
Interpretable Brain-Inspired Representations Improve
RL Performance on Visual Navigation Tasks

Moritz Lange1, Raphael C. Engelhardt2, Wolfgang Konen2, Laurenz Wiskott1

1Ruhr-University Bochum, Faculty for Computer Science, Bochum, Germany
2TH Köln, Cologne Institute for Computer Science, Köln, Germany

moritz.lange@ini.rub.de, raphael.engelhardt@th-koeln.de, wolfgang.konen@th-koeln.de, laurenz.wiskott@rub.de

Abstract

Visual navigation requires a whole range of capabilities. A
crucial one of these is the ability of an agent to determine
its own location and heading in an environment. Prior works
commonly assume this information as given, or use methods
which lack a suitable inductive bias and accumulate error over
time. In this work, we show how the method of slow fea-
ture analysis (SFA), inspired by neuroscience research, over-
comes both limitations by generating interpretable represen-
tations of visual data that encode location and heading of an
agent. We employ SFA in a modern reinforcement learning
context, analyse and compare representations and illustrate
where hierarchical SFA can outperform other feature extrac-
tors on navigation tasks.

Introduction
Visual navigation is a complex but increasingly relevant task
in robotics and in machine learning (ML). Research in this
field touches on a wide range of agent capabilities, including
the parsing of tasks (Wang et al. 2021), locating objects to
interact with (Lyu, Shi, and Zhang 2022), mapping out the
environment (Chaplot et al. 2020) and planning (Gupta et al.
2017). A basic capability in navigation, however, is that the
agent always has to move around and find a path to its target.

Finding a path to a location, crucially, requires awareness
of one’s own location and heading. Unsurprisingly, it has
been found that an agent’s ability of self-localization is im-
portant for navigation and especially long-term planning in
ML (Zhu et al. 2021).

In computational neuroscience, slow feature analysis
(SFA) (Wiskott and Sejnowski 2002) is a method modelled
on the human visual system that has long been known for its
ability to extract position and head direction from a visual
stream. In fact, the representations it generates have been
related to place cells and head-direction cells, among oth-
ers (Franzius, Sprekeler, and Wiskott 2007). In this paper,
we utilize a hierarchical model of SFA to extract represen-
tations that explicitly encode location and direction of an
agent from visual input only. We use these representations
to successfully train a reinforcement learning (RL) agent in
simple navigation tasks, in order to showcase the potential
of these meaningful and explainable representations.

The contributions of this paper are threefold:

• We explain how SFA representations significantly differ
conceptually from current approaches to localization for
visual navigation in RL. Other methods either require
integration of information over time or lack a suitable
inductive bias for extracting interpretable location and
heading information from images. SFA addresses both
weaknesses (see Related Work).

• We show empirically that SFA representations are not
only capable of extracting location and heading, they also
make navigation more efficient than other representations
which do not contain this information (see Results).

• We explain limitations which currently prevent SFA from
seamless integration into RL agents, in particular a lack
of gradient-based training procedures and the require-
ments on environment coverage in training data (see Dis-
cussion).

Related work
This section explains how previous works on navigation
in ML literature have addressed the extraction of location,
heading and pose information. It also presents an overview
of the relevant prior works on SFA for navigation, which
stem from the field of computational neuroscience.

Localization for Navigation Representation learning in
the context of RL and navigation is often approached
through auxiliary tasks (Lange et al. 2023; Jaderberg et al.
2017; Ye et al. 2021a; Mirowski et al. 2017), often with-
out explicitly considering position, orientation or pose of an
agent. The works that do use these features, however, can
broadly be split into three categories.

The first, and easy approach is to just assume the agent is
provided with ground truth information on its current ab-
solute location and heading (Ye et al. 2021a,b). The sec-
ond approach can be called location through integration.
It is based on the idea that current changes in position
and direction can either be inferred or are provided to the
agent. These are then integrated over time (Mirowski et al.
2017; Chaplot et al. 2020). The third approach employs
neural networks (commonly convolutional neural networks
[CNNs] combined with recurrent neural networks [RNNs])
to learn representations from visual input (Mousavian et al.
2019). These networks do not have any inductive bias to-
wards learning position or heading in particular, although



they might be trained in a supervised way directly on this
information (Wang et al. 2017; Datta et al. 2021). Both these
papers, additionally, still implicitly integrate changes in lo-
cation. As a consequence, they share the main weakness of
the second approach: accumulation of errors over time. This
issue is nicely demonstrated in Figures 4, 6 and 8 of (Wang
et al. 2017).

While we see (Datta et al. 2021) as the most similar ap-
proach to ours, their method of how to extract location is
fundamentally different. Both theirs and ours work on vi-
sual input only, but ours is an unsupervised approach that
extracts position and heading based on the idea of extract-
ing slowly varying features. It does not use integration. This
makes our approach, to the best of our knowledge, the only
one that has a model architecture containing an inductive
bias appropriate for agent localization.

Navigation with Slow Feature Analysis First introduced
by Wiskott (Wiskott 1998; Wiskott and Sejnowski 2002), the
basic SFA method was extended to hierarchical networks,
not unsimilar to CNNs, in (Wiskott 2000). Franzius et al.
(Franzius, Sprekeler, and Wiskott 2007) show how this hi-
erarchical SFA (hSFA) can be used in combination with in-
dependent component analysis (ICA) to extract location and
head direction (resembling the neuroscientific concepts of
place cells and head direction cells) in a neurologically plau-
sible way from the visual input stream of a simulated animal.
Beyond first-person visual input, and potentially also inter-
esting for navigation, the same authors have also used hSFA
for object recognition (Franzius, Wilbert, and Wiskott 2011).
Based on this work, (Legenstein, Wilbert, and Wiskott 2010)
have first applied hSFA to RL: Using hSFA-generated repre-
sentations, they learn a simple Q-function to make a fish in a
tank, seen from above, move to a target. The most recent in-
spiration for this paper, finally, comes from (Schönfeld and
Wiskott 2013) who have designed a virtual maze for a virtual
rat and use this to extract location and head direction from
visual input. Since 2013, the fields of deep learning, rein-
forcement learning and visual navigation have come a long
way. Yet, to the best of our knowledge, there have been no
works on visual navigation based on hSFA representations
since. A gradient-based approach to SFA has been used in
the context of RL (Hakenes and Glasmachers 2019), but not
for navigation.

