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Abstract

Low-rank adaptation (LoRA) has become the stan-
dard approach for parameter-efficient fine-tuning
of large language models (LLM), but our the-
oretical understanding of LoRA has been lim-
ited. In this work, we theoretically analyze LoRA
fine-tuning in the neural tangent kernel (NTK)
regime with N data points, showing: (i) full fine-
tuning (without LoRA) admits a low-rank solu-
tion of rank r < V/N; (ii) using LoRA with rank
r> \/N eliminates spurious local minima, allow-
ing (stochastic) gradient descent to find the low-
rank solutions; (iii) the low-rank solution found
using LoRA generalizes well.

1. Introduction

The modern methodology of using large language models
involves (at least) two phases: self-supervised pre-training
on a large corpus followed by supervised fine-tuning to the
downstream task. As large language models have grown
in scale, pre-training has become out of reach for research
groups without access to enormous computational resources.
However, supervised fine-tuning remains feasible for such
groups. One key strategy facilitating this efficient fine-
tuning is Parameter-Efficient Fine-Tuning (PEFT), which
freezes most of the pre-trained model’s weights while selec-
tively fine-tuning a smaller number of parameters within an
adapter module. Among various PEFT methodologies, low-
rank adaptation (LoRA) (Hu et al., 2021) has emerged as the
standard approach. Given a pre-trained matrix Wy € R™*",
LoRA trains a low-rank update such that the forward pass
evaluates

Wox + AWz = Wox + BAx
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where r < min(m,n), A € R"™" is initialized to be a
random Gaussian, and B € R™*7 is initialized to be zero.

However, despite the widespread adoption of LoRA, our
theoretical understanding of its mechanisms remains limited.
One notable prior work is (Zeng & Lee, 2024), which ana-
lyzes the expressive power of LoRA, showing that for any
given function, there exist weight configurations for LoRA
that approximate it. However, their work does not address
whether LoRA can efficiently learn such configurations.
Additionally, Malladi et al. (2023) experimentally demon-
strated that under certain conditions, LoRA fine-tuning is
nearly equivalent to a kernel regression, where the A matrix
provides random features and is essentially not trained. This
regime neglects the possibility of the A matrix learning new
features and, consequently, leads to a LoRA rank require-
ment of 7 > ©(1/e?), where ¢ is an approximation toler-
ance, originating from the use of the Johnson—-Lindenstrauss
lemma (Johnson & Lindenstrauss, 1984). Crucially, LoRA’s
fundamental nature as a quadratic parameterization has not
been considered in the prior analysis of trainability and
generalizability.

Contribution. In this work, we theoretically analyze
LoRA fine-tuning and present results on trainability and
generalizability. We consider fine-tuning a deep (trans-
former) neural network with K -dimensional outputs using
N training (fine-tuning) data points. Assuming that train-
ing remains under the NTK regime, which we soon define
and justify in Section 2, we show the following. First, full
fine-tuning (without LoRA) admits a rank-r solution such

that w < K N. Second, using LORA with rank 7 such

that w > KN eliminates spurious local minima, al-
lowing (stochastic) gradient descent to find the low-rank
solutions. Finally, the low-rank solution found using LoRA
generalizes well.

1.1. Prior works

Theory of neural networks. The question of expressive
power addresses whether certain neural networks of interest
can approximate a given target function. Starting with the
classical universal approximation theorems (Cybenko, 1989;
Hornik et al., 1990; Barron, 1993), much research has been
conducted in this direction. (Delalleau & Bengio, 2011;
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Bengio & Delalleau, 2011; Lu et al., 2017; Duan et al.,
2023). These can be thought of as existence results.

The question of trainability addresses whether one can com-
pute configurations of neural networks that approximate tar-
get functions. Ghadimi & Lan (2013); Ge et al. (2015); Du
etal. (2017); Jin et al. (2017) studied general convergence
results of gradient descent and stochastic gradient descent.
Soltanolkotabi et al. (2018); Du & Lee (2018); Allen-Zhu
et al. (2019a;b); Du et al. (2019); Zou et al. (2020) stud-
ied the loss landscape of neural networks and showed that
first-order methods converge to global minima under certain
conditions.

The question of generalization addresses whether neural net-
works trained on finite data can perform well on new unseen
data. Classical learning theory (Koltchinskii & Panchenko,
2000; Bartlett et al., 2002; Bousquet & Elisseeff, 2002;
Hardt et al., 2016; Bartlett et al., 2017) uses concepts such
as uniform stability or the Rademacher complexities to ob-
tain generalization bounds. Generalization bounds in the
context of modern deep learning often utilize different ap-
proaches (Wu et al., 2017; Dinh et al., 2017; Zhang et al.,
2021), we use the Rademacher complexity for obtaining our
generalization results.

Neural tangent kernels. The theory of neural tangent
kernel (NTK) concerns the training dynamics of certain
infinitely wide neural networks. Jacot et al. (2018) shows
that the training of an infinitely wide neural network is
equivalent to training a kernel machine. Various studies
such as (Arora et al., 2019; Chen et al., 2020) expand the
NTK theory to more practical settings. Among these works,
Wei et al. (2022a) introduced the concept of empirical NTK
(eNTK) and showed that kernel regression with pretrained
initialization also performs well on real datasets, providing
a background to utilize NTK theory in fine-tuning.

Theory of transformers and LLMs. As the transformer
architecture (Vaswani et al., 2017) became the state-of-the-
art architecture for natural language processing and other
modalities, theoretical investigations of transformers have
been pursued. Results include that transformers are uni-
versal approximators (Yun et al., 2019), that transformers
can emulate a certain class of algorithmic instructions (Wei
et al., 2022b; Giannou et al., 2023), and that weight matrices
in transformers increase their rank during training (Boix-
Adsera et al., 2023). Also, (Zhang et al., 2020; Liu et al.,
2020) presents improved adaptive optimization methods for
transformers.

PEFT methods and LoRA. Low-rank adaptation (LoRA)
(Hu et al., 2021) has become the standard Parameter-
Efficient Fine-Tuning (PEFT) method, and many variants
of LoRA have been presented (Fu et al., 2023; Dettmers

et al., 2023; Lialin et al., 2023). LoRA has proven to be
quite versatile and has been used for convolution layers (Yeh
et al., 2024) and for diffusion models (Ryu, 2023; Smith
et al., 2023; Choi et al., 2023).

Theoretically, Aghajanyan et al. (2021) found an intrinsic
low-rank structure is critical for fine-tuning language mod-
els, although this finding concerns full fine-tuning, not the
setting that uses LoRA. Recently, Zeng & Lee (2024) an-
alyzed the expressive power of LoORA. However, we still
lack a sufficient theoretical understanding of why LoRA is
effective in the sense of optimization and generalization.

Matrix factorization. In this work, we utilize techniques
developed in prior work on matrix factorization problems.
Bach et al. (2008); Haeffele et al. (2014) established the
sufficiency of low-rank parameterizations in matrix factor-
ization problems, and their techniques have also been used
in matrix completion (Ge et al., 2016), matrix sensing (Jin
et al., 2023), and semidefinite programming (Bhojanapalli
et al., 2018).

