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ABSTRACT

Prior methods propose to offset the escalating costs of modern foundation mod-
els by dropping specific parts of their contexts with hand-designed rules, while
attempting to preserve their original performance. We overcome this trade-off
with Neural Attention Memory Models (NAMMs), introducing a learned network
for memory management that improves both the performance and efficiency of
transformers. We evolve NAMMs atop pre-trained transformers to provide differ-
ent latent contexts focusing on the most relevant information for individual layers
and attention heads. NAMMs are universally applicable to any model using self-
attention as they condition exclusively on the values in the produced attention ma-
trices. Learning NAMMs on a small set of problems, we achieve substantial per-
formance improvements across multiple long-context benchmarks while cutting
the model’s input contexts up to a fraction of the original sizes. We show the gen-
erality of our conditioning enables zero-shot transfer of NAMMs trained only on
language to entirely new transformer architectures even across input modalities,
with their benefits carrying over to vision and reinforcement learning. Our source
code is available at https://github.com/SakanaAI/evo-memory.

1 INTRODUCTION

Figure 1: NAMMs use evolution to optimize the perfor-
mance of LMs by pruning their KV cache memory. Evolved
NAMMs can be zero-shot transferred to other transformers,
even across input modalities and task domains.

Transformer architectures have be-
come the golden standard in deep
learning, with ubiquitous applica-
tions in the design of modern foun-
dation models, exhibiting exceptional
performance and scalability (Achiam
et al., 2023; Das et al., 2023; Team
et al., 2023; Dosovitskiy et al., 2020;
Chen et al., 2021a; Brohan et al.,
2023; Gur et al., 2023). The out-
puts of a transformer are exclusively
conditioned on a recent context of in-
put tokens, which for language mod-
els (LMs) generally correspond to a
window of preceding words. Thus,
addressing the challenge of extend-
ing this context window is critical
to enable tackling long-range tasks
and is currently a focal area of re-
search (Huang et al., 2023). However, long contexts also immediately impact training and inference
costs, with modern foundation models being increasingly resource-hungry and expensive. Many
recent methods proposed to partially offset these costs by studying how to heuristically quantify the
importance of each token stored in the model’s latent memory, i.e., stored in its Key-Value (KV)
cache. Then, by simply evicting the least important tokens with hand-designed strategies, they have
shown early success at reducing memory size while limiting performance losses (Luohe et al., 2024).

Our research aims to go beyond these hand-designed strategies as we hypothesize that shaping the
latent memory KV cache of transformers entails new opportunities to improve their capabilities in

1

https://github.com/SakanaAI/evo-memory


Published as a conference paper at ICLR 2025

downstream tasks. One widely evidenced example in support of our hypothesis is the effectiveness
of hand-crafted input context modifications through prompt engineering (Liu et al., 2023), even
allowing foundation models to learn in-context entirely new skills at test time (Brown et al., 2020).
Furthermore, unlike prompt engineering, directly managing the memory of transformers enables the
provisioning of distinct contexts to each latent level independently, such that individual layers and
attention heads can focus on the most relevant information for their specific needs.

Motivated by these considerations, we propose Neural Attention Memory Models (NAMMs), intro-
ducing a new class of networks trained with evolution to learn an efficient memory system that maxi-
mizes the downstream performance of pre-trained transformers. Evolution inherently overcomes the
non-differentiability of memory management operations with binary outcomes (selecting tokens to
preserve/discard) which renders gradient-based optimization incompatible. Our efforts are inspired
by the key role that natural evolution played in shaping human memory, which analogously appears
to selectively incorporate and actively prune information based on its lifelong usefulness (Sherry &
Schacter, 1987; Nairne & Pandeirada, 2010; Frankland & Bontempi, 2005).

Table 1: Summarized NAMMs performance in language
modeling (top) and zero-shot transfer settings (bottom)

Model/Eval LongBench InfiniteBench ChouBun

Performance Cache size Performance Cache size Performance Cache size

Base model 28.86 (1.00) 32768 (1.00) 1.05 (1.00) 32747 (1.00) 21.21 (1.00) 12099 (1.00)

H2O 28.37 (0.99) 8192 (0.25) 1.05 (1.00) 8193 (0.25) 19.86 (0.94) 8292 (0.69)

L2 27.42 (1.00) 8192 (0.25) 1.63 (1.55) 8193 (0.25) 18.93 (0.89) 8292 (0.69)

FastGen 27.88 (0.95) 9538 (0.94) 1.42 (1.49) 23016 (0.70) 18.93 (0.89) 8616 (0.71)

NAMMs 29.33 (1.11) 8155 (0.25) 11.00 (10.45) 13192 (0.40) 24.44 (1.15) 9895 (0.82)

Model/Eval Llama 3 70B Computer Vision Reinforcement Learning

Performance Cache size Performance Cache size Performance Cache size

Base model 35.22 (1.00) 10107 (1.00) 43.84 (1.00) 7039 (1.00) 29.04 (1.00) 3000 (1.00)

H2O 34.17 (0.97) 6662 (0.66) 41.97 (0.96) 4479 (0.64) 28.70 (0.99) 2048 (0.68)

L2 33.50 (0.95) 6662 (0.66) 41.45 (0.95) 4479 (0.64) 27.91 (0.96) 2048 (0.68)

NAMMs 34.70 (0.99) 8365 (0.83) 44.38 (1.01) 5100 (0.72) 31.73 (1.09) 2434 (0.81)

Our NAMMs are conditioned
on features entirely constructed
from the attention matrix, making
them universally applicable to any
transformer-based architecture.
Learning NAMMs atop a pre-trained
Llama 3 8B model (Dubey et al.,
2024), we not only obtain efficiency
benefits, with substantial reductions
in the number of retained tokens
in the KV cache, but also exceed
the performance of the full-context
model with notable margins. We
validate these findings across 36
different tasks from LongBench (Bai
et al., 2023), InfiniteBench (Zhang et al., 2024a), and ChouBun1, a new Japanese benchmark
designed to assess long-context capabilities beyond the common English and Chinese. These results
mark a clear contrast with the aforementioned hand-designed strategies that appear to inevitably
trade off efficiency for performance, in line with their stated purpose.

Furthermore, we show that the generality of our parameterization enables zero-shot transfer of
NAMMs trained on three natural language tasks to entirely new transformer models. In particu-
lar, we obtain further performance and efficiency improvements not only when using the evolved
NAMMs with other LMs of increased size, but also transformers with entirely different architec-
tures concerned with new input modalities, for problems such as vision and reinforcement learning.
In a nutshell, our main technical contributions can be summarized as the following:

• We introduce NAMMs, a novel memory evolution framework that adds a new dimension
to optimizing transformer models without altering their powerful architectures.

• We design and successfully train NAMMs on top of pre-trained transformer models, ob-
taining both performance and efficiency gains on several long context language tasks.

• We show NAMMs, trained only on language tasks, can be transferred zero-shot to any other
transformers, retaining benefits across different input modalities and task domains.

2 BACKGROUND AND PRELIMINARIES

Attention and transformers. Transformers are neural network architectures designed specifically
for efficiently processing input sequences. These models take as input a stream of tokens (e.g.,
embeddings of words, image patches, robotic states, etc.) and, produce a set of latents with the same
length within their layers. Multi-headed dot product attention (Vaswani et al., 2017), or simply
self-attention, characterizes modern transformers, facilitating effective information sharing across

1ChouBun is the pronunciation of “長文”, literally translating to “long text” in Japanese.
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Figure 2: Schematic depiction of our Neural Attention Memory Model design. We extract features
from a spectrogram over the attention values of the KV cache tokens (left), which we reduce via an
element-wise exponential moving average (EMA) operation (center). These features are fed to our
memory model’s networks with fully connected (FC) and cross-token BAM connections (right).

token representations. The attention layer conducts a set of parallel computations, each known as an
attention head, mapping tokens to query, key, and value vectors ∈ Rd. These vectors are organized
along the sequence dimension in the matrices Q, K, and V , and the layer’s output is computed as:

attentionM (Q,K, V ) = AV, where, A = softmax
(
M × QKT

√
d

)
. (1)

Here, M represents an optional mask multiplying the attention matrix A, usually enforcing an auto-
regressive conditioning such that each token cannot attend to its future. An interpretation of the
attention layer comes from the elements of the attention matrix Aj

i , i.e., the dot products between
each key i and query j normalized along the column dimension. Intuitively, each of these values can
be understood as the relative importance of token i in processing the input representation of token j.

Frequency-based feature extraction. An established canonical technique to pre-process one-
dimensional non-stationary signals is the Short-Time Fourier Transform (STFT) (Allen & Rabiner,
1977). This technique has seen plenty of applications for feature extraction concerning audio,
biomedical, seismic, and many more kinds of modalities. The STFT performs a time-convolution
of a signal, shifting each convolutional window to the frequency domain through a discrete Fourier
transform, producing a spectrogram representation of the original input. We use ωt ∈ RN+1 to
denote the fixed-sized vector produced at each timestep t, where the N frequencies span from zero
up to the Nyquist frequency (half the original sampling rate). Mathematically, the n-th frequency
from an STFT for time t is extracted from an input vector v ∈ RT as:

ωt[n] =

T∑
t′=0

v[t′]w[t− t′]e
−nπt

N . (2)

Here, the convolutional filter of the SFTF is defined by the product of a finite-length window function
w with each exponential term in the Fourier transform. A popular choice for w is the Hann window
(Oppenheim, 1999), employing a smooth decay at its edges which helps minimize the overestimation
of the magnitudes of the higher frequencies in ω due to spectral leakage (Harris, 1978).

3 NEURAL ATTENTION MEMORY MODELS

An immediate limitation of transformers is the quadratic costs associated with computing the atten-
tion matrix A. To partially address this issue, during auto-regressive generation, the latents for the
keys and values of the tokens generated at the previous steps are usually stored in what is referred to
as the KV cache. This object can be regarded as being analogous to the memory of the transformer,
which now, at each step, only needs to compute the query, key, and value of the latest token and
perform attention over a horizontal vector by exploiting causal ordering. In this section, we describe
the feature extraction, architecture, and optimization of NAMMs, which have been designed to act
on the KV cache to improve both the performance and practicality of this powerful class of models.
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3.1 ATTENTION SPECTROGRAMS FOR MODEL-AGNOSTIC FEATURE EXTRACTION

The feature extraction framework of NAMMs is designed to be agnostic to the parameterization of
the base transformer they are applied for. In particular, we build a representation for each token
in the current KV cache memory directly from its corresponding unmodified column vector in the
attention matrix Ai. To meaningfully compress this unbounded vector signal, we process it via
an STFT with a fixed-sized Hann window (Figure 2, left). This operation produces a spectrogram
representation of the attention columns ωt

i , representing the frequencies with how the queries attend
to each of the stored key tokens (indexed by i) on a compressed time-axis (indexed by t). Thus,
this representation exposes precisely the knowledge of how each token’s relative importance varies
across all past queries in a compact form factor, discarding all other information specific to the
learned transformer weights.

As NAMMs rely only on the attention values for their input, they are universally applicable to any
layer producing an attention matrix. This property is crucial, enabling us to avoid learning individual
memory models for the different layers of a transformer, thus, greatly limiting the number of total
optimized parameters. Furthermore, it also allows efficient training on top of smaller foundation
models for targeted problems, and later transferring the resulting models zero-shot at test-time to
larger architectures and arbitrary applications.

3.2 MEMORY MODEL DESIGN AND CROSS-TOKEN COMMUNICATION

Figure 3: Our backward
mask makes each token attend
exclusively to its future rela-
tives in the KV cache.

NAMMs parameterize a small neural network mϕ to output a scalar
selection score si = mϕ(ω

1:T
i ) for each ith token in the KV cache.

First, to obtain a consistent input dimension, we reduce the atten-
tion spectrogram into a smaller feature vector ωi by compressing
the time-axis via an element-wise exponentially moving average
(EMA: ωi =

∑
t γ

tωt
i ; Figure 2, center). We then append po-

sitional encodings and feed the vector ωi to the memory model’s
network mϕ to produce the score si. Finally, we evict from the KV
cache memory all latent tokens with si < 0, effectively treating the
problem as a binary classification task. We repeat this process with
a fixed interval, every set number of new input tokens, nup.

Backward attention memory models (BAM). For the design of
mϕ, we posit that sharing information from all tokens in memory
could be key for assessing their importance. A particularly motivat-
ing scenario in LMs arises when considering the case of repeated
words or sentences, where learning a diversity measure that com-
pares different tokens would allow preventing redundancies in the
KV cache. Corroborating this intuition, even from a biological per-
spective, memory formation and retention appear to adhere to mod-
els of neuronal competition (Han et al., 2007).

Based on these considerations, we design the backward attention
memory architecture (BAM) for parameter-efficient sharing of in-
formation while making use of the powerful inductive biases en-
abled by the masked self-attention operation. In particular, we im-
plement mϕ via an initial self-attention layer with a counter-causal mask M̂ , which we refer to as
backward (Figure 3). This design serves to introduce a purposeful asymmetric relationship, allowing
to distinguish between older and newer tokens. We then output si from a final linear operation:

oi = attentionM̂ (KΩ, VΩ, QΩ), si = linear(oi), (3)

where KΩ, VΩ, QΩ are the key, value, and query matrices from all feature vectors ωi in memory.
Using BAM to tackle the previous motivating scenario, only the representation for older tokens
would be potentially affected by the presence of newer duplicates. Thus, just by learning a simple
diversity metric within self-attention, backward masking would provide the memory model with the
potential to preserve only the most informed occurrence of each token without risking discarding
any information in its entirety (since the score for the latest instance of each repeated token would
be independent of its past).

4



Published as a conference paper at ICLR 2025

Figure 4: Mean and standard deviation over the CMA-ES population batch performance (left), to-
gether with the performance of the learned mean parameter on each task (right).