Learning Slow Features
Slow features in video streams can be extracted with hierar-
chical slow feature analysis (hSFA), which is based on the
underlying method of SFA. We first explain SFA in the lin-
ear and then non-linear case, then hSFA.

Slow Feature Analysis The idea of slow feature analy-
sis is based on the slowness principle. Invariant or slowly
varying features in a signal are usually of more interest than
quickly varying features, which are often closer to noise.
In a visual stream, for instance, individual pixels will vary
very quickly while objects or an agent’s position do not. To
extract slow features from a signal, SFA solves the follow-
ing optimization problem: Given a (commonly multidimen-

sional) signal x(t), find mappings yj = gj(x(t)) such that

∆yj := ⟨ẏ2j ⟩t (1)

is minimized under the constraints

⟨yj⟩t = 0 (zero mean) (2)

⟨y2j ⟩t = 1 (unit variance) (3)

∀i < j : ⟨yiyj⟩t = 0 (decorrelation and order) . (4)

Here ⟨⟩t denotes the temporal mean and ẏ the temporal
derivative of y. The extracted signals yj are the slowest
ones which can be created from x(t) given a family of map-
ping functions G. The constraints guarantee that trivial solu-
tions (a constant signal) are excluded and that output signals
are decorrelated and ordered by slowness. For linear SFA,
gj ∈ G are chosen to be linear.

In practice, this results in the following algorithm: First,
the signal is whitened to obtain zero mean and identity co-
variance. As an approximation of the temporal derivative,
subsequent data points in the time series signal are then sub-
tracted from each other. Lastly, principal component analy-
sis (PCA) is performed on the differentiated time series. The
resulting linear components are already decorrelated and or-
dered by variance. Since their variance now corresponds to
the temporal variance in original data, components are or-
dered by lowest rather than highest variance.

Non-linear SFA The family of linear functions is rela-
tively limited in their ability to extract interesting infor-
mation. Therefore, non-linear expansion is first used on
the input signal before performing SFA. This is commonly
achieved by quadratic expansion. Even hSFA still uses this
expansion as opposed to other non-linearities despite its
downside of significantly expanding the dimensionality of
data before processing.

Hierarchical SFA In order to deal with visual input
streams, or videos, hSFA stacks layers of non-linear SFA
modules on top of each other (see Figure 1). One such layer
consists of five components: A linear SFA step first reduces
the dimensionality of the data. A quadratic expansion then
introduces non-linearity and Gaussian noise is added (during
training only) to increase training stability. Finally, another
linear SFA extracts the slow features. These features are then
clipped, commonly and also in this paper to [−4, 4], to avoid
propagation of extreme values. Altogether, this whole hSFA
layer is commonly referred to as a step of quadratic SFA.

Each but the top-most layer operates on receptive fields
with certain strides, similar to a CNN. Moving a receptive
field across the image creates image patches. These patches
are flattened and treated as batches to train a hSFA layer,
similar to weight sharing in a CNN.

The top-most layer in hSFA is always a quadratic SFA
layer that just works on the flattened output of the second-
to-top layer. This is comparable to a linear layer at the end
of a CNN, it flattens the output and finally allows all parts of
the image to have an effect on any dimension of the output.

In contrast to a neural network, the layers of hSFA still, at
their core, contain singular value decompositions like PCA.



Figure 1: Illustration of the architecture of a hierarchical slow feature analysis model. The input image is perceived in patches
by receptive fields with certain strides. These patches are stacked and passed as batches through an hSFA layer. This happens
repeatedly until the last layer produces an output with multiple channels (features), but no width and height.

The system is therefore trained layer by layer instead of end-
to-end with gradient descent like a usual artificial neural net-
work. Additional control about extracted features can be ob-
tained by using independent component analysis or learning
rate adaptation, both of which are described in the Appendix.

Experiments
In this section, we first describe the RL environments we use
to investigate representations and agents. Then we describe
how we have trained hSFA, PCA and CNN feature extractors
and what agents we test them with.

Environments
We use 3D visual navigation environments of the Miniworld
package (Chevalier-Boisvert et al. 2023), which are easy to
modify and use. Each environment contains one red cube
representing the target. The task is always to reach the target.
There are no other objects present.

Observations are 60× 80 pixel RGB images which show
the current front view of the agent in the simulated world.
There are three possible actions available: 1) Turn left by
π/12 radians; 2) Turn right by π/12 radians; 3) Move a
small, fixed step forward.

We evaluate performance in terms of episode length l
rather than reward r. Episode length is a more interpretable
measure and contains the same information as the reward,
which is calculated as r = 1 − 0.2 l

lmax
. A reward is only

made available to the agent once it reaches the box.
Exemplary observations of each environment are shown

in Figure 5 in the Appendix. Top-views of their layouts are
shown when SFA representations are presented in Figure 2.

Some of the listed environments are customized, their
code is available online (Anonymous 2023).

StarMazeArm The target in StarMazeArm is always at
the end of the same arm. The initial agent position is a ran-
dom location in the center room of the maze, its initial head-
ing is random. Maximum episode length is 1500. The op-
timal policy is to turn until facing the target and then walk
forward. In theory this does not require locating the target,
as it is always in the same place.

StarMazeRandom This environment is identical to Star-
MazeArm with the exception that the target is placed in a
completely random position each episode. The optimal pol-
icy is the same as with StarMazeArm. As opposed to Star-
MazeArm, however, the agent first has to locate the target in
each episode before it can know where to walk.