1.2. Organization

Section 2 introduces the problem setting and reviews rel-
evant prior notions and results. Section 3 proves the exis-
tence of low-rank solutions. Section 4 proves LoRA has
no spurious local minima and, therefore, establishes that
(stochastic) gradient descent can find the low-rank global
minima. Section 5 shows that the low-rank solution gener-
alizes well. Finally, Section 6 presents simple experiments
fine-tuning pre-trained models for different modalities. The
experimental results validate our theory and provide further
experimental insights.

2. Problem setting and preliminaries

We primarily consider the setup of pre-trained large lan-
guage models fine-tuned with LoRA. However, our theory
does generally apply to other setups that utilize pre-training
and LoRA fine-tuning, such as diffusion models.

Matrix notation. For matrices A and B, let || A denote
the nuclear norm, || A|| r the Frobenius norm, and (A, B) =
tr(ATB) the matrix inner product. We let S™ and S} for the
set of n X n symmetric and positive semi-definite matrices,
respectively. Let R(-) and N(-) respectively denote the
range and the null-space of a linear operator.

Neural network. Let fo: X — R be a neural network
(e.g., a transformer-based model) parametrized by ©, where
X is the set of data (e.g., natural language text) and R
is the output (e.g., pre-softmax logits of tokens). K is
the output dimension of fg, where K = k for k-class
classification, K = 1 for binary classification, and K is the
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dimension of the label Y when using mean square error loss.
Assume the model has been pre-trained to © = Oy, i.e., the
pre-trained model is fg,.

Let W = (WO ... W) C O be a subset of the
weights (e.g., dense layers in QKV-attention) with size
W@ e Rm:xni for j = 1,...,T that we choose to fine-
tune. Let Wy = (Wél)7...,WéT)) C ©p be their corre-
sponding pre-trained weights. With slight abuse of notation,
write fw to denote fg, where all parameters of © excluding
‘W are fixed to their corresponding values in O.

Fine-tuning loss.
trained model with

Assume we wish to fine-tune the pre-

(X3, Ya) YLy,

where NNV is the number of (fine-tuning) training data. (In
many NLP tasks, it is not uncommon to have N < 100.)
Denote & = (6(V,...,6(T)) C O to be the change of W
after the fine-tuning, i.e., fw,+s is our fine-tuned model.
We use the empirical risk

N
£0) = 3 D U fwyss(X0), Y0),

with some loss function £. We assume ¢(z, y) is convex, non-
negative, and twice-differentiable with respect to = for any
y. (This assumption holds for the cross-entropy loss and the
mean squared error loss.) The empirical risk approximates
the true risk

L(6)= E

B [ (X))

with some data distribution P.

NTK regime. Under the NTK regime (also referred to as
the lazy-training regime), the change of the network can be
approximated by its first-order Taylor expansion

fwﬂ+5(X)%fWO(X)+<VfW0(X)76> (D

sufficiently well throughout (fine-tuning) training. To clarify,
fwors(X) € RE so the NTK regime requires the first-
order Taylor expansion to be accurate for all coordinates:

X) & f3L(X) + (X),8),

fwo+s(X)
where fi/ ) s the j-th coordinate of fyw forj=1,..., K.

(VI

The NTK regime is a reasonable assumption in fine-tuning
if ¢ is small, and this assertion is supported by the empirical
evidence of (Malladi et al., 2023). This prior work provides
extensive experiments on various NLP tasks to validate
that fine-tuning happens within the NTK regime for many,
although not all, NLP tasks.

Observation 2.1 (Malladi et al. (2023)). When prompt-
based fine-tuning (Schick & Schiitze, 2021; Gao et al., 2021)
is used, fine-tuning a pre-trained language model stays
within the NTK regime.

Motivated by this empirical observation, we define lin-
earized losses

N
6) = %ZE (fWO(Xz) + <va0(Xi)76>,Yi) ~ [:(5)

and

L@) = B [0 (fw,(X0) + (Vfw,(X:),0), Vi) | ~ £(9).

LoRA. We use the low-rank parameterization
6 = D (T g Rmaxni

where u() € R™*7 40 ¢ R%*" fori € {1,---,T}.
Under the NTK regime, the empirical risk can be approxi-
mated as

N
uvT Z fWO <G(X¢),UVT>,Y%) 5
where
u® ey
u= E G RmXT, vV = : G Rnx’l"
w(™) ey

withm = >""  m; andn = 31 n;, and
G(X;) = diag (Vwo) fw, (Xi), - -+, Vv fa, (X))

is an collection of K m x n block diagonal matrices. To clar-
ify, G(X;) € REXm*n 50 (G(X;),uvT) € RE should
be interpreted as K inner products of m X n matrices where
each matrices correspond to each coordinates of f. More
specifically, G)(X;) € R™*" and
((G(X),uvT)), = (G (X;), uvT)

forj =1,..., K. Note that ﬁ(uvT) under the NTK regime
is non-convex in (u, v) so SGD-training does not converge
to the global minimizer, in general.

Weight decay on LoRA is nuclear norm regularization.
The LoRA training of optimizing L is often conducted with
weight decay (Hu et al., 2021; Dettmers et al., 2023), which
can be interpreted as solving

3llull% +

minimize L(uvT) + %”VH%W

u,v
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with regularization parameter A > 0. This problem is equiv-
alent to the rank-constrained nuclear-norm regularized prob-

lem . a s
L. In(8) 2 P(s Sl
minimize A(6) (0) + Alld]|

This is due to the following lemma.

Lemma 2.2 (Lemma 5.1 of (Recht et al., 2010)). Letr > 0.
For § € R™*"™ such that rank(d) < r,

.
18]l = 5 min {ull? + [[v]3 | u e R, v e R}

(The connection between weight decay on Burer—-Monteiro
style low-rank factorization and nuclear norm regularization
has been previously in different contexts not directly related
to LoRA (Cabral et al., 2013; Pilanci & Ergen, 2020).)

Second-order stationary points. Let L: R™*" _5 R be
twice-continuously differentiable. We say U € R™*™ is a
(first-order) stationary point if

Vi(U)=o0.

We say U € R™*"™ is a second-order stationary point
(SOSP) if

VLU)=0,  VLU)[V,V] >0,

for any direction V' € R™*"™, We say U is strict saddle if U
is a first- but not second-order stationary point. Lastly, we
say U € R™*™ is a local minimum if there exists an open
ball B that contains U and

L(U) < L)

forany U’ € B. It follows that a local minimum is an SOSP.

The following results, roughly speaking, establish that
(stochastic) gradient descent only converges to SOSPs when
a loss function is twice-continuously differentiable.

Theorem 2.3 (Theorem 4.1 of (Lee et al., 2016)). Gradient
descent on twice-differentiable function with random ini-
tialization, almost surely, does not converge to strict saddle
points. Le., if gradient descent converges, it converges to an
SOSP, almost surely.