Algorithm 1 NAMMs
Input: KV cache, Iteration k, Stride size sw , Update interval nup ,
Attention matrix A (latest nup queries), Past STFT ω′

1: if k % nup == 0 then ▷ use NAMMs every nup steps

2: for each ith token in the KV cache do ▷ or column Ai in A

3: STFT ωt
i for t = 0, . . . , nT ▷ Eq. 2, nT = nup/sw

4: Reduce ωi = (
∑

t γtωt
i) + γnT ω′ ▷ EMA reduction

5: si = mϕ(ωi) ▷ apply NAMMs, Eq. 3

Output: KV cache where si > 0 ▷ update the KV cache

In practice, when applying NAMMs, we only af-
fect the KV cache of the base model with a fixed
frequency, once every nup steps. When feeding
longer prompts to our model, we simply split the
tokens into nup-sized chunks. We summarize the
full execution pipeline of NAMMs in Algorithm 1.
We refer to Appendix A and our shared code for
additional implementation details and discussion.

3.3 INCREMENTAL EVOLUTION

We evolve the network weights of our NAMMs to directly optimize the performance on a subset of
long-context language modeling tasks from LongBench (Bai et al., 2023). As we share a single mϕ

across all layers, even with our largest NAMM we only evolve about 4000 total parameters. We use
the seminal CMA-ES optimization algorithm (Hansen, 2006) and apply NAMM atop a Llama 3 8B
base model (Dubey et al., 2024) with a context extended from 8192 to 32768 tokens via NTK-aware
positional interpolation (bloc97, 2023). Due to the inference costs of LMs with long inputs, we
sample a subset of different prompts from each task in each generation and propose training in an
incremental fashion: starting from a single task, and adding additional tasks at later training stages.
Empirically, we found both these choices to provide effective regularization, improving generaliza-
tion (see Appendix C). The performance of modern LMs on LongBench varies considerably across
tasks, and even across different task prompts. Hence, instead of using the raw scores, we opt to max-
imize normalized performance relative to the vanilla base model’s stored evaluation performance on
each same subset of prompts, retaining all tokens in its KV cache memory. Using evolution, we note
that our training loop simply corresponds to running inference NAMMs atop the base, requiring no
expensive backpropagation or dedicated hardware.

We choose three tasks from different LongBench categories across both English and Chinese where
the Llama 3 base model seems to particularly struggle: PassageRetrieval-en, DuReader, and Nar-
rativeQA; optimizing the normalized exact match, ROUGE-L, and F1 metrics, respectively. We
evolve our NAMM for 300 generations in its first incremental phase, 250 in its second, and 120
in its third. We diminish the number of generations to counteract the increasing costs with each
additional phase and make more efficient use of computational resources. At the end of each phase,
we resume from the best previous checkpoint. We provide training curves of our main backward-
attention model in Figure 4, showing the average and standard deviation of the normalized batch
performance across the population (left), together with the normalized per-task and average perfor-
mance on all samples of the optimized mean from CMA-ES (right). We refer to Appendix A for
additional architectural and optimization details, together with the set of hyper-parameters. We also
provide additional statistics and training curves for other memory model designs in Appendix C.

4 EXPERIMENTAL RESULTS

In this section, we evaluate and analyze evolved NAMMs as compared to full-context transformers
and three recent hand-designed methods for KV cache management: H2O (Zhang et al., 2024c)
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Table 2: NAMMs evaluation on LongBench. The normalized performance (in brackets) is calculated
using the base model with full cache. The tasks used for NAMM’s training are highlighted in gray.
Model/Task id Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 10.38 (1.00) 12.79 (1.00) 22.60 (1.00) 21.31 (1.00) 10.41 (1.00) 12.67 (1.00) 7.54 (1.00) 25.86 (1.00) 29.34 (1.00) 23.93 (1.00) 0.92 (1.00) 2.66 (1.00)

H2O 8.75 (0.84) 13.07 (1.02) 22.11 (0.98) 21.62 (1.01) 10.28 (0.99) 12.40 (0.98) 7.20 (0.95) 26.58 (1.03) 28.56 (0.97) 23.98 (1.00) 0.88 (0.96) 2.25 (0.85)

L2 8.83 (0.85) 13.13 (1.03) 22.22 (0.98) 21.79 (1.02) 9.97 (0.96) 12.15 (0.96) 5.88 (0.78) 24.96 (0.97) 28.05 (0.96) 23.28 (0.97) 1.15 (1.25) 1.52 (0.57)

FastGen 10.49 (1.01) 13.09 (1.02) 21.85 (0.97) 21.57 (1.01) 10.28 (0.99) 11.60 (0.92) 6.77 (0.90) 17.04 (0.66) 28.98 (0.99) 23.53 (0.98) 0.85 (0.92) 3.02 (1.14)

NAMM (Ours) 9.14 (0.88) 12.63 (0.99) 21.94 (0.97) 21.34 (1.00) 9.71 (0.93) 11.63 (0.92) 6.98 (0.93) 20.58 (0.80) 28.78 (0.98) 24.39 (1.02) 1.04 (1.13) 3.63 (1.36)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 73.00 (1.00) 89.45 (1.00) 46.54 (1.00) 40.00 (1.00) 1.48 (1.00) 12.18 (1.00) 28.80 (1.00) 69.09 (1.00) 65.17 (1.00) 28.86 (1.00) N/A 10107 (1.00)

H2O 73.00 (1.00) 90.03 (1.01) 46.48 (1.00) 34.00 (0.85) 2.18 (1.47) 9.93 (0.82) 27.76 (0.96) 69.37 (1.00) 65.44 (1.00) 28.37 (0.99) N/A 6662 (0.66)

L2 66.41 (0.91) 84.92 (0.95) 45.78 (0.98) 34.38 (0.86) 3.13 (2.11) 11.00 (0.90) 28.68 (1.00) 73.45 (1.06) 55.20 (0.85) 27.42 (1.00) N/A 6662 (0.66)

FastGen 73.00 (1.00) 88.76 (0.99) 46.40 (1.00) 36.00 (0.90) 1.15 (0.78) 10.23 (0.84) 27.01 (0.94) 69.34 (1.00) 64.50 (0.99) 27.88 (0.95) N/A 9538 (0.94)

NAMM (Ours) 73.00 (1.00) 89.81 (1.00) 46.35 (1.00) 40.00 (1.00) 3.04 (2.05) 27.55 (2.26) 28.60 (0.99) 69.53 (1.01) 66.35 (1.02) 29.33 (1.11) 1.07 8409 (0.83)

and L2 (Devoto et al., 2024), and FastGen (Ge et al., 2024). We compare each method in terms of
absolute and normalized performance and also provide the resulting average cache size recorded at
the end of each prompt. We first consider three long-context language modeling benchmarks span-
ning 36 diverse tasks in three languages, using the same Llama 3 8B base transformer from training.
Then, we evaluate the capabilities of zero-shot transferring NAMMs to other unseen transformers
and task domains. In particular, we not only consider transfer to larger LMs, but also transform-
ers with tokens constructed from modalities other than language. Across all these settings, we also
compare BAM with a simpler 2-layer MLP architecture and provide summarized results after every
stage of incremental evolutions. We refer to Appendix C additional evaluations (e.g., transferring
NAMMs to a Mistral LM), ablation studies (e.g., comparing different architectures and input fea-
tures), and all learning curves. Lastly, we conclude the Section with a targeted qualitative analysis,
aimed at understanding the behavior of our new memory framework.

4.1 LONG-CONTEXT LANGUAGE UNDERSTANDING

Figure 5: Comparing NAMM with H2O and
L2 while varying the cache size.

Longbench. In Table 2, we provide results across
all LongBench tasks (Bai et al., 2023) and in Fig-
ure 5 we provide a summarized comparison varying
the maximum cache size of H2O and L2 (we pro-
vide a similar analysis for FastGen in Figure 9). Our
NAMM yields concrete improvements to the Llama
3 8B transformer both when considering the full set
or exclusively the held-out set of test tasks that were
not used for evolution, with improvements of 11%
and 7% respectively. At the same time, our NAMM
also yields efficiency side benefits, notably reducing
the context-extended KV cache size. Instead, H2O,
L2, and Fastgen all come with performance costs
which notably grow the smaller their cache sizes - in line with their stated objective of retaining
rather than improving the original full-context performance. These results emphasize the inevitable
tradeoff induced by prior hand-designed methods, able to obtain efficiency gains but at increasing
performance costs due to their lossy heuristics. On the other hand, we find NAMMs successfully
provide a paradigm shift, yielding consistent improvements from the base model across both per-
formance and efficiency axes by learning to discard unhelpful information, highlighting how end-
to-end evolutionary optimization can open new orthogonal directions beyond what is feasible with
manually-designed heuristics.

InfiniteBench. In Table 3, we provide results across the InfiniteBench tasks (Zhang et al., 2024a). In
this benchmark, the average prompt length is close to 200K tokens making it extremely challenging,
especially for LMs that were not expensively finetuned for very long context understanding. In fact,
as reported by Zhang et al. (2024a), even GPT4 (Achiam et al., 2023) cannot exceed a performance
of 1% on some of its problems. In line with these results, the full-context Llama 3 together with
H2O and L2 obtain near-zero performance on most tasks. Instead, our NAMM provides outstanding
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Table 3: NAMMs evaluation on InfiniteBench. The normalized overall performance (in brackets) is
calculated using the average performance of the base model with full cache.

Model/Task name Retrieval Dialogue Novel Math Code Overall
Ret.PassKey Ret.Number Ret.KV En.Dia En.Sum En.MC En.QA ZH.QA Math.Find Code.Run Code.Debug All tasks Cache size

Base model 0.00 0.00 0.00 1.00 7.73 0.00 1.05 1.79 0.00 0.00 0.00 1.05 (1.00) 32747 (1.00)

H2O 0.00 0.00 0.00 1.50 5.38 0.00 1.01 1.71 1.71 0.25 0.00 1.05 (1.00) 8193 (0.25)

L2 0.00 0.00 0.00 1.00 5.41 0.44 0.83 2.59 7.43 0.25 0.00 1.63 (1.55) 8193 (0.25)

FastGen 0.00 0.00 0.00 1.00 5.82 1.31 1.25 1.38 5.43 0.00 0.25 1.42 (1.49) 23016 (0.70)

NAMM (Ours) 11.86 11.86 1.80 1.00 14.91 36.24 8.78 17.67 10.57 1.75 4.57 11.00 (10.45) 13192 (0.40)

Table 5: NAMMs evaluation on LongBench with a Llama 3 70B model. The normalized perfor-
mance (in brackets) is calculated using the base model with full cache.
Model/Task id Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 9.38 (1.00) 13.84 (1.00) 24.99 (1.00) 17.78 (1.00) 11.73 (1.00) 14.26 (1.00) 8.11 (1.00) 26.43 (1.00) 13.13 (1.00) 24.55 (1.00) 23.20 (1.00) 10.08 (1.00)

H2O 8.80 (0.94) 13.48 (0.97) 25.02 (1.00) 18.44 (1.04) 12.36 (1.05) 14.32 (1.00) 8.15 (1.01) 26.22 (0.99) 13.37 (1.02) 24.50 (1.00) 23.20 (1.00) 9.22 (0.91)

L2 8.57 (0.91) 13.40 (0.97) 24.70 (0.99) 17.94 (1.01) 12.77 (1.09) 13.85 (0.97) 7.13 (0.88) 25.74 (0.97) 12.78 (0.97) 23.21 (0.95) 23.35 (1.01) 8.45 (0.84)

NAMM (Ours) 9.13 (0.97) 13.53 (0.98) 24.25 (0.97) 17.82 (1.00) 11.45 (0.98) 13.76 (0.96) 8.34 (1.03) 21.79 (0.82) 12.66 (0.96) 24.21 (0.99) 23.56 (1.02) 8.62 (0.86)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 78.00 (1.00) 92.43 (1.00) 48.67 (1.00) 45.50 (1.00) 22.50 (1.00) 75.37 (1.00) 33.89 (1.00) 74.60 (1.00) 71.19 (1.00) 35.22 (1.00) N/A 10107 (1.00)

H2O 77.50 (0.99) 92.43 (1.00) 48.33 (0.99) 39.75 (0.87) 18.12 (0.81) 64.69 (0.86) 33.89 (1.00) 74.61 (1.00) 71.09 (1.00) 34.17 (0.97) N/A 6662 (0.66)

L2 76.50 (0.98) 93.22 (1.01) 46.15 (0.95) 36.25 (0.80) 16.98 (0.75) 64.34 (0.85) 36.28 (1.07) 74.38 (1.00) 67.43 (0.95) 33.50 (0.95) N/A 6662 (0.66)

NAMM (Ours) 78.50 (1.01) 92.36 (1.00) 48.49 (1.00) 45.50 (1.00) 19.07 (0.85) 74.19 (0.98) 34.28 (1.01) 74.71 (1.00) 72.42 (1.02) 34.70 (0.99) 0.99 8365 (0.83)

improvements, bringing overall benchmark performance from 1.05% to 11%. We also observe that
while our NAMM’s memory size is larger than for LongBench, it is considerably lower in relation to
the base model’s (now only 40%). This result suggests that NAMMs emergently learned a scalable
memory strategy, forgetting redundant and detrimental information at an increasing rate with longer
contexts without requiring the hand-designed hard cache limits enforced by L2 and H2O.

Table 4: NAMMs evaluation on ChouBun.
Model/Task Extractive QA Summarization Overall

JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks Cache size

Base model 22.91 (1.00) 28.34 (1.00) 11.83 (1.00) 21.75 (1.00) 21.21 (1.00) 12099 (1.00)

H2O 20.76 (0.91) 26.39 (0.93) 10.42 (0.88) 21.87 (1.01) 19.86 (0.94) 8292 (0.69)

L2 19.60 (0.86) 24.06 (0.85) 8.23 (0.70) 23.83 (1.10) 18.93 (0.89) 8292 (0.69)

FastGen 23.83 (1.04) 8.23 (0.29) 19.60 (1.66) 24.06 (1.11) 18.93 (0.89) 8616 (0.71)

NAMM (Ours) 21.34 (0.93) 28.61 (1.01) 14.64 (1.24) 33.15 (1.52) 24.44 (1.15) 9895 (0.82)

ChouBun. Our new
benchmark focuses on
tasks designed exclu-
sively in Japanese, a novel
language unseen during
NAMMs training. We hope
this benchmark might itself
be a valuable contribution
to the research community, allowing the assessment of long-context capabilities in multilingual
LLMs beyond the already-ubiquitous English and Chinese. We provide further benchmark statistics,
details about task composition, together with evaluation metrics for a wider range of popular LLMs
in Appendix B.1. In Table 4, we report our results evaluating NAMMs. Once again, we observe
a clear contrast with prior hand-designed methods. While integrating either H2O or L2 leads to
notable performance drops, NAMMs provides substantial improvements, with overall performance
up by 15% from the full-context Llama 3 8B base model.