WallGap The initial agent position is always in the upper
room, the initial target position in the lower room. Initial
agent heading is random. Maximum episode length is 300.
As opposed to the StarMaze environments, both rooms have
the same textures and thus look visually identical apart from
one distant skyscraper, which might be visible depending on
location and heading. This introduces visual symmetries that
make it impossible for many observations to extract posi-
tion and heading from one image alone. The best policy is
to walk straight to the gap between rooms, turn to face the
target and walk straight to it.

FourColoredRooms The initial agent position and head-
ing are random, as is the target position. Maximum episode
length is 250. As opposed to the previous three environ-
ments, the wall textures are unique for each wall. Each of the
four rooms has a different color, similar to Prince Prospero’s
rooms in Edgar Allen Poe’s The Masque of the Red Death
(Poe 1842). Each wall in a room has a different brightness
so that, in contrast to WallGap, there are no visual symme-
tries despite the symmetry of the layout. The main difficulty
is that the number of different rooms makes an exploration
strategy necessary to traverse rooms in search of the target.

RL Agents

We train PPO agents with different feature extractors (de-
scribed below) to solve each navigation task. PPO is a sim-
ple, general, state-of-the-art, on-policy, model-free policy
optimization algorithm in RL (Schulman et al. 2017). Sim-
ple here means that it does not involve any navigation capa-
bilities stated in Related work, such as mapping or planning.

We use the implementation of Stable Baselines3 (Raffin
et al. 2021) to train five agents with random seeds per setup.
Details and hyperparameters can be found in the Appendix.
We made all code required to reproduce our experiments and



results available on GitHub (Lange 2023)1.
In addition to agents trained with feature extractors, we re-

port performance of an agent following random performance
and an agent following an optimal policy for comparison.
The first quantifies the average episode length achieved by
100 random agents on each environment. The second quan-
tifies average episode length of 10 human trials per envi-
ronment, exploiting a top-view that includes both agent and
target and is not part of the observation. These trials were
performed by the authors following the optimal policies de-
scribed above.

Feature Extractors
We use a hSFA feature extractor, two CNNs and a PCA fea-
ture extractor with PPO. They are described below, more de-
tails can be found in the Appendix (Table 3).

hSFA The hSFA feature extractor is pre-trained individ-
ually for each environment layout, i.e. only once for Star-
Maze. We use the sklearn-sfa implementation (Schüler and
Lange 2023) to extract representations with 32 features. The
pretraining is done on 80,000 data points collected by an
agent following a random policy. While 80,000 is a high
number, such an amount of data is cheap to collect and in this
work we focus on demonstrating the capabilities of hSFA
rather than exploring the limits of its hyperparameters. Our
experience indicates that far fewer points should be suffi-
cient if collecting them were to be expensive. It is however
important that they cover a representative sample of com-
binations of all locations and headings that the agent might
later experience.

Training data is collected on empty environments, i.e. we
remove the target cube in order to cover all locations and
headings, even those that would otherwise be blocked by
the target. The hSFA representations are thus not trained on
observations with targets, even though we later find indica-
tions that the visual cue of a target might still end up being
encoded within representations during inference.

Regular resets at maximum episode length of each en-
vironment ensure a uniform coverage of the environment,
which we found to benefit representations. They do, how-
ever, also introduce discontinuities and therefore quick
changes in location and heading. We found that these dis-
continuities do not influence learned representations notice-
ably if episodes are sufficiently long. While we do not use
learning rate adaptation in this work, it could be employed
in order to reduce the influence of discontinuities on the rep-
resentation (see Appendix).

During the training of PPO agents, the pre-trained hSFA
feature extractor is used to pre-process the observations fed
into the PPO algorithm.

CNNs We train two CNN architectures to compare hSFA
against. They are prepended to the PPO agent and trained
jointly with the agent, i.e. on the RL learning task. The first
is NatureCNN (Mnih et al. 2015), the default for processing
visual observations in Stable Baselines3. Its purpose is to
compare hSFA representations with those that do not have

1https://github.com/MoritzLange/sfa-for-navigation

an inductive bias towards encoding location and heading.
Additionally, we employ a CustomCNN which mimics the
architecture of hSFA. This is to show that the advantage of
hSFA stems not from its architecture but from its optimiza-
tion target.

PCA Finally, we train a basic PCA feature extractor. Like
hSFA it is also pre-trained, on the same data as hSFA, and
then used to pre-process observations when training PPO.
We use the scikit-learn implementation (Pedregosa et al.
2011). The PCA representations consist of 32 features and
explain a surprising cumulative amount of variance: 81.9%
for the StarMaze environments, 92.2% for WallGap and
91.0% for FourColoredRooms. The purpose of PCA is to
show what PPO itself, without any ability to learn complex
features, is able to achieve.

Results
We first report the representations obtained with hSFA and
then the performance and behaviour of trained agents.

Representations
The representations learned by hSFA are analysed on test
sets of 80,000 points, sampled for each environment in the
same way as the training data for hSFA was sampled. Infor-
mation in individual hSFA features is visualized by plotting
a top view of the agent’s positions and coloring each point
by the value of a given feature. Images are shown in Fig-
ure 2 for the first 6 (out of 32) hSFA features. Since the train
and test set were sampled in the same way, these images ad-
ditionally provide an intuition on the environment coverage
provided by the train set.

In Figures 6 and 8 of the Appendix we also show the rep-
resentations learned by PCA and NatureCNN for compari-
son. These were obtained using the same procedure as with
hSFA, only the 512 dimensions of the NatureCNN output
were additionally passed through a PCA dimensionality re-
duction to be able to order and display them.

Location Figure 2 shows that location information is en-
coded in the hSFA features. A single feature might activate
in different locations, for instance feature 1 of FourColore-
dRooms has a different relatively constant value inside each
room and feature 5 for StarMaze is only strongly positive in
the middle room of the maze.