Theorem 2.4 (Informal, Theorem 1 of (Ge et al.,
2015)). Stochastic gradient descent with noise on twice-
differentiable strict saddle function (i.e., every stationary
point is either a local minimum or a strict saddle) does
not converge to strict saddle points with high probability.
Le., if stochastic gradient descent with noise converges, it
converges to an SOSP with high probability.

Therefore, if we can show that all SOSPs are global minima
in our setup of interest, then (stochastic) gradient descent
will only converge to global minima.

3. Low-rank solution exists

In this section, we show that full fine-tuning in the NTK
regime admits a low-rank solution of rank r < v/N. The
existence of a low-rank solution provides theoretical legit-
imacy to using the low-rank parameterization of LoRA,
which, of course, can only find low-rank solutions.

Theorem 3.1. Let A > 0. Assume Ly(8) has a global
minimizer (not necessarily unique). Then there is a rank-r
solution such that w < KN.

The assumption that Ly () has a global minimum is very
mild; it is automatically satisfied if A > 0. When A\ = 0, the
assumption holds if £ is the mean squared error loss.

The inspiration for Theorem 3.1 comes from the classical
results of (Barvinok, 1995; Pataki, 1998; 2000) that establish
that semi-definite programs (which have symmetric positive
semi-definite matrices as optimization variables) admit low-
rank solutions. We clarify that Theorem 3.1 does not require
4 to be symmetric nor any notion of “semi-definiteness” (&
is not even square).

Proof sketch of Theorem 3.1. We quickly outline the key
ideas of the proof while deferring the details to Appendix A.

We can show that finding 5 € argming Ly (&) with
rank(d%) = r is equivalent to finding a rank-r global mini-

mum of F': S&mﬂl) — R where

F(Z)=L(Z)+ %tr(Z)

and Z = Z[1 :m,m+1:m+n] € R™*" le, Zisa
off-diagonal submatrix of Z such that

Z = {Z*T f] )

Now suppose Z* € Sim'm) is a global minimizer of F.
Define S(Z*) £ {Z € St R(Z) C R(Z*)} and a
linear operator A: S(+7) — REN g

A(Z)ij = <G(j)(Xi)7Z>7
Now let rank(Z*) = r and assume

{0} = S(Z*) N N(A).

Then by dimension counting, we have the following inequal-
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Figure 1. Geometric intuition of Theorem 3.1. The three dimensional space describes the space of 2 by 2 matrices B

ij . The surface

z = xy represents the rank 1 matrices. The blue region on the surface correspond to the region of smaller objective values, and the set of
global minima are depicted with purple. (Left) Plot of (a) with N = 1. The set of global minima is a plane, and the intersection with the
surface z = xy (curve) is the set of rank-1 global minima. (Middle) Plot of (b) with N = 2. the set of global minima is a line, and the
intersection with the surface (two dots) is the set of rank 1 global minima. (Right) Plot of (c) with N = 3. The set of global minima is a
line, and there is no intersection with the surface, i.e., there is no global minimum of rank-1 but admits a rank-2 global minima.

1ty.
0 = dimS(Z*) + dimN (A) — dim(S(Z*) + N (A))
= dimS(Z*) 4 dim(S™) — dimR(A)
—dim(8(Z*) + N(A))
= dimS(Z*) — KN + dim(S(™+™)
—dim(S(Z*) + N(A))
= dimS(Z*) — KN +dim(S(Z*)* N R(A))
> dimS(Z*) — KN
If there exists nonzero Z € S(™*+™) such that Z € S(Z*) N
N (A), then we can show that there exists nonzero t € R
such that Z* + tZ is also a global minimizer of F' with

strictly lower rank. Replace Z* with Z* 4 tZ and repeat
this process until we find a solution Z* with

(0} = S(Z*) NN (A).

Together with the fact that dimS(Z*) = @, we have

the desired result. O

Ilustration of Theorem 3.1. The following toy example
illustrates the geometric intuition of Theorem 3.1. Let ¢

w

be the mean square error loss, K = 1,4 = ME and

A = 0 (no regularization). Then consider the following
objective functions each for N = 1, 2, and 3:

Lo(8) = (z +y)° (a)
Lo(8) = %(z+4)2 + %(Hy)? (b)

Lo(8) = %(w — 1)+ é(z —4)? 4 %(\/??x +3y)? (¢)

The set of low-rank (rank-1) solutions for the three objec-
tives are depicted in Figure 1.

4. GD and LoRA finds low-rank solution

In this section, we show that the optimization landscape with
LoRA in the NTK regime has no spurious local minima if
the LoRA parameterization uses rank r > /N and if we
consider an e-perturbed loss. This implies that optimizers
such as stochastic gradient descent only converge to the
low-rank global minimizers.

Theorem 4.1. Let \ > 0. Assume L () has a global min-
imizer (not necessarily unique) and w > KN. Con-
sider the perturbed loss function L A, p defined as

. . A A
Lap(uv) 2 Llav?) + Sl + SIVIE + (P.QQT),

where QQ = e RMTM)X" gnd P e Si’”*”) is pos-

itive semi-definite. Then, for almost all nonzero P (with

respect to the Lebesgue measure on S(f”rn) C Stm+n) o

R(?n+n)(7n+n+l)
2

Of[A/)\,p.

), all SOSPs Ofi/)\7p are global minimizers

To clarify, the conclusion that ‘all SOSPs are global mini-
mizers’ holds with probability 1 even if the distribution of
P is supported on {P € SU"™™ : || P|| < ¢} for arbitrarily
small € > 0. In the practical LoRA fine-tuning setup where
no perturbation is used and P = 0 is set deterministically,
Theorem 4.1 does not apply. However, we can neverthe-
less interpret the result of Theorem 4.1 to show that LoRA
fine-tuning generically has no spurious local minima.
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If we do use a randomly generated small perturbation P
so that Theorem 4.1 applies, the solution to the perturbed
problem with small P does not differ much from that of the
unperturbed problem with P = 0 in the following sense.

Corollary 4.2. Consider the setup of Theorem 4.1 and
let e > 0. Assume 85 € argming L(8). Assume P is
randomly sampled with a probability distribution supported
in

{(Pesi™™ . |P|r <e}

and is absolutely continuous with respect to the Lebesgue
measure on SOmn) o Rl Then for any SOSP
(0, V) of La,p

L(@vT) < L(83) + A0l + 22|85
:InélnL)\( )+ 2|65 ||«

Le., if (@, V) is an SOSP (and thus a global minimizer by
Theorem 4.1) of the perturbed loss Ly p, then it is an e-

approximate minimizer of the unperturbed loss L.

So if w > KN, then Theorem 2.3, Theorem 2.4, and
Corollary 4.2 together establish that (stochastic) gradient
descent finds a avT such that its unperturbed empirical risk
is e-close to the the minimum unperturbed empirical risk.

