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ABSTRACT
Click-Through Rate (CTR) prediction holds paramount significance

in online advertising and recommendation scenarios. Despite the

proliferation of recent CTR prediction models, the improvements in

performance have remained limited, as evidenced by open-source

benchmark assessments. Current researchers tend to focus on devel-

oping newmodels for various datasets and settings, often neglecting

a crucial question: What is the key challenge that truly makes CTR

prediction so demanding?

In this paper, we approach the problem of CTR prediction from

an optimization perspective. We explore the typical data charac-

teristics and optimization statistics of CTR prediction, revealing

a strong positive correlation between the top hessian eigenvalue

and feature frequency. This correlation implies that frequently

occurring features tend to converge towards sharp local minima,

ultimately leading to suboptimal performance. Motivated by the re-

cent advancements in sharpness-aware minimization (SAM), which

considers the geometric aspects of the loss landscape during op-

timization, we present a dedicated optimizer crafted for CTR pre-

diction, named Helen. Helen incorporates frequency-wise Hessian

eigenvalue regularization, achieved through adaptive perturbations

based on normalized feature frequencies.

Empirical results under the open-source benchmark framework

underscore Helen’s effectiveness. It successfully constrains the top

eigenvalue of the Hessian matrix and demonstrates a clear advan-

tage over widely used optimization algorithms when applied to

seven popular models across three public benchmark datasets on

BARS. We release our implementation of Helen here
1
.
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1 INTRODUCTION
Click-through rate (CTR) prediction holds significant importance

in the realm of online advertising and marketing [58, 59, 80]. CTR

provides insights into the effectiveness of advertising campaigns

by measuring the ratio of users who click on a specific link or

1
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Figure 1: Evolution of AUC Performance in CTR Prediction
Models on the Criteo Dataset, with Time Progression
Indicated on the X-axis (Reported by BARS [81]).

advertisement to the total number of users exposed to it. Accu-

rate CTR prediction is crucial for advertisers as it enables them to

assess the performance of their campaigns, allocate budgets effec-

tively, and optimize ad creatives to maximize return on investment

(ROI) [42, 58, 80]. For companies with extremely large user bases

like Facebook and Google, even a slight improvement in AUC can

result in a significant increase in revenue [39, 66, 81].

The pursuit of accurate CTR prediction has garnered substantial

attention from various stakeholders since the early 2000s [42, 47, 56].

Efforts to develop sophisticated models to improve CTR prediction

accuracy have been persistent in both academic and industrial

communities [7, 13, 21, 38, 66, 67, 78, 80]. However, as depicted

by Figure 1, despite the surge of new CTR prediction models and

architectures, they continue to encounter challenges in improving

the performance on benchmark settings.

Besides model structure, the choice of optimization algorithms

also has a significant impact on model performance [55, 73]. Adap-

tive learning rate techniques adpoted byAdam [33] andAdamW[45]

have consistently outperformed classic methods such as SGD [57]

and its variants [49, 53] over various machine learning tasks and

reigned over the field of optimization for the past decade.

Yet, recent attention has been directed towards the customization

of optimization algorithms to suit specific tasks and new models,

shining a vibrant spotlight on the possibility of inventing new

optimizers to further improve model performance. For example,

Lion [11] is developed through automated program search and

empirically showcased to perform well in diverse computer vision

tasks, and Sophia [41] demonstrates distinctive expertise in training

large language models (LLM) by employing a lightweight estimate

of the diagonal Hessian. Notably, Sharpness-Aware Minimization

(SAM) [20] demonstrates that decreasing the sharpness of the loss

function will increase models’ ability to generalize.

1
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Amidst this rise in recognition of task-tailored optimization

methodologies, the field of optimization in CTR prediction has

received relatively limited attention. Diverging from many other

machine learning tasks, CTR prediction stands out due to its high-

dimensional, skewed distribution of categorical features. Crafting a

customized optimization approach for this task necessitates special

attention to these characteristics.

This paper presents a thorough exploration of how feature fre-

quency influences the optimization process in CTR prediction mod-

els. Our investigation reveals a noteworthy correlation: embeddings

of more frequently occurring features tend to converge towards

sharper local minima, as evidenced by a larger top eigenvalue of the

Hessian matrix. In response to these findings, we introduce Helen,

a specialized optimizer designed for CTR prediction models. He-

len incorporates frequency-wise Hessian eigenvalue regularization,

drawing inspiration from SAM, which introduces perturbations to

the updating gradient. Our contributions can be summarized as

follows:

• We are the first to unveil a robust positive correlation between

feature frequency and the top eigenvalue of feature embeddings.

This correlation highlights an imbalanced distribution of loss

sharpness across the parameter space, making it challenging for

the optimizer to discover flat minima that generalize effectively.

• We introduce a specialized optimizer for CTR prediction mod-

els, known as Helen. Helen leverages frequency information

to estimate the sharpness of feature embeddings and adjusts

the perturbation radius accordingly, drawing inspiration from

SAM, which has been proven to possess the ability to regularize

Hessian eigenvalues.

• With thorough testing under an open-source benchmark setup,

we provide empirical evidence across three public datasets and

seven established CTR prediction models. The results consis-

tently demonstrateHelen’s effectiveness in regularizing the sharp-

ness of the loss function, thereby significantly enhancing the

performance of CTR prediction models.

2 PRELIMINARIES
2.1 CTR Prediction
Let S = {(𝒙𝑖 , 𝑦𝑖 )}𝑛𝑖=1 represent the training dataset, where each

sample (𝑥𝑖 , 𝑦𝑖 ) follows the distribution D and 𝑦𝑖 ∈ {0, 1} denotes
whether the user clicked or not, 𝒙𝑖 = [𝒙1

𝑖
, 𝒙2

𝑖
, . . . , 𝒙𝑚

𝑖
] encodes

categorical information regarding the user, the product, and their

interaction, where𝑚 indicates the number of feature fields. The

𝑗-th categorical field is converted through one-hot encoding into a

vector denoted as 𝒙 𝑗
𝑖
∈ {0, 1}𝑠 𝑗 , where 𝑠 𝑗 represents the number of

total feature within the 𝑗-th categorical field and 𝒙 𝑗
𝑖
[𝑘] = 1 only if

the 𝑘-th feature in field 𝑗 is present in the 𝑖-th sample.