Different components encode different information about
location. Earlier components tend to encode global informa-
tion, later components tend to encode local information. The
more components are used, the finer the resulting resolution
of location can become.

Additionally we find that components are robust. Even
in the StarMaze environment, the maze arms can be con-
fidently differentiated although the only visual information
that breaks symmetry is the checkerboard pattern of the floor
texture being intersected by walls at different angles (see
Figure 5 in the Appendix).

If, however, observations in different positions look ex-
actly identical, this symmetry cannot be resolved by hSFA.



(a) First 6 hSFA features for StarMaze

(b) First 6 hSFA features for WallGap. Feature 4 is also shown for separate agent headings (green arrow).

(c) First 6 hSFA features for FourColoredRooms

Figure 2: Analysis of hSFA representations in different environments (top view). Figures 2a, 2b, 2c show activations of the first
6 hSFA feature dimensions for different positions and orientations in the room. The points are generated by a random agent
moving for 80,000 steps without reset. Colors fade from deep red for large positive values into white for zero into deep blue for
large negative values. Figure 2b additionally shows the 4th feature of WallGap for separate agent headings.

This becomes visible for WallGap in Figure 2b, where repre-
sentations are the same in each room. In FourColoredRooms
this problem does not arise despite the symmetry of its lay-
out, because each wall has a different color.

Both PCA and NatureCNN are also able to resolve
some location information. Their representations however
are much more limited in their interpretability. A seemingly
meaningful representation of location information is only
present in few dimensions and these are considerably noisier
than those produced by hSFA.

Heading If heading is encoded in a hSFA feature, its vi-
sualization becomes a pile of intermingled lines of differ-
ent colors. The feature takes different values for different
headings, and lines arise because even a random agent of-
ten walks a couple of subsequent steps into the same direc-
tion. This is the case in the fourth hSFA feature for WallGap,
shown in the upper row of Figure 2b.

In order to investigate the hSFA feature’s dependence on
heading further, Figure 2b in its lower row also shows fea-
ture values for different headings. To obtain these, a full cir-
cle is divided into 6 angle sections (the arrow indicates the

center of each angle section). Each image only shows the
agent when its heading is in a given angle section. Feature
values are negative when the agent looks south-west, posi-
tive when it looks noth-east, and undergo a transition phase
between these.

In the case of PCA, this same kind of pattern as for hSFA
is also present (see Figure 6b in the Appendix), although it
is less obvious. In the NatureCNN representations, however,
Figure 8b in the Appendix shows that the noise does not in
any way seem to encode heading.

For hSFA, heading generally tends to be encoded in later
features (for an explanation, see the ICA and LRA sec-
tion in the Appendix or (Franzius, Sprekeler, and Wiskott
2007)). Heading information is thus not visible in many of
the images of Figure 2. Still, the angle can be reconstructed
well from the first 32 hSFA features, as Figure 3 shows.
This reconstruction, based on linear regression, is accurate
to within a few degrees.

To reconstruct heading as in Figure 3 and Figures 7 and 9
of the Appendix, we learn two linear regressions that map
the features to sin(φ− π) and to cos(φ− π), where φ is the
heading. Its value is then reconstructed from the sine and co-



Figure 3: Reconstruction of heading angles. The angle is reconstructed from sine and cosine, which are provided by two linear
models trained on all 32 hSFA features. In order to see density, points have a high transparency. The top left and bottom right
corners contain points because of the heading’s circularity.

sine values. Regressions are trained on the first 40,000 steps
of our test data and evaluated on the remaining 40,000 steps.
It is necessary to use sine and cosine here because head-
ing is a circular variable with a discontinuity from 2π to 0.
Circular variables (not only angles) are always encoded by
their sine and cosine by hSFA, as these do not contain dis-
continuities and thus vary slowly. The circular nature of the
heading is also directly visible in the transition phases for
different headings in Figure 2b. Despite PCA not relying on
slowness, the same reconstruction technique leads to similar
results regarding heading for PCA (Figure 7), even though
it effectively returns noise for NatureCNN representations
(Figure 9).

RL Agents
The average episode lengths achieved by trained agents are
reported in Table 1. hSFA agents are much more successful
than other agents on the StarMaze environments, but not on
WallGap or FourColoredRooms. In the latter two, no agent
can be said to perform really well, although the PCA agent
outperforms others on WallGap and the NatureCNN agent
has a lead in FourColoredRooms.

In the following, we describe observed behaviour for the
best out of five agents in each setup. These observations
provide a deeper insight than the values in Table 1. Since
CustomCNN is consistently outperformed by NatureCNN,
we only investigate the more successful behaviour of Na-
tureCNN.

StarMazeArm The hSFA agent immediately turns in the
right direction towards the target and then walks straight to
it, even if the target is not immediately visible. Non-optimal
performance is explained by the agent sometimes getting
stuck at a protruding corner, which is something that regu-
larly happens to all agents across all environments. The PCA
agent walks to the target when it is visible, otherwise it wan-
ders into a random direction until it gets stuck in a wall. The
NatureCNN agent also walks to the target when visible and
walks in circles otherwise.

StarMazeRandom The hSFA agent walks in circles
around the center room until it sees the target, then walks

straight to it. In contrast to this, the NatureCNN agent only
spins around itself until it sees the target. If it spawned in a
location from which it cannot see the target, it spins until the
episode ends. The PCA agent displays the same behaviour
as in StarMazeArm.

WallGap The hSFA agent sometimes manages to walk di-
rectly to the gap connecting both rooms, but more often than
not seems confused about the correct direction and ends up
walking the wrong direction. If it makes it to the gap, it spins
around until it sees the target. If it sees the target it walks to-
wards it. In most cases, it never reaches this last step. The
NatureCNN agent walks around randomly until it happens
to see the target and then walks straight to it. In many cases
the episode ends before it found the target. The PCA agent
walks around randomly until it sees the gap. Then it walks
straight to the gap. Then it wanders randomly until it sees
the cube and walks straight to the cube.