4.1. Proof outlines

The proof is done by continuing our analysis of global mini-
mum of Ly (d). Given that low-rank solution exists, which
we proved in the previous section, recall that LoRA training
with weight decay is equivalent to solving

argmin L(uvT) +
u,v

A A

=l + S I

In this section, we relate SOSPs with global minimum,
which opens the chance to find a global minimum by using
gradient-based optimization methods. We start the analysis
from the following lemma, which is a prior characterization
of SOSPs in the matrix factorization.

Lemma 4.3. (Theorem 2 of (Haeffele et al., 2014)) Let

G: S(+m+”) — R be a twice differentiable convex function

with compact level sets, H : SE:H_") — R be a proper con-

vex lower semi-continuous function, and r > 0. If the
Sfunction F: U — G(UUT) 4+ H(UUT) defined over matri-
ces U € RU"MXT has a second order staionary point at a
rank-deficient matrix U, then UUT is a global minimum of
G+ H.

We build our analysis upon Lemma 4.3. However,
Lemma 4.3 is not directly applicable to our setting since it
requires that the SOSP must be rank-deficient. However,

this can be effectively circumvented by employing a per-
turbed empirical risk:

e A A
minimize L(uvT) + 2 [[ul3 + S vI[E + (P, QQT),
u, v
where () = , and P is a positive semi-definite matrix.

Now we get the following lemma by applying Lemma 4.3
to the perturbed empricial risk.

Lemma 4.4. Fix \ > 0. Assume [A/A( ) has a global min-

S

imum (not necessarily unique), P € is nonzero

positive semi-definite, and r > 0. IfQ = A} e R(mtn)xr
is a rank deficient SOSP of

<

- . A
Lap(u,v) = LuvT) + Sullf + SIvIE + (P.QQT),

then Q is a global minimum of L p(u, v).

Proof. Define G, H : Ssrmﬂl) — R to be

GIX) = 24r(X) + ~ LX)

. (P ),

H(X)
where X is the off-diagonal submatrix of X defined in (2).
Note that G has compact level set for every A > 0 since
tr(X) > 0and P, X are positive semi-definite, concluding
that Q) p is a global minimum of F(Q) £ G(QQT) +
H(QQT) = Lap(u,v). 0

We now give a detailed analysis of the proof of Theorem 4.1.
The structure of the proof is inspired by the original work
of Pataki (1998) and followed by Burer & Monteiro (2003);
Boumal et al. (2016); Du & Lee (2018). The proof uses
an application of Sard’s theorem of differential geometry.
The argument is captured in Lemma 4.5, and its proof is
deferred to Appendix B.

Lemma 4.5. Let M be m-dimensional smooth manifold
embedded in R and V' be a linear subspace of R* with
dimension n. If m + n < d, then the set

M+V={p+v:peMuveV}

has Lebesgue measure zero in R%.

Proof of Theorem 4.1. We show that second-order station-

ary point Q AP = [3} is rank-deficient for almost all posi-

tive semi—deﬁnite_: P, then use Lemma 4.4 to complete the

proof. Denote f) for the j-th coordinate of f. For simplic-

ity of notations, define
V£ 10, (6) + (GO

X;),uvT),
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and L9
G o - YR
Ui - NaY(J) K(Y;,Y;)

for1 <i< Nand1l < j < K, which depends on u and v.
Then for v = {0} € REN define

N K
S@) 233 WP GU(X;) e R
i=1 j=1

Then by first-order gradient condition, we have

< {S(S)T SE)U)] + A+ P)QA,P =0

AM

We observe that the range of Q p € RU"F™)*" is in the
nullspace of M € S+, We now suppose Q A, p has full
rank, i.e., rank(Q)\,p) = r. Hence, we have the following
inequality:

r=rank(Qy p) < dim N (M) <m+n

Now forr < s <m + nand s € Z, define

Ag={P:P=M =AM eSO dimN (M) = s}.

Then from Proposition 2.1 of (Helmke & Shayman, 1995),

('m,+71)(;71+n+1) N

A, is a smooth manifold embedded in R
S(m+1) with dimension

(m+n+1)(m+n) s(s+1)
2 2 '
Now by definition of P, we know that

dimA, =

m+n
Pe | (A +R(9))
where “+ 7 is the set-sum (Minkowski sum) and R(S) is

the range of S(v) in R for any v € REN . The
dimensions can be bounded by
(m+n)(m+n+1)

dimA, < : - T(T; D)

forr <s<m+mnand

dimR(S) < KN.
Therefore given that T(TTH) > KN, we have

1
dimA, + dimR(S) < F ”)(T’; tntl)
Then, by Lemma 4.5, which is effectively an application of
Sard’s theorem, we can conclude A; + R(S) is a measure-

zero set, and the finite union of such measure-zero sets is

measure-zero. This implies that every P that makes Q AP
to be of full rank must be chosen from measure-zero subset
of S(f”m) C Sm+n) Therefore we may conclude that

rank(@ a,p) < r for almost every nonzero positive semi-
definite P. O

Proof of Corollary 4.2. Assume 8% € argming Ly (8). We
observe the following chain of inequalities.

5 2 5o A A
L(8) + A8l < L™ + Slalli + 51913
5 o s A .
< L@vT) + SalF + SIvIE + (P.QQT)

=Ly p(Q,v),

where the first inAequality of is from Lemma 2.2, the second
is from P and QQT being positive semi-definite. On the
other hand, we can find u* and v* such that §5 = u*v*T

and ||63][. = 3(|[u*]|% + [[v*]|%) by using Lemma 2.2.
*

Now take Q* = {3* , then we get

Ly p(u*,v*) = L(8%) + All83 ]|« + (P,Q*Q*T)
L(83) + N85 + £ Q*Q*T |1
L(6%) + |65« + €| Q*[I3
L(83)
L(83)

IN

IN

83) + A0 + ellu*|[ +ellv*E
8%) + Alloxl« + 2¢|0% ]l

where the first inequality is Cauchy—Schwartz inequality,
and the second inequality is from sub-multiplicativity of
| - || #- Moreover by Theorem 4.1,

and this happens for almost sure, since we sampled P from

a probability distribution which is absolutely continuous
. (m+4n)(m+n+1)
with respect to the Lebesgue measure on R 2

S(m+n),

O IR

5. Low-rank LoRA solution generalizes well

In this section, we establish a generalization guarantee for
the low-rank solution obtained by minimizing the perturbed
loss L A, p of Theorem 4.1. For simplicity, we restrict the
following main result to the cross-entropy loss. General-
ization guarantees for general convex, non-negative, and
twice continuously differentiable losses, are provided as
Theorem C.6 in Appendix C.

