity,
their softmax probabilities would concentrate on a different subset of positive nouns, yielding a suf-
ficiently small V;; and therefore suppressing cross-cluster affinities. This multiplicative mechanism
enforces high intra-cluster and low inter-cluster similarity, thereby sharpening the block-diagonal
pattern of the NTK-induced affinity matrix Anrx.

3.2 AFFINITY ENSEMBLING VIA REGULARIZED AFFINITY DIFFUSION

In this section, we extend our method to the same multi-prompt scenario as TAC (Li et al., 2024)*.
Formally, given a B-sized pool of prompt templates {A(), ... A(P)} we can construct a prompt-

specific affinity matrix A%, for each A®) with b € [B]. In view of this, our goal is to learn a

4 Although the TAC paper states that a single prompt template is used, its official implementation in fact
employs multiple prompt templates indeed.
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new affinity matrix A which 1) captures the geometry of the underlying manifold encoded in each
affinity matrix, and 2) leverages the complementarity among multiple prompt templates.

To this end, the most straightforward strategy is to simply average the B affinity matrices
AI(\}T)K, cey Afﬁl)(, ie, A = + Zle AI(\IbT)K. Despite simplicity, this naive practice ignores the
correlations among different affinities as it assigns a uniform weight to each affinity matrix. For-
tunately, Bai et al. (2016) show that weight learning can be exerted on affinity matrices to assist

neighborhood structure mining. This motivates us to formulate the weight learning and the affinity
learning as a unified optimization problem given by

mmza YA, AR + ullA —E[%+ 2 ||6|\2 st 0< @b <1and Zﬂ 1, 9
b=1

where E is a positive semi-definite matrix® to avoid A from being extremely smoothed®, 3[b] de-
notes the contribution of AI(\ITK to the whole affinity diffusion process, and

Alk,i All,j
0AAD) = Z alafl) ki __AlLJ (10)
It Ja®d? L Jad® "
is the objective value of the affinity diffusion process (Bai et al., 2018; 2017) with a(b) A1(\1bT)K [7, 7]

b)
and dz(‘ = Zj:l ANT)K[%J]~

Note that the optimization problem in Eq. (9) simultaneously depends on 3 and A, therefore making
it inherently complex and impractical to find a direct solution. To resolve this, we propose a numer-

ical method that decomposes the optimization problem into two sub-problems: 1) Optimize A with

Fixed 3 and 2) Optimize 3 with Fixed A. This allows for a systematic iterative approximation of
the optimal result through the fixed-point scheme.

Optimize A with Fixed 3. In this scenario, as we show in Appendix B, the optimization problem
in Eq. (9) can be transformed as follows:

manﬁ vee(A) T (Tnpe — S®)wvec(A) + pllvec(A) — vec(E)||2, (11)

where S®) = S®) @ S(®) ¢ RM**M? jg the Kronecker product of S and itself with S(*) as the
row-normalized Al(\IbT)K As we show in Appendix C, the closed-form of the solution to Eq. (11) can

be given as follows:

Ak M —1 b)
A —u+1-vec (IM —Z S( ) vec(E) |, (12)

where vec™!(-) is the inverse operator of vec(-).

Since it is computationally infeasible to directly solve the inverse of a M? x M? matrix, we alter-
natively resort to an efficient iteration-based solver, i.e.,

A T "
A<— DAS® 4+ " E. 13

Appendix D proves the convergence of the iterative process in Eq. (13) to the solution in Eq. (12).
Optimize 3 with Fixed A. In this case, the optimization problem in Eq. (9) can be simplified as

B
man,@ oA AD) + ||,8||2, st. 0<BP <land Y B0]=1. (14

b=1

>In practice, we find that s1mp1y setting EE = I/ helps.
%In this case, all vectors in A are nearly identical.
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Table 1: Clustering performance (%) on widely-used datasets. The best results are shown in bold.

Dataset \ STL-10 \ CIFAR-10 \ CIFAR-20 |  ImageNet-10 | ImageNet-Dogs

Metrics | NMI ACC ARI | NMI ACC ARI | NMI ACC ARI [ NMI ACC ARI | NMI ACC ARI
CLIP (zero-shot) | 939 97.1 937 | 80.7 900 793 | 553 583 398 958 976 949 735 728 582
DAC 366 47.0 257|396 522 30.6| 185 238 88 | 394 527 302|219 275 11.1
DCCM 376 482 262 | 496 623 408 | 285 327 173 | 608 71.0 555 | 32.1 383 182
11c 496 59.6 39.7 | 513 61.7 41.1 | 225 257 11.7 - - - - - -

PICA 61.1 713 531|591 696 512 | 31.0 337 17.1| 802 870 76.1 | 352 353 20.1
CcC 764 850 726 | 705 79.0 63.7 | 43.1 429 266 | 859 893 822 | 445 429 274
IDFD 643 756 575 | 71.1 815 663 | 42.6 425 264 | 89.8 954 90.1 | 546 59.1 413
SCAN 69.8 809 646 | 79.7 883 772 | 48.6 50.7 333 - - - 612 593 457
MiCE 635 752 575 | 737 835 698 | 43.6 44.0 28.0 - - - 423 439 286
GCC 684 788 63.1 | 764 856 728 | 472 472 305 | 842 90.1 822 | 490 52.6 36.2
NNM 663 768 59.6 | 73.7 837 69.4 | 480 459 302 - - - 604 58.6 449
TCC 732 814 689 | 790 906 733 | 479 49.1 312 | 848 89.7 825 | 554 595 417
SPICE 81.7 90.8 81.2 | 734 838 70.5 | 448 46.8 294 | 828 921 83.6| 572 646 479
SeCu 70.7 814 657 | 799 885 782 | 516 516 36.0 - - - - - -

DivClust - - - 71.0 815 675 | 440 437 283|850 90.0 819 | 516 529 376
RPSC 838 920 834 | 754 857 73.1 | 476 51.8 341 | 830 927 858 | 552 640 465
TCL 799 868 757 | 819 887 780 | 529 531 357|875 895 837|623 644 516
ProPos 75.8 867 737 | 8.1 916 835|582 578 423 | 896 956 906 | 737 775 675
CLIP (KMeans) | 90.1 938 924 | 703 742 61.6 | 499 455 283 ] 969 982 96.1 | 398 381 20.1
CLIP (SC) 88.1 878 824 | 654 692 571 | 452 427 30.1 | 964 968 956 | 728 70.6 56.9
SIC 953 98.1 959 | 84.7 926 844 | 593 583 439 | 970 982 96.1 | 69.0 69.7 558
TAC (KMeans) 923 945 895 | 808 90.1 798 | 60.7 558 427|975 986 970 | 751 751 63.6
TAC (SC) 926 943 942 | 812 903 80.1 | 569 545 30.1| 970 983 968 | 753 758 644
Gradnorm 956 983 962 | 826 91.1 815 ]| 61.3 60.6 436 | 987 994 987 | 81.0 812 709
Ours 958 983 963 | 833 920 830 | 63.3 596 435 978 992 984 | 824 849 714

Since the optimization objective in Eq. (14) takes the form of a Lasso optimization problem, the
solution to Eq. (14) can be efficiently obtained with the coordinate descent method (Wu & Lange,
2008; Wright, 2015). To keep the main text concise, we provide a detailed illustration in Appendix E.