Given the predictive network denoted as 𝑓 , predictions are gen-

erated using the function 𝑓 (𝒙 ;𝒘), where𝒘 = [𝒉, 𝒆] comprises two

parts: 𝒆 for the embeddings of sparse features and 𝒉 for all remain-

ing dense network’s hidden layers. The embedding weights 𝒆 can be
further subdivided into𝑚 parts, represented as 𝒆 = [𝒆1, 𝒆2, . . . , 𝒆𝑚],
where 𝒆 𝑗 signifies the embedding weights associated with the 𝑗-th

field. Within each field, the embedding weights 𝒆 𝑗 can be broken

down into 𝑠 𝑗 components, denoted as 𝒆 𝑗 = [𝒆 𝑗
1
, 𝒆 𝑗

2
, . . . , 𝒆 𝑗𝑠 𝑗 ], with

𝒆 𝑗
𝑘
representing the weights for the 𝑘-th feature in the 𝑗-th field.

Assume that 𝒉 ∈ R𝑑ℎ and 𝒆 𝑗
𝑘
∈ R𝑑𝑒 , where 𝑑ℎ and 𝑑𝑒 denote the

dimensions of the dense network and embeddings, respectively.

2.2 Model Optimization
Given the predicting network 𝑓 , for a specific sample (𝒙, 𝑦) and
model parameter𝒘 , the loss function L(𝒙, 𝑦, 𝑓 (𝒙 ;𝒘)) measures the

difference between the prediction 𝑓 (𝒙 ;𝒘) and the ground truth 𝑦.

The loss function L is usually defined as the cross-entropy loss for

CTR prediction task.

The ultimate goal of model optimization is to solve the following

optimization problem:

𝒘∗ = argmin

𝒘
E(𝒙,𝑦)∼D L(𝒙, 𝑦, 𝑓 (𝒙 ;𝒘)), (1)

where𝒘∗ is the optimal model parameter. However, this optimiza-

tion problem is intractable since the distribution D is unknown.

Instead, we can solve the following empirical risk minimization

problem based on the training dataset S:

𝒘̂ = argmin

𝒘

1

𝑛

𝑛∑︁
𝑖=1

L(𝒙𝑖 , 𝑦𝑖 , 𝑓 (𝒙𝑖 ;𝒘)) . (2)

2.3 Sharpness-Aware Minimization
The objective of the SAM algorithm [20] is to identify the param-

eters that minimize the training loss LS (𝒘) while considering

neighboring points within the ℓ𝑝 ball. This is achieved through the

utilization of the following modified objective function:

L𝑆𝐴𝑀
S (𝒘) = max

∥𝝐 ∥𝑝≤𝜌
LS (𝒘 + 𝝐), (3)

where |𝝐 |𝑝 ≤ 𝜌 ensures that the magnitude of the perturbation 𝝐
remains within a specified threshold.

As calculating the optimal solution of inner maximization is

infeasible, SAM employs a one-step gradient to approximate the

maximization problem, as demonstrated below:

𝝐 (𝒘) = 𝜌
∇𝒘LS (𝒘)
∥∇𝒘LS (𝒘)∥

≈ arg max

∥𝝐 ∥𝑝≤𝜌
LS (𝒘 + 𝝐). (4)

Finally, SAM computes the gradient with respect to perturbed

model𝒘 + 𝝐 for the update:

𝒈 = ∇𝒘L𝑆𝐴𝑀
S (𝒘) ≈ ∇𝒘LS (𝒘) |𝒘+𝝐 . (5)

3 METHOD
We begin by establishing the key characteristics of the CTR pre-

diction task in Section 3.1, primarily focusing on skewed feature

distributions. Subsequently, we analyze the intricate connection

between feature frequencies and the Hessian matrix in Section 3.2.

Drawing from our analytical insights, we introduce Helen, a

novel and tailored optimizer designed specifically for CTR predic-

tion models in Section 3.3.

3.1 Skewed Feature Distribution
A prominent feature that sets CTR prediction apart from other tra-

ditional machine learning tasks, such as image classification, is its

distinctive input data format—often comprised of multi-hot encoded

categorical features. Within CTR prediction models, the possible

2
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Figure 2: Feature Distribution on three public datasets. The
y-axis is in the logarithm scale.

number of features can grow immensely, potentially comparable

to the total number of users or items. This results in the creation

of an input vector that is both highly dimensional and sparse. To

compound this challenge, the distribution of these features exhibits

a significant skew. As shown in Figure 2, the distribution of fea-

ture frequency is highly skewed. Popular features are much more

frequent than unpopular features.

Many previous works [3, 50, 72, 74] have realized the challenge

caused by the skewed feature distribution and propose different

techniques such as counterfactual reasoning [5, 40, 74, 76] and

model regularization [2, 30, 61]. However, these works slide over

the intrinsic difficulty that a skewed feature distribution brings to

the optimization of CTR prediction models, which leads to sub-

optimal recommendation performance.

A recent work, CowClip [77], proposes to clip the gradient of

feature embedding according to the frequencies of features and suc-

cessfully scales the batch size to reduce the training time. Cowclip

first considers the impact of skewed feature distribution from the

perspective of optimization. However, its discussion is limited to the

first-order gradient and fails to unveil the second-order information

of the loss landscape, i.e., Hessian matrix.

In the following section, we will show that even if feature fre-

quencies do affect the feature embedding gradient norm, the impact

is not as significant as the correlation between feature frequency

and the dominant eigenvalue of the Hessian matrix.

3.2 Hessian and Frequency of Features
Previousworks [36, 51, 60] have shown that under sufficient regular-

ity conditions, gradient-based methods are guaranteed to converge

to local minimizer𝒘∗ of the loss function, such that

𝒈 = ∇𝒘LS (𝒘∗) = 0.

and the Hessian matrix 𝑯 = ∇2𝒘LS (𝒘∗) is positive semi-definite,

i.e., all eigenvalues of 𝑯 are non-negative.
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(d) Gradient Norm of DeepFM

Figure 3: PNN and DeepFM trained on Criteo dataset with
Adam optimizer.

Bottou [6] demonstrates that the largest eigenvalue 𝜆 of the

Hessian matrix 𝑯 of the loss function LS (·) indicates whether
the optimization is ill-conditioned. If the dominant eigenvalue is

too large, the gradient-based optimization methods will converge

to some deep ravines in the loss landscape, which leads to poor

generalization performance [8, 26, 31, 32].