4.2 ZERO-SHOT TRANSFER ACROSS ARCHITECTURES AND MODALITIES

Table 6: Evaluation on the LongVideoBench and
MLVU benchmarks with Llava Next Video 7B.
Model/Task name LongVideoBench MLVU All tasks Cache size

Base model 43.45 (1.00) 44.23 (1.00) 43.84 (1.00) 7039 (1.00)

H2O 40.91 (0.94) 43.03 (0.97) 41.97 (0.96) 4479 (0.64)

L2 40.84 (0.94) 42.07 (0.95) 41.45 (0.95) 4479 (0.64)

NAMM (Ours) 44.58 (1.03) 44.18 (1.00) 44.38 (1.01) 5100 (0.72)

Cross-scale adaptation. In Table 5, we
provide results zero-shot transferring our
NAMM from the Llama 3 8B to the Llama
3 70B model on LongBench. Across all
tasks, we find performance to be very
close to the full-context baseline with an
overall gap of less than 1% even for the
test subset. While NAMMs are not able to improve the overall full-context performance in this
first transfer setting outside specific task categories (e.g., coding and few-shot learning), they still
outperform both H2O and L2 baselines and retain a similar efficiency as with their original training
transformer.
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Table 7: Evaluation on D4RL with a Decision Transformer. The normalized performance (in brack-
ets) is calculated using the base model with full cache.

Model/Task name Hopper-v3 Walker2d-v3 HalfCheetah-v3 Overall
Medium Med-Replay Expert Medium Med-Replay Expert Medium Med-Replay Expert All tasks Cache size

Base model 33.36 (1.00) 18.37 (1.00) 44.62 (1.00) 68.21 (1.00) 7.18 (1.00) 38.98 (1.00) 34.91 (1.00) 5.06 (1.00) 10.64 (1.00) 29.04 (1.00) 3000 (1.00)

H2O 33.19 (1.00) 17.86 (0.97) 49.10 (1.10) 67.63 (0.99) 7.59 (1.06) 40.03 (1.03) 26.73 (0.77) 4.46 (0.88) 11.74 (1.10) 28.70 (0.99) 2048 (0.68)

L2 32.85 (0.98) 17.96 (0.98) 43.75 (0.98) 65.47 (0.96) 7.18 (1.00) 40.64 (1.04) 30.10 (0.86) 4.76 (0.94) 8.52 (0.80) 27.91 (0.96) 2048 (0.68)

NAMM (Ours) 36.10 (1.08) 18.86 (1.03) 49.39 (1.11) 70.87 (1.04) 7.53 (1.05) 50.02 (1.28) 34.56 (0.99) 5.90 (1.17) 12.34 (1.16) 31.73 (1.09) 2434 (0.81)

Vision Language Understanding. In Table 6, we provide results zero-shot transferring to the com-
puter vision domain, evaluating NAMMs with a Llava Next Video 7B model (Zhang et al., 2024b)
on LongVideoBench (Wu et al., 2024) and Multi-Task Long Video Understanding (MLVU) (Zhou
et al., 2024). As when evaluated atop Llama 8B, our NAMM is the only method recording gains over
the full-context base transformer in both benchmarks. Furthermore, we find that NAMMs learns to
forget almost exclusively parts of redundant video frames rather than the language tokens describ-
ing the final prompt, even though they were never faced with such modality during training. This
result validates that our NAMM recovered a domain-agnostic memory management strategy, further
highlighting their flexibility.

Reinforcement learning. In Table 7, we provide our zero-shot transfer results for the offline re-
inforcement learning setting, where we apply NAMMs atop a decision transformer (Chen et al.,
2021b) using the open-sourced models from Beeching & Simonini (2022) pre-trained on the canon-
ical the continuous-control tasks from D4RL (Fu et al., 2020). We find our NAMM improves the
base transformer quite considerably in this domain across eight out of nine offline tasks with over
9% overall gains, opposing the performance loss of the other efficient baselines. We posit that since
the nature of the decision transformer optimization is closely tied to behavior cloning, the ability to
discard part of the context is likely to allow NAMMs to forget and avoid imitating previous mis-
takes autoregressively. In support of this hypothesis, we observed slightly higher average rewards
in the transitions for the retained tokens (by 1.4%, 0.8%, and 12.3% for the Hopper, Walker2d, and
HalfCheetah environments, respectively).

Table 8: Summarized comparison of different NAMMs in
language modeling (top) and zero-shot transfer (bottom)
Model/Eval LongBench InfiniteBench ChouBun

Performance Cache size Performance Cache size Performance Cache size

Base model 28.86 (1.00) 32768 (1.00) 1.05 (1.00) 32747 (1.00) 21.21 (1.00) 12099 (1.00)

NAMM (MLP, s1) 28.83 (1.05) 7639 (0.23) 3.08 (2.93) 11329 (0.35) 22.09 (1.04) 9525 (0.79)

NAMM (MLP, s2) 29.22 (1.07) 8475 (0.26) 4.00 (3.80) 13031 (0.40) 22.06 (1.04) 9815 (0.81)

NAMM (BAM, s1) 28.91 (1.05) 7951 (0.24) 10.14 (9.63) 11173 (0.34) 22.73 (1.07) 9569 (0.79)

NAMM (BAM, s2) 29.25 (1.07) 8267 (0.25) 9.78 (9.29) 12789 (0.39) 24.05 (1.13) 9867 (0.82)

NAMM (BAM, s3) 29.33 (1.11) 8155 (0.25) 11.00 (10.45) 13192 (0.40) 24.44 (1.15) 9895 (0.82)

Model/Eval Llama 3 70B Computer Vision Reinforcement Learning

Performance Cache size Performance Cache size Performance Cache size

Base model 35.22 (1.00) 10107 (1.00) 43.84 (1.00) 7039 (1.00) 29.04 (1.00) 3000 (1.00)

NAMM (MLP, s1) 34.11 (0.97) 7930 (0.78) 40.44 (0.92) 584 (0.08) 29.30 (1.01) 1993 (0.66)

NAMM (MLP, s2) 34.29 (0.97) 8445 (0.84) 40.39 (0.92) 713 (0.10) 29.58 (1.02) 2834 (0.94)

NAMM (BAM, s1) 34.11 (0.97) 7947 (0.79) 41.52 (0.95) 723 (0.10) 30.44 (1.05) 2009 (0.67)

NAMM (BAM, s2) 25.20 (0.72) 8276 (0.82) 44.63 (1.02) 4948 (0.70) 31.53 (1.09) 2534 (0.84)

NAMM (BAM, s3) 34.70 (0.99) 8365 (0.83) 44.38 (1.01) 5100 (0.72) 31.73 (1.09) 2434 (0.81)

NAMMs comparison. In Table 8,
we provide summarized results com-
paring NAMMs with either BAM
or the simpler MLP architecture at
the end of each stage of incremen-
tal evolution. First, we note that
even the MLP NAMM after stage
1 impressively improves performance
across all language benchmarks. Ad-
ditionally, performance sees near-
monotonic improvements with each
additional stage of incremental evo-
lution in both language and zero-shot
transfer settings. Comparing our im-
plementations, the performance ben-
efits from the memory models with
BAM appear consistently superior to the MLP. Moreover, on ChouBun. we observe that the per-
formance with BAM sees a notable upswing after the second stage of incremental training, which
might be associated with the introduction of another ideogram-based language in the training set.2
The same improvement not occurring with the MLP-based NAMMs might be further evidence of
architectural performance saturation, highlighting the effectiveness of our main implementation.

4.3 UNDERSTANDING NEURAL ATTENTION MEMORY MODELS

Influence of layer depth. We begin analyzing NAMMs by focusing on the final amount of retained
tokens and their oldness3. At the top of Figure 6, we provide these normalized metrics as a function

2The DuReader task, used in the second stage of incremental training, uses the Chinese language.
3We define oldness of a retained token as the number of new queries since its introduction in the KV cache.
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Figure 6: Memory size and token oldness as recorded for each layer in the base model (top) and for
each task in LongBench (bottom). We normalize these statistics per task using either their average
across all task prompts (top) or the mean sample length (bottom).

Figure 7: Qualitative inspection of the text from decoding the retained tokens in the KV cache after
applying NAMMs. We compare the behavior of NAMMs across the layers with the highest (left) and
lowest average retained tokens (right), for either a natural language (top) or coding task (bottom).

of layer depth. Interestingly, our learned NAMM does not appear to affect the KV cache uniformly,
retaining visibly more and older tokens for some of the early-middle layers of the base transformer.
One possible interpretation of our results, complementing recent analysis (Wendler et al., 2024), is
that these layers might be particularly important for processing and aggregating information over
longer contexts, thus requiring larger memories than the rest.

Influence of task structure. At the bottom of Figure 6, we instead provide these metrics while
varying the source task, this time normalized by the average prompt lengths shown in green. Our
results illustrate an inverse correlation between normalized memory size and prompt length (with
a Pearson coefficient of -0.84), further confirming our earlier observations of sub-linear memory
growth and favorable scaling to longer contexts. Additionally, we observe that in the code com-
pletion tasks (with task id 6-1 and 6-2) NAMMs learn to preserve visibly more tokens relative to
their average prompt lengths. This result appears intuitively consistent with the higher information
density in code, leaving room for less redundancy as opposed to natural language.
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Selected qualitative examples. We qualitatively find these analyzed trends by inspecting the text
corresponding to the forgotten tokens for a few selected prompts. In particular, we consider the
layers with the highest and lowest average retained tokens (15 and 24), for tokens from either a
natural language or coding task (PassageRetrieval-en, id 5-1, and RepoBench-P, id 6-2). As shown
in Figure 7, for early-middle layers, NAMMs tend to focus on retaining global information such as
the task preamble and key words throughout the text. Instead, for later layers, NAMMs seem to
forget many of these tokens, whose information has likely been already incorporated in the previous
layers, allowing the transformer to focus more on tokens with more detailed local information.
Furthermore, in coding tasks, we find that the pruned tokens are mostly contiguous, corresponding
to whitespace, comments, and whole segments of boilerplate code. This is in contrast to natural
language tasks, where NAMMs appear trying to exploit some of the grammatical redundancies of
the English syntax often dropping specific tokens mid-sentences.

Additional analysis. We provide additional analytic results in Appendix D. For instance, we ana-
lyze how the presence of each token in memory affects the scores of the other tokens, we compare
the generated responses before and after the introduction of NAMMs in a very long context task, and
show the sensitivities of the token scores for each input feature. These results show that NAMMs
learn mechanisms for ‘cross-token’ competition relying on high-frequency components of the atten-
tion matrices and illustrate how they learn to overcome different failure modes of long context LMs,
further evidencing the need to go beyond simple strategies and the potential of end-to-end learning
for token-level memory systems.

5 RELATED WORKS

Devoto et al. (2024) and Yao et al. (2024) try to identify the least important tokens to evict using
heuristics such as L2 magnitude and entropy to improve efficiency. Alternative strategies include
considering simple statistics from the attention matrix (Liu et al., 2024b; Oren et al., 2024; Zhang
et al., 2024c). Ge et al. (2024) and Li et al. (2024b) build on these ideas by applying multiple strate-
gies based on matching specific attention patterns. Motivated by similar considerations, Nawrot et al.
(2024) proposed directly fine-tuning the original base transformer to compress the KV cache while
minimizing a regularization loss to preserve the original base model’s behavior and limit perfor-
mance degradation. Complementary to our method, MQA (Shazeer, 2019) and GQA (Ainslie et al.,
2023) propose merging attention heads during training to improve inference throughput. Similarly,
also KV cache quantization is another orthogonal area where different hand-designed strategies have
been proposed (Hooper et al., 2024; Dong et al., 2024a;b), with even recent work empirically show-
ing their direct compatibility with token eviction methods (Liu et al., 2024a). We note that, unlike
this prior work, our approach uniquely learns a black-box model to maximize performance through
token-level memory management and shows potential for providing improvements to both the effec-
tiveness and efficiency of transformers. We refer to App. E for references and to the wider literature,
including efficient architectures, memory, and evolution.

6 DISCUSSION AND FUTURE WORK

This work introduced Neural Attention Memory Models, providing a new framework to enhance the
performance of transformers while significantly reducing memory footprint. By evolving NAMMs
on top of pre-trained LMs, we demonstrated their effectiveness across diverse long-context tasks
in three languages, significantly surpassing previous hand-designed KV cache eviction frequently
hindering performance, and the original model relying on costly full-context conditioning. Our
carefully designed approach also enabled NAMMs, trained solely on language tasks, to achieve
zero-shot transferability across architectures, input modalities, and task domains. While NAMMs
do appear to provide benefits beyond what achieved with hand-designed strategies, we believe there
is much room for improvement (e.g., see Limitations F). This work has only begun to explore the
design space of our memory models, which we anticipate might offer many new opportunities to
advance future generations of transformers. In this regard, we believe NAMMs should not be viewed
as a replacement for gradient-based optimization, but rather an orthogonal framework that could be
combined and alternated with parameter fine-tuning. Such an extension has the potential to unlock
efficient long-context training, drawing parallels to the iterative process of learning and evolution
that shaped human memory.
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Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

Matanel Oren, Michael Hassid, Yossi Adi, and Roy Schwartz. Transformers are multi-state rnns.
arXiv preprint arXiv:2401.06104, 2024.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne,
Alex Graves, and Timothy Lillicrap. Scaling memory-augmented neural networks with sparse
reads and writes. Advances in Neural Information Processing Systems, 29, 2016.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

David F Sherry and Daniel L Schacter. The evolution of multiple memory systems. Psychological
review, 94(4):439, 1987.

David So, Quoc Le, and Chen Liang. The evolved transformer. In International conference on
machine learning, pp. 5877–5886. PMLR, 2019.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances
in neural information processing systems, 28, 2015.