Theorem 5.1. Assume ¢ is cross-entropy loss. Assume the
population risk L has a minimizer (not necessarily unique)
and denote it as 85, € argming L(8). Assume 8., # 0.

true

For1 < j < K, suppose |GU)(X)||r < R almost surely
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Figure 2. Training curves (training loss vs. epochs) on different NLP tasks.

with respect to the random data X ~ P. Lete > 0, n €
(0,1), and

Write 83 to denote a minimizer (not necessarily unique) of
L (8). Consider the setup of Corollary 4.2 with P randomly
sampled with a probability distribution supported in

A[07 e«
PesS™ . |P|p < 20 truellx
{Pesi™™ || ST )

and is absolutely continuous with respect to the Lebesgue
(m+n)(m+n+1) A
measure on S+ = R 2 . Let (01,V) be an

SOSP Ofi/)\7p. Then with probability greater than 1 — n,

. . . 2(2+¢)>VKR ( 1)
L(OVT)—L(0tre) < l10trpells————=—"— 2+ 4/log —
(AVT)=L(85rue) < [105ruell Wii \/ ;

In the context of fine-tuning, where the target task is closely
related to the pre-training task, it is natural to assume that
0} ue in Theorem 5.1 is “small”. The proof, deferred to
Appendix C, utilizes standard arguments with Rademacher

complexity.

6. Experiments

In this section, we conduct simple experiments on fine-
tuning linearized pre-trained models to validate our theory.!

!Code available at
https://github.com/UijeongJang/LoRA-NTK.

Experimental setup on NLP tasks. We use prompt-based
fine-tuning (Schick & Schiitze, 2021; Gao et al., 2021) and
consider the same architecture and dataset as in (Malladi
et al., 2023), which empirically verifies that with prompt-
based fine-tuning, the fine-tuning dynamics stay within the
NTK regime. We present the results of six NLP tasks
that were also considered in (Malladi et al., 2023): sen-
timent analysis (SST-2, MR, CR), natural language infer-
ence (QNLI), subjectivity (Subj), and paraphrase detection
(QQP). We optimize a linearized RoBERTa-base (Liu et al.,
2019) model with dataset of size 32 (N = 32) with two
labels (K = 2) using cross entropy loss. With LoRA rank
r > 11, our theory guarantees that no spurious local min-
ima exist. For a baseline comparison, we also perform full
fine-tuning (without LoRA) on the linearized model. The
training curves are presented in Figure 2, and additional
details are provided in Appendix D. Results showing test
accuracy are also presented in Appendix D.

Experimental setup on image and speech classification
tasks. We use a pre-trained vision transformer (Dosovit-
skiy et al., 2021) and fine-tune it on the bean disease dataset
(Makerere Al Lab, 2020) to perform an image classification
task with 3 labels. We use dataset of size 48 with three
labels. Similar to our experiments on NLP tasks, we find
that training curves converge to the same loss value, where
the rates of convergence differ.

For speech classification, we use a pre-trained wav2vec2
(Baevski et al., 2020) model and fine-tune it on a SUPERB
dataset (Yang et al., 2021) to perform a speech classification
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Figure 3. Training curves (training loss vs. epochs) on image and speech classification tasks.

task with 4 labels. We use a dataset of size 64 with four
labels. We also find that the training curves converge to the
same loss value. The details are the same as with the image
classification task.

The training curves of both image and speech data are pre-
sented in Figure 3, and additional details are provided in
Appendix D.

Empirical observation. The experiments validate our the-
ory as the training curves converge to the same globally
optimal loss value. However, we do observe that the rates
of convergence differ. When the LoRA rank is higher or
when full fine-tuning is performed and LoRA is not used,
fine-tuning converges faster. Indeed, our theory ensures that
spurious local minima do not exist, but it says nothing about
how convex or favorable the landscape may or may not
be. Our intuitive hypothesis is that using lower LoRA rank
creates unfavorable regions of the loss landscape, such as
plateaus or saddle points, and they slow down the gradient
descent dynamics.

If this hypothesis is generally true, we face an interesting
tradeoff: lower LoRA rank reduces memory cost and per-
iteration computation cost but increases the number of it-
erations needed for convergence. Then, using a very low
LoRA rank may be suboptimal not due to representation
power, presence of spurious local minima, or poor general-
ization guarantees, but rather due to unfavorable flat training
landscapes slowing down convergence. Exploring this phe-
nomenon and designing remedies is an interesting direction
for future work.

7. Conclusion

In this work, we present theoretical guarantees on the train-
ability and generalization capabilities of LoRA fine-tuning
of pre-trained models. Together with the work of Zeng &
Lee (2024), our results represent a first step in theoretically
analyzing the LoRA fine-tuning dynamics of pre-trained
models by presenting guarantees (upper bounds). For future
work, carrying out further refined analyses under more spe-

cific assumptions, relaxing the linearization/NTK regime
assumption through a local analysis, better understanding
the minimum rank requirement through lower bounds, and,
motivated by the observation of Section 6, analyzing the
tradeoff between training rate and LoRA rank are exciting
directions.
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A. Omitted proof of Theorem 3.1

Here, we explain the details in the proof of Theorem 3.1. We first prove the equivalence of

minimize L(8) + A||d]]. (P)
JeszXn
and \
minimize L(Z) + Ztr(Z) Q
zes{™t™ 2

where Z = Z[1 :m,m +1:m +n] € R™*" le., Z is a off-diagonal submatrix of X such that

Lemma A.1. The following two statements hold.

1. Fix A\ > 0 and suppose (P) has a global minimizer (not necessarily unique). Let § € R™*" be a global minimizer

of (P). Then there exists an Z3 € SS_ern) induced from 8% such that Z% is a global minimizer of (Q), rank(Z3) =
rank(8% ), and has same objective value.

2. Fix A > 0 and suppose (Q) has a global minimizer (not necessarily unique). Let Z3 € SS_"H'") be a global minimum
of (Q). Then Z§ € R™*™ is a global minimizer of (P) such that rank(Z3) = min(m, n,rank(Z3)) and has same
objective value.

Proof. We prove the two statements at once. Let 5 € R™*™ be a global minimizer of (P) and let 7 = rank(d% ). Then by
Lemma 2.2, there exists u € R™*" and v € R"*" such that |6} ||« = % (|[u[|% + [|v]|%) and uvT = &3. Take

u uuT’ uvT (m+n)
Z = [V} [ut vT] = [VuT VVT:| €Sy :

Then since
u 2
x(23) = 1231l = | [3] [, = Il + o1 = 216311

(Q) with Z3 has the same objective value with (P) with 8} and rank(d}) = rank(Z}) = r. Conversely, let Z% € SS:'H_")
be a global minimizer of (Q) and let rank(Z}) = r. Note that r may be larger than m or n. Then there exists ) = {:j €

R(M+m)X" such that QQT = Z%. Then since
tr(Z3) = | 23]l = Q% = [ullF + [[vIF > 2luvT|. = 2] Z].,

the objective value of (P) with Z§ € R™*™ has less than or equal to minimum objective value of (Q) and rank(Z§) =
min(m, n,r).

If there exists m x n matrix whose objective value of (P) is strictly less than the minimum objective value of (Q), then
we repeat the same step that was applied on d3 to induce a solution of (Q) with strictly less objective value, which is a
contradiction. Conversely, if there exists positive semi-definite matrix of size m + n whose objective value of (Q) is strictly
less than the minimum objective value of (P), then we repeat the same step applied on Z3 to induce a solution of (P) with
strictly less objective value, which is also a contradiction. Therefore if one of (P) and (Q) has a global minimizer, the other
must have a global minimizer with same objective value. O

Next lemma states that if the rank of the global minimizer of (Q) is sufficiently large, then we can find an another solution
with strictly less rank.