The optimization procedure is guaranteed to converge since we obtain the optimal solution to each
subproblem. By solving two subproblems alternatively, the objective value of Eq. (9) keeps decreas-
ing monotonically, which is consistent with the visualization in Fig. 3. For clarity, the optimization
procedure is summarized in appendix (c.f. Algorithm 1). Finally, we compute clustering assignment

by performing spectral clustering on the ensembled affinity matrix A produced by Algorithm 1.

4 EXPERIMENTS

Evaluation Metric. We evaluate clustering performance with three widely used metrics, including
Accuracy (ACC), Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI).

Baselines. We compare our method with DAC (Chang et al., 2017a), DCCM (Wu et al., 2019), 1IC
(Jietal.,, 2019a), PICA (Huang et al., 2020), CC (Li et al., 2021b), IDFD (Tao et al., 2020), SCAN
(Van et al., 2020), MiCE (Tsai et al., 2020), GCC (Zhong et al., 2021), NNM (Dang et al., 2021),
TCC (Shen et al., 2021), SPICE (Niu et al., 2022), SeCu (Qian, 2023), DivClust (Metaxas et al.,
2023), RPSC (Liu et al., 2024), TCL (Li et al., 2022b), ProPos (Huang et al., 2022), SIC (Cai et al.,
2023), TAC (Li et al., 2024), GradNorm (Peng et al., 2025c¢).

Implementation. Following prior works (Li et al., 2024; Peng et al., 2025b), we adopt the pre-
trained CLIP model with ViT-B/32 (Dosovitskiy et al., 2020) and Transformer (Vaswani et al., 2017)
as default image and text backbones, respectively. We use the positive nouns filtered by TAC (Li
et al., 2024) from WordNet (Miller, 1995). Following Li et al. (2024), we filter positive nouns based
on the train split of each dataset, followed by evaluating the clustering performance on the test split
of each dataset. We fix 7 = 0.04, ¢ = 30, ¢ = 0.1 and A = 10 for all datasets.

Prompt Templates. In consistent with TAC (Li et al., 2024), we use the following B = 7 templates
to construct prompts for the filtered positive nouns: itap of a {}, a bad photo of the {}, a origami
{}, a photo of the large {}, a {} in a video game, art of the {}, a photo of the small {}.
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Table 2: Clustering performance (%) on challenging datasets. The best results are shown in bold.

Dataset ‘ DTD ‘ UCF-101 |  ImageNet-1K | Average

Metrics ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI
CLIP (zero-shot) ‘ 56.5 43.1 269 ‘ 799 634 502 ‘ 81.0 636 454 ‘ 72.5 56.7 40.8
CLIP (KMeans) 573 426 274 | 795 582 47.6| 723 389 27.1 | 69.7 456 34.0

CLIP (SC) 579 467 31.8 | 81.7 633 551 | 739 400 298| 712 50.0 389
SCAN 594 464 317 | 79.7 61.1 53.1 | 747 447 324 | 713 50.7 39.1
SIC 59.6 459 305 | 810 619 536 | 772 470 343 | 726 51.6 395
TAC (KMeans) 60.1 459 290 | 816 613 524 | 778 489 364 | 732 520 393
TAC (SC) 586 440 271|796 600 50.1 | 780 49.1 362 | 72.1 51.0 378
Gradnorm 63.1 509 342 | 825 627 532|792 526 39.1| 749 554 417
Ours 61.7 520 336 | 830 679 594|792 563 394 | 746 58.7 441

4.1 MAIN RESULTS

Datasets. We evaluate the effectiveness of our method by conducting experiments over 1) five
widely-used datasets: STL-10 (Coates et al., 2011), CIFAR-10 (Krizhevsky & Hinton, 2009),
CIFAR-20 (Krizhevsky & Hinton, 2009), ImageNet-10 (Chang et al., 2017b) and ImageNet-Dogs
(Chang et al., 2017b); 2) three more complex and challenging datasets: DTD (Cimpoi et al., 2014),
UCF101 (Soomro et al., 2012) and ImageNet-1k (Deng et al., 2009).

Evaluation on Classical Datasets. Different with early baselines adopting ResNet-34 or ResNet-18
as the backbone, this paper mainly focuses on comparisons with zero-shot CLIP and CLIP-based
methods. As shown in Table 1, our methods consistently outperforms TAC (Li et al., 2024) and
zero-shot CLIP (Radford et al., 2021) on five classical datasets. Notably, our method achieves 7.8%
and 9.8% improvement in ARI and ACC on ImageNet-Dogs, respectively. On CIFAR-10 dataset,
SIC (Cai et al., 2023) is marginally superior to our method, as it entails more trainable parameters
and a more sophisticated training strategy.

Evaluation on Challenging Datasets. Since the rapid development of pre-trained models has made
clustering on relatively simple datasets such as STL-10 and CIFAR-10 no longer challenging, we
evaluate our proposed method on three more challenging datasets: DTD (Cimpoi et al., 2014),
UCF101 (Soomro et al., 2012) and ImageNet-1k (Deng et al., 2009). Our proposed method notably
achieves the state-of-the-art perfomance which is provided in Table 2. To be specific, the proposed
method outperforms TAC over 7.0% in ARI and 6.9% in ACC on UCF101. The results prove the
effectiveness of our proposed strategy in studying spectral clustering from the perspective of NTK.

g |

(a) CLIP (NMI=72.8%) (b) TAC (NMI=75.3%) (c) Ours (NMI=82.4%)

Figure 2: Visualization of affinity matrices on ImageNet-Dogs.

4.2 VISUALIZATION

Affinity Matrix. We examine how different choices of affinity measure impact the resulting affinity
matrix in Figure 2, where rows and columns of each affinity matrix are permuted according to
the ground-truth labels of images. In contrast to affinity matrices that are computed by applying
the RBF kernel on the pre-trained CLIP features (Fig. 2(a)) and TAC’s image-text-concentrated
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Figure 3: The objective value of Eq. (9) and the clustering performance (measured by NMI) at each
optimization iteration on CIFAR-10 and DTD, respectively.

features (Fig. 2(b)) respectively, the affinity matrix in Fig. 2(c), which is computed by applying
our proposed NTK on the pre-trained CLIP features, exhibits the sharpest block-diagonal structure:
within-block entries are dense and homogeneous while off-block values are suppressed toward zero.
Visualizations on other datasets can be found in appendix (c.f. Fig. 8 and Fig. 9).

Convergence Speed. In Fig. 3, we plot the objective value of Eq. (9) and the clustering performance
at each iteration of the diffusion process. As can be clearly seen from Fig. 3, when affinities are
propagated iteratively, the objective value keeps decreasing and the clustering performance keeps
increasing until reaching the equilibrium. Moreover, Fig. 3 shows that the objective value of Eq. (9)
converges within a small number of iterations, which implies the efficiency of our proposed method.
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Figure 4: Ablation analysis of clustering performance by varying the value of 7 on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.