FourColoredRooms The hSFA agent walks around al-
most randomly, often making some distance and covering
most of the room it is in. It makes no effort to search for
the target in other rooms. If the target becomes visible, the
agent does not react to it. Instead the agent seems to rely
on hitting the target by walking around. The NatureCNN
agent also walks around randomly, however it turns more
and covers significantly smaller distances. While it does not
actively seem to search for the target, it does walk straight
to the target when it becomes visible. The PCA agent walks
around randomly and covers as much ground as the hSFA
agent, albeit in a seemingly yet more random way. It does
however tend to walk to gaps between rooms or to the target
when either becomes visible. It does so in a less directed and
straightforward way than the NatureCNN agent so that the
episode often ends before the target is reached.

Discussion
We begin our discussion by interpreting our results regard-
ing hSFA representations as well as their use in visual navi-
gation with PPO agents. Then we state current limitations of
hSFA, which lead to our the last paragraph outlining poten-
tial future work.



Agent StarMazeArm StarMazeRandom WallGap FourColoredRooms
hSFA 69 (52, 82) 147 (92, 227) 277 (184, 300) 232 (225, 239)

NatureCNN 415 (270, 592) 309 (226, 430) 266 (233, 300) 187 (178, 201)

CustomCNN 652 (288, 1487) 364 (194, 443) 300 (299, 300) 237 (211, 250)

PCA 773 (621, 1069) 1005 (911, 1099) 179 (168, 191) 222 (212, 233)

Random 1134 (53, 1500) 1073 (1, 1500) 300 (300, 300) 231 (9, 250)

Optimal 36 16 76 53

Table 1: Average episode lengths achieved by agents with different feature extractors on the different Miniworld environments,
at the end of their training. Minimum and maximum of five agents (100 agents for the random policy) are reported in brackets.
Best performance is marked in bold. The reported optimal performance is also an average.

Representations Our results show that hSFA is concis-
tently able to extract information about both location and
heading of the agent, unless there are visual symmetries as
in WallGap. We stress again that these symmetries are un-
likely outside simple simulated environments.

It is important to note that because the hSFA algorithm di-
rectly calculates the solution to a mathematical optimization
problem, it is imperative that its outputs are the slowest sig-
nals that can be extracted from the input, given the function
family G learnable by its architecture. This stands in con-
trast to neural networks, where the quality of representations
often depends on random seed and initialization (Locatello
et al. 2019). Furthermore, it implies that if hSFA represen-
tations do not encode location and heading, then these are
not the slowest signals contained in the visual input stream.
Such a thing can happen for various reasons, for instance
due to boundary conditions of an environment that result in
discontinuities in heading or location.

We conclude that the slowness principle is a valid and
powerful inductive bias for extracting location and heading
in the visual input stream of an agent. Furthermore, the hSFA
algorithm is a suitable architecture to obtain such represen-
tations and thus obtains more interpretable representations
than those produced by PCA or CNN.

Navigation with hSFA The StarMazeArm environment
shows that hSFA representations with an explicit and in-
terpretable encoding of location and heading make visual
navigation simpler for an RL agent. The agent’s movements
across all environments except WallGap, in fact, become
more purposeful and confident due to the agent’s increased
awareness of its presence in relation to its surroundings.

In addition, the success on StarMazeRandom illustrates
that hSFA representations are able to retain information
about the visual scene – in this case whether the target cube
is visible – in addition to location and heading. The fact that
the target cube is ignored by the hSFA agent in FourColore-
dRooms, on the other hand, suggests that extraction of vi-
sual cues with current implementations of hSFA has its limit.
It has however been shown before that positions of slowly
moving objects can be extracted if hSFA is trained on such
data (Franzius, Wilbert, and Wiskott 2008). The question is
how slow these features are compared to agent location and
heading, and thus how many hSFA features are required to
obtain this information.

PCA and CNN are both better at extracting visual cues
from an image, as proven by the fact that agents using them
walk straight to the target, and sometimes towards gaps, as
soon as these become visible. On the other hand, PCA and
CNN representations do not or barely encode information
about location and heading, as indicated by their compar-
atively bad performance and inefficient behaviour in Star-
MazeArm. This is true even for CustomCNN, which sup-
ports our claim that the slowness bias rather than the partic-
ular architecture of an hSFA feature extractor is responsible
for learning location and heading.

In general, it can also be said that PPO is able to solve
simple navigation problems when given sufficient represen-
tations. That it requires reasonable representations becomes
clear by the comparatively bad performance on simple Star-
Maze environments with PCA representations, which only
compress images into the same dimensionality provided by
hSFA. For more complex tasks and environments, such as
FourColoredRooms however, navigation with a simple RL
agent achieves its limits even with meaningful representa-
tions. Here, additional capabilities become important, such
as planning or mapping.

Limitations The main limitation of hSFA is that it always
only considers the current observation without any context.
It shares this limitation with all other approaches we con-
sider in this work. For successful navigation even in com-
plex settings, it will be important to include an awareness
of history or context. All investigated approaches calculate
representations from individual observations and PPO only
learns a direct mapping from state to action. The ability of
executing a plan and keeping some sort of memory, as is the
case in planning approaches, will help in addressing this.
Future approaches built on hSFA might address this on a
representation level to extract location and heading despite
symmetries, or on an agent level to interpret representations
in context.

Another disadvantage of hSFA, when compared to neu-
ral networks, is that it has to be trained layer-wise. This
training is slow because it has not been as optimized as
gradient descent has, for instance in PyTorch. Additionally,
the quadratic feature expansion slows hSFA down. Beyond
training of hSFA, this means that training an RL algorithm
with observations that first get processed by a trained hSFA
feature extractor is about half as fast as training an RL al-



gorithm with prepended CNN feature extractor. A gradient-
based version of SFA, which could potentially address both
issues, has recently been proposed (Schüler, Hlynsson, and
Wiskott 2019).