In the context of CTR prediction, we delve deeper into examin-

ing the connection between feature frequencies and the dominant

eigenvalues of the Hessian matrix associated with the respective

feature embedding. The frequency of each feature 𝑘 in the 𝑗-th

feature field is counted according to the following equation,

𝑁
𝑗

𝑘
(S) =

𝑛∑︁
𝑖=1

𝒙 𝑗
𝑖
[𝑘] . (6)

As discussed in Section 2.1, the parameters of CTR prediction

models can typically be categorized as

𝑤 = [𝒉, 𝒆1
1
, 𝒆1

2
, . . . , 𝒆1𝑠1︸          ︷︷          ︸

1-st Field

, 𝒆2
1
, 𝒆2

2
, . . . , 𝒆2𝑠2︸          ︷︷          ︸

2-nd Field

, . . . , 𝒆𝑚
1
, 𝒆𝑚

2
, . . . , 𝒆𝑚𝑠𝑚︸             ︷︷             ︸

𝑚-th Field

] .

Similarly, the gradient can be decomposed as:

𝒈 = [𝒈𝒉,𝒈11 ,𝒈
1

2
, . . . ,𝒈1𝑠1︸           ︷︷           ︸

1-st Field

,𝒈2
1
,𝒈2

2
, . . . ,𝒈2𝑠2︸           ︷︷           ︸

2-nd Field

, . . . ,𝒈𝑚
1
,𝒈𝑚

2
, . . . ,𝒈𝑚𝑠𝑚︸              ︷︷              ︸

𝑚-th Field

] .

Regarding the Hessian matrix 𝑯 , our primary focus centers on the

diagonal block matrix 𝑑𝑖𝑎𝑔(𝑯 ), which is defined as:

[𝑯𝒉,𝑯
1

1
,𝑯 1

2
, . . . ,𝑯 1

𝑠1︸              ︷︷              ︸
1-st Field

,𝑯 2

1
,𝑯 2

2
, . . . ,𝑯 2

𝑠2︸              ︷︷              ︸
2-nd Field

, . . . ,𝑯𝑚
1
,𝑯𝑚

2
, . . . ,𝑯𝑚

𝑠𝑚︸                 ︷︷                 ︸
𝑚-th Field

] .

Here, the diagonal block matrix 𝑯𝒉 is a 𝑑𝒉 × 𝑑𝒉 matrix and 𝑯 𝑗

𝑘
is

a 𝑑𝑒 × 𝑑𝑒 matrix for 𝑗 ∈ {1, 2, . . . ,𝑚} and 𝑘 ∈ {1, 2, . . . , 𝑠 𝑗 }. Given
3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon. Submission Id: 880

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Correlation between the norm of the Hessian
matrix and the frequency of features.

Dataset

PNN DeepFM

𝑟 ( |𝑔 |, 𝑁 ) 𝑟 (𝜆, 𝑁 ) 𝑟 ( |𝑔|, 𝑁 ) 𝑟 (𝜆, 𝑁 )
Avazu 0.758 0.841 0.759 0.809

Criteo 0.715 0.943 0.700 0.825

Taobao 0.806 0.990 0.824 0.977

our primary focus on the feature distribution, we use the notation

𝜆
𝑗

𝑘
to represent the top eigenvalue of the Hessian matrix 𝑯 𝑗

𝑘
.

We choose two popular CTR prediction models, PNN [54] and

DeepFM [21], and train them with Adam [33] optimizer. Figures 3a

and 3b visually represent the relationship between the highest

eigenvalue of the Hessian matrix, 𝜆
𝑗

𝑘
, and the frequency of the cor-

responding feature 𝑁
𝑗

𝑘
within the feature field labeled as ‘C13’ in

the Criteo dataset. To offer a point of comparison, we also include

graphical representations of the gradient norm of feature embed-

ding

���𝒈 𝑗

𝑘

��� plotted against the frequency of the corresponding feature
𝑁

𝑗

𝑘
in Figures 3c and 3d.

When comparing the correlation between the gradient norm of

feature embeddings and feature frequency to the correlation involv-

ing the top eigenvalue of the diagonal block of the Hessian matrix,

a striking difference emerges. The latter exhibits a considerably

more pronounced association, signifying an exceptionally strong

and positive linear relationship.

To further substantiate this observation, we conduct an analysis

by computing the Pearson correlation coefficient 𝑟 (𝜆, 𝑁 ) between
the top eigenvalue of the diagonal block in the Hessian matrix

and the corresponding feature’s frequency. The results, as depicted

in Table 1, also include the Pearson correlation coefficient for the

gradient norm and feature frequency.

Across the three benchmark public datasets, it is evident that

the correlation coefficient, denoted as 𝑟 (𝜆, 𝑁 ), between the top

eigenvalue of the diagonal Hessian block and the corresponding

feature’s frequency consistently exceeds 0.8. This value signifies

a nearly perfect positive linear relationship between these two

variables.

This strongly implies that features with higher frequencies are

more likely to converge to sharper local minima.

3.3 Helen: Frequency-wise Hessian Eigenvalue
Regularization

SAM [20] has proven its efficacy in enhancing the generalization

performance of deep learning models by concurrently minimiz-

ing both the loss value and sharpness. Recent advancements in

both experimental studies [10, 20] and theoretical research [68]

have established SAM’s ability to effectively reduce the dominant

eigenvalue of the Hessian matrix.

Lemma 1. Minimizing the SAM loss function

L𝑆𝐴𝑀
𝑆 (𝒘) = max

∥𝝐 ∥𝑝≤𝜌
L𝑆 (𝒘 + 𝝐)

introduces a bias

argmin

𝒘
𝜆

(
∇2𝒘L𝑆 (𝒘)

)
among the minimizers of the original loss L𝑆 (𝒘) in an O(𝜌) neigh-
borhood manifold, where 𝜆

(
∇2𝒘L𝑆 (𝒘)

)
denotes the maximum eigen-

value of the Hessian matrix.

In particular, Wen et al. [68] demonstrates that SAM diminishes

the largest eigenvalue of the Hessian matrix of the loss function

in the local vicinity of the manifold bounded by the perturbation

radius 𝜌 , as summarized in Lemma 1. This finding has prompted

our exploration into the regularization of the Hessian matrix for

feature embedding using SAM.