Lemma A.2. Suppose X € S'} and let Z € S™ be a nonzero symmetric matrix such that R(Z) C R(X). Then there exists
nonzero t* € R such that X + t*Z is positive semi-definite and rank(X + t*Z) < rank(X).
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Proof. Letr = rank(X). Suppose @ € R™*" is a matrix where its columns are basis to R(X ). Now suppose 11 (QT(X +
tZ)Q) > 0 forall t € R where p;(+) denotes the smallest eigenvalue (note that p; (+) is continuous). Then QT (X +t2)Q €
S™ should be positive definite for all ¢. For contradiction, take v € R(Z) C R(X) = R(Q) to be an eigenvector of nonzero
eigenvalue of Z. Since vTXv > 0 and vT Zv # 0, there exists some ¢ such that v7(X + ¢tZ)v < 0. Now take w € R" such
that Qw = v. Then it follows that

wH(QT(X +t2)Q)w < 0,

which is a contradiction. This implies that there exists ¢* # 0 such that

m(QT(X +1°2)Q) =0,
Hence we have
r>rank(QT(X +t*2)Q) = rank(X + t*Z2)
and QT(X + t*Z)(Q is positive semi-definite. To show that X 4 ¢*Z is positive semi-definite, take any « € R™ and consider
the decomposition x = Qy + z where y € R" and z € N (Q) = N(X) C N (Z). Then, we have
YT X+t 2)y = (yTQT + 2T)(X +t"2)(Qy + 2)
=yTRT(X +1"2)Qy > 0.

O

Finally, the following lemma and its proof are similar to the previous one, but we state it separately for the sake of clarity. It
will be used in the proof of Theorem 3.1.

Lemma A.3. Suppose X € S'} which is nonzero and let Z € S™ be a nonzero symmetric matrix such that R(Z) C R(X).
Then there exists t* > 0 such that X £ t*Z is positive semi-definite.

Proof. Letrank(X) = r and {y1,...,y,} be orthonormal eigenvectors of nonzero eigenvalues of X. Since y] Xy; > 0
forall y;,i = 1,--- ,r, there exists an interval (—a;, a;) for a; > 0 such that y] (X +tZ)y; > 0 fort € (—a;,a;). Take
t* = min{ay, ..., a,}. Then t* satisfies the statement of the theorem. 0

Now we provide the complete proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose Z} € SS}"*") is a global minimizer of

N
F(2) = 1(Z) + J6r(2) = 3 3 £ (Fw, (X0) + (G (X0),2),Y) + Stx(2)

which is induced from 85 € R™*" by Lemma A.l. Suppose there exists nonzero symmetric matrix Z such that Z €
S(Zx) 2 {Z e St . R(Z) € R(Z3)} and (G(X;),Z) = 0for 1 < i < N. In other words, Z € S(Z3) N N(A)
where A: S(+7) — REN s a linear operator defined as

A(Z); = (GY(X;),Z), 1<i<N, 1<j<K.

Then there exists ¢ > 0 such that Z} & tZ is positive semi-definite by Lemma A.3, since Z* must be nonzero. Therefore
tr(Z) = 0, otherwise it will contradict the minimality of Z}. Also we know that there exists nonzero ¢t* € R such that
Z% + t* Z is also positive semi-definite with strictly lower rank by Lemma A.2. Since tr(Z) = 0, Z% + t*Z is also a global
minimizer of F'. Replace Z3} with Z} + tZ and repeat this process until we find a solution Z3} with

{0} = S(Z3) NN (A).
Now we let rank(Z3) = r. Then by dimension counting, we have the following inequality.
0 = dimS(Z3) + dimN (A) — dim(S(Z3) + N (A))
= dimS(Z3%) 4+ dim(S" ™) — dimR(A) — dim(S(Z3) + N(A))
= dimS(Z}) — KN + dim(S™+™) — dim(S(Z3) + N (A))
= dimS(Z*) — KN + dim(S(Z*)* N R(A))
> dimS(Z3) —

14
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Now we prove that dimS(Z3%) = w to complete the proof. Consider the diagonalization Z = UAUT where U is a
orthogonal matrix. Since the dimension of the subspace is invariant under orthogonal transformations, we have

dimS(Z3) = dimS(A) = dim{Z € S+ : R(Z) C R(A)}

where A is diagonal matrix with nontrivial entries in the leading principle minor of size r X r. This restricts the symmetric

matrix Z to have nontrivial entries only in the leading r x r block. Hence, dimS(Z%) = T(T; D O

B. Omitted proof of Lemma 4.5

We prove Lemma 4.5 in this section.

Proof of Lemma 4.5. Let Iy, . : R — V= be the orthogonal projection onto the orthogonal complement of V' in R, Then,
My . |p: M — V4 is a smooth mapping between manifolds. Since

dimV* =d—n > m = dimM,

p is singular for all p € M. Therefore IIy, . (M) has measure zero in R9~" by Sard’s theorem. Note that M + V C
Iy (M) + V and the measure of ITy, . (M) + V in R? is zero. This concludes that M + V is measure-zero in R%.  []

As a remark, the prior works of (Boumal et al., 2016; Du & Lee, 2018) also use dimension-counting arguments that would
warrant the use of Lemma 4.5, but they do not provide a precise justification. Our Theorem 4.1 makes a similar argument,
but does so fully rigorous through Lemma 4.5.

C. Generalization guarantee

In this section, let £(-, -) be our loss function which is convex, non-negative, and twice-differentiable on the first argument.
Then, our empirical risk is

N
£(6) = 5 D21 (fw, (X0) +(G(X.),6),Y7).
i=1

We start the analysis from this non-regularized risk and expand it to regularized ones. We assume that our model is class
of affine predictors X — fyy (X) + (G(X),d) for given data X. Now we apply the theory of Rademacher complexity
to derive the upper bound of the generalization bound. To begin with, we start with introducing the classical result in
probability theory from (McDiarmid et al., 1989) without proof.

Lemma C.1. (McDiarmid inequality) Let X1, ..., Xy € X be i.i.d N random samples from dataset X. Let g : X — R
be a function satisfying the following property with ¢ > 0:

l9( X1, Xic1, Xi, X1, -, Xv) —9(Xa, o, X1, X, X, ., X)) < e

forall Xq,...,Xn,X] € X. Then, forall e > 0,

P(lg(X1..... Xn) ~Elg(X1,.... Xn)]| > £) < exp (_;> |

Now, we define the Rademacher complexity of the class of functions H from X" to R:

1 N
Ry(H) =E.p <sup N Zsih(Xi)> :
1

hen IV =

where {¢;}1<;<n are independent Rademacher random variables, and D = {X1,..., Xy} is N random samples from
X. In our analysis, we will focus on class of affine predictors X; — fy (X;) + (G(X;),d) and composition of affine
predictors with loss X; — £(fw, (Xi) + (G(X;),d),Y;). Rademacher complexities are closely related to upper bounds on
generalization bound due to the following lemma.