©
o

100 70
— —e— ACC —+— NMI —=— ARI —— ACC —#+— NMI —sa— ARI —e— ACC —+— NMI —a— ARI —
3 ~ A _- B
L ‘ —* | 60{ F—+— . 80
[ [
v e e — g
5 go| & " : flsoy_  A—— 708
5 ,__/’—__’“ £
£ £
£ £
£ 70 401 — e 605
o o
—————— T ——*
60 30 50
8 12 16 20 30 40 8 12 16 20 30 40 8 12 16 20 30 40

Figure 5: Ablation analysis of clustering performance by varying the value of ¢ on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.

4.3 ABLATION STUDY

Ablation on Hyper-parameters. We evaluate the hyper-parameters most essential to our algorithm
design, including the temperature 7 in Eq. (6), the number of nearest neighbors ¢ in Eq. (8), and the
weighting parameters i and A in Eq. (9). Fig. 4 and Fig. 5 show that having a large or small value
of 7 and ¢ does not necessarily improve the performance. As can be found in Fig. 6 and Fig. 7, our
method is stable across a wide range of the weighting parameters p and A.

Ablation on Visual Encoder. We evaluate it with two different visual encoders, ViT-B/16 and ViT-
L/14, and report the clustering results in Table 3. It can be seen that the clustering performance can
be enhanced by more powerful visual encoders. While our proposed method consistently outper-
forms TAC across both backbones, indicating better generalization.
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Figure 6: Ablation analysis of clustering performance by varying the value of 1 on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.
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Figure 7: Ablation analysis of clustering performance by varying the value of A on CIFAR-10 (left),
DTD (middle) and UCF101 (right), respectively.

4.4 DOMAIN-GENERALIZABLE IMAGE CLUSTERING.

To assess the transferability of our method, we perform clustering on several versions of ImageNet-
1K variants, including ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-V2 (Kornblith et al.,
2019) and ImageNet-S (Wang et al., 2019). As observed in Table 4, both TAC and our method suffer
performance drops under these shifts, underscoring the challenge of clustering in such settings.
Even so, our method consistently surpasses TAC across the in-distribution variants, highlighting its
stronger robustness to domain shifts.

4.5 FINE-GRAINED IMAGE CLUSTERING.

We validate our method under the fine-grained scenario by conducting experiments on five fine-
grained datasets, including Aircraft (Maji et al., 2013), Food (Bossard et al., 2014), Flowers (Nils-
back & Zisserman, 2008), Pets (Parkhi et al., 2012) and Cars (Krause et al., 2013). As shown in
Table 5, our proposed method consistently outperforms the state-of-the-art, which highlights the
superiority of text-informed affinities for image clustering.

5 RELATED WORK

Deep Spectral Clustering. Deep spectral clustering integrates traditional spectral clustering with
deep neural networks for effective clustering. Tian et al. (2014) observe the similarity between
the optimization objectives of autoencoders and spectral clustering. They thus propose replacing
spectral embedding with a deep autoencoder that is trained to reconstruct the pre-defined affinity
matrix. However, obtaining such an affinity matrix can be challenging for complex data, and the
matrix size can become prohibitively large for large datasets. SpectralNet (Shaham et al., 2018)
proposes to directly embed raw data into the eigenspace of a given affinity matrix, which has inspired
numerous extensions. Yang et al. (2019) enhance the robustness of SpectralNet’s embeddings using
a dual autoencoder. Huang et al. (2019b;a), respectively, extend SpectralNet to handle multi-view
data. Another line of works (Duan et al., 2019a; Affeldt et al., 2020; Golikov et al., 2022) highlight
the benefits of joint optimization and propose joint spectral embedding learning and clustering.

Image Clustering with Vision-Language Representations. The seminar work called SIC (Cai
et al., 2023) uses textual semantics to enhance image pseudo-labeling, followed by performing im-
age clustering with consistency learning in both image space and semantic space. Note that, SIC
essentially pulls image embeddings closer to embeddings in semantic space, while ignoring the im-
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Table 3: Clustering performance (%) on five widely-used datasets. The best results are in bold.

Backbone | Dataset | STL-10 | CIFAR-10 |  CIFAR-20 | ImageNet-Dogs | DTD
| Metrics [ NMI ACC ARI [ NMI ACC ARI | NMI ACC ARI | NMI ACC ARI | NMI ACC ARI
TAC (KMeans) | 95.1 961 93.6 | 829 912 805|626 604 457|823 819 729|626 504 336
VIT-B/16 | TAC (SC) 929 963 923|831 913 820|630 600 451|821 815 730|631 517 346
Ours 972 990 974 | 860 93.1 854 | 657 644 49.1 | 849 867 750 | 663 558 37.2
Vitisia | TAC(KMeans) | 954 967 942|891 939 867 | 648 629 476|843 840 754|647 529 351
TAC (SC) 938 967 938 | 894 941 880|650 630 475|840 840 750|651 535 359
Ours 97.7 995 98.1 | 921 966 90.7 | 669 66.1 50.8 | 86.2 883 79.0 | 681 58.0 389

Table 4: Clustering performance (%) robustness to domain shift. The best results are in bold.

Dataset | ImageNet-C |  ImageNet-V2 | ImageNet-S | Average

Metrics ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI
TAC (KMeans) | 71.4 392 256 | 71.7 385 230 | 70.7 348 22.1 | 713 375 236
TAC (SC) 709 390 255|720 390 236 | 70.1 337 216 | 71.0 372 236
Ours 750 440 28.1 | 745 427 272 | 727 401 253 | 741 423 269

Table 5: Clustering performance (%) on five fine-grained datasets. The best results are in bold.

Dataset | Aircraft | Food | Flowers | Pets | Cars

Metrics ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI
TAC (KMeans) | 47.7 20.1 104 | 694 592 439 | 8.0 669 585 | 804 669 592 | 647 332 217
TAC (SC) 47.1 203 100 | 689 590 434 | 8.0 670 595|799 660 585 | 650 339 220
GradNorm 503 240 13.1 | 750 67.8 524 | 8.7 708 642 | 81.5 720 628 | 683 380 26.6
Ours 519 242 142 721 61.8 472 | 883 694 61.0 | 849 720 64.0 | 677 39.0 264

provement of text semantic embeddings. Differently, Li et al. (2024) and Peng et al. (2025b;c) focus
on leveraging textual semantics to enhance the feature discriminability by either simply concentrat-
ing textual and visual features or its proposed cross-modal mutual distillation strategy

Due to space limitation, more related work to this paper is discussed in Appendix A.