14

https://github.com/EvolvingLMMs-Lab/lmms-eval
https://github.com/EvolvingLMMs-Lab/lmms-eval


Published as a conference paper at ICLR 2025

Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-invariant neural
networks for reinforcement learning. Advances in Neural Information Processing Systems, 34:
22574–22587, 2021.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in en-
glish? on the latent language of multilingual transformers. arXiv preprint arXiv:2402.10588,
2024.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
interleaved video-language understanding, 2024. URL https://arxiv.org/abs/2407.
15754.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Yao Yao, Zuchao Li, and Hai Zhao. Sirllm: Streaming infinite retentive llm. arXiv preprint
arXiv:2405.12528, 2024.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. Infinitebench: Extending long context evaluation
beyond 100k tokens. arXiv preprint arXiv:2402.13718, 2024a.

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
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Table 9: NAMMs hyper-parameters used for training and evaluation. The omitted CMA-ES hyper-
parameters can be obtained by following the recommended default calculation by Hansen (2006).

NAMMs hyperparameters
Spectrogram window size nw 32
Spectrogram window stride sw 16
Spectrogram window type Hann
Spectrogram EMA reduction coefficient γ 0.9916

Positional features 8
NAMMs execution delay 512
NAMMs non-linearity ReLU

Optimization hyperparameters, notation from Hansen (2006)

Evolution algorithm CMA-ES
Elite ratio 0.5
Mean coefficient cm 1
Initial step size σ 0.65
Samples batch size per-task 64
Population size 32
Task for incremental stage 1 PassageRetrieval-en
Task for incremental stage 2 DuReader
Task for incremental stage 3 NarrativeQA

BAM-specific
Hidden dimensions 16
Use bias True
Masking strategy counter-causal
Number of attention layers 1
Number of final linear layers 1
Use residual connections True
Use multiplicative interactions True

MLP-specific
Hidden dimension 25
Number of hidden layers 2
Use residual connections True

A IMPLEMENTATION DETAILS

A.1 MODEL SPECIFICS AND NAMMS EXECUTION

We evolve our Neural Attention Memory Models on top of a context-extended Llama 3 8B (Dubey
et al., 2024) base model. In particular, we employ the NTK-aware positional interpolation strategy
(bloc97, 2023) to extend the context by four times from 8192 to 32768. Unlike prior strategies that
require further gradient fine-tuning to avoid performance collapse (Chen et al., 2023), NTK-aware
positional interpolation has been shown to produce sensible results even when applied zero-shot. In
case the length of a task prompt still exceeds 32768 we perform mid-sentence cropping (Xiao et al.,
2023; Jin et al., 2024), as standard in long-context LM evaluation (Bai et al., 2023; Zhang et al.,
2024a).

When applying NAMMs, we only affect the execution of the base model with a fixed frequency,
once every nup = 512 steps. When feeding longer prompts to our model, we simply split the tokens
into nup-sized chunks. We note that due to modern frameworks being bound primarily by memory
constraints, input-splitting in itself has minimal effects on running time, with similar approaches
being already performed under the hood by established kernel procedures (Dao et al., 2022).

A.2 FEATURE EXTRACTION AND ARCHITECTURE DETAILS

Our new feature extraction framework is a key component for enabling the transfer properties of
NAMMs. In practice, we extract the attention spectrogram from the real-valued attention matrix
using a Hann window of size nw = 32, resulting in just seventeen complex-values frequencies that
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we convert to real numbers by simply taking their magnitude, yielding each ωt
i ∈ R17. We use a

stride of half the window size sw = 16, producing nT = nup/sw = 32 frequency representations
over the time axis of the attention matrix from the latest chunk of nup queries, ω1

i , . . . , ω
nT
i . Thus,

we reduce these frequency representations over the time axis via an element-wise exponentially
moving average operation. We note that our EMA does not only consider the nT representations
computed for the frequency of each token in the nup-sized chunk of the latest queries, but also the
discounted EMA at the previous execution step or our memory for each retained token, denoted ω′

i.
Thus, each of our reduced spectrogram representations reflects the full history of previous attention
values:

ωi =

(
nT∑
t=1

γt−1ωt
i

)
+ γnT ω′

i, (4)

where we use γ to denote the EMA’s discount factor. To expedite learning the weights of our ar-
chitecture, we ensure all spectrogram features have unit variance at initialization across our training
data, using the statistics of the base Llama 3 model computed on the first task employed in incremen-
tal learning (PassageRetrieval). Finally, we also concatenate a small eight-dimensional sinusoidal
positional embedding using the oldness of each token, i.e., the amounts of new queries observed
since its introduction in the KV cache. We provide an extended summarized pseudocode description
of the execution pipeline in Algortihm 2 (to complement Algorithm 1 in the main text).

Algorithm 2 NAMMs
Input: Attention matrix A, Hann window size nw, Stride size sw, Update interval nup

Output: Memory score for each token

1: Initialize token score array S
2: Split input tokens into chunks of size nup

3: for each input chunk do
4: Extract attention matrix Ak from the latest nup queries
5: for column i in Ak do
6: Apply STFT of window size nw and stride sw to Ak[:, i]
7: Compute spectrograms ωt

i ∈ C17 for t = 1, . . . , nT ▷ nT = nup/sw
8: Calculate ωi with Equation 4
9: Update memory ω′

i ← ωi

10: Normalize spectrogram features ωi

11: Concatenate positional embedding to ωi

12: Update S with BAM predicted score mϕ(ωi)
return S

Figure 8: Schematic depiction of the components of our Neural At-
tention Memory Models, denoted mϕ, parameterized with our BAM
architecture. The spectrogram representation of each token, denoted
ωi, is processed by an attention layer followed by a simple linear oper-
ation to output its relative score. Backward masking introduces asym-
metry, ensuring that each token can only attend to its future relatives.

Our backward-attention
memory network processes
these representations by
directly first applying
the self-attention layer
employing the counter-
autoregressive backward
masking introduced in
Section 3, designed to
facilitate asymmetric in-
teractions between tokens
in memory. The output
of self-attention is then
fed to a single final linear
layer to obtain the final
score. We employed a few
important additional design
choices following some
preliminary testing. First,
motivated by efficiency
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considerations, we use
a single head within our
attention mechanism and
no layer normalization.
Second, our attention layer
produces outputs that are twice the dimensionality of the spectrogram features. These outputs
are integrated back into the main network before the final linear layer via both residual and
multiplicative interactions. We provide a schematic depiction of our minimal architecture in
Figure 8. Through our minimalist design choices, our full network comprises only just over four
thousand learnable parameters, a negligible amount, orders of magnitudes lower than even a single
layer in modern transformers.

A.3 ZERO-SHOT TRANSFER

For our zero-shot transfer experiments, we consider a Llama 3 transformer with 70B parame-
ters (Dubey et al., 2024), a Llava Next Video transformer with 7B parameters (Zhang et al., 2024b),
and a decision transformer (Chen et al., 2021b) with about 1M parameters. For our 70B experiments,
we follow the exact same setup as when evaluating our 7B Llama model used in training. For our
video-language model, we extract 12 × 12 image tokens from 48 uniformly sampled frames, 6912
in total. We also slightly shift the selection score threshold by 5, to counteract the lower number of
total tokens and get a comparable average cache size to the L2 and H2O baselines. We adapt the
code and follow the standardized experimental setup from Li et al. (2024a). For the reinforcement
learning experiments, we encode each state, action, and return-to-go into separate tokens and do not
apply any restrictions or modifications to our standard NAMM LM setup. We average the perfor-
mance collected over 20 random seeds to account for the stochasticity of the initial state in the Gym
Mujoco environments (Brockman et al., 2016). Rather than re-training a decision transformer from
scratch, our RL experiments adapt the open-sourced checkpoints and implementation provided by
Beeching & Simonini (2022). We would like that note that on some task-dataset combinations of
D4RL, these checkpoints appear to yield lower performance than what was reported in the original
decision transformer paper (e.g., Walker pre-trained on medium-expert data) Chen et al. (2021b).
However, we do not believe these differences should affect our conclusions as we used the same
base model for all our memory management baselines.

A.4 EVOLUTIONARY OPTIMIZATION

As described in Section 3, we optimize NAMMs with the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) (Hansen, 2006). Being an evolutionary algorithm, CMA-ES does not re-
quire any gradient information and can directly optimize black-box undifferentiable metrics. This
property allows us to both optimize for the non-differentiable token selection task of our NAMMs
and also maximize non-differentiable task performance metrics directly. In the case of the Long-
Bench (Bai et al., 2023) tasks considered for training, these metrics correspond to exact match
accuracy (PassageRetrieval-en), ROUGE-L score (DuReader), and F1 score (NarrativeQA).

On a high level, given a neural network with P parameters, CMA-ES maintains a mean vector
µ ∈ RP and a covariance matrix Σ ∈ RP×P . Then, it repeats the following steps:

1. Sampling. CMA-ES generates a population of neural networks, sampling their parameters
from the multivariate normal N(µ,Σ) distribution.

2. Evaluation. Each population candidate is evaluated to the objective function for the objec-
tive function used.

3. Updating. By both selecting a subset of the population candidates and also weighting
them based on their overall ranking the mean and covariance are updated towards higher-
performing regions of the search space.

We provide the main hyper-parameters in Table 9 and refer to either the work by Hansen (2006) or
our shared code for the full implementation details.

A.5 FASTGEN IMPLEMENTATION AND TUNING
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We re-implemented the recent FastGen method proposed by Ge et al. (2024), which proposes to
adopt a hand-designed combination of different strategies targeted to retain tokens with high at-
tention values, belonging to recent words, or encoded from particular grammatical features (i.e.,
punctuation, ‘special tokens’). In particular, after observing the input prompt, FastGen performs a
‘profiling step’ where the strategy able to evict the most amount of tokens is selected such that:

|A− Â|2 < 1− T. (5)

Here, A is the full-cache attention matrix, Â is the ‘reconstructed’ attention matrix re-calculated
after performing a softmax between each layer’s queries and keys with masked-out entries for the
keys evicted by the individual strategies. Furthermore, T is the main threshold hyper-parameter,
determining how aggressively FastGen is allowed to prune tokens even if resulting in degradation to
the attention-reconstruction heuristic.

We note that, unlike our other baselines, FastGen is only directly compatible with language modeling
tasks. This is because one of the main ways it differs from H2O is by preserving particular grammar-
based tokens in some of its strategies (e.g., punctuation, special words, etc.). Thus, as this baseline
was specifically designed for LMs rather than arbitrary transformers, we did not consider applying
it in the 0-shot transfer settings, and only focused on Llama 3 8B.

Figure 9: Averaged normalized performance and
cache size of FastGen as compared to NAMM
over LongBench when varying the threshold pa-
rameter T.

We note that as we are dealing with much
longer prompts (sometimes far beyond
tens/hundreds of thousand tokens), for ef-
ficiency consideration, we performed the
profiling steps in our re-implementation after
the first 4096 tokens any prompt exceeds
this length. We also found to avoid losing
too much performance over the base model
on longer context tasks we had to retune its
main ‘threshold.’ We selected T=0.999, as this
choice allowed FastGen to retain over 95% nor-
malized performance while still discarding a
non-trivial portion of tokens on all LongBench,
as shown in Figure 9. Other than the main
threshold for attention reconstruction, FastGen
has two other main hyperparameters: the ‘re-
cency ratio,’ the ‘attention ratio’ determining
the portion of most recent tokens or with the highest attention values to retain in its individual
strategies. We set these hyper-parameters to 0.3, following the paper’s recommendation.
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Table 10: Statistics of ChouBun. Lengths are counted by tokens produced by Llama 3 tokenizer.

Statistics Extractive QA Summarization Overall
JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks

Number of documents 20 20 30 30 70
Number of QA pairs 200 390 150 30 770
Number of reference answers 1 1 1 5 1 or 5
Document length max. 13027 10152 85981 85981 85981
Document length mean 10131 8994 26220 26220 13317
Document length min. 8196 6825 5640 5640 5640
Answer length max. 40 208 30 140 208
Answer length mean 7 11 8 80 21
Answer length min. 1 1 1 55 1

Table 11: Performance of a wider range of LLMs on the ChouBun benchmark.

Model/Task name Extractive QA Summarization Overall
JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks Max. length

mistralai/Mistral-7B-v0.1 8.68 8.34 16.25 10.50 10.94 32768
rinna/llama-3-youko-8b 16.68 12.23 17.03 22.27 17.05 8192
meta-llama/Meta-Llama-3-8B 14.58 14.77 16.86 22.84 17.27 8192
meta-llama/Llama-2-7b-hf 16.77 9.92 20.86 21.97 17.38 2048
01-ai/yi-6b-200k 30.36 23.64 38.09 21.11 28.30 200000
elyza/Llama-3-ELYZA-JP-8B 20.77 21.45 35.59 40.21 29.50 8192

B BENCHMARK DESCRIPTIONS

B.1 CHOUBUN DETAILS

The ChouBun benchmark is created to assess the generalization ability of NAMMs to a new lan-
guage (Japanese), but we hope it will also serve as a standard benchmark for Japanese LLMs. The
benchmark is composed of two task categories — extractive QA and abstractive summarization —
and four tasks as follows.

• JA.WikiQA is an extractive QA task about 20 randomly sampled articles from the 20240429
dump of Japanese Wikipedia4. Each article corresponds to 10 QA pairs, and there are 200
QA pairs in total.

• JA.EdinetQA is an extractive QA task based on 20 security reports from EDINET5. The
EDINET security reports are in CSV format, which makes them less human-readable.
Nevertheless, we choose not to convert the format because the conversion process per se
is non-trivial, and using a CSV-style text input helps us evaluate a model’s capability of
understanding structured data. The total number of QA pairs in JA.EdinetQA is 390.

• JA.CorpSecQA is another extractive QA task based on 30 security reports downloaded from
three corporation websites (MUFG6, NTT7, and Toyota8). We extract texts from original
file in PDF format. There are 150 QA pairs in total.

• JA.CorpSecSum is an abstractive summarization task based on the same data of
JA.CorpSecQA. Each document corresponds to one data point, and we collect 5 reference
summaries for each data point.