15
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Lemma C.2. Let Ry (H) be the Rademacher complexity of the class of functions H from X to R and X,,..., Xy are N
samples from X. Then the following inequality holds.

E <2Ry(H), E < 2Ry (H).

1 & Ly
sup (N > h(X;) - E[h(X)]> e ( N Z:: )

heH =

Proof. The proof is by using standard symmetrization arguments. We defer its proof to Theorem 8 of (Bartlett & Mendelson,
2002), or Section 4.5 of (Bach, 2023). O

The next lemma uses a contraction property to reduce the Rademacher complexity of losses to linear predictors. These type
of results are widely used in Rademacher analysis and we use the following specific version of contraction, which was
originally introduced in Corollary 4 of (Maurer, 2016) and adapted to our setting. Write || - ||2 for Euclidean vector norm.

Lemma C.3. Let A be the class of functions a : X — RX. For 1 <i < N, let £;: RE — R be G-Lipschitz continuous on
A with respect to the Euclidean norm in the sense that the following holds:

[6i(a(X1)) = Li(a (X2))| < Glla(X1) —a/(X2)ll2 forany a,d’ € A, X1, Xy € X,

Then we have the following inequality for independent Rademacher random variables {o; }1<i<n and {e;;}1<i<nN1<j<K:

o’D sup U'L z i <\/>G EED SUP* E’L]a’j )
NZ

acA 11]1

where a; denotes the j-th coordinate of a and D = {(X;,Y;) }ieq1,... . vy are i.i.d N random samples sampled from X.
Proof. We defer the proof to the Section 5 of (Maurer, 2016). O

In Lemma C.3, if we sample D from a probability distribution 7P, we can relax the Lipschitz continuity condition to hold for
‘P- almost surely. In other words,

[0(a(X1)) — 4(a'(X2))] < Glla(X71) — d’'(X2)||2 forany a,a’ € A, X;,Xs CD~P.

The next lemma states that the Rademacher complexity of class of bounded affine predictors decays at most (’)(\/Lﬁ) rate.

Lemma C4. Assume D = {(X;,Y;)}icq1,... N} is i.iid N random samples sampled from probability distribution P.
Assume Ap = {X; — fw,(X:) + (G(X; ) 6) € RE 8]« < D, 8 € R™*"} is class of affine predictors with bounded
nuclear norm D > 0. Suppose |G (X;)||r < R almost surely with respect to the random data X; ~ P. Then,

RDVK
D Supf €i50;( <

where {Eij}lﬁiSN,ISJ‘SK are i.i.d Rademacher random variables.
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Proof.
5 sup 7ZZ€UCL] :Es ZZ 1] < \(7.3/')0 + <G(j)(Xl)76>)
aca N =1 =1 HJH <D i=1 j=1
I | MK ()
=E.| sup — e (GYU) (X, €ij fw
Isl.<p N ;; Z;;
—E ei; (GY)(X;), 8)
) Han Ep N z;; il
<E & i), 6)
“|islezn N z;; G
=E. |= sup e (GY)(X;), 8)
“IN \|5|\F<1;; il
N K _
ZZaijG(j)(X
i1 j=1

F

The inequality is from the fact that || - ||z < || -

« hence {0 : ||0||. < D} C {d:||d]|r < D}. The last equality is from
the fact that || - || ¢ is self-dual. Next, we can bound E. Hvazl Zszl £,;GU (X)) HF by the following inequalities.

2

IN

N K
ZZEijGU)

I i=1 j=1 r

N K
= (B L D lese

N K
SPRCEE

N K )
= ZZHGO)(XZ')HF
i=1 j=1
< RVNK. as.

The first inequality is from Jensen’s inequality, the equalities are from i.i.d assumption of £;;. We combine the results and
take expectation with respect to D to get

D RDVK
bu— gijak( < —-RVNK = ——.
o v Syomon)| < § - 20

We then combine the previous results to get the following Lemma.

Lemma C.5. Assume D = {(X;,Y3)}icqa,...,
is non-regularized empirical risk defined as

Ny} is i.i.d N random samples sampled from probability distribution P. Let L

1 N
N Z fWo Z <G(Xz)76>a}/L)

17
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and Ap = {X; = fw,(Xi) + (G(X;),8) € RE . ||§]l. < D,§ € R™*"} is class of affine predictors with bounded
nuclear norm D. For 1 < j < K, suppose |GU)(X)||p < R almost surely with respect to the random data X; ~ P. For
1 <i < N, suppose £; = ((-,Y;) is G-Lipschitz continuous on A on the first argument (with respect to the Euclidean norm)
for almost surely with respect to the random data X; C D ~ P. That is,

ti(a(X1)) = li(d'(X2))| < Glla(X1) —d' (X))l foranya,d’ € A, X1, X, CD~P.

Then for any |6« < D, fixed 8¢ such that ||8o||« < D, and n € (0,1), the following inequality holds with probability

greater than 1 — n:
. . V2KGRD [ 1

Proof. Take g of Lemma C.1 to be g = supys), < p(L L(80) — L(8) — L(8¢) + L(8)), which is a function of X1,..., Xy.
Since |6« < D implies ||§||r < D and by the Lipschitz continuity of £(-, ¥;), we have the following for any (X, Y) eD:

1€ (fw, (Xi) + (G (X0),00), V) — £ (fw, (Xi) + (G(X3),6),Y3) | < G[[(80 — 8, G(X3))[l2

<G ZII60—5|| IGW) (X3)II

K
<G [D 1160 = 821G (X)IIF
j=1

K
<G| 4D?.R?

= 2GRDVK.

Hence if we change only one data point (X;, Y;) of g to (X, Y; ), the deviation of L () — L(d) is at most %. Then
by Lemma C.1, we have

sup (L(8¢) — L(8) — L(80) + L(8)) <E | sup (L(80) — L(8) — L(do) + L(J))| + tV2KGRD
6]].<D I8].<D VN

with probability greater than 1 — e~t". The expectation on the right hand side can be reduced to

Ep | sup (L(60) — L(8) — L(60) + L(8))| =Ep | sup (—L(8) + L(8)) + L(8) — L(Jo)
|6]|.<D [18]|«<D
=Ep | sup (L(d) —ﬁ(5))1
[|6]|.<D
Note that
R 1 Y
L(8) = L(9) = L(d) — & > U fw, (Xi) + (G (X)), 6),Y7)

i—1
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where the expectation is taken over X; ~ P. Now apply Lemma C.2 to get

Ep | sup (L(8)— L(5))

:ED[ sup (E[¢( fu, (X:) + (G(X,), 8),Y5)]

181« <D I81l.<D
1 N
~Ep | D fw, (X) + (G (X:),6).Y))
=1
o, UZ A 767 7
< 2B, p HSH“EDNZ (fw, (Xi) + (G(X),8), V7))

where {0 }1<;<n are i.i.d Rademacher variables. Then apply Lemma C.3 to get

2K, p sup Zaz fWO z < (XZ)76>’YZ))