However, a limitation of the native SAM lies in its application

of a uniform perturbation radius 𝝐 to all model parameters. As

previously demonstrated in Section 3.1 and Section 3.2, we have

underscored the notable skew in the distribution of feature frequen-

cies and the robust correlation existing between these frequencies

and the top eigenvalue of the Hessian matrix.

When the uniform perturbation radius 𝝐 is relatively small, it

inadequately regularizes Hessian eigenvalues for high-frequency

features, leading to suboptimal performance, which deviates from

our goals. Conversely, when utilizing a large uniform perturbation

radius 𝝐 , the top eigenvalue of the Hessian matrix for features with

higher frequencies decreases, indicating a convergence toward flat-

ter local minima. However, this strategy overly regularizes features

with lower frequencies, redirecting their optimization toward flat

regions at the cost of refining the original loss function L𝑆 (𝒘).
This trade-off between high-frequency and low-frequency features

ultimately leads to a suboptimal solution.

Inspired by the aforementioned insights, we propose Helen, a

novel optimization algorithm with frequency-wise Hessian eigen-

value regularization. Helen is founded on the SAMwith an adaptive

perturbation radius 𝝐 for each feature embedding.

During the training process, Helen first calculates the frequency

of each feature 𝑘 in any feature field 𝑗 , denoted as 𝑁
𝑗

𝑘
. Then the

perturbation radius 𝜌
𝑗

𝑘
is calculated as follows,

𝜌
𝑗

𝑘
= 𝜌 ·max{

𝒈 𝑗

𝑘

∥𝒈 𝑗

𝑘
∥
, 𝜉}. (7)

Given the relatively small proportion of infrequent features in

relation to the most frequent feature, we have introduced a lower-

bound parameter denoted as 𝜉 to avoid setting the perturbation

radius 𝜌
𝑗

𝑘
to excessively small values.

And then approximate Equation 3 with first-order Taylor expan-

sion, we have

𝝐 (𝒆𝒋
𝒌
) = arg max

∥𝝐 ∥𝑝≤𝜌∗𝑘
L𝑆 (𝒆 𝑗𝑘 + 𝝐) ≈ 𝜌

𝑗

𝑘
·
∇
𝒆𝒋
𝒌
L𝑆 (𝒘)

∥∇
𝒆𝒋
𝒌
L𝑆 (𝒘)∥

. (8)

For the dense network parameters ℎ, we use the same perturbation

radius 𝜌 as SAM.

After we have all the perturbation vectors

𝝐 (𝒘) = [𝝐 (𝒉), 𝝐 (𝒆1
1
), . . . , 𝝐 (𝒆𝑚𝑠𝑚 )], (9)
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we can calculate the Helen gradient with respect to perturbedmodel

𝒘 + 𝝐 similar with Equation 5 for the update:

𝒈𝐻𝑒𝑙𝑒𝑛 = ∇𝒘L𝑆 (𝒘) |𝒘+𝝐 (𝒘 ) . (10)

The culmination of our work yields the ultimate Helen algorithm,

achieved by implementing a conventional numerical optimizer, such

as stochastic gradient descent (SGD), and replacing the conventional

gradient with the Helen gradient. Algorithm 1 provides pseudocode

for the complete Helen algorithm, with SGD as the underlying

optimization method.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. Weevaluate the proposed optimizer on three bench-

mark public datasets, namely Avazu, Criteo, and Taobao. For more

statistics of these three datasets , please refer to Appendix A.2. A

brief introduction to them is as follows:

• Avazu: The Avazu dataset [4] employed in this research com-

prises approximately 10 days of labeled click-through data asso-

ciated with mobile advertisements.

• Criteo: The Criteo dataset [35] serves as a prominent benchmark

dataset widely utilized for CTR prediction, specifically in the

context of display advertising.

• Taobao: The Taobao dataset [64] comprises a collection of ad-

vertisement display and click records, which were randomly

selected from Taobao over a span of 8 days.

For a comprehensive and equitable comparison, we use the

datasets preprocessed by the BARS benchmark [81]. In particu-

lar, we adopt the officially recommended ‘Criteo_x4_001’ for the
Criteo dataset and the ‘Avazu_x4_001’ for the Avazu dataset among

all the available preprocessed versions.

4.1.2 CTR Prediction Models. To assess Helen’s performance, we

selected seven well-established CTR prediction models, specifi-

cally DNN [13], WideDeep [12], PNN [54], DeepFM [21], DCN [66],

DLRM [48], and DCNv2 [67]. The choice of these models is primar-

ily influenced by two key considerations: their impact within both

the academic and industry communities and their high performance

on the BARS benchmark leaderboard. Each of these seven models

has accumulated over 200 citations and has consistently showcased

robust performance on the BARS benchmark. For further details of

these models, please refer to Appendix A.5.

4.1.3 Baselines. To demonstrate the effectiveness of our proposed

method, we compare Helen with seven commonly used optimiz-

ers, namely Adam [33], Nadam [16], Radam [43], SAM [20], and

ASAM [34]. Nadam and Radam are both variants of Adam, and

ASAM is an adaptive version of SAM. For more details, please refer

to Appendix A.6

4.1.4 Implementation details. Our experiment is conducted using

FuxiCTR
2
[81, 82], an open-source framework for CTR prediction.

We strictly adhere to the benchmark’s coding standards for CTR

model implementation, data processing, and model evaluation. In

our experiment, we rely on the official PyTorch implementations of

2
https://github.com/xue-pai/FuxiCTR

Adam, Nadam, Radam, and an open-source PyTorch implementa-

tion
3
of SAM. For ASAM, we employ the official implementation

4

provided by the authors.

Regarding model hyperparameters, we adopt the benchmark

settings reported by FuxiCTR and keep them constant for all the

optimizers. As for optimizer hyperparameters, the learning rate

remains fixed at 𝜂 = 1×10−3 since all the tested optimizers incorpo-

rate an adaptive learning rate mechanism and are not particularly

sensitive to changes in this parameter. In terms of L2-regularization

coefficients, we explore values from the set {1 × 104, 1 × 10−5, 0},
maintaining consistency with the search space employed in BARS.

For SAM, ASAM, and Helen, we perform tuning on the perturbation

radius 𝜌 , considering values from the set {0.05, 0.01, 0.005, 0.001}.
In the case of Helen, the lower bound 𝜉 is varied within {0, 0.5}.