4https://dumps.wikimedia.org/other/cirrussearch/
5https://disclosure2.edinet-fsa.go.jp/
6https://www.mufg.jp/ir/report/security_report/
7https://group.ntt/jp/ir/library/results/
8https://global.toyota/jp/ir/library/securities-report/
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Prompt for extractive QA 

抽出型の長文QAモデルのトレーニングデータを作成しています。 
コンテキストとして長い文書を提供します。 
文書を注意深く読み、分析し、20個の質問と回答のペアを生成してください。 
生成されたQAペアの要件は以下の通りです。\n 
1. 回答は文書からのテキストの一部でなければなりません。\n 
2. 回答は短く簡潔なテキストの一部であるべきです。\n 
3. 質問は多様で、文書の異なる側面をカバーすべきです。\n 
4. 回答は、直接文章の内容を引用してください。余計な情報は含めないでください。\n 
以下の形式で20個の質問と回答のペアを直接回答してください：\n 
### 質問 1 ###\n 
{question_1}\n 
### 回答 1 ###\n 
{answer_1}\n 
...\n 
### 質問 20 ###\n 
{question_20}\n 
### 回答 20 ###\n 
{answer_20}\n 
文書は以下の通りです：\n 
### 文書 ###\n 
{doc_text} 

Prompt for abstractive summarization 

抽象的な長文要約モデルのトレーニングデータを作成しています。 
コンテキストとして長い文書を提供します。 
文書を注意深く読み、分析し、5個の要約例を生成してください。 
以下は生成される要約の要件です。\n 
1. 各要約は短く簡潔であるべきです。\n 
2. 各要約は文書の一般的なアイデア、トレンド、洞察を網羅すべきです。\n 
3. すべての要約は内容が同一でありながら、表現が多様であるべきです。\n 
以下の形式で5個の要約を直接返信してください：\n 
### 要約 1 ###\n 
{summary_1}\n 
...\n 
### 要約 5 ###\n 
{summary_5}\n 
文書は以下の通りです：\n 
### 文書 ###\n 
{doc_text}

Figure 10: LLM prompts for generating synthetic QA pairs and summaries in ChouBun.

Collecting human annotations for long-text tasks is challenging, therefore we use synthetic QA pairs
and summaries. In particular, we prompt various LLMs9 to generate multiple question-answer pairs
or summaries for each document. Different instructions are designed for the two tasks and they are
shown in Figure 10. To improve the reliability of the synthetic data, we ensure that every answer in
extractive QA tasks is a text span presented in its corresponding source document. In Table 10, we
provide the statistics of the benchmark.

We use F1 score and ROUGE score for evaluation in the extractive QA tasks and summarization
task, respectively. Reference text and hypothesis text are pre-tokenized by the MeCab tokenizer10.
A wider range of LLMs’ performance on the ChouBun benchmark is presented in Table 11.

9gpt-4o-2024-05-13, gpt-4o-mini-2024-07-18, gpt-4-turbo-2024-04-09, and
claude-3-5-sonnet-20240620

10https://github.com/polm/fugashi
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B.2 BENCHMARKS SUMMARY

We provide a summary of the types of tasks and domains of the other benchmarks we considered
for our experiments. We refer interested readers to the relative referenced papers for full details.

LongBench (Bai et al., 2023). This benchmark comprises 21 different tasks targeted to evaluate the
long-context capabilities of LMs. These tasks include both English and Chinese and come from ei-
ther modified/subsampled versions of existing datasets or synthetic generation. The authors divided
them in 6 categories, numbered with the prefixes 1 to 6: single-document QA, multi-document QA,
summarization, few-shot learning, synthetic, and code. The tasks have a reported average length of
6711 English words and 13386 Chinese characters.

InfiniteBench (Zhang et al., 2024a). This benchmark comprises 12 different tasks designed
to go beyond the existing benchmarks and push the limits in long-context LMs. In fact, while
popular prior long context benchmarks, including LongBench, focus on prompts of around 10K
tokens InfiniteBench considers tasks with contexts beyond 100K tokens. These tasks again include
both English and Chinese and come from either modified/subsampled versions of existing datasets
or synthetic generation. The authors divided them into 5 categories: retrieval, dialogue, novel,
math, and code. We note some of these tasks are considered extremely difficult, with even powerful
proprietary LMs such as GPT4 not able to get above a performance of 1%.

LongVideoBench (Wu et al., 2024). This benchmark comprises 3763 curated long videos with
subtitles. These videos are coupled with 6678 human-annotated questions focusing on 17 different
categories. The benchmark is focused on what the authors refer to as frame-specific ‘reasoning’ style
questions. In particular, for these kinds of questions, video language models are tasked to respond
to ‘referred queries’ targeting particular parts of the whole video context.

Multi-task Long Video Understanding Benchmark (Zhou et al., 2024). This benchmark focuses
on evaluating long-video understanding performance. It includes videos averaging 12 minutes in
length up to 2 hours. The videos span different genres such as movies, documentaries, surveil-
lance videos, ego-centric videos, games, and cartoons. In total, this benchmark comprises 2593
evaluation problems divided into 9 categories: topic reasoning, anomaly recognition, video summa-
rization, needle question answering, ego reasoning, plot question answering, sub-scene captioning,
action count, and action order. These problems are quite diverse including both multi-choice and
generation-style questions for video language models.

D4RL (Fu et al., 2020). This benchmark focuses on evaluating offline reinforcement learning
agents (Lange et al., 2012). In particular, it provides pre-training datasets for different reinforce-
ment learning tasks simulated through Mujoco based on OpenAI gym (Brockman et al., 2016). The
datasets are named based on the displayed agent skills (e.g., expert medium), and based on their
inclusion of ‘replay data’ from the demonstrator agent’s own prior learning experiences. Evaluation
is then performed after pre-training by running the learned agents online in the respective environ-
ments. We focus on the most popular subset of this benchmark, involving continuous-control tasks
with three different agents: Hopper, HalfCheetah, and Walker-2d, evaluating the agent after pre-
training on Expert, Medium, and Medium Replay data. Rather than re-training from scratch, we use
the open-sourced checkpoints from Chen et al. (2021b) and focus on the evaluation aspect of the
benchmark.
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Table 12: NAMMs evaluation on LongBench (Bai et al., 2023). The normalized performance (in
brackets) is calculated using the base model with full cache. The aggregate test task performance of
NAMMs models is taken by averaging the normalized scores on the tasks not used for incremental
evolution.
Model/Task id Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 10.38 (1.00) 12.79 (1.00) 22.60 (1.00) 21.31 (1.00) 10.41 (1.00) 12.67 (1.00) 7.54 (1.00) 25.86 (1.00) 29.34 (1.00) 23.93 (1.00) 0.92 (1.00) 2.66 (1.00)

NAMM (MLP, s1) 7.60 (0.73) 12.74 (1.00) 22.74 (1.01) 21.08 (0.99) 9.58 (0.92) 12.24 (0.97) 6.48 (0.86) 19.41 (0.75) 27.76 (0.95) 23.61 (0.99) 0.95 (1.03) 3.44 (1.29)

NAMM (MLP, s2) 6.76 (0.65) 12.77 (1.00) 23.74 (1.05) 20.56 (0.96) 9.69 (0.93) 12.21 (0.96) 6.93 (0.92) 22.40 (0.87) 27.30 (0.93) 24.20 (1.01) 1.72 (1.87) 2.78 (1.05)

NAMM (BAM, s1) 5.77 (0.56) 12.76 (1.00) 22.94 (1.02) 21.55 (1.01) 9.47 (0.91) 12.21 (0.96) 6.51 (0.86) 18.73 (0.72) 28.06 (0.96) 23.97 (1.00) 1.01 (1.10) 4.00 (1.50)

NAMM (BAM, s2) 7.08 (0.68) 12.70 (0.99) 22.21 (0.98) 21.50 (1.01) 9.94 (0.95) 12.21 (0.96) 7.13 (0.95) 20.34 (0.79) 28.87 (0.98) 23.84 (1.00) 0.92 (1.00) 3.94 (1.48)

NAMM (BAM, s3) 9.14 (0.88) 12.63 (0.99) 21.94 (0.97) 21.34 (1.00) 9.71 (0.93) 11.63 (0.92) 6.98 (0.93) 20.58 (0.80) 28.78 (0.98) 24.39 (1.02) 1.04 (1.13) 3.63 (1.36)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 73.00 (1.00) 89.45 (1.00) 46.54 (1.00) 40.00 (1.00) 1.48 (1.00) 12.18 (1.00) 28.80 (1.00) 69.09 (1.00) 65.17 (1.00) 28.86 (1.00) N/A 32768 (1.00)

NAMM (MLP, s1) 73.00 (1.00) 89.48 (1.00) 46.80 (1.01) 37.50 (0.94) 2.46 (1.66) 23.98 (1.97) 28.46 (0.99) 69.75 (1.01) 66.40 (1.02) 28.83 (1.05) 1.01 7639 (0.23)

NAMM (MLP, s2) 74.00 (1.01) 88.64 (0.99) 46.04 (0.99) 41.50 (1.04) 1.53 (1.03) 25.94 (2.13) 29.78 (1.03) 69.80 (1.01) 65.23 (1.00) 29.22 (1.07) 1.02 8475 (0.26)

NAMM (BAM, s1) 73.00 (1.00) 89.81 (1.00) 46.70 (1.00) 38.75 (0.97) 2.19 (1.48) 25.14 (2.06) 28.51 (0.99) 69.50 (1.01) 66.51 (1.02) 28.91 (1.05) 1.00 7951 (0.24)

NAMM (BAM, s2) 73.00 (1.00) 90.03 (1.01) 46.85 (1.01) 42.00 (1.05) 2.35 (1.59) 24.69 (2.03) 28.46 (0.99) 69.65 (1.01) 66.57 (1.02) 29.25 (1.07) 1.04 8267 (0.25)

NAMM (BAM, s3) 73.00 (1.00) 89.81 (1.00) 46.35 (1.00) 40.00 (1.00) 3.04 (2.05) 27.55 (2.26) 28.60 (0.99) 69.53 (1.01) 66.35 (1.02) 29.33 (1.11) 1.07 8155 (0.25)

Table 13: NAMMs evaluation on InfiniteBench (Zhang et al., 2024a). The normalized overall per-
formance (in brackets) is calculated using the average performance of the base model with full cache.

Model/Task name Retrieval Dialogue Novel Math Code Overall
Ret.PassKey Ret.Number Ret.KV En.Dia En.Sum En.MC En.QA ZH.QA Math.Find Code.Run Code.Debug All tasks Cache size

Base model 0.00 0.00 0.00 1.00 7.73 0.00 1.05 1.79 0.00 0.00 0.00 1.05 (1.00) 32747 (1.00)

NAMM (MLP, s1) 0.00 10.00 0.00 3.00 7.27 3.93 1.57 4.26 0.57 0.00 3.30 3.08 (2.93) 11329 (0.35)

NAMM (MLP, s2) 10.17 11.86 0.00 2.50 7.48 3.06 1.58 4.10 1.71 0.00 1.52 4.00 (3.80) 13031 (0.40)

NAMM (BAM, s1) 9.49 9.83 1.80 0.50 14.36 37.12 8.95 16.20 5.71 1.50 6.09 10.14 (9.63) 11173 (0.34)

NAMM (BAM, s2) 11.86 11.86 1.80 1.00 14.62 35.37 8.96 15.45 0.57 1.75 4.31 9.78 (9.29) 12789 (0.39)

NAMM (BAM, s3) 11.86 11.86 1.80 1.00 14.91 36.24 8.78 17.67 10.57 1.75 4.57 11.00 (10.45) 13192 (0.40)

C ADDITIONAL RESULTS

C.1 PERFORMANCE ACROSS INCREMENTAL STAGES AND ARCHITECTURES

We provide additional results and analysis to the summarized one, complementing Section 4, with
the detailed performance across different NAMMs, evaluating the best checkpoints after each stage
of incremental training stage, and ablating the BAM architecture with an MLP.

Extended language modeling results. We report our results for LongBench, InfiniteBench, and
ChouBun in Tables 12, 13, 14. First, we note that even training on a single task with our simple
MLP architecture impressively improves performance across all benchmarks. Additionally, perfor-
mance across benchmarks sees near-monotonic further improvements with each stage of our incre-
mental evolution recipe. Comparing our implementations, we note that the performance benefits
from the memory models with backward attention are consistently superior to the fully connected
variant in both initial stages of incremental training, empirically validating our hypothesis about the
importance of global KV cache information for determining the importance of each token. Lastly,
on ChouBun. we observe that the performance with BAM sees a notable upswing after the second
stage of incremental training, which might be associated with the introduction of another ideogram-
based language in the training set.11 The same improvement not occurring with the MLP-based
NAMMs might be further evidence of architectural performance saturation, highlighting once again
the effectiveness of our main implementation design.

Extended zero-shot transfer results. We report our extended zero-shot transfer results for the 70B
model and the offline RL setting in Tables 15, 16, and 17. We see the benefits from NAMMs again
increase as we incorporate backward attention, and with each stage of incremental training to a sim-
ilar extent as with the language modeling tasks. These results further highlight the potential benefits
of scaling up the architecture of our memory model and increasing the number of incremental stages.

11The DuReader task, used in the second stage of incremental training, uses the Chinese language.
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Table 14: NAMMs evaluation on the new ChouBun benchmark. The normalized performance (in
brackets) is calculated using the base model with full cache.