Finally, the data used to train hSFA has to provide a rea-
sonable coverage of positions and headings in an environ-
ment. While this is usually easy to obtain by moving around
in a random manner for a short while, it would be nice to
learn location and heading online, during exploration of a
new area. This is currently not possible.

Future work This paper has shown how hSFA can be used
to extract location and heading information for visual navi-
gation purposes. The next step will be to combine this func-
tionality with other capabilities an agent requires for com-
plex navigation, in order to see how a state-of-the-art agent
with hSFA localization compares to one without. For such
an investigation, an hSFA feature extractor can be combined
with other feature extractors used e.g. for scene understand-
ing, with language models that decode tasks, and with other
modules. It would also be interesting to combine hSFA fea-
tures with planning approaches for navigation.

Another interesting research direction will be how to
overcome the stated limitations of hSFA itself. In particular
its requirement to be trained separately rather than end-to-
end and the requirement to have seen a representative sub-
sample of the environment during training. With gradient-
based SFA already being available, we predict that further
research will enable hSFA to be trained online and end-to-
end as part of an agent that explores new environments, sim-
ilar to how animals learn an internal model of new places as
they go there.

As a first step in this direction, it will also be interesting
to investigate the transfer of representations, i.e. how well a
hSFA feature extractor trained in one environment functions
in another one.

Lastly, hSFA representations have the potential to make
RL agent decisions more explainable. We have focused in
this work on the representations and shown how they are
significantly more interpretable than those of the other pre-
sented approaches that process image data. We have used a
classical black-box RL algorithm for the navigation problem
which we do not further try to explain here. For future work,
however, our findings open up multiple avenues for explain-
able agents. Most importantly, meaningful representations
usually require simpler agents, as these do not have to per-
form any kind of internal representation learning themselves
anymore, focusing purely on decision-making. Additionally,
even in the absence of simple agents, the input-output rela-
tions of more complex models like PPO become easier to
interpret with existing explainability methods when the in-
put is easy to interpret.

Acknowledgements
This research was supported by the research training group
“Dataninja” (Trustworthy AI for Seamless Problem Solv-
ing: Next Generation Intelligence Joins Robust Data Anal-
ysis) funded by the German federal state of North Rhine-
Westphalia.

References
Anonymous. 2023. Miniworld, fork. https://anonymous.
4open.science/r/Miniworld-D3D5/README.md.

Chaplot, D. S.; Gandhi, D.; Gupta, S.; Gupta, A.; and
Salakhutdinov, R. 2020. Learning To Explore Using Active
Neural SLAM. In International Conference on Learning
Representations.

Chevalier-Boisvert, M.; Dai, B.; Towers, M.; de Lazcano,
R.; Willems, L.; Lahlou, S.; Pal, S.; Castro, P. S.; and Terry,
J. 2023. Minigrid & Miniworld: Modular & Customizable
Reinforcement Learning Environments for Goal-Oriented
Tasks. CoRR, abs/2306.13831.

Datta, S.; Maksymets, O.; Hoffman, J.; Lee, S.; Batra, D.;
and Parikh, D. 2021. Integrating egocentric localization for
more realistic point-goal navigation agents. In Conference
on Robot Learning, 313–328. PMLR.

Escalante-B., A. N.; and Wiskott, L. 2012. Slow Feature
Analysis: perspectives for technical applications of a ver-
satile learning algorithm. Künstliche Intelligenz [Artificial
Intelligence], 26(4): 341–348.

Franzius, M.; Sprekeler, H.; and Wiskott, L. 2007. Slowness
and sparseness lead to place, head-direction, and spatial-
view cells. PLoS computational biology, 3(8): e166.

Franzius, M.; Wilbert, N.; and Wiskott, L. 2008. Invariant
object recognition with slow feature analysis. In Interna-
tional Conference on Artificial Neural Networks, 961–970.
Springer.

Franzius, M.; Wilbert, N.; and Wiskott, L. 2011. Invari-
ant object recognition and pose estimation with slow feature
analysis. Neural computation, 23(9): 2289–2323.

Gupta, S.; Davidson, J.; Levine, S.; Sukthankar, R.; and Ma-
lik, J. 2017. Cognitive mapping and planning for visual nav-
igation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2616–2625.

Hakenes, S.; and Glasmachers, T. 2019. Boosting Reinforce-
ment Learning with Unsupervised Feature Extraction. In
Artificial Neural Networks and Machine Learning–ICANN
2019: Theoretical Neural Computation: 28th International
Conference on Artificial Neural Networks, Munich, Ger-
many, September 17–19, 2019, Proceedings, Part I 28, 555–
566. Springer.

Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.;
Leibo, J. Z.; Silver, D.; and Kavukcuoglu, K. 2017. Rein-
forcement Learning with Unsupervised Auxiliary Tasks. In
International Conference on Learning Representations.

Lange, M. 2023. sfa-for-navigation. https://github.com/
MoritzLange/sfa-for-navigation.

Lange, M.; Krystiniak, N.; Engelhardt, R. C.; Konen, W.;
and Wiskott, L. 2023. Improving Reinforcement Learn-
ing Efficiency with Auxiliary Tasks in Non-Visual Environ-
ments: A Comparison. arXiv:2310.04241.

Legenstein, R.; Wilbert, N.; and Wiskott, L. 2010. Rein-
forcement learning on slow features of high-dimensional in-
put streams. PLoS computational biology, 6(8): e1000894.