4.2 Performance Analysis
We evaluate the Helen optimizer alongside Adam, Nadam, Radam,

SAM, and ASAM using seven CTR prediction models across three

datasets. The summarized outcomes for the Avazu and Taobao

datasets are presented in Table 2 and Table 3, respectively. For

results of Taobao, please refer to Appendix A.3. The analysis of

these tables leads to the following insights:

4.2.1 Narrow Performance Disparity Among CTR Predic-
tion Models. While a multitude of CTR prediction models have

emerged since the advent of DNN in 2016, proclaiming their supe-

riority over predecessors, the actual performance disparity among

these models remains relatively modest. The performance gap be-

tween the best and worst-performing models in terms of AUC

stands at 2.30%, 0.13%, and 0.61% for the Avazu, Criteo, and Taobao

datasets, respectively.

When excluding the highest and lowest AUC scores, this perfor-

mance gap further narrows to 0.35%, 0.07%, and 0.51% in the Avazu,

Criteo, and Taobao datasets, respectively. Notably, model perfor-

mance exhibits inconsistency across different datasets. For instance,

DCNv2 excels in the Criteo dataset but ranks as the least effective

model in the Avazu dataset, showcasing a significant performance

contrast relative to other models.

Among the seven models evaluated, PNN and DeepFM demon-

strate the highest stability, with PNN claiming the top position in

two datasets and DeepFM consistently outperforming the average

in all three datasets.

4.2.2 Limited Performance Enhancement with Adam Vari-
ants. Although Nadam and Radam are theoretically proven to have

superior convergence bounds or lower variance, their actual perfor-

mance improvements are rather limited. The average enhancement

over seven models achieved by Nadam compared to Adam amounts

to a mere 0.15%, 0.03%, and -0.09% in terms of AUC for the Avazu,

Criteo, and Taobao datasets, respectively.

Similarly, the average improvement with Radam over Adam

stands at 0.03%, 0.03%, and -0.27% in AUC for the Avazu, Criteo, and

Taobao datasets, respectively. Notably, the performance of Nadam

and Radam exhibits inconsistency across different datasets, proving

3
https://github.com/davda54/sam

4
https://github.com/SamsungLabs/ASAM
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Table 2: Overall performance on the Avazu dataset.

Model

Adam Nadam Radam SAM ASAM Helen

LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC

DNN 37.302 79.271 37.365 79.142 37.399 79.027 37.269 79.265 37.294 79.275 37.271 79.279
WideDeep 37.299 79.122 37.607 78.908 37.510 78.794 37.306 79.108 37.291 79.142 37.284 79.147

PNN 37.209 79.413 37.215 79.355 37.432 79.065 37.227 79.355 37.223 79.401 37.209 79.409
DeepFM 37.245 79.279 38.088 78.897 37.407 79.034 37.269 79.260 37.251 79.287 37.237 79.303
DCN 37.237 79.245 37.352 79.056 37.390 78.976 37.271 79.224 37.238 79.250 37.228 79.250
DLRM 37.507 78.924 37.972 79.057 37.510 78.881 37.516 78.921 37.510 78.913 37.174 79.400
DCNv2 38.480 77.108 37.436 79.018 37.509 78.812 38.582 76.908 38.475 77.116 37.319 79.100

avg 37.468 78.909 37.576 79.062 37.451 78.941 37.491 78.863 37.469 78.912 37.246 79.270

Table 3: Overall performance on the Criteo dataset.

Model

Adam Nadam Radam SAM ASAM Helen

LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC

DNN 43.830 81.364 43.830 81.379 43.815 81.394 43.784 81.417 43.807 81.384 43.768 81.434
WideDeep 43.820 81.375 43.804 81.388 43.783 81.410 43.771 81.418 43.808 81.394 43.784 81.421

PNN 43.888 81.332 43.805 81.407 43.804 81.408 43.809 81.392 43.873 81.348 43.780 81.402
DeepFM 43.835 81.366 43.792 81.415 43.794 81.411 43.788 81.404 43.802 81.399 43.735 81.471
DCN 43.800 81.401 43.787 81.428 43.789 81.416 43.809 81.407 43.803 81.402 43.795 81.422
DLRM 43.931 81.277 43.924 81.288 43.928 81.269 43.936 81.278 43.974 81.242 43.812 81.382
DCNv2 43.813 81.411 43.807 81.418 43.786 81.436 43.788 81.438 43.803 81.422 43.734 81.468

avg 43.845 81.361 43.822 81.389 43.814 81.392 43.812 81.393 43.838 81.370 43.773 81.428

beneficial in the Avazu and Criteo datasets but detrimental in the

Taobao dataset.

4.2.3 Performance Impact of SAM in Comparison to Adam.
Deploying SAM directly to CTR prediction models does not guar-

antee performance improvement. SAM does yield positive results

in the Criteo dataset, with a performance gain of 0.03% in terms

of AUC. However, on average, models trained with SAM exhibit

slightly lower AUC scores compared to those trained with Adam,

resulting in performance declines of 0.04% and 0.10% in the Avazu

and Taobao datasets, respectively.

Conversely, ASAM consistently outperforms Adam in all three

datasets, with an average performance gain of 0.03‰, 0.01%, and

0.04% in the Avazu, Criteo, and Taobao datasets, respectively. These

results underscore the significance of employing an adaptive per-

turbation radius, as demonstrated by ASAM, to achieve enhanced

performance, at least in the context of CTR prediction tasks.

4.2.4 Helen’s Consistent Superiority Across Three Datasets.
Helen consistently outperforms Adam, Nadam, Radam, SAM, and

ASAM across all three datasets, securing the top position in 20 out

of 21 experiments. It delivers an average performance improvement

of 0.36%, 0.07%, and 0.37% in terms of AUC for the Avazu, Criteo, and

Taobao datasets, respectively. In terms of LogLoss, Helen records an

average performance reduction of 0.22%, 0.07%, and 0.37% compared

to Adam in the Avazu, Criteo, and Taobao datasets.

Furthermore, we conducted paired 𝑡-tests to compare the differ-

ences in AUC scores across all seven models and three datasets. The

null hypothesis (𝐻0) posited no significant difference between the

two optimizers. The resulting 𝑝-value is 8× 10−3, which falls below

the conventional significance threshold of 0.05. Thus, we reject the

null hypothesis and conclude that Helen significantly outperforms

Adam.