6 CONCLUSION

In this paper, we advance spectral clustering into the multi-modal era by presenting Neural Tan-
gent Kernel Spectral Clustering, which anchors the NTK with positive textual semantics to couple
visual similarity and semantic overlap in defining affinities. This design sharpens block-diagonal
structures by amplifying intra-cluster connections and suppressing cross-cluster noise, while our
proposed regularized affinity diffusion further enhances robustness through adaptive ensembling of
prompt-specific affinities. Empirically, our method achieves strong performance compared to com-
petitive baselines on 16 datasets, which echoes our theoretical insights. Besides, extensive ablations
provide further understandings of our proposed method. We hope this work could serve as a cata-
lyst, motivating future studies on spectral clustering with vision-language representations, which is
believable to be a promising direction for methodology improvement and real-world application.
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A MORE RELATED WORK

Deep Clustering. Due to its ability to reveal the inherent semantic structure underlying the data
without requiring laborious and trivial data labeling work, clustering has been shown to benefit
downstream tasks (Zhu et al., 2024; 2020; Zhang et al., 2024; Chen et al., 2022a; Zhu et al., 2023b;a;
Peng et al., 2020; 2024a; Chen et al., 2022b; Peng et al., 2025d; Zhou et al., 2025; Zhu & Peng, 2022;
Peng et al., 2024b; 2025a) in computer vision. The popularity of deep image clustering can be at-
tributed to the fact that distributional assumptions in classic clustering methods, e.g., compactness
(Ester et al., 1996), connectivity (Wang et al., 2020; Zhu et al., 2025), sparsity (Elhamifar & Vidal,
2013; Zhu et al., 2021) and low rankness (Liu et al., 2012; Zhu & Peng, 2020), can not be necessarily
conformed by high-dimensional structural RGB images. To exploit the powerful representative abil-
ity of deep neural networks in an unsupervised manner, the earliest attempts seek self-supervision
signals by considering image reconstruction (Ghasedi Dizaji et al., 2017; Peng et al., 2016; Xie et al.,
2016; Jiang et al., 2016; Mukherjee et al., 2019; Radford et al., 2015; Peng & Zhu, 2021) and mu-
tual information maximization (Hu et al., 2017; Ji et al., 2019b) as proxy tasks. Despite remarkable
progresses, the learned representations may not be discriminative enough to capture the semantic
similarity between images. More recently, the advance in self-supervised representation learning
have led to major breakthroughs in deep image clustering. On the one hand, IDFD (Tao et al., 2020)
proposes to perform both instance discrimination and feature de-correlation while MICE (Tsai et al.,
2020) proposes a unified latent mixture model based on contrastive learning to tackle the clustering
task. On the other hand, CC (Li et al., 2021b) and its followers TCC (Shen et al., 2021) perform
contrastive learning at both instance and cluster levels. Differently, ProPos (Huang et al., 2022)
performs non-contrastive learning on the instance level and contrastive learning on the cluster level,
which results in enjoying the strengths of both worlds.

Vision-language Models (VLMs). Pretraining on large-scale image—text pairs has made VLMs a
standard backbone for multi-modal transfer. Regarding the type of architectures, existing VLMs
can be divided into two categories: (i) single-stream models that process concatenated visual and
textual features into one transformer, such as VisualBERT (Li et al., 2019), ViLT (Kim et al., 2021),
and (ii) dual-stream models that keep visual and text encoders seperate while learning cross-modal
alignment through contrastive pairing, e.g., CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
SigLIP (Yao et al., 2021) and FILIP (Yao et al., 2021). More importantly, CLIP based models are
widely adopted and has motivated a series of follow-ups aimed to improve data efficiency and better
adaptation on downstream tasks (Li et al., 2021a; Zhang et al., 2021a; Zhou et al., 2022). This
paper uses CLIP as the pre-trained model, but our method can be generally applicable to contrastive
models that promote vision-language alignment.

Neural Tangent Kernel. Neural tangent kernel (NTK) (Golikov et al., 2022) is a kernel that reveals
the connections between infinitely wide neural networks trained by gradient descent and kernel
methods. NTK enables the study of neural networks using theoretical tools from the perspective
of kernel methods. There have been several studies that have explored the properties of NTK:
Jacot et al. (2018) propose the concept of NTK and showed that it could be used to explain the
generalization of neural networks. Lee et al. (2019) expand on this work and demonstrated that the
dynamics of training wide but finite-width NNs with gradient descent can be approximated by a
linear model obtained from the first-order Taylor expansion of that network around its initialization.
This paper, rather than exploring the interpretability of infinite width neural networks, explores
empirical (i.e., finite width) NTK to construct a text-informed affinity matrix for spectral clustering.

B DERIVATION OF EQ. (11)

We consider the following optimization problem

B B
" N A
mind " B (A, Afr) + A —Blfh + 183 st 0< 8] <Land 3B =1, (15)
b=1 b=1

With fixed 3, we can simplify Eq. (15) as follows:

B
miny B0 (A, An) + | A — Bl (16)
b=1
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Table 6: Spectural clustering performance (%) using different kernels for affinity measurement based
on either CLIP image features or TAC image-text-concentrated features. The best results are high-
lighted in bold. { indicates our reproduced results.

Dataset | STL-10 | CIFAR-10 | CIFAR-20 | ImageNet-10 | ImageNet-Dogs | DTD | UCF101 | ImageNet-1K | Average
Metrics ‘NI\/II ACC ARI‘NMI ACC ARI‘NMI ACC ARI‘NMI ACC ARI‘NMI ACC ARI‘NMI ACC ARI‘NMI ACC ARI‘NMI ACC ARI‘NMI ACC ARI
Using CLIP image features
KMeans 90.1 93.8 924|703 742 61.6/49.9 455 283|969 982 96.1|39.8 38.1 20.1|57.3 42.6 27.4|79.5 582 47.6|723 389 27.1|69.5 61.2 50.1
KMeans’ 91.7 933 89.1]703 742 61.6|49.5 429 273|951 954 946|709 609 547|585 446 28.5|80.8 59.7 50.8|72.2 383 26.6|73.6 63.7 542
Linear 85.1 85.1 79.0|64.0 683 558|440 412 29.0|96.6 96.0 958|679 65.1 533|57.6 47.1 323|808 620 54.1|70.6 37.1 283|708 62.7 53.5
Polynomial | 85.1 853 79.2| 64.7 69.3 56.6|44.5 422 29.6|96.1 954 949|687 66.8 557|573 454 315|812 629 554|703 384 295|710 632 54.1
RBF 88.1 87.8 824|654 692 57.11452 427 30.1|964 968 956|728 70.6 569|579 46.7 31.8|81.7 633 551|739 40.0 298|727 64.6 549
Exponential | 83.6 87.8 80.2|66.6 70.0 583|454 433 303|963 944 94.1|703 685 54.0|589 463 333|814 624 548|729 393 293|719 640 543
Laplacian 83.7 874 793|670 69.6 585|454 432 30.7|96.8 96.6 94.0|70.6 692 53.9|59.7 46.1 343|812 62.6 54.7|69.7 36.1 273|718 639 54.1
Sigmoid 85.1 85.1 79.0|64.0 683 558|437 41.1 288|965 96.0 948|679 651 53.7|57.1 462 31.8|80.7 61.5 53.6|68.1 362 27.8|704 624 532
Using TAC image-text-concentrated features
KMeans 923 945 89.5[80.8 90.1 79.8|60.7 55.8 427|975 98.6 97.0|751 751 63.6|60.1 459 29.0|81.6 613 524|778 489 364|782 713 613
Linear 90.0 90.8 91.1|79.8 88.8 79.3|56.1 54.0 29.9/96.8 97.5 969|719 71.0 62.1|59.0 456 30.9|80.1 61.5 53.9|76.5 47.8 343|763 69.6 59.8
Polynomial | 90.2 90.6 94.0| 81.5 90.0 79.8|56.6 54.5 30.1|96.9 97.6 96.8|73.0 73.6 63.1|59.4 463 29.8|80.0 61.6 523|77.0 48.0 345|768 70.3 60.1
RBF 92.6 943 94.2|81.2 903 80.1|56.9 545 30.1|97.0 983 96.8|753 758 644|586 44.0 27.1|79.6 60.0 50.1|78.0 49.1 362|774 70.8 59.9
Exponential | 91.5 94.5 94.0|81.6 90.5 80.5|57.2 54.6 303|969 98.0 950|745 73.6 62.5|59.0 458 288|799 62.1 535|775 50.0 36.0|77.3 71.1 60.1
Laplacian | 92.0 94.0 93.6|823 909 80.3|57.0 549 31.0/97.2 98.1 959|750 742 62.8|59.5 46.0 32.0|80.1 63.0 54.9|74.6 47.0 35.1|77.2 71.0 60.7
Sigmoid 93.6 944 93.1|80.1 885 769|557 523 29.0|/96.8 97.5 953|722 709 60.1|58.0 462 323|805 619 532|729 46.6 358|762 69.8 59.5
Ours ‘95.8 98.3 96.3‘ 833 92.0 83.0‘ 63.3 59.6 43.5 97.8 99.2 98.4‘ 824 849 71.4‘ 61.7 52.0 33.6‘ 83.0 67.9 594 79.2 563 394 80.8 76.3 65.6