1s.<p N

=2V2GE.p | sup % Z Zfij (f%vo (Xi) + (G (X)), 5))

lsl.<p N = =

e R

N K
1 : : RDVK
9V2GE.p | sup — Eis (fﬂ (X;) + <GJ(XZ-),6>> < 2V2G - .
=7 islzp N ;; 7\"Wo VN
Therefore, we conclude that
. . V2KGRD
L(dg) — L(8) — L(dp) + L(6) < ——=———(2+1).
(80) — L(8) — L(d0) + L(9) Wi 2+1)
for ||8]|. < D with probability greater than 1 — e~*". By reparametrization, we get
. . V2KGRD 1
L(60) — L(8) — L(d¢) + L(6 <<2—|— log>.
(8) = L30) + L(8) < “22 .
for |8« < D with probability greater than 1 — 7. O

Now we can extend this generalization guarantee of constrained optimization to regularized optimization, which aligns with
our problem of interest. For notational convenience, let

L(8) = L(8) + Alld]l..  La(8) = L(8) + X[ 8]

We follow the proof structure of (Bach, 2023), which was motivated by (Bartlett et al., 2005) and (Sridharan et al., 2008).

Theorem C.6. Fix ¢ > 0 and let 0 # 8}, € argming L(8) be the true optimum of the population risk and consider
the setup of Lemma C.5 with D = (2 + €)||8; e+ Which is the upper bound on the nuclear norm of the predictors. Let

€ (0,1) and

Write 8}, to denote a minimizer (not necessarily unique) of Ly (0).Consider the setup of Corollary 4.2 with P randomly
sampled with a probability distribution supported in

m-Tn EAérue
{PES( +n) | ||PH 2|I|6t - H }

. X X (m+n)(m+n+1) R
and is absolutely continuous with respect to the Lebesgue measure on S +t™) =~ R 2 . Let (1, V) be an SOSP of

L A, p. Then with probability greater than 1 — 1,

2
)~ )< 16l L (0 )
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e\l||d .
SO ell and consider the convex set

Proof. Leté = SR

2 ., .
C = {85 1811. < 208%ell + S5 s La(8) = La(8hue) < MGiuuelle + 281183 - }-

Then for ||d]|. = 2|47, 22||8% ]|+ 6 ¢ intC since the following inequalities hold.

true H*

LA(J) (6:rue) - L(é) (étrue) + AH(SH >\||6true|| 2 )‘”5” )‘H&true”* - /\Hatrue” + 25”5§||*

Therefore the boundary OC' of C' should be

00 = {6181 < 208 elle + 2153 Lr(8) — L (B = MFinell + 2216311 .

Now suppose uvT ¢ C. Then since &}
convexity of L \, We have

€ C, there exists 4 in the segment [GVT, d such that § € 0C. By the

true true]

£2(8) < max (Lk(ame) ﬁA(ﬁsz)> .

Then we get )
La(8e) = La(8) = —2¢(183 -

by Corollary 4.2. Therefore,

L(8tue) = L(8) = L(87rue) + L(8) = LA(7rue) — La(8) = LaA(85rue) + La(6)
> Lx(8) — Lx(8%) — 2£]|8% ||+ 3)
= )‘”(StrucH*
Note that [|8]]« < 2[|85ell« + 03]+ < (2 + )16 el and

(2 +e)V2KGR < 1>
AOE el = 185 ls oV ERER (o 1 flog — )
[68ruellx = 10%cuell« Wi o8

Then by Lemma C.5, (3) should happen with probability less than 7. Then with probability greater than 1 — n, avT € C. In
other words,
L)\(ﬁ{’T) (6:rue) < )‘Hétrue” + 26“5 ||

Hence,

LavT) + AavT|. < Lx(cﬂ*me) + A0 e I + 2811031«
= L(8%u0) + 2M1 0%l + 28018% .

true
< L(8}pue) + 2)|0 + eN||o},

true

true H

trueH true H .

Finally, we get

(2+5)2’\/ﬁ(¥1~2<2+ 1 1>.

L(avT Ot ue Ot ue og —
(V) = L(85rue) < l105ruell« Wi &5
O
By using the fact that /¥ is Lipschitz continuous, we can reduce Theorem C.6 to Theorem 5.1. Note that the loss function

¢ may not be Lipschitz continuous in general. However, Lipschitz continuity is a mild assumption when the domain is
restricted to a bounded class of predictors Ap of Lemma C.5.

Proof of Theorem 5.1. If £(-,Y): REK — R is cross entropy loss defined as

)
UX,Y) = CE(X,Y) = —log (ZEXPX> X0 4 log (Z exp X@))

1 exp X =
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with true label Y = j, we have

VICE(X,Y); = —1+ ;me_:—EﬁﬁWX®
S exp X @ Sy exp X @
and for k # 7,
VéCE(X,Y)k: ;fpr(k)
S exp X )

Then we can bound the Euclidean norm of the gradient as follows.

N2
(Zi;éj €Xp X(l)) D it €XP 2X (%)

CE 2 =
V5 (X, Y5 (Zfil eXpX(i))2 (Zﬁl expx(i))z

Hence the gradient of the cross entropy loss is bounded by v/2 and we may replace G in Theorem C.6 with v/2 to get

L . . 4 22+¢)?*VKR [ 1
L(UVT) - L(dtrue) < 6true|*(\/)ﬁ (2 + 1Og 5) .

D. Details of experiments

Optimizing nuclear norm. Recall that SGD or GD on the loss function with weight decay and with regularization
parameter A is equivalent to minimizing

N
1 A A
D0 (e (X0) + (G(X0), wvT), ¥i) + 5l + S v,
=1

with respect to u and v. In full fine-tuning however, this is equivalent to minimize the following with respect to d:

N
N D0 (e, (X0) + (G(X), 8),Y5) + A 8]l

The problem here is that gradient methods no longer apply since the nuclear norm is non-differentiable. Therefore, we use
the proximal gradient method: .
0111 = Prox,y ., (6: — aVL(8,))

where .
prox, 1. (8) = avgmin (5. + 510"~ 8] ).
5 o

It is well known that the proximal gradient method on convex objective converges to a global minimum (Polyak, 1987).

Hyperparameters on NLP tasks For NLP tasks, we use full batch to perform GD on training. We only train the query
(W) and value (W,)) weights of the RoOBERTa-base model, which was empirically shown to have good performance (Hu
et al., 2021). Furthermore, calculating the proximal operator of a nuclear norm is a computational bottleneck during the
training of all W, and W, matrices. Therefore, we limit our training to only the last layer of W, and W,,. To ensure a fair
comparison, we apply the same approach to the LoRA updates. Additional information is in Table 1.

Hyperparameters on image and speech classification tasks Similar to NLP tasks, we train the last attention layers.
Further details are in Table 2.
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Task SST-2,QNLI MR,CR,QQP,