4.2.5 Helen’s Role inNarrowing the PerformanceGapAmong
CTR Prediction Models. As discussed in Section 4.2.1, the perfor-

mance gap between the best and worst-performing models remains

relatively small. A notable instance is evident in the results pre-

sented in Table 2, where the convergence of DCNv2 and DLRM to

exceedingly sharp local optima creates a significant performance

disparity when compared to other models. As shown in Figure 5,

Helen effectively addresses this issue, substantially reducing this

performance gap, making them comparable to other models.

To elaborate, we calculated the variance of AUC scores across

all seven models. The variances for Adam are 6.54 × 10−1, 2.03 ×
10
−3
, and 6.40 × 10−2 for the Avazu, Criteo, and Taobao datasets,

respectively. In contrast, Helen’s variances are 1.36 × 10−2, 1.07 ×
10
−3
, and 5.55 × 10−3 for the Avazu, Criteo, and Taobao datasets,

respectively.

These results indicate that Helen can effectively reduce the per-

formance variance of different models, and uniformly improve the

performance of CTR prediction models.

4.3 Hessian Eigenspectrum Analysis
In alignment with the motivations delineated in Section 3.2, we

conduct a comprehensive exploration to investigate how the re-

lationship between Hessian eigenvalues and feature frequencies

evolves when training CTR prediction models with different opti-

mizers, namely Adam, SAM, and Helen.
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Table 4: Comparing the Performance of Helen Variants. Notably, both Helen and SAM introduce perturbations to the
embedding weights but Helen is characterized with frequency-wise perturbation radius.

Model Optimizer Embedding Perturbation Network Perturbation Lower Bound LogLoss AUC

DeepFM Adam 43.835 81.366

DeepFM SAM 43.809 81.407

DeepFM Helen-𝑚 43.803 81.412

DeepFM Helen-𝑏 43.746 81.461

DeepFM Helen 43.735 81.471
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Figure 4: Dominant Hessian eigenvalues of PNN and
DeepFM trained with Adam and Helen on the Criteo dataset.
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Figure 5: Helen exhibits a lower variance across various
models in comparison to Adam on the Taobao dataset.

we trained PNN and DeepFM on the Criteo dataset, utilizing each

of the three mentioned optimizers—Adam, SAM, and Helen. For

the sake of fair comparison, we maintained a uniform perturbation

radius (𝜌) of 0.05 for both SAM and Helen. It’s worth emphasizing

that, as specified in Equation 7, the perturbation radius 𝜌
𝑗

𝑘
for a spe-

cific embedding in Helen is normalized by the maximum frequency,

ensures that it does not exceed the value of 𝜌 .

4.3.1 SAM’s Effective Regularization of Hessian Eigenval-
ues. As depicted in Figure 4, it is evident that SAM effectively

reduces the top Hessian eigenvalues across all embeddings. The av-

erage top eigenvalue experiences a notable decline, decreasing from

4.45×10−4 to 2.86×10−4 in PNN and from 4.59×10−4 to 4.14×10−4
in DeepFM. This observation aligns with findings reported in pre-

vious studies [10, 20, 68]. Furthermore, a closer examination of

the results in Table 3 affirms that the reduction in the top eigen-

value of the Hessian matrix correlates with an enhancement in the

generalization performance of CTR prediction models.

4.3.2 Helen’s Superior Hessian Eigenvalue Regularization.
Remarkably, the results depicted in Figure 4 demonstrate that Helen

regularizes the top Hessian eigenvalues more effectively than SAM,

with the average top eigenvalue decreasing from 4.45 × 10
−4

to

1.66× 10−4 in PNN, and from 4.59× 10−4 to 2.67× 10−4 in DeepFM.

Also the standard variance of the top eigenvalues decreases from

1.11×10−3 to 3.07×10−4 in PNN, and from 1.06×10−3 to 6.21×10−4
in DeepFM. This indicates a more uniform distribution of sharpness

across different embeddings. For more details, please refer to the

Appendix A.4.

This phenomenon comes from Helen’s distinctive perturbation

strategy, which places a special emphasis on the frequent features.

These frequently occurring features naturally tend to guide the opti-

mization process into sharper local optima, making them substantial

contributors to the overall model sharpness. The prioritization of

regularization for these frequent features effectively guides the

model towards minima that are more generalizable.

We contend that this frequency-wise Hessian eigenvalue regular-

ization plays a pivotal role in driving Helen’s superior performance,

in perfect alignment with our overarching objective of enhancing

generalization.

4.4 Ablation Study
In this section, we conduct a comprehensive dissection and eval-

uation of the individual components and variants comprising the

Helen optimizer.

Specifically, we assess the impact of perturbations applied to

embedding parameters and network parameters individually as

the perturbations to embedding parameters and network parame-

ters can be operated independently. When uniform perturbations

are applied to all embedding and network parameters, the Helen

optimizer essentially reverts to the SAM optimizer. Additionally,

we investigate the role of the lower-bound parameter 𝜉 on the

perturbation radius 𝜌
𝑗

𝑘
.

We denote the variant of the original Helen optimizer as Helen-𝑚

(indicatingHelen-minimal), which exclusively implements frequency-

wise Hessian eigenvalue regularization for the embedding parame-

ters.

Similarly, we introduce Helen-𝑏 (representing Helen-base) as

another deviation from the original Helen optimizer. Helen-𝑏 com-

bine frequency-wise embedding perturbation in conjunction with

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon. Submission Id: 880

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

normal SAM perturbation for network parameters, omitting the

lower-bound 𝜉 constraint on the perturbation radius 𝜌
𝑗

𝑘
.

To maintain simplicity and clarity, our ablation study is exclu-

sively performed on the Criteo dataset, and the results are thought-

fully summarized in Table 4. And we have the following observa-

tions:

4.4.1 Enhanced Performance Through Feature-wise Hessian
Eigenvalue Regularization. SAM and Helen-𝑏 both apply pertur-

bations to both embedding and network parameters. Nevertheless,

the key distinction between them lies in their perturbation strate-

gies. Helen-𝑏 employs frequency-wise embedding perturbation,

while SAM employs uniform embedding perturbation. The results,

as presented in Table 4, unambiguously demonstrate Helen-𝑏’s

superiority over SAM in terms of both LogLoss and AUC. This

compelling evidence underscores the pivotal role of frequency-wise

Hessian eigenvalue regularization in enhancing generalization per-

formance.