where
(b) Alk, i) All, j]
E(A ANix) = E a akl TR0 D) 17)
e Va®d \/dj d!
(b) (b) (b) M (D)
with a;;" = ANy [i, j] and ;7 = 52 5- ) Axpg[i, J]-
Let us define ®) ®) . s
() — M2xM
WY = Ayrk ® Ayt € R
T(b) — D(b) ® D(b) c RM2><M2
NTK NTK
. . () . - M (b)
with DNTK as a diagonal matrix of Dy [i, 1] = > 57, Anrg[i, 5], and
s®) — g® ® g o~ pM*xM?
NTK NTK
—1/2 —1/2
h STy as th lized AL s¢ p®.) “A®, (D)
wit NTK as the row-normalized NTK® 1. e., NTK = NTK NTK NTK

One can easily check that | A — E||2, = |jvec(A) — vec(E)|2.

By introducing two identical coordinate transformations: e = M (i — 1)+ kand § = M(j — 1) + 1,
we have the following:

where & = vec(A), w,

(6)

— WO, 8] and t) =T

M? . A 2
IS u® ale]  afg]
E
e,0=1 A/ g; \/ t(b
2 M? (b)
p) ale] A We s
( ) ®) ZE: ale] ——
,6=1 ce es=1

AT

=a

AT

= a

MZ

> ale]?
e=1
(1o - T® /2
(IMz - S(”)) a

®)[s,4].

The following three facts are applied for the derivation of Eq. (18):

1. W® is symmetric since W) is symmetric.
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T®[s, 0] = Zi.\fl W[4, ] since
T@mﬂ=m“[m}mwwm

= Z AI(\IbT)K [4, j] (Z ANTK )

(19)
M M M?
b b
=3 ARk JARKE [ =Y W[5,
j=11=1 e=1

3. 80) = TO 2O T® T2 ginee
818, ¢] = SVpscli> 418N [k 1]

= DS\I;)TK[LZ]_OASAE\?)TK[Z.M]']D%)TK[] J]_OAsDE\I;)TK[kvk’]_O SAS\?)TKUC l]DE\I;)TK[lvl]_OAS (20)
= Dl ()70 D [k, KO P AN e [0, SIA i Ik, 1D [, 41 D 11,170
=T®18,6] 7% WP 1[5, e]T® [e, ] 7°

In summary, the objective function in Eq. (15) can be rewritten as follows:

B
7= 804" (1M2 —S(b))é—l—uﬂé—vec(E)H% 1)
b=1

C DERIVATION OF EQ. (12)

By taking the partial derivative of .J in Eq. (21) with regard to a, we have the following:

gi zB:ﬁ[b] . 68;3 {aT (IMz _sb )) }—HLaA {||a— vec(E Hz}

b=1

(22)
B
=80 [2 (T —5©) &] + 20 (& - vee(E))
b=1
By setting 9J/0a = 0, we have the following:
—1
A) = 4 (b)
vec(A) =a= . + — ( Z S ) vec (E) . (23)
Applying vec™1(+) to both sides of Eq. (23) results in the following:
-1
A:Mil.vec*1 (IMQ—ZMJrl ) vec (E) |, 24)

D CONVERGENCE OF EQ. (13) TO EQ. (12)

Lemma 1. Let A € R™*", the spectral radius of A is denoted as p(A) = max{|\|, A € o(A)},
where o(A) is the spectrum of A that represents the set of all the eigenvalues. Let || - || be a matrix
norm on R™"*™, given a square matrix A € R"*™, X is an arbitrary eigenvalue of A, then we have

Al < p(A) < [|A]l.
Lemma 2. Ler A € R™*™ B € R"*" denote {\;, z;} ~, and {1i, yi Y, as the eigen-pairs of
A and B respectively. The set of mn eigen-pairs of A ® B is given by:

ik, i @ Y;}iz1,..om, j=1,..n-
Lemma 3. Let A € R™*™, X € R"*P and B € RP*? respectively, then
vec(AXB) = (BT ® A)vec(X).
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Lemmad. Let A € R"¥", then limy_, o, A¥ = 0 ifand only if p(A) < 1.

Lemma 5. Given a matrix A € R"*" and p(A) < 1, the Neumann series I, + A + A? +
converges to (I, — A)~L.

-1
To get started, we first consider the matrix (DI(\IbT)K) AI(\be)K’ whose induced [.-norm is equal to 1,

-1
ie., | (DI(\Ib'[)‘K> AI(\?’I)'KHOO = 1, since the i-th diagonal element in matrix Dr(\?T)K equal to the summa-

-1
tion of the corresponding i-th row in matrix AI(\]bT)K. Lemma 1 gives that p ((DI(\II)T)K) AI(\IbT)K> <1.
-1/2 -1/2
As for the matrix SI(\?T)K = (DI(\]bT)K) AI(\IbT)K (Dl(\IbT)K) we are concerned about, since

we can rewrite it as Sl(\,bT)K = <D§,17T)K>1/2 (Dl(\,bT)K)i1 AI(\]bT)K (DI(\IbT)K)il/Q, thus it is similar to
(DI(\?T)K)i1 AI(\fT)K This implies that the two matrices share the same eigenvalues, such that
p (SS’T)K) < 1. By applying Lemma 2, we can conclude that both the spectral radius of the Kro-
necker product S®) = S(b)K ® S(b)K is no larger than 1, i.e., p (S(b)) <1

By applying Lemma 3, Eq. (13) can be vectorized as the following:

B
a(p+1) _ ﬁ[b] S(b S(b)A(P) L E
: ;H ( ) weTa +u+1vec( )
.\ Blb)
_ Z P ) g 8z 4 Lvec(E)
P 1 ntl
B
Bl <) 4 H
_ L g zp) E
B B
b <) BBl )4 K
=2t Zm g veclB) |+ vee(®)
=1 b=1
B0 ) |
_ Pl s} 40 ®)
(B75) s gt () wem

where the second step is derived based on the fact that S(b) is symmetric.