Locatello, F.; Bauer, S.; Lucic, M.; Raetsch, G.; Gelly, S.;
Schölkopf, B.; and Bachem, O. 2019. Challenging com-
mon assumptions in the unsupervised learning of disentan-
gled representations. In international conference on ma-
chine learning, 4114–4124. PMLR.
Lyu, Y.; Shi, Y.; and Zhang, X. 2022. Improving target-
driven visual navigation with attention on 3D spatial rela-
tionships. Neural Processing Letters, 54(5): 3979–3998.
Mirowski, P.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard, A.;
Banino, A.; Denil, M.; Goroshin, R.; Sifre, L.; Kavukcuoglu,
K.; Kumaran, D.; and Hadsell, R. 2017. Learning to Navi-
gate in Complex Environments. In International Conference
on Learning Representations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.
Mousavian, A.; Toshev, A.; Fišer, M.; Košecká, J.; Wahid,
A.; and Davidson, J. 2019. Visual representations for se-
mantic target driven navigation. In 2019 International Con-
ference on Robotics and Automation (ICRA), 8846–8852.
IEEE.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Poe, E. A. 1842. The Masque of the Red Death.
Price, G. R. 1972. Extension of covariance selection mathe-
matics. Annals of human genetics, 35(4): 485–490.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-Baselines3: Reliable Re-
inforcement Learning Implementations. Journal of Machine
Learning Research, 22(268): 1–8.
Schönfeld, F.; and Wiskott, L. 2013. RatLab: an easy to use
tool for place code simulations. Frontiers in Computational
Neuroscience, 7: 104.
Schüler, M.; Hlynsson, H. D.; and Wiskott, L. 2019.
Gradient-based training of slow feature analysis by differ-
entiable approximate whitening. In Asian Conference on
Machine Learning, 316–331. PMLR.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Schüler, M.; and Lange, M. 2023. sklearn-sfa. https://github.
com/wiskott-lab/sklearn-sfa.
Wang, S.; Clark, R.; Wen, H.; and Trigoni, N. 2017. Deepvo:
Towards end-to-end visual odometry with deep recurrent
convolutional neural networks. In 2017 IEEE international
conference on robotics and automation (ICRA), 2043–2050.
IEEE.
Wang, X.; Huang, Q.; Celikyilmaz, A.; Gao, J.; Shen, D.;
Wang, Y.-F.; Wang, W. Y.; and Zhang, L. 2021. Vision-
Language Navigation Policy Learning and Adaptation.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43(12): 4205–4216.
Wiskott, L. 1998. Learning invariance manifolds. In Niklas-
son, L.; Bodén, M.; and Ziemke, T., eds., Proc. 8th Intl.
Conf. on Artificial Neural Networks (ICANN’98), Skövde,
Sweden, Perspectives in Neural Computing, 555–560. Lon-
don: Springer. ISBN 3-540-76263-9.
Wiskott, L. 2000. Unsupervised learning of invariances in
a simple model of the visual system. In Proc. 9th Annual
Computational Neuroscience Meeting (CNS’00), Jul 16–20,
Brugge, Belgium, 157.
Wiskott, L.; and Sejnowski, T. J. 2002. Slow feature analy-
sis: Unsupervised learning of invariances. Neural computa-
tion, 14(4): 715–770.
Ye, J.; Batra, D.; Das, A.; and Wijmans, E. 2021a. Auxil-
iary tasks and exploration enable objectgoal navigation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 16117–16126.
Ye, J.; Batra, D.; Wijmans, E.; and Das, A. 2021b. Auxiliary
tasks speed up learning point goal navigation. In Conference
on Robot Learning, 498–516. PMLR.
Zhu, F.; Zhu, Y.; Lee, V.; Liang, X.; and Chang, X. 2021.
Deep learning for embodied vision navigation: A survey.
arXiv preprint arXiv:2108.04097.

Appendix
Agent Training
To train our agents, we use the PPO implementation pro-
vided by Stable Baselines3 (Raffin et al. 2021). Parameters
which are different from default are reported in Table 2. In
addition to the reported parameters, we use the CnnPolicy
for the NatureCNN feature extractor and the MlpPolicy for
the other ones. We train for 1,000,000 steps on the Star-
MazeArm environment and for 2,000,000 steps on the re-
maining environments.

The layer specifications of the hSFA, NatureCNN and
CustomCNN feature extractors are listed in Table 3. hSFA
and PCA are pre-trained, and when training the PPO agent
they are only used to transform observations into a 32-
dimensional feature space. NatureCNN and CustomCNN
are trained end-to-end together with the PPO agent on the
RL task. Representations by hSFA, PCA and CustomCNN
are fed through two fully connected layers of a neural net-
work, as is common for PPO in Stable Baselines3. These
layers are identical for all three, trained together with the
PPO agent on the RL task, and are listed in Table 3. Na-
tureCNN, on the other hand, is already an internal feature
extractor of Stable Baselines3 and its representations are di-
rectly used for policy learning. In addition to the results in
Table 1 of the main paper, we show the training curves for
all agents on all environments in Figure 4.

ICA and LRA
In addition to the base hSFA algorithm, various extensions
have been proposed (Escalante-B. and Wiskott 2012). Two
of these can be used to affect the kind of representations



Figure 4: Performance of agents with various feature extractors on the different Miniworld environments. Shaded areas indicate
the minimum and maximum of five agents trained with different random seeds. Curves have been smoothed slightly for clearer
presentation.

Figure 5: Exemplary observations rendered from the different environments. In this observation of StarMaze, a red target cube
is visible. There is no shade from illumination, so the different wall texture colors in FourColoredRooms are in fact textures of
different colors.

Parameter Value
n steps 128
learning rate 0.00025
ent coef 0.01
clip range 0.1
batch size 128

Table 2: Parameters used with the PPO model of Stable
Baselines3. Only parameters that were not left at their de-
fault setting are listed.

extracted from the input. Both have been used to extract of
location and heading.

The first is a final layer of sparse coding achieved through
independent component analysis (ICA), which is attached
to the top of the hSFA model by (Franzius, Sprekeler, and
Wiskott 2007; Schönfeld and Wiskott 2013). The reason for
its use is that only this step of sparse coding transforms lo-
cation information into neuro-plausible place fields. Addi-
tionally, (Schönfeld and Wiskott 2013) claim that the use of
ICA was required to disentangle head directions. We find,
however, that we can obtain head direction and location in-
formation without ICA in this work.