4.4.2 The Significance of Embedding Parameter Perturba-
tion. While Helen-𝑚, exclusively perturbing the embedding param-

eters, demonstrates its superiority over SAM in both LogLoss and

AUC, it is crucial to recognize the added value that regularization

of network parameters brings to the table. As evidenced in Table 4,

Helen-𝑏 surpasses Helen-𝑚 by a substantial margin of 0.5‰in terms

of AUC, showing a notable enhancement in performance. This high-

lights the importance of perturbing both embedding and network

parameters in optimizing model generalization.

5 RELATEDWORKS
5.1 Click-Through Rate Prediction
In the realm of online advertising, metrics like clicks and click-

through rate (CTR) serve as indicators of the relevance of advertise-

ments from the users’ perspective. It is widely acknowledged by

both researchers and industry professionals that improving CTR is

essential for the sustainable growth of online advertising ecosys-

tems [58, 59]. As a result, there has been a significant research focus

on advertising CTR prediction in recent decades [47, 56, 70].

Early works in CTR and user preference prediction were predom-

inantly based on linear regression (LR) [47] and matrix factorization

(MF) [46]. In recent years, deep learning has demonstrated remark-

able success in CTR prediction, leading to numerous applications

in the field [42, 59, 79].

A typical industrial CTR prediction model, as exemplified in

studies such as [69, 75, 79], comprises twomain types of parameters:

sparse embedding and dense network. However, sparse embedding

parameters often account for more than 99% of the total parameter

count [77].

5.2 Optimizer for Machine Learning
Optimizers for machine learning algorithms could largely influence

the performance and convergence of neural networks. SGD [57] is

the earliest and also the most representative optimizer for neural

network training, which update model parameters based on gra-

dients computed from randomly sampled subsets of training data.

More recently, adaptive gradient algorithms have been proposed

and widely used in various tasks, such as computer vision [23]

and natural language processing [14]. For example, AdaGrad [18]

and RMSProp [24] can dynamically adjust learning rate of each

parameter based on their historical gradients. Then, Kingma and Ba

proposed Adam, which combines the benefits of both momentum-

based and adaptive learning rate approaches for effective optimiza-

tion. After that, many variants of Adam [16, 43] are proposed and

can further improve the performance.

While these methods can achieve great performance in most

areas. However, to the best of our knowledge, there is still no opti-

mizer specifically for the CTR task. That also motivates us to design

a novel optimizer Helen for the CTR task.

5.3 Sharpness and Generalization
The presence of sharp local minima in deep networks can signifi-

cantly impact their generalization performance [9, 19, 27, 29, 34, 63].

As a result, numerous recent studies have sought to investigate

these sharp local minima and address the associated optimization

challenges [9, 15, 20, 22, 34, 37, 65, 71].

Recently, Sharpness-Aware Minimization (SAM) [20] presented

a novel approach that simultaneously minimizes loss value and loss

sharpness to narrow the generalization gap. SAM and its variants

demonstrated state-of-the-art performance and achieved rigorous

empirical results across various benchmark experiments [1, 17, 34,

44, 83]. However, it is still not clear whether SAM can benefit to

CTR task. Therefore, the primary focus of this paper is to further

explore the potential of SAM in enhancing the performance of CTR

task.

6 CONCLUSION
In this study, we have unveiled an intriguing and consistent pattern

in CTR prediction models, demonstrating a strong positive correla-

tion between feature frequencies and the top Hessian eigenvalues

associated with each feature. Given that the top Hessian eigenvalue

serves as a crucial indicator of local minima sharpness, this obser-

vation implies that frequent features play a guiding role in steering

the optimization process towards sharper local minima.

To leverage this insight, we introduce a novel optimizer, Helen,

which prioritizes the regularization of the top Hessian eigenval-

ues of embedding parameters based on their respective feature

frequencies. Through an extensive series of experiments, we have

illustrated Helen’s remarkable effectiveness, consistently outper-

forming benchmark optimizers including Adam, Nadam, Radam,

SAM, and ASAM across three prominent datasets.

Our in-depth analysis of Hessian eigenvalues has revealed that

Helen’s frequency-wise Hessian eigenvalue regularization effec-

tively reduces the sharpness of model parameters and facilitates

the optimization process towards more generalizable local minima.

Furthermore, we have conducted a comprehensive ablation study

to dissect the individual components of Helen and assess their spe-

cific contributions to the optimizer’s overall performance. This

holistic exploration provides valuable insights into the inner work-

ings of Helen and its capacity to enhance generalization in CTR

prediction models.
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Table 5: Key Statistics of Three Benchmark Datasets.
Datasets are preprocessed by BARS, which includes the

filtering of infrequent categorical features.

Dataset #Instances #Fields #Features %Positives

Avazu 40.43M 24 3.75M 16.98%

Criteo 45.84M 39 0.91M 25.62%

Taobao 25.03M 20 2.62M 5.15%

A APPENDIX
A.1 Pseudocode of Helen
For a practical and comprehensive understanding, we present the

pseudocode of the Helen optimizer here.

Algorithm 1 Helen

Require: number of steps 𝑇 , batch size 𝑏, learning rate 𝜂, pertur-

bation radius 𝜌 > 0, lower-bound 𝜉

1: for 𝑡 ← 1 to 𝑇 do
2: Draw 𝑏 samples B from S
3: 𝒈 ← 1

𝑏

∑
𝒙∈𝐵 ∇𝒘LB (𝒘)

4: 𝝐 (𝒘) ← [ 𝜌 · 𝒈𝒉
∥𝒈𝒉 ∥ ] // Dense weights perturbation

5: for each field 𝑗 and each feature 𝑘 in the field do
6: 𝑁

𝑗

𝑘
(S) ← ∑𝑛

𝑖=1 𝒙
𝑗
𝑖
[𝑘]

7: 𝜌
𝑗

𝑘
← 𝜌 ·max{ 𝒈 𝑗

𝑘

∥𝒈 𝑗

𝑘
∥
, 𝜉}

8: 𝝐 (𝒆 𝑗
𝑘
) = 𝜌

𝑗

𝑘
·max{ 𝒈 𝑗

𝑘

∥𝒈 𝑗

𝑘
∥
, 𝜉} // Embedding perturbation

9: Append 𝝐 (𝒆 𝑗
𝑘
) to 𝝐 (𝒘)

10: end for
11: Compute Helen gradient 𝒈𝐻𝑒𝑙𝑒𝑛 = ∇𝑤LB (𝒘) |𝒘+𝝐 (𝒘 )
12: 𝒘 ← 𝒘 − 𝜂 · 𝒈𝐻𝑒𝑙𝑒𝑛

13: end for

A.2 Dataset Description
We present essential statistics for three datasets in Table 5.