Since we have already proved that p (S®) < 1, we have the spectral radius of So %S(b) to be
upper-bounded by Z ==. Moreover, since p > 0, we have

Bl _ Sy Bl 1
(ZM-‘rl > Z:u+1 p+1 _u+1<1 (26)

By taking advantage of Lemma 4 and 5, we can easily demonstrate that the following two expres-

sions hold true:
g(b) — 27
Jim (Z i 0, 27)

(2 (e £2)

1}1

Therefore, the iterative sequence of a(P*1) asymptotically approaches a stable solution, converging
to:

p—oo p+1

m -1
lim a+h) — _H <1M2 - Z f[b]S“’)) vec(E). (29)
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By performing the inverse operator vec~!(-) on the right side of Eq. (29), we have the following

-1
A* — K - vee— ! <1M2 72 Blb] S(b) vec (E) | , (30)

E OPTIMIZE [ WITH FIXED A

Again, we consider the following optimization problem

gll:Zﬁ A AL +ulA-E[3 + 5 Hﬁllz st. 0< B[] <1and Zﬁ =1, 3
b=1 b=1

When F' is fixed, the objective value of ¢ (A, AI(\II’T)K) for each adjacency matrix Al T)K in Eq. (31) can
be directly computed. As a result, the optimization of 3 reduces to solving the following problem:

B
mmZﬁ oA AR + f||ﬂ||2, st. 0<BP <land > Bhl=1.  (32)

b=1
Specifically, the Ob_]eCtIVC function in Eq. (32) takes the form of a Lasso optimization problem,
which can be solved by utilizing the coordinate descent method.
In each iteration of the coordinate descent, two elements 3[i] and B3[j] are selected to be updated,

while the others are fixed. Taking into account the Lagrange function for the constraint Zle B[] =
1, we have the following updating scheme:

; ' G — gG

g o ML B + (2O HO) .

B*li] « Bl + Bl — B7[il, 34)

where H(®) = ¢(A, AI(\fT)K) To avoid the obtained 3*[i] and 3*[j] to violate the constraint 0 < B[b],
we set B*[i] = 0if \(B[i] + B[j]) + (HY) — H®) < 0, and B*[j] = 0 otherwise.

However, this strategy requires multiple iterations since only a pair of elements of 3 can be updated
together. To address this issue, we propose a more efficient solution that allows updating all elements
of 3 simultaneously, explicitly eliminating the need for iteration.

By taking advantage of the coordinate descent method, we can filter out the valid elements that are
not governed by the boundary constraints, formally denoting the valid index set as 5. Consequently,
the inequality constraints of 0 < B[i] < 1 are slack to the weight set { 3[b] }»c 3 and the optimization
problem can be directly solved.

In particular, by introducing a Lagrangian multiplier 7), the Lagrangian function £(3,7) can be
formally defined as:

A
n) ZZﬂ[b]-H(b)+§||ﬂ||§+77(1—26[b])- (35)
beB beB
The corresponding Karush-Kuhn-Tucker (KKT) conditions can then be formulated as:
L(B,n) = 82(%){7) = H® + Bl —n=0, beB,
36
OL(B.1) eo

VaL(B,m) = “on 1= e Bb] =0

Note that we have already taken the equation constraint ), _; 3[b] = 1 into consideration when
deriving the representation of Vg £(3,n). The optimal result can be obtained by solving the
|B| + 1 equations. By summing up all the V g1 £(3, 1) along b within B, the Lagrangian multiplier
7 can be obtained as:
H® + )
n= Zb€B|B| : (37)
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Algorithm 1: Affinity Ensembling via Regularized Affinity Diffusion

Input: Affinity matrices {AI(\fT)K szl, the reference matrix E, max number of iterations

maziter, weighting parameter ; and A
Output: The ensembled affinity matrix A

1. initialize t = 0, A = E, and 8[b] = 1/B foreachb=1,..., B
2. repeat

3. update A with fixed 3 following Eq. (13)

4. compute H®) = €(A, AI(\?T)K) foreachb=1,...,B

5. set@B[b] =0foreachb=1,...,B

6. filter the valid index set 5 following Eq. (39)

7. update B[b] with fixed A following Eq. (40) for each b € B

9. t+t+1

1

0. until convergence or t = maxiter

Therefore, by taking 1 back into the KKT conditions, we can obtain the optimal solution of 3*[b],
following:
e HY — |BIH® + X
IB*[b]:ZbEB | ‘ v
AlB|

Since all the element 3*[b] should satisfy the inequality constraint 0 < 8*[b] < 1, the above rela-
tionships provide an effective strategy to determine the valid index set B, i.e., the corresponding H°
in B should satisfy H® < (3=, .z H b 4+ X)/|B|. Therefore, we can develop a formalize definition
of the valid index set, as follows:

B={vH" < (Y H" +X)/IBl,v=1,2,...,m}. (39)
beB

el (38)

In practical implementation, we first sort all H® in descending order and then sequentially remove
the indices that fail to satisfy the constraint of Eq. (39), leading to the valid set B. The optimal result
can be obtained in a single round of iteration, with the resulting weight vector 3* given by:

Syes HY —|BIH® + X
B*[b] = A B ’
0, ve{l,2,...,B}/T.

veB

’ (40)

F ABLATION ON REGULARIZED AFFINITY DIFFUSION

In this section, we conduct ablation study on our proposed Regularized Affinity Diffusion (RAD)
mechanism in Section 3.2. To examine the effectiveness of RAD, we consider the following two
alternatives to RAD.

(1) (B)

The first alternative is to naively average the obtained B affinity matrices Ay, - - -, AnTks 1-€-5
1B
A b
A= E;AIQT)K. (41)

We refer this alternative as Ours (naive).

The second alternative, motivated by Prompt Ensembling (PE), uses Eq. (6) and Eq. (7) to construct
the ensembled affinity matrix A except that 8y = vec (W) = vec ( L2 W(b)) where W) is
the CLIP features of positive nouns induced by b-th prompt template A(®) (+). Formally, A computed
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Table 7: Clustering performance (%) on eight image clustering datasets between prompt ensemble
and our methods. The best results are in bold.