The second is learning rate adaptation (LRA) (Franzius,

Sprekeler, and Wiskott 2007). By weighing data points, their
influence on the SFA results can be controlled. In practice,
this is achieved by including weights for the differentiated
time series when calculating the covariance matrix that is
used for singular value decomposition within SFA (Price
1972). To calculate weights for the differences between two
points, LRA requires an aggregation method. Geometric
mean is a good choice, as the arithmetic mean has a tendency
to smooth weights out. LRA should be used if there are sud-
den, fast and unnatural changes in a signal. Two prominent
examples are a suddenly mirrored or reflected heading when
bouncing into the wall of a simulated environment or an in-
terval of missing data in a time series. These discontinuities
would artificially make signals, such as the heading in this
example, change faster than they actually do. Such large dif-
ferences then effectively act similar to how an outlier would
in PCA. They strongly affect the whole representation, un-
less they are mitigated by a small weight. In some cases, it
might be practical to apply LRA to certain movements, in
particular fast rotations, since rotation of an agent typically
changes faster than location when they are normalized by 2π
and size of the environment, respectively. This is proven in
(Franzius, Sprekeler, and Wiskott 2007).

LRA is difficult to use if there are only few discrete ac-
tions, as is the case in this work. Larger weights for rota-
tions and smaller weights for moving ahead average each



Layer Type Receptive field Stride Exp. deg. # Channels out
hSFA layer 1 Quadratic SFA (10, 10) (5, 5) 2 32
hSFA layer 2 Quadratic SFA (3, 3) (2, 3) 2 32
hSFA layer 3 Quadratic SFA (fully connected) – – 2 32
hSFA MLP 1 Fully connected – – – 64
hSFA MLP 2 Fully connected – – – 64

PCA MLP 1 Fully connected – – – 64
PCA MLP 2 Fully connected – – – 64

NatureCNN layer 1 Convolution (8, 8) (4, 4) – 32
NatureCNN layer 2 Convolution (4, 4) (2, 2) – 64
NatureCNN layer 3 Convolution (3, 3) (1, 1) – 64
NatureCNN layer 4 Fully connected – – – 512

CustomCNN layer 1 Convolution (10, 10) (5, 5) – 32
CustomCNN layer 2 Convolution (3, 3) (2, 2) – 32
CustomCNN layer 3 Convolution (1, 1) (1, 1) – 32
CustomCNN MLP 1 Fully connected – – – 64
CustomCNN MLP 2 Fully connected – – – 64

Table 3: Parameters used for the hSFA and CNN networks. The MLP layers used with hSFA, PCA and CustomCNN are those
introduced by the MlpPolicy in Stable Baselines3. They are automatically appended to the hSFA and CustomCNN feature
extractors. In the sklearn-sfa package (Schüler and Lange 2023), the hSFA layer 3 does not have to be specified. Exp. deg.
refers to the degree of expansion, a parameter used in hSFA layers.

other out for almost all differences of data points collected
by a random policy as one action is very often followed by
a different one. Additionally, we find that we do not need
to use LRA under the conditions examined in this work to
obtain good representations.

Representations Learned by PCA and CNN
Here, we present the representations learned by the PCA
feature extractor (Figures 6 for location and 7 for heading)
and the NatureCNN feature extractor (Figures 8 for location
and 9 for heading). As in the Discussion in the main paper,
we omit CustomCNN here due to its inferior performance.
Since the dimensionality of the NatureCNN representations
is 512, and these have no natural order, we apply a PCA
dimensionality reduction to make information contained in
the representations more concise and also ordered. For Star-
Maze, WallGap and FourColoredRooms the first six PCA
components capture a cumulative variance ratio of 68%,
89% and 75%, respectively. Since the NatureCNN represen-
tations are trained together with the RL algorithm instead
of independently, the representations in Figure 8 are those
obtained by the best performing RL agent on each environ-
ment.



(a) First 6 PCA features for StarMaze

(b) First 6 PCA features for WallGap. Feature 2 is also shown for separate agent headings (green arrow).

(c) First 6 PCA features for FourColoredRooms

Figure 6: Analysis of PCA representations in different environments (top view). Figures 6a, 6b, 6c show activations of the first
6 PCA feature dimensions for different positions and orientations in the room. The points are generated by a random agent
moving for 80,000 steps without reset. Colors fade from deep red for large positive values into white for zero into deep blue for
large negative values. Figure 6b additionally shows the 2nd feature of WallGap for separate agent headings.

Figure 7: Reconstruction of heading angles for PCA. The angle is reconstructed from sine and cosine, which are provided by
two linear models trained on all 32 PCA features. In order to see density, points have a high transparency. The top left and
bottom right corners contain points because of the heading’s circularity.



(a) First 6 CNN features for StarMaze

(b) First 6 NatureCNN features for WallGap. Feature 4 is also shown for separate agent headings (green arrow).

(c) First 6 NatureCNN features for FourColoredRooms

Figure 8: Analysis of NatureCNN representations in different environments (top view). The raw unordered 512 NatureCNN
features are additionally passed through a PCA dimensionality reduction to obtain more meaningful and ordered visualizations,
so these Figures do not show the raw representations returned by NatureCNN. Figures 8a, 8b, 8c show activations of the first
6 PCA components for different positions and orientations in the room. The points are generated by a random agent moving
for 80,000 steps without reset. Colors fade from deep red for large positive values into white for zero into deep blue for large
negative values. Figure 8b additionally shows the 4th feature of WallGap for separate agent headings.

Figure 9: Reconstruction of heading angles for NatureCNN. The angle is reconstructed from sine and cosine, which are provided
by two linear models trained on the first 32 dimensions of the output of a PCA dimensionality reduction of the 512-dimensional
NatureCNN representations. In order to see density, points have a high transparency.