A.3 Overall Performance On The Taobao
Dataset

Table 6 summarizes the overall performance of sevenmodels trained

with different optimizers on the Taobao dataset.

A.4 Hessian Eigenspectrum Analysis
Figure 6 visualizes the relationship between the top eigenvalue of

the Hessian matrix and the frequency of the features on all three

datasets.

A.5 CTR Prediction Models Description
• DNN: DNN [13] pioneers a large-scale recommendation system

powered by deep neural networks. In contrast to traditional lin-

ear models, DNN employs a fully-connected network to create

dense vector representations for users. Candidate items are se-

lected via top-N nearest neighbor search, and a neural network,

incorporating candidate representations and contextual data,

produces the final predictions.

• Wide&Deep: Wide&Deep [12] innovatively combines the ad-

vantages of traditional shallow linear models and deep neural

networks within a unified learning framework. It comprises two

integral components: the Wide Component, featuring a gener-

alized linear model with cross-product transformation, and the

Deep Component, which is a feed-forward neural network.

• PNN: PNN [54] consists of three key elements: an embedding

layer for learning distributed representations of categorical fea-

tures, a product layer for capturing feature interactions, and

final fully-connected layers to make the prediction. This stream-

lined architecture enhances its capacity for handling multi-field

categorical data with minimal computational overhead.

• DeepFM: DeepFM [21] is a deep learning-based CTR prediction

model that combines the power of factorization machines (FM)

and deep neural networks (DNN). The FM component of DeepFM

is responsible for learning the low-order feature interactions,

while the DNN component is responsible for learning the high-

order feature interactions.

• DCN: The DCN [66] introduces an additional cross-network that

explicitly generates feature interactions alongside the standard

DNN architecture. This approach applies feature crossing at each

layer, enabling high-degree interactions across features without

the need for manual feature engineering, all while introducing

minimal extra complexity to the DNN model.

• DLRM: DLRM [48] utilizes an MLP for continuous feature pro-

cessing, computes second-order interactions between categor-

ical embeddings and dense features, and produces predictions

through a sigmoid-activated MLP. It efficiently reduces dimen-

sionality by only considering cross-terms created via dot-products

between embedding pairs in the final MLP layer, resembling fac-

torization machines.

• DCNv2: DCNv2 [67] builds upon the straightforward cross-

network architecture of DCN. It enhances this architecture by

integrating it with a deep neural network to facilitate the discov-

ery of complementary implicit interactions. Moreover, DCNv2

incorporates low-rank techniques and adopts the Mixture-of-

Expert architecture [28, 62] to enhance computational efficiency

and reduce cost.

A.6 Optimizers Description
We will cover the mentioned seven optimizers in detail in this

section.

• Adam: Adam [33] is a highly acclaimed optimization algorithm

in the field of deep learning, renowned for its robustness and

effectiveness. This algorithm combines the advantages of RM-

Sprop [25] and Momentum [52] by tracking the moving averages

of both first-order and second-order gradient moments to dy-

namically adapt the learning rate, making it a pivotal tool in the

training of deep neural networks.

• Nadam: Nadam [16] is an extension of Adam optimizer, further

enhances the Adam optimizer by replacing momentum compo-

nent with Nesterov’s accelerated gradient (NAG) [49], which has

11
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Table 6: Overall performance on the Taobao dataset.

Model

Adam Nadam Radam SAM ASAM Helen

LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC LogLoss AUC

DNN 19.529 63.520 19.373 63.261 19.496 63.183 19.433 63.532 19.575 63.528 19.390 63.620
WideDeep 19.433 63.570 19.391 63.140 19.423 62.960 19.582 63.053 19.566 63.704 19.437 63.691

PNN 19.366 63.660 19.411 63.303 19.420 63.109 19.434 63.036 19.357 63.754 19.368 63.711

DeepFM 19.481 63.486 19.449 63.249 19.457 63.079 19.436 63.473 19.461 63.385 19.441 63.752
DCN 19.507 63.052 19.403 63.148 19.481 63.016 19.502 63.214 19.498 63.111 19.354 63.753
DLRM 19.619 63.209 19.443 63.398 19.440 63.160 19.493 63.388 19.652 63.244 19.376 63.802
DCNv2 19.489 63.059 19.383 63.455 19.490 63.191 19.452 63.199 19.474 63.135 19.343 63.848

avg 19.489 63.365 19.408 63.279 19.458 63.100 19.476 63.271 19.512 63.409 19.387 63.740
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(b) PNN in Criteo
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(c) PNN in Taobao
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(d) DeepFM in Avazu
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(e) DeepFM in Criteo
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(f) DeepFM in Taobao

Figure 6: Dominate Hessian eigenvalues of PNN and DeepFM in three datasets trained with Adam and Helen.

a provably better bound. This adaptation allows Nadam to make

more informed updates to model parameters and accelerates

convergence, making it a robust and efficient choice for training

neural networks.

• Radam: Radam [43], or Rectified Adam, is a variant of Adam

optimizer, by introducing a term to rectify the variance of the

adaptive learning rate, especially in the early stage of the training

process. Its motivation comes from the consistent improvement

of the warmup training strategy, which is widely used in the

training of deep neural networks.

• SAM: SAM [20] represents a recent advance in enhancing the

generalization performance of neural networks. SAM takes into

account the geometry of the loss landscape by minimizing the

loss function with respect to perturbed model parameters. This

approach is equivalent to optimizing the loss function while

concurrently penalizing a measure of the model’s sharpness

without calculating the Hessian matrix, which is computationally

expensive.

• ASAM: ASAM [34] stands as an adaptive iteration of SAM, tai-

lored to dynamically fine-tune the perturbation radius for each

layer’s parameters. ASAM is claimed to possess scale-invariant

property, achieved by adjusting the perturbation radius in rela-

tion to the weights’ scale. This adaptive adjustment consistently

yields improved generalization performance across various neu-

ral network architectures and tasks.
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