Dataset | STL-10 | CIFAR-10 | CIFAR-20 | ImageNet-10 | ImageNet-Dogs | DTD | UCF101 | ImageNet-1K | Average

Metrics |NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI
TAC (Kmeans)| 92.3 94.5 89.5|80.8 90.1 79.8|60.7 55.8 427|975 98.6 97.0|75.1 75.1 63.6|60.1 459 29.0|81.6 613 524|778 489 36.4|783 713 613
TAC (SC) 92.6 943 942|81.2 903 80.1|569 545 30.1{97.0 983 96.8|753 758 64.4|58.6 440 27.1|79.6 60.0 50.1|78.0 49.1 362|774 70.8 59.9
Ours (naive) 87.0 912 84.0|71.4 747 56.8|45.1 426 29.9|86.1 904 809|705 69.0 56.1|562 456 302|822 649 579|771 51.0 354|720 662 539
Ours (PE) 93.1 979 89.6|829 913 824|609 550 43.4|97.6 989 974|823 813 723|60.7 50.6 32.1|81.5 668 589|792 533 384|798 744 64.3
Ours (RAD) 95.8 98.3 96.3 83.3 92.0 83.0|63.3 59.6 43.5 97.8 99.2 984|824 849 714|617 520 33.6|83.0 679 594|792 563 39.4|808 763 65.6

by the second alternative, called Ours (PE), can be given as follows:

Ajig) = [Rw e Ca), B Gxi)) it f(x0) € N Kow) A fe(3) € N 0c0). Kow)-
e 0 otherwise.
where N

gVV(fX(Xi)) = logZeWZfX(xi)/T “3)

k=1
with Wi = £ 30,0, fr (AP (&x)).

Table 7 shows that Ours (RAD) achieves the best clustering performance, which validates the ef-
fectiveness. Besides, one can also find that Ours (PE) significantly outperforms TAC (SC) and
TAC (KMeans), which implies the effectiveness of our proposed NTK-induced affinity measure.

G BROADER IMPACT

This work proposes a new deep clustering paradigm by leveraging external knowledge. As a funda-
mental problem in machine learning, clustering has a wide range of applications, such as anomaly
detection, person re-identification, community detection, etc. The proposed method is evaluated
on public image datasets that are not at risk. However, just like any learning method, the perfor-
mance of our method depends on data bias and cannot be guaranteed in more complex real-world
applications. In this sense, it might bring some disturbances in decision-making and thus should be
carefully used, especially in areas such as health care, autonomous vehicles, etc.

H USAGE CLAIM OF LLMS.

We use ChatGPT for grammar and spelling checks only, with prompt ”Proofread the sentences”.

I LIMITATION

The proposed method requires manually setting the target cluster number. In real-world applications,
one may resort to other cluster number estimation methods in the lack of a cluster number prior.

J ABLATION STUDY ON PROMPT TEMPLATES

To investigate how much has been prompt ensembling contributing to the performance compared to
using only one prompt, we report the clustering performance under single-prompt setting in Table 8.

Even with a single prompt template, ours is still outperforms TAC with multiple prompt templates
and achieves comparable performance to ours with multiple prompt templates, which implies that
the performance gains do NOT come from prompt engineering. Compared with TAC, the clustering
performance of ours is less sensitive to the choice of a single prompt template. Ours consistently
and significantly outperforms TAC (where the kernel way is not used), which implies the advantage
of our proposed NTK-based graph construction still holds with a single prompt template.
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Figure 8: Visualization of affinity matrices on DTD.
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Table 8: Ablation Study on Prompt Templates

Figure 9: Visualization of affinity matrices on STL-10.

Dataset | STL-10 | CIFAR-10 |  CIFAR-20 ImageNet-10 | ImageNet-Dogs | DTD | UCF101 | ImageNet-1K | Average
Metrics |NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI|NMI ACC ARI
itap of a {}

TAC (Kmeans)| 91.0 93.8 87.3|76.9 80.7 70.5|56.8 48.7 36.3|97.0 97.6 95.8|70.5 70.5 57.3|60.2 455 28.4|80.7 59.8 50.8|75.1 464 33.6|760 679 57.5

TAC (SC) 933 959 93.2|78.5 884 765|530 472 354|951 97.0 958|753 746 61.7|57.5 42.5 24.1|812 614 544|774 480 356|764 694 59.6

Ours 943 975 945|832 90.6 8l1.1| 624 563 399|969 98.2 974|825 845 71.0|61.6 518 32.7|81.8 67.5 58.8|78.6 54.6 389|802 75.1 64.3
a bad photo of the {}

TAC (Kmeans)| 88.5 80.2 78.4|81.8 90.0 79.3|60.8 54.6 41.1]96.0 974 964|739 745 62.6|582 44.6 285]|80.7 60.0 509|769 47.6 36.0|77.1 68.6 59.1

TAC (SC) 925 950 90.2|81.3 90.3 80.1|545 52.7 389|960 97.6 954|640 656 528|585 439 268|817 619 556|768 482 357|757 69.4 594

Ours 954 98.1 959|83.1 91.6 82.1|623 564 40.9|97.1 982 97.2|82.1 843 70.6|61.5 520 32.0{829 67.5 582|789 556 39.4|804 755 645

a origami

TAC (Kmeans)| 90.4 83.3 82.7|79.6 87.9 748|584 514 372|948 956 95.1 73.6{}74,3 62.8]583 44.8 284|807 59.9 50.7|72.2 384 268|760 67.0 57.3

TAC (SC) 932 944 91.4|79.1 88.1 754|552 54.1 392|956 97.8 969|723 735 61.1|58.1 440 269|818 632 559|702 40.5 3.5|757 694 563

Ours 949 97.8 953|829 91.1 81.7|63.6 58.7 40.3|96.7 98.8 96.7|81.7 845 70.7|60.6 51.0 33.0|83.1 66.6 57.9|76.5 53.7 33.1|80.0 753 63.6

a photo of the large {}

TAC (Kmeans)| 92.6 93.6 89.7|80.8 89.0 77.4|60.3 543 392|952 96.6 955|742 743 62.8]60.0 456 282|807 59.7 50.8|74.2 454 357|772 69.8 59.9

TAC (SC) 933 94.1 93.9|81.3 902 799|546 483 36.5[96.6 950 94.6|74.6 756 620|579 43.8 26.6|80.5 602 53.2|743 46.5 34.1|76.6 69.2 60.1

Ours 95.5 982 96.0|83.0 91.6 82.0| 624 59.1 419|968 984 975|818 849 70.5|61.0 51.5 33.7|84.8 703 61.8|774 544 352|803 76.1 648
a {} in a video game

TAC (Kmeans)| 91.4 83.9 83.8|81.4 90.0 79.0|61.9 555 40.1|96.0 94.6 94.9|71.8 737 63.2]59.1 455 283|808 59.9 50.8|752 454 357|772 68.6 59.5

TAC (SC) 914 932 92.0{80.3 89.3 77.7|54.6 51.6 37.5|/96.4 956 94.8|73.6 746 63.4|58.6 439 267|814 622 547|758 443 350|765 69.3 60.2

Ours 953 98.1 95.8|83.1 91.3 822|625 57.1 383|977 99.0 97.4|80.9 839 70.1|60.9 512 334|829 678 59.2|77.7 543 36.2|80.1 753 64.1

art of the

TAC (Kmeans)| 91.2 83.6 83.7|81.1 89.7 78.7|59.1 524 37.3|96.0 982 97.0 72.3{} 72.8 603|584 446 28.6|80.8 599 51.0|752 445 336|768 682 588

TAC (SC) 924 93.1 91.9(80.5 89.6 785|544 542 382|970 97.0 954|749 751 629|569 423 26.7|80.8 622 53.6|78.1 484 355|769 70.2 60.3