Model/Task name Extractive QA Summarization Overall
JA.WikiQA JA.EdinetQA JA.CorpSecQA JA.CorpSecSum All tasks Cache size

Base model 22.91 (1.00) 28.34 (1.00) 11.83 (1.00) 21.75 (1.00) 21.21 (1.00) 12099 (1.00)

NAMM (MLP, s1) 21.60 (0.94) 26.81 (0.95) 10.34 (0.87) 29.60 (1.36) 22.09 (1.04) 9525 (0.79)

NAMM (MLP, s2) 20.76 (0.91) 26.30 (0.93) 11.86 (1.00) 29.32 (1.35) 22.06 (1.04) 9815 (0.81)

NAMM (BAM, s1) 19.19 (0.84) 28.85 (1.02) 14.36 (1.21) 28.51 (1.31) 22.73 (1.07) 9569 (0.79)

NAMM (BAM, s2) 20.75 (0.91) 28.46 (1.00) 14.55 (1.23) 32.45 (1.49) 24.05 (1.13) 9867 (0.82)

NAMM (BAM, s3) 21.34 (0.93) 28.61 (1.01) 14.64 (1.24) 33.15 (1.52) 24.44 (1.15) 9895 (0.82)

Table 15: NAMMs evaluation on LongBench (Bai et al., 2023) with a Llama 3 70B model. The nor-
malized performance (in brackets) is calculated using the base model with full cache. The aggregate
test task performance of NAMMs models is taken by averaging the normalized scores on the tasks
not used for incremental evolution. The tasks on which NAMMs are trained are highlighted with a
gray background.
Model/Task id Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 9.38 (1.00) 13.84 (1.00) 24.99 (1.00) 17.78 (1.00) 11.73 (1.00) 14.26 (1.00) 8.11 (1.00) 26.43 (1.00) 13.13 (1.00) 24.55 (1.00) 23.20 (1.00) 10.08 (1.00)

NAMM (MLP, s1) 6.94 (0.74) 13.82 (1.00) 24.27 (0.97) 17.60 (0.99) 10.83 (0.92) 14.17 (0.99) 7.89 (0.97) 20.81 (0.79) 13.09 (1.00) 23.30 (0.95) 23.28 (1.00) 8.66 (0.86)

NAMM (MLP, s2) 7.88 (0.84) 13.71 (0.99) 23.27 (0.93) 18.18 (1.02) 11.41 (0.97) 14.11 (0.99) 8.07 (0.99) 21.75 (0.82) 14.28 (1.09) 24.48 (1.00) 22.00 (0.95) 8.99 (0.89)

NAMM (BAM, s1) 7.31 (0.78) 13.75 (0.99) 24.51 (0.98) 17.78 (1.00) 10.82 (0.92) 14.08 (0.99) 7.59 (0.94) 19.27 (0.73) 13.89 (1.06) 23.71 (0.97) 23.41 (1.01) 8.87 (0.88)

NAMM (BAM, s2) 3.57 (0.38) 13.86 (1.00) 23.02 (0.92) 18.71 (1.05) 4.94 (0.42) 13.32 (0.93) 1.90 (0.23) 17.74 (0.67) 10.39 (0.79) 20.45 (0.83) 23.18 (1.00) 8.13 (0.81)

NAMM (BAM, s3) 9.13 (0.97) 13.53 (0.98) 24.25 (0.97) 17.82 (1.00) 11.45 (0.98) 13.76 (0.96) 8.34 (1.03) 21.79 (0.82) 12.66 (0.96) 24.21 (0.99) 23.56 (1.02) 8.62 (0.86)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 78.00 (1.00) 92.43 (1.00) 48.67 (1.00) 45.50 (1.00) 22.50 (1.00) 75.37 (1.00) 33.89 (1.00) 74.60 (1.00) 71.19 (1.00) 35.22 (1.00) N/A 10107 (1.00)

NAMM (MLP, s1) 78.00 (1.00) 92.28 (1.00) 48.37 (0.99) 43.50 (0.96) 20.76 (0.92) 68.66 (0.91) 33.89 (1.00) 74.58 (1.00) 71.68 (1.01) 34.11 (0.97) 0.99 7930 (0.78)

NAMM (MLP, s2) 77.00 (0.99) 91.93 (0.99) 48.60 (1.00) 44.75 (0.98) 17.17 (0.76) 70.21 (0.93) 36.18 (1.07) 74.72 (1.00) 71.30 (1.00) 34.29 (0.97) 0.99 8445 (0.84)

NAMM (BAM, s1) 77.50 (0.99) 92.46 (1.00) 48.24 (0.99) 45.00 (0.99) 17.32 (0.77) 69.87 (0.93) 33.89 (1.00) 74.58 (1.00) 72.40 (1.02) 34.11 (0.97) 0.99 7947 (0.79)

NAMM (BAM, s2) 74.50 (0.96) 51.45 (0.56) 39.73 (0.82) 15.00 (0.33) 5.86 (0.26) 13.35 (0.18) 34.29 (1.01) 73.81 (0.99) 61.91 (0.87) 25.20 (0.72) 0.79 8276 (0.82)

NAMM (BAM, s3) 78.50 (1.01) 92.36 (1.00) 48.49 (1.00) 45.50 (1.00) 19.07 (0.85) 74.19 (0.98) 34.28 (1.01) 74.71 (1.00) 72.42 (1.02) 34.70 (0.99) 0.99 8365 (0.83)

To this end, given the generality of our parameterization, an interesting unexplored approach could
be to incorporate different base models and input modalities during evolutionary training, something
that would substantially increase problem diversity to obtain an even more robust transfer behavior.

C.2 TRAINING CURVES WITH FULLY-CONNECTED NAMMS

In Figure 11, we provide training curves of our Neural Attention Memory Model using a simple
MLP architecture rather than backward attention, evaluated in Section 4. In the left sub-plot, we
show the average and standard deviation of the normalized batch performance across the popula-
tion, while in the right sub-plot, we show the normalized per-task and average performance on all
samples of the optimized mean from CMA-ES. When compared with the BAM training curve from
Figure 4, we note a few interesting differences, although its evaluation performance on the full Long-
Bench benchmark is lower across both incremental phases (see Table 2), both its population batch
performance and the CMA-ES full-task performance on the training sets are either comparable or
slightly higher than BAM’s. This dichotomy appears to indicate that cross-token interactions might
provide a better inductive bias, mitigating the overfitting potential of NAMMs.

C.3 EVOLUTION OF MEMORY SIZE DURING TRAINING

In Figure 12, we provide training curves for the evolution of the memory size collected at the end
of each task prompt of our NAMMs. On the left and right subplots, we provide results for the BAM
and MLP implementations, respectively. For both architectures, we find that the memory size gen-
erally increases with training. This result suggests that NAMMs might learn to recognize additional
valuable tokens as training progresses, enabling the corresponding performance improvements on
the training tasks. Hence, they might indicate that there is some degree of a trade-off between the
efficiency and performance of NAMMs. However, we note that both models are trained only for
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Table 16: Evaluation on the LongVideoBench and MLVU benchmarks with Llava Next Video 7B.
The normalized performance (in brackets) is calculated using the base model with full cache.

Model/Task name LongVideoBench MLVU All tasks Cache size

Base model 43.45 (1.00) 44.23 (1.00) 43.84 (1.00) 7039 (1.00)

NAMM (MLP, s1) 39.64 (0.91) 41.24 (0.93) 40.44 (0.92) 584 (0.08)

NAMM (MLP, s2) 41.06 (0.94) 39.72 (0.90) 40.39 (0.92) 713 (0.10)

NAMM (BAM, s1) 41.06 (0.94) 41.98 (0.95) 41.52 (0.95) 723 (0.10)

NAMM (BAM, s2) 45.03 (1.04) 44.23 (1.00) 44.63 (1.02) 4948 (0.70)

NAMM (BAM, s3) 44.58 (1.03) 44.18 (1.00) 44.38 (1.01) 5100 (0.72)

Table 17: NAMMs evaluation on D4RL (Fu et al., 2020) using a Decision Transformer model (Chen
et al., 2021b; Beeching & Simonini, 2022). The normalized overall performance (in brackets) is
calculated using the average performance of the base model with full cache.
Model/Task name Hopper-v3 Walker2d-v3 HalfCheetah-v3 Overall

Medium Med-Replay Expert Medium Med-Replay Expert Medium Med-Replay Expert All tasks Cache size

Base model 33.36 (1.00) 18.37 (1.00) 44.62 (1.00) 68.21 (1.00) 7.18 (1.00) 38.98 (1.00) 34.91 (1.00) 5.06 (1.00) 10.64 (1.00) 29.04 (1.00) 3000 (1.00)

NAMM (MLP, s1) 33.01 (0.99) 18.39 (1.00) 38.09 (0.85) 70.82 (1.04) 7.25 (1.01) 44.61 (1.14) 35.64 (1.02) 5.05 (1.00) 10.87 (1.02) 29.30 (1.01) 1993 (0.66)

NAMM (MLP, s2) 33.48 (1.00) 19.24 (1.05) 30.07 (0.67) 73.22 (1.07) 7.95 (1.11) 48.21 (1.24) 33.59 (0.96) 5.81 (1.15) 14.67 (1.38) 29.58 (1.02) 2834 (0.94)

NAMM (BAM, s1) 35.02 (1.05) 18.24 (0.99) 45.95 (1.03) 69.33 (1.02) 7.91 (1.10) 44.45 (1.14) 34.25 (0.98) 5.12 (1.01) 13.68 (1.29) 30.44 (1.05) 2009 (0.67)

NAMM (BAM, s2) 35.18 (1.05) 18.79 (1.02) 48.08 (1.08) 71.97 (1.06) 7.70 (1.07) 49.74 (1.28) 35.67 (1.02) 5.78 (1.14) 10.82 (1.02) 31.53 (1.09) 2534 (0.84)

NAMM (BAM, s3) 36.10 (1.08) 18.86 (1.03) 49.39 (1.11) 70.87 (1.04) 7.53 (1.05) 50.02 (1.28) 34.56 (0.99) 5.90 (1.17) 12.34 (1.16) 31.73 (1.09) 2434 (0.81)

performance maximization, without any incentive to be more conservative. To this end, exploring
regularization strategies to make NAMMs aware of deployment costs is an interesting direction for
future work to obtain tailored sweet spots to cater to instance-specific resource constraints.

C.4 INCREMENTAL TRAINING ABLATION

We provide a full set of ablations results for our incremental training strategy, training a Neural
Attention Memory Model with the BAM architecture from scratch on both the PassageRetrieval-en
and DuReader tasks, as employed during the second stage of incremental learning. We evolve this
Neural Attention Memory Model for 360 consecutive generations and provide training curves in
Figure 13. In the left sub-plot, we show the average and standard deviation of the normalized batch
performance across the population, in the center sub-plot, we show the normalized per-task and
average performance on all samples of the optimized mean from CMA-ES, and on the right subplot
we show the corresponding memory size. Furthermore, in Table 18, we provide the full LongBench
evaluation results for this baseline, also showing our original incremental model’s performance for
ease of comparison. Interestingly, the non-incremental NAMM obtained a notably higher score on
the training tasks with a normalized performance of 1.57, in contrast to the normalized performance
of 1.41 achieved by the best checkpoint from the second incremental training stage. Yet, outside
the PassageRetrieval-en and DuReader tasks, its performance is notably inferior and very close to
the original performance of the base model. These results appear to indicate that the usefulness of
incremental training goes beyond the faster evolution provided by reducing the number of evaluation
prompts to assess performance and that this strategy plays an important role in regularizing evolution
and making Neural Attention Memory Models effectively generalize to new tasks.

C.5 RUNNING TIMES AND MEMORY SAVINGS

We provide details about the efficiency and costs of NAMMs on top of the Llama 3 8B base model
used for training. For our main experimental setup, we used rented cloud instances with Nvidia H100
GPUs, Intel Xeon Platinum 8481C CPUs, and 1932GB of RAM. We performed model inference for
each prompt on a single GPU, with batch size 1. During training, we used a single node with 8
GPUs, distributing the evaluation of our population across 8 processes. However, we like to remark
that since training NAMMs does not require any gradient computation, we were not restricted by
any kind of hardware during training. In this regard, using inference-specialized resources beyond
GPUs might provide considerable speedups and lower costs to ones employed in this work.
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Figure 11: Mean and standard deviation over the CMA-ES population batch performance (left),
together with the performance of the learned mean parameter on each task (right) for the training of
the MLP NAMM.

Figure 12: Final memory size of NAMM parameterized by the learned mean of CMA-ES for both
the BAM (left) and the MLP implementations (right).

Table 20: Training times per generation of our fi-
nal NAMMs using our available distributed hard-
ware.
Incremental phase Time per generation (s)
Phase 1 (+PassageRetrieval-en) 1597.62
Phase 2 (+DuReader) 4027.33
Phase 3 (+NarrativeQA) 9848.31

Training. We collected the training time for
each generation of NAMMs. As detailed in
Section 3 and Appendix A, with the employed
hyper-parameters, each generation consisted of
running the base model for population size ×
task samples = 32 × 64 = 2048 prompts for
each task. Thus, each incremental phase got
linearly more expensive, with up to 2048 × 3 = 6144 NAMM evaluation in the final phase. These
prompts were distributed across our 8 processes balancing the number of tokens evaluated in each.
We also note that the average prompt length and the nature of each task (e.g., exact match, summa-
rization, etc.) varied quite significantly in LongBench, making their evaluation costs non-uniform.

Inference. We collected running times of NAMMs and our baselines in different settings. In par-
ticular, these include both: 1. Using samples from the full LongBench benchmark with an average
length of 12099 2. Using only samples from LongBench selected to exceed the base transformer
maximum length with an average length of 32641. Finally, we also record the running time of an
ablated version of our NAMM run on top of the base transformer that does not modify its KV cache,
in order to disentangle the gains from the reduced memory and analyze the pure overheads from our
model’s execution.

As shown in Table 19, the running time overhead of our NAMM ablation that does not evict tokens
is small when compared to the base model. Instead, the running time of NAMMs and the baselines
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Figure 13: Mean and standard deviation over the CMA-ES population batch performance (left),
together with the performance of the learned mean parameter on each task (center) and its final
memory size for the NAMM trained without incremental evolution.