Ours 95.5 982 96.1|83.0 91.6 82.2|63.0 589 43.0(97.3 98.8 97.1|81.3 832 70.2|60.7 514 325|825 673 58.1|783 551 389|802 756 648

a photo of the small {}

TAC (Kmeans)| 87.6  79.9 77.5|78.0 80.6 70.9|60.1 552 392|959 96.0 950|746 74.1 63.9|580 447 283|80.7 59.9 50.8|72.2 383 26.6|759 66.1 56.5

TAC (SC) 923 94.8 90.0|80.7 89.7 79.0|557 543 40.3|97.0 97.6 964|746 740 639|573 434 252|809 62.0 54.2|70.1 40.5 30.5|76.1 69.6 59.9

Ours 948 97.8 953|829 909 81.4|63.1 588 41.8|97.6 98.8 963|822 84.0 70.3|61.7 514 333|834 669 57.9|79.1 56.1 39.3|80.6 75.6 644
Prompt Ensembling

TAC (Kmeans)| 92.3 94.5 89.5|80.8 90.1 79.8|60.7 55.8 42.7|97.5 98.6 97.0|75.1 75.1 63.6]|60.1 459 29.0|81.6 61.3 524|778 489 364|783 713 61.3

TAC (SC) 92.6 943 94.2|81.2 903 80.1|569 545 30.1{97.0 983 968|753 75.8 64.4|58.6 440 27.1|79.6 60.0 50.1|78.0 49.1 362|774 70.8 59.9

Ours 95.8 98.3 96.3|83.3 92.0 83.0|63.3 59.6 43.5|97.8 99.2 98.4|824 849 714|617 520 33.6|83.0 679 594|792 563 39.4|808 763 65.6

K VALIDATION OF IMAGE DATA LEAKAGE

It should be noted that many evaluation datasets used in this work have appeared in the training
of the vision-language foundation models, which can raise a data-leakage problem since the rep-
resentations under interest has been well obtained. To maximally prevent data-leakage problem in
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Table 9: Clustering performance with OpenCLIP’s pretrained models. The best results are in bold.

Dataset | STL-10 | CIFAR-10 | CIFAR20 | ImageNet-10 | ImageNet-Dogs | DTD | UCFIOl | ImageNet-IK |  Average
Metrics ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI
TAC (Kmeans)| 93.1 959 93.4|84.7 91.9 834|674 63.3 503|979 97.0 96.8|73.4 738 60.3|656 523 36.4|81.1 61.6 529|768 47.5 347|80.0 729 63.5
TAC (SC) 93.6 962 92.8|86.1 933 859|620 57.6 453|977 98.0 969|744 745 612|652 53.8 36.7|81.2 648 56.2|76.7 473 35.1|79.7 732 628
Ours 96.1 99.1 97.3 89.9 954 90.9|66.5 64.2 51.8 97.3 99.6 98.8|81.5 83.2 70.7| 66.2 56.4 40.6|82.8 67.1 58.0|78.8 55.0 39.0| 824 77.5 68.4
Table 10: Validation of label-name leakage.
Dataset | CIFAR-10 | CIFAR-20 |  ImageNet-1K
Metrics ‘ NMI ACC ARI ‘ NMI ACC ARI ‘ NMI ACC ARI
WordNet w/o ground-truth class name | 83.3 91.8 83.1 | 63.4 598 43.7 | 793 562 39.6
Full WordNet 833 920 830 | 633 59.6 435 | 788 563 394

the OpenAlT’s pretrained CLIP models, we additionally conduct experiments using the pretrained
CLIP models in OpenCLIP on CIFAR-10, CIFAR-100, ImageNet-A and ImageNet-1K, where the
overlap percentage with the pre-trained dataset is 0.02%, 0.03%, 0.04% and 1.02%, respectively.
It can be found from Table 9 that using OpenCLIP’s checkpoints contribut to better or compara-
ble performance than OpenAlI’s checkpoints, which means that performance benefit of CLIP-based
clustering does not result from the data-leakage problem. Besides, we note that, using both kinds of
checkpoints, our method consistently outperforms TAC.

L VALIDATION OF LABEL-NAME LEAKAGE

To further rule out potential label-name leakage, we additionally conducted experiment where we
remove all words that exactly match any ground-truth class name from WordNet and re-run our
method. As shown in Table 10, the clustering performance (averaged over 5 runs) of our method
remains essentially the same (ACC / NMI / ARI differences are small), indicating that our emprical
advantages do not rely on the presence of true label names but on the richer semantic structure
provided by generic “in-the-wild” nouns and their interactions via our proposed NTK-based affinity.

M STATISTIC SIGNIFICANCE

We report the statistical significance of our method via statistical comparisons over 8 benchmarks
used in Table 1 and Table 2. To this end, a very common practice yields the paired t-test . So before
we list the results, let’s define the following hypothesis to test.

* po : The compared two models may not have significant statistical differences regarding
their clustering performance.

* pp : The compared two models may have significant statistical differences regarding their
clustering performance.

Table 11 reports the p-value of Wilcoxon Signed-Ranks Test where the clustering performance is
measured by NMI. According to the p-values of our method against all the compared CLIP-based
baselines, one can conclude our method consistently rejects the null hypothesis with p < 0.05,
which means our clustering performance is statistically significant enough to be distinguished from
the others.

Table 11: Paired hypothesis test p-values.

| TAC | SIC | CLIP(Kmeans)
Ours | 0.0078 | 0.0039 |  0.0078
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Table 12: Computation cost of our method and spectral clustering on ImageNet-1K.

NTK-induced graph construction | RAD | Spectral clustering

1.1 mins | 8.2 mins | 3.6 mins

N TIME AND SPACE COMPLEXITY

The time and space complexity of the proposed method can be broken down into two main compo-
nents: (a) NTK-induced graph construction and (b) Regularized Affinity Diffusion (RAD).

For NTK-induced graph construction, one can easily check from Eq. (8) that time and space com-
plexity is O(BM?(d + N)) and O((M + BN)d) where B is the number of prompt template, d is
the CLIP feature dimension, N and M is the number of positve nouns and images.

For RAD, it seems that we need space complexity is O(BM?) space to store the B prompt-specific
affinity matrices. However, since the affinity matrices share a sparse mutual g-nn pattern (each
row has O(q) nonzeros), the space complexity accordingly drops to O(BMg¢), which is linearly
dominated by M since ¢, B < M. In practice, by storing the affinity matrices as Torch sparse
tensor, the total memory usage is around 30 MB.

Regarding to the time complexity of RAD, it has two parts. The first one is updating Avia Eq.
(13). Since each S (the row-normalized Al(\IbT)K) has O(gq) nonzeros, each multiplication is around
O(Mg?), giving O(t; BM¢?) for computing Eq. (13) for ¢; steps. The second part is updating 3
in O(t2 B?) with to-step coordinate descent shown in Appendix E. Considering the overall iteration
number T in alternating optimization, the final space complexity of RAD is O(T (t; BM ¢ +t2 B?)).
Since t1,t9, T, B, q*> < M, we can conclude that the over time complexity is dominated by O(M).

Table 12 reports computation cost of our method and spectral clustering on ImageNet-1K on a
single Nvidia A100, where one can find that RAD takes 8 mins and spectral clustering takes 3.6
mins. Therefore, we argue that our method and spectral clustering can be scaled to large datasets.
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