Table 18: NAMMs incremental learning (IL) ablation evaluation on LongBench (Bai et al., 2023).
The No IL baseline is trained from scratch on both the PassageRetrieval-en and DuReader tasks, the
same employed during the second stage of incremental learning.
Model/Task id Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 10.38 (1.00) 12.79 (1.00) 22.60 (1.00) 21.31 (1.00) 10.41 (1.00) 12.67 (1.00) 7.54 (1.00) 25.86 (1.00) 29.34 (1.00) 23.93 (1.00) 0.92 (1.00) 2.66 (1.00)

NAMM (BAM, s1) 5.77 (0.56) 12.76 (1.00) 22.94 (1.02) 21.55 (1.01) 9.47 (0.91) 12.21 (0.96) 6.51 (0.86) 18.73 (0.72) 28.06 (0.96) 23.97 (1.00) 1.01 (1.10) 4.00 (1.50)

NAMM (BAM, s2) 7.08 (0.68) 12.70 (0.99) 22.21 (0.98) 21.50 (1.01) 9.94 (0.95) 12.21 (0.96) 7.13 (0.95) 20.34 (0.79) 28.87 (0.98) 23.84 (1.00) 0.92 (1.00) 3.94 (1.48)

NAMM (BAM, s3) 9.14 (0.88) 12.63 (0.99) 21.94 (0.97) 21.34 (1.00) 9.71 (0.93) 11.63 (0.92) 6.98 (0.93) 20.58 (0.80) 28.78 (0.98) 24.39 (1.02) 1.04 (1.13) 3.63 (1.36)

NAMM (BAM, no IL) 6.46 (0.62) 12.72 (0.99) 22.87 (1.01) 21.22 (1.00) 9.91 (0.95) 11.77 (0.93) 5.61 (0.74) 18.94 (0.73) 27.63 (0.94) 22.60 (0.94) 0.91 (0.99) 1.75 (0.66)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 73.00 (1.00) 89.45 (1.00) 46.54 (1.00) 40.00 (1.00) 1.48 (1.00) 12.18 (1.00) 28.80 (1.00) 69.09 (1.00) 65.17 (1.00) 28.86 (1.00) N/A 10107
NAMM (BAM, s1) 73.00 (1.00) 89.81 (1.00) 46.70 (1.00) 38.75 (0.97) 2.19 (1.48) 25.14 (2.06) 28.51 (0.99) 69.50 (1.01) 66.51 (1.02) 28.91 (1.05) 1.00 8205
NAMM (BAM, s2) 73.00 (1.00) 90.03 (1.01) 46.85 (1.01) 42.00 (1.05) 2.35 (1.59) 24.69 (2.03) 28.46 (0.99) 69.65 (1.01) 66.57 (1.02) 29.25 (1.07) 1.04 8521
NAMM (BAM, s3) 73.00 (1.00) 89.81 (1.00) 46.35 (1.00) 40.00 (1.00) 3.04 (2.05) 27.55 (2.26) 28.60 (0.99) 69.53 (1.01) 66.35 (1.02) 29.33 (1.11) 1.07 8409
NAMM (BAM, no IL) 73.00 (1.00) 89.28 (1.00) 46.43 (1.00) 38.75 (0.97) 2.49 (1.68) 29.28 (2.40) 28.46 (0.99) 69.80 (1.01) 64.77 (0.99) 28.79 (1.03) 0.98 8457

while evicting tokens is always inferior to the base model in all settings, and scales positively with
longer prompts.

Table 21: Calculated peak storage cost and savings (MB)
of NAMMs, together with the H2O and L2 baselines with
default hyperparameters.
Model KV cache storage Additional storage overheads Total savings

Base model (full cache) 65282 0 0

H2O 17408 5659 42215
L2 17408 0 47874
NAMM 27236 5668 32378

Memory. Furthermore, in Table 21,
we also reported estimated effects
in peak GPU memory consumption,
which were calculated from the peak
KV cache sizes, together with the
sizes of additional information (e.g.,
attention matrix) and models used
by each method (again recorded on
LongBench). We would like to note, however, that as the main objective of our work was to provide
performance benefits we did not particularly optimize our code for memory efficiency or speed.
Thus, actual empirical savings with our shared implementation might differ from these calculated
estimates. For instance, both our NAMMs and H2O baseline do not employ specialized kernels to
replace FlashAttention (Dao et al., 2022).

C.6 MISTRAL BASE MODEL AND FINETUNING NAMMS

We also analyzed an additional 0-shot transfer setting, this time applying NAMMs on top of the
Mistral 7B base model (Jiang et al., 2023). We considered 2 different setups: 1. Zero-shot appli-
cation, taking our best NAMM model trained with the Llama 8B context-extended model. 2. Post
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Table 19: Running times from using NAMMs on top of a Llama 3 8B base model, together with
the running time of the H2O and L2 baselines. NAMMs (full cache) indicates our NAMMs used
without pruning the KV cache memory in order to show its total overhead without the gains from
reducing the KV cache size.

Longbench (12099 average tokens per sample)
Method Time per task sample

Base model (full cache) 4.0 (1.00)
NAMM (full cache) 4.54 (1.13)

H2O 3.78 (0.94)
L2 3.74 (0.93)
NAMM (Ours) 3.97 (0.99)

Selected max length samples (32641 average tokens per sample)
Method Time per task sample

Base model (full cache) 15.52 (1.00)
NAMM (full cache) 17.6 (1.13)

H2O 11.79 (0.76)
L2 10.5 (0.68)
NAMM (Ours) 13.61 (0.88)

Table 22: NAMMs evaluation on LongBench using Mistral 7B v0.3 as base model. The normalized
performance (in brackets) is calculated using the base model with full cache. The tasks used for
NAMM’s training are highlighted in gray.
Model/Task id Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 15.85 (1.00) 8.25 (1.00) 28.45 (1.00) 16.85 (1.00) 12.85 (1.00) 11.80 (1.00) 8.28 (1.00) 11.31 (1.00) 28.62 (1.00) 22.48 (1.00) 25.47 (1.00) 12.41 (1.00)

H2O 7.96 (0.50) 7.67 (0.93) 28.98 (1.02) 16.47 (0.98) 11.83 (0.92) 11.06 (0.94) 7.94 (0.96) 19.19 (1.70) 25.54 (0.89) 20.55 (0.91) 25.38 (1.00) 12.19 (0.98)

L2 9.77 (0.62) 8.51 (1.03) 30.20 (1.06) 17.72 (1.05) 32.46 (2.53) 18.00 (1.53) 15.77 (1.91) 16.23 (1.43) 11.68 (0.41) 19.49 (0.87) 24.57 (0.96) 6.17 (0.50)

NAMM (0-shot) 13.01 (0.82) 10.30 (1.25) 28.98 (1.02) 17.10 (1.01) 11.34 (0.88) 12.24 (1.04) 7.36 (0.89) 14.19 (1.25) 25.22 (0.88) 20.23 (0.90) 27.79 (1.09) 11.97 (0.96)

NAMM (Finetune) 9.82 (0.62) 10.36 (1.26) 28.40 (1.00) 17.38 (1.03) 11.72 (0.91) 12.11 (1.03) 7.28 (0.88) 19.04 (1.68) 25.77 (0.90) 21.74 (0.97) 27.72 (1.09) 12.52 (1.01)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 76.50 (1.00) 90.50 (1.00) 36.55 (1.00) 41.50 (1.00) 1.00 (1.00) 32.17 (1.00) 27.50 (1.00) 65.91 (1.00) 62.71 (1.00) 30.33 (1.00) N/A 10107 (1.00)

H2O 76.00 (0.99) 90.14 (1.00) 38.54 (1.05) 31.00 (0.75) 1.50 (1.50) 6.88 (0.21) 24.13 (0.88) 66.25 (1.01) 64.46 (1.03) 28.27 (0.96) N/A 6662 (0.66)

L2 72.50 (0.95) 75.65 (0.84) 33.91 (0.93) 13.50 (0.33) 0.50 (0.50) 6.00 (0.19) 24.50 (0.89) 64.46 (0.98) 50.11 (0.80) 26.27 (0.97) N/A 6662 (0.66)

NAMM (0-shot) 75.50 (0.99) 90.83 (1.00) 40.84 (1.12) 36.25 (0.87) 1.73 (1.73) 26.04 (0.81) 27.50 (1.00) 69.45 (1.05) 64.60 (1.03) 30.12 (1.03) 1.04 8518 (0.84)

NAMM (Finetune) 76.50 (1.00) 91.25 (1.01) 40.63 (1.11) 42.75 (1.03) 2.18 (2.18) 22.54 (0.70) 28.00 (1.02) 69.23 (1.05) 63.96 (1.02) 30.52 (1.07) 1.08 8654 (0.86)

cross-model fine-tuning, running a small amount of additional evolutionary optimization comprising
20 generations using CMA-ES and the same 3 training tasks used for Llama. We provide our full
results and analysis in Table 22.

Analogously to our other zero-shot transfer results provided in Section 4, we find that NAMMs
yield considerable benefits also when transferred to the Mistral model, overcoming the efficiency-
performance tradeoff of hand-designed baselines. Furthermore, this analysis also shows that per-
formance could be further improved by a few finetuning generations after transferring to a different
base models. While we did not investigate finetuning with our other transformers (e.g., Llama 70B),
we believe these results highlight the potential of cheaply improving NAMMs ’ already-remarkable
zero-shot benefits, which we hope will be further explored in future work.

C.7 ATTENTION SPECTROGRAM FEATURES ABLATION STUDY

We examined ablating the attention spectrogram features produced by the STFT procedure and re-
training our NAMMs with two different alternatives:
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Table 23: NAMMs evaluation on LongBench ablating the STFT features. The normalized perfor-
mance (in brackets) is calculated using the base model with full cache. The tasks used for NAMM’s
training are highlighted in gray.
Model/Task id Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Base model 10.38 (1.00) 12.79 (1.00) 22.60 (1.00) 21.31 (1.00) 10.41 (1.00) 12.67 (1.00) 7.54 (1.00) 25.86 (1.00) 29.34 (1.00) 23.93 (1.00) 0.92 (1.00) 2.66 (1.00)

NAMM (BAM, s2) 7.08 (0.68) 12.70 (0.99) 22.21 (0.98) 21.50 (1.01) 9.94 (0.95) 12.21 (0.96) 7.13 (0.95) 20.34 (0.79) 28.87 (0.98) 23.84 (1.00) 0.92 (1.00) 3.94 (1.48)

NAMM (BAM, s3) 9.14 (0.88) 12.63 (0.99) 21.94 (0.97) 21.34 (1.00) 9.71 (0.93) 11.63 (0.92) 6.98 (0.93) 20.58 (0.80) 28.78 (0.98) 24.39 (1.02) 1.04 (1.13) 3.63 (1.36)

NAMM (RAD features) 10.09 (0.97) 12.93 (1.01) 21.35 (0.94) 21.56 (1.01) 9.65 (0.93) 12.28 (0.97) 5.26 (0.70) 18.09 (0.70) 28.52 (0.97) 24.49 (1.02) 0.88 (0.96) 3.43 (1.29)

NAMM (Raw attention) 9.98 (0.96) 12.77 (1.00) 22.04 (0.98) 21.48 (1.01) 9.72 (0.93) 12.08 (0.95) 6.31 (0.84) 22.61 (0.87) 28.68 (0.98) 23.76 (0.99) 0.87 (0.95) 3.75 (1.41)

Model/Task id Few-shot Learning Synthetic Code Overall
4-1 4-2 4-3 4-4 5-1 5-2 5-3 6-1 6-2 All tasks Test tasks Cache size

Base model 73.00 (1.00) 89.45 (1.00) 46.54 (1.00) 40.00 (1.00) 1.48 (1.00) 12.18 (1.00) 28.80 (1.00) 69.09 (1.00) 65.17 (1.00) 28.86 (1.00) N/A 10107 (1.00)

NAMM (BAM, s2) 73.00 (1.00) 90.03 (1.01) 46.85 (1.01) 42.00 (1.05) 2.35 (1.59) 24.69 (2.03) 28.46 (0.99) 69.65 (1.01) 66.57 (1.02) 29.25 (1.07) 1.04 8521 (0.84)

NAMM (BAM, s3) 73.00 (1.00) 89.81 (1.00) 46.35 (1.00) 40.00 (1.00) 3.04 (2.05) 27.55 (2.26) 28.60 (0.99) 69.53 (1.01) 66.35 (1.02) 29.33 (1.11) 1.07 8409 (0.83)

NAMM (RAD features) 73.00 (1.00) 89.48 (1.00) 46.64 (1.00) 38.50 (0.96) 1.93 (1.30) 21.15 (1.74) 27.76 (0.96) 69.68 (1.01) 66.31 (1.02) 28.71 (1.02) 1.00 8000 (0.79)

NAMM (Raw attention) 73.00 (1.00) 89.48 (1.00) 46.66 (1.00) 39.50 (0.99) 1.48 (1.00) 21.86 (1.79) 28.46 (0.99) 69.73 (1.01) 66.77 (1.02) 29.10 (1.03) 0.95 8523 (0.84)

1. The naive approach of using the raw attention values directly (cropped to a fixed length) as
input to NAMMs.

2. Substituting the STFT features by constructing a ‘handcrafted’ feature representation that
simply includes three values: i. The sum of the attention values of each token. ii) The
recency of each token. iii. The diversity of each token (computed by concatenating the
keys and values to represent each token and averaging the L2 distance to all other tokens).
We refer to this baseline as RAD.

We trained these baselines only for two incremental phases on the PassageRetrieval-en and Dureader
tasks (thus, we also compared them with our original NAMM model after phase 2). Please refer
to Table 23 for our results. Overall, we find our baselines yield quite different behaviors, both
underperforming our original NAMM design.

First, we find our naive baseline, taking as input the cropped attention value, is not able to improve
over the full cache model when evaluated on the whole of LongBench. However, we note that
its performance on the training task is significantly beyond the base model. Thus, we find this
is strongly suggestive of the occurrence of overfitting, which we believe is to be expected as our
memory model now only conditions on very high-frequency information that only considers the
latest attention values.

Second, we find that our ‘handcrafted’ Recency-Attention-Diversity baseline is instead able to im-
prove over the original model, but its improvements are only marginal. We find these results con-
sistent with section D.2 of the extended analysis, which suggests that the behavior of NAMMs
is considerably influenced by a combination of different frequencies in the attention spectrogram
which are lost by this approach.
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Figure 14: Density plot of gradient magnitudes for each score with respect to all memory tokens
(left), together with a qualitative analysis extracting slices from three tokens (center) and computing
the dot products of the gradients with the scored-token’s feature vector (right).
D ADDITIONAL ANALYSIS

D.1 BACKWARD ATTENTION CROSS-TOKEN INTERACTIONS

We analyze the cross-token interactions learned through our BAM architecture by recording the
gradients of each token score si with respect to all input features vj for all tokens in memory after
storing 1024 tokens, i.e., for j = 1, 2, . . . , 1024. We denote these quantities as:

∇gji =
∂si
∂vj

. (6)

We provide a qualitative visualization of our results on the PassageRetrieval-en task for a randomly
selected layer and prompt in Figure 14. On the left subplot, we provide a visualization of the squared
magnitudes (∇gji )T∇g

j
i for each combination of tokens (either scored or attended upon in BAM,

i.e., indexed by i or j). Here, the effects of the backward mask are clearly visible, allowing tokens
to exclusively attend to later ones, where i > j. Predictably, these magnitudes mostly peak on the
subplot’s diagonal, indicating the self-influence that each token’s features have on its corresponding
output score. However, there are also notable exceptions, as shown in the center subplot, where we
overlap three slices from our left surface plot corresponding to the gradients of the first, together
with the highest and lowest-scored tokens in memory (respectively indexed by i =0, 292, and 800).
We provide additional directional information of each gradient vector from these slices in the right
subplot, where we take its dot product with the scored token’s own feature vector (∇gji )T vi. After
the first notable spike, at i = j, most other dot-product spikes with the largest magnitudes consis-
tently have negative values. Hence we can logically deduce that the scores of these tokens would
benefit from pushing the representations of future tokens away from their own. This result appears
to validate the hypothesis that BAM learns a mechanism for cross-token competition, incentivizing
diversity and promoting tokens covering unique frequencies in the attention spectrogram.

D.2 SENSITIVITY TO ATTENTION FREQUENCIES AND POSITIONAL ENCODINGS

We analyze the magnitudes of the gradients of the token scores si with respect to each dimension
in the token feature vectors. This procedure quantifies how varying each dimension in our attention
spectrogram representation locally affects the output score of NAMMs, thus, providing a heuristic
measure of its relevance (since scores determine which tokens get discarded). In Figure 15, we plot
the distribution of magnitudes for all the seventeen features up to the Nyquist frequency (0 to 16)
in the attention spectrogram. All frequency distributions seem to cover a wide range of values, with
each mean being close to the global mean, seemingly indicating NAMMs learn to make use of all
available spectrogram information for at least some of the tokens. Additionally, we note that many
of the higher frequencies have distributions with higher means and larger tails than the ‘ground
frequency’ at dimension 0. Furthermore, as shown in the rightmost-lower subplot, NAMMs appear
visibly less sensitive to recency information provided by the concatenated positional embeddings,
with a lower total influence than frequency information on token scores. Overall, these observations
seem to further validate the importance of going beyond simple hand-designed methods solely based
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Figure 15: Distribution of gradient magnitudes for the token scores with respect to all the seventeen
features in our attention spectrogram representations. In the rightmost-lower subplot, we also com-
pare the total magnitudes of the frequency information with the recency information in the positional
embeddings.

on token recency and the sum of the attention values, which has so far been considered a strong
established recipe for KV cache management (Oren et al., 2024; Zhang et al., 2024c; Ge et al.,
2024; Devoto et al., 2024).

D.3 INFINITEBENCH RESULTS COMPARISON

On the InfiniteBench tasks, our NAMM achieve particularly outstanding improvements over the
base model and other baselines, with an over ten-fold score increase (from 1.05% to 11%). How-
ever, we note that even with NAMMs, the performance of Llama 3 8B still lags considerably behind
the performance of powerful LMs designed specifically for long-context problems, as reported in
Zhang et al. (2024a). Nonetheless, on the En.Sum task, concerned with the summarization of fic-
titious novels, we find our main NAMM brings the performance of the context-extended Llama 3
from 7.73 to 14.91 even slightly beyond GPT4’s (14.73). While this performance is still low in
absolute terms12, such a result appears quite notable and suggests that improvements from NAMMs
are orthogonal in nature to the ones brought by architectural improvements and scaling, which, by
themselves, might be insufficient to address the challenges brought by long and noisy contexts.

We qualitatively inspect the effects of NAMMs on En.Sum by comparing example answers gen-
erated by Llama 3 with and without our memory models, together with examples generated by
GPT4. As illustrated in Figure 16, we find both the Llama and GPT models to incur several fail-
ure modes, producing answers that entirely miss the objective of the original task. For instance,
the context-extended Llama 3 often gets stuck in generation loops continuously repeating part of
sentences without coherent structure. Instead, the GPT answers appear to forego summarizing the
text and rather attempt to continue the provided passage, by generating end-of-text tokens or even
roleplaying some of the characters. However, while introducing NAMMs appears to avoid many
instances of these failure modes, we find the summarization of the memory-augmented Llama 3 still
displays many imperfections such as misspelling character names (left) or lacking much depth by
being extremely concise (right).

12InfiniteBench tasks are scored in a range between 0 and 100.
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Figure 16: Qualitative examples comparing the ground produced responses by Llama3 with and
without our NAMM memory, together with GPT4, on two prompts from the En.Sum task part of
InfiniteBench.

E EXTENDED RELATED WORKS

Similar to our NAMMs implementation, memory management through token eviction has been ex-
plored mostly to reduce memory constraints and enable querying LMs with longer contexts (Luohe
et al., 2024). Commonly, strategies entail simply cropping input prompts to a shorter length, of-
ten more effective when done from the middle rather than the ends (Xiao et al., 2023; Jin et al.,
2024). More advanced, several heuristic strategies have been proposed to identify and evict the least
important tokens in the KV cache, selectively pruning it to a fixed size for each layer. These strate-
gies assess token relevance using metrics like L2 magnitude (Devoto et al., 2024) or entropy (Yao
et al., 2024), or analyze statistics from the attention matrix, such as value magnitude or cumulative
sums (Liu et al., 2024b; Oren et al., 2024; Zhang et al., 2024c). Building on these ideas, Ge et al.
(2024) and Li et al. (2024b) apply multiple strategies simultaneously, choosing the best fit for each
layer by matching them with specific attention patterns. Similar ideas where also explored in older
work targeting encoder-decoder models, for instance, Huang et al. (2022) proposed a more complex
strategy for token selection based on solving the core-set problem with a parallelized greedy ap-
proach. However, unlike previous work, our approach uniquely employs a black-box model to learn
KV cache management in order to boost the base model’s performance with improved efficiency
coming as a free side benefit.

Many other methods to reduce memory consumption, affecting the KV cache, are mostly orthogonal
and likely complementary to our approach. For instance, MQA (Shazeer, 2019) and GQA (Ainslie
et al., 2023) propose merging different attention heads during the training of LLMs, either fully or
partially, to improve deployment-time throughput. Brandon et al. (2024), pushed these strategies fur-
ther, attempting to merge heads even across different layers. GQA is commonly employed in many
modern LMs, including the LLama 3 family of models which we use to train and evaluate NAMMs
on language tasks (Dubey et al., 2024). Furthermore, several methods have looked at KV cache
compression through either quantization of the keys and values (Hooper et al., 2024; Dong et al.,
2024a;b) or even the whole hidden states (DeepSeek-AI et al., 2024). Similarly to the aforemen-
tioned prior work concerning KV cache pruning, these methods considered mainly hand-designed
strategies, such as employing different quantization rates based on heuristically recognizing impor-
tant tokens. We note that using evolution to optimize for which channels to merge or compress could
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also yield new interesting unexplored approaches, combining these orthogonal directions with some
of the principles introduced by NAMMs.

There has also been much research interest in exploring new architectures to explicitly model com-
ponents of a memory system or to address key challenges of reasoning over longer contexts. For
instance, past work has looked at incorporating neural models of memory within neural networks by
implementing different reading and writing operations - either directly replacing their layers (We-
ston et al., 2014; Sukhbaatar et al., 2015), or introducing new auxiliary components (Rae et al., 2016;
Lample et al., 2019). In relation to transformers, more recent works have been proposed rethinking
the ingredients of the self-attention operation, mostly in the context of LMs. These works looked
at either efficient linear approximation to self-attention to overcome quadratic costs (Beltagy et al.,
2020; Katharopoulos et al., 2020; Wang et al., 2020; Peng et al., 2021), or introducing new kinds of
persistent tokens and storage to extend information propagation (Dai et al., 2019; Munkhdalai et al.,
2024; Hwang et al., 2024). However, as also noted by Dao et al. (2022), none of these methods and
approximations have managed to replace standard approaches so far. We take a different approach
that can be integrated in a zero-shot manner even without any fine-tuning.

Lastly, methodologically related to NAMMs, there have been other prior methods making use of
evolution for or with transformer models. For example, Tang & Ha (2021) also trained a small
attention-based model through evolution, exploiting the inherent parameter efficiency behind these
operations. Furthermore, So et al. (2019) proposed using evolution to meta-optimize the basic build-
ing of transformers via neural architecture search, while Akiba et al. (2024) focused on evolving
different merging strategies across layers belonging to LMs with different capabilities. As for these
works, we note that evolution plays a critical role for NAMMs, allowing us to directly optimize for
target performance and overcome the inherent non-differentiability underlying our new framework.
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Table 24: NAMMs evaluation on the canonical Needle In A Haystack task (Kamradt, 2024). The
normalized performance (in brackets) is calculated using the base model with full cache.

Model/Task name Needle prompt length Overall
0-10000 10001-20000 20001+ All prompt lengths Cache size

Base model (full cache) 8.87 (1.00) 7.53 (1.00) 3.50 (1.00) 6.32 (1.00) 32768
NAMM (BAM) 9.00 (1.02) 4.80 (0.64) 3.05 (0.87) 5.36 (0.85) 10208
NAMM (BAM), γ = 0.9999sw 9.00 (1.02) 5.33 (0.71) 3.45 (0.99) 5.68 (0.90) 10347

F LIMITATIONS AND FUTURE EXTENSIONS

F.1 EXPLORING THE DESIGN SPACE OF NEURAL ATTENTION MEMORY MODELS

In this work, we introduced Neural Attention Memory Models and showed their efficacy and poten-
tial to improve the performance and efficiency of transformers, even when evaluated zero-shot for
unseen architectures and domains. However, given the novelty of our framework, we note that our
design choices were mostly motivated by simplicity and practicality rather than quantitative empiri-
cal evidence. Thus, there is an extremely large design space in terms of the implementation, training,
and deployment of these models that should be explored beyond this work, which is likely to yield
further improvements.

For instance, while our current feature extraction, based on computing the spectrogram of the atten-
tion matrix, enables capturing global frequency information about the attention values of each token,
it might fall short of modeling local information with enough granularity. This hypothesized limita-
tion inherently comes from a few design choices we made with the purpose of limiting the input size
and corresponding parameter count of our memory models. In particular, our spectrogram features
only consider the real components of a short-time Fourier transform with a small Hann window of
size thirty-two. Thus, we only provide NAMMs information about a relatively limited number of
thirty-two frequencies, losing any notion of the phase of the attention matrix that would be captured
by the full complex-valued Fourier coefficients. Consequently, the representations of tokens with
high attention values for entirely non-overlapping queries occurring with the same frequency would
be indistinguishable to our models. Moreover, our exponentially moving average reduction over the
time dimension of the spectrograms provides an additional layer of heavy compression inevitably
trading off expressivity for simplicity.

To partially address these concerns, an alternative design we explored entailed delaying the ini-
tial element-wise exponentially moving average reduction. Concretely, this involved computing T
different scores, feeding mϕ all feature vectors ωt

i for t = 1, 2, . . . , T , across the attention spec-
trogram’s compressed time axis, only then reducing the resulting scores s1:Ti via EMA. While, in
principle, this alternative ordering would allow for additional expressivity without adding to the pa-
rameter count, in practice, when evaluated with an initial version of the simple 2-layer MLP model,
we found no significant performance difference and opted for the former lighter option. However,
introducing cross-token interactions with the improved BAM design and further scaling is likely to
introduce a need of re-evaluating this choice.

One further limitation comes from the current reliance on the exact values of the attention matrix.
This reliance precludes NAMMs training from making use of fast kernel algorithms developed to
accelerate inference by foregoing materializing attention values (Dao et al., 2022). While the main
focus of this work has been to introduce NAMMs and display its potential to improve transformers
across different domains, more scalable parameterizations and efficient backend integrations remain
exciting open challenges for future research.

F.2 IMPROVING LONG-CONTEXT SPARSE RETRIEVALS

One notable example exemplifying some of the aforementioned limitations, comes from the canoni-
cal Needle In A Haystack task (Kamradt, 2024), which has been used to qualitatively evaluate LLMs
for their ability to remember sparse information over long noisy horizons. We provide results on
this task using the best-performing NAMM after three stages of incremental training with the BAM
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architecture, averaging evaluation scores provided by a GPT-4 model (Achiam et al., 2023) across
different prompt ranges, consistently with Bai et al. (2024). As shown in Table 24, while NAMMs
do not manage to exceed the overall performance of the base model, they still provide some notable
efficiency gains. However, looking more closely at the score distribution across different prompt
length ranges we observe an unexpected trend that is in contrast with the rest of our results on other
benchmarks. In particular, while our NAMM obtains slightly higher than the base model for prompts
with a size less than 10000, it seems to increasingly struggle with longer prompts.

After comparing the spectrogram features extracted for the different prompts, our explanation for
these results highlights one current failure mode of the current implementation. In particular, the
Needle In a Haystack task is constructed such that the model is tasked to remember some important
information introduced at the beginning of the prompt, and later followed by completely unrelated
‘filler’ text. Hence, the attention scores and the corresponding spectrogram features for the tokens
containing the relevant information are forcibly sparse, being high only at the very beginning of the
prompt. Yet, since the evaluated NAMM reduces these features over the time axis of the spectrogram
with an EMA coefficient of γ = 0.99sw , all the frequency information regarding these tokens will
be inevitably overwritten. To empirically validate our theory we provide results simply raising the
EMA coefficient from γ = 0.99sw to γ = 0.9999sw . Since our NAMMs was never actually trained
with this higher coefficient, we note that this change effectively brings the input features out-of-
distribution. Nonetheless, as shown in the final row of Table 24, the larger coefficient still manages
to improve performance on the longer prompts by enabling the preservation of the frequency com-
ponents from the target ‘needle’ over a longer horizon. These findings suggest that future NAMM
designs should consider higher EMA reduction coefficients or, potentially, even directly learning
this parameter with evolution in addition to the NAMM’s network weights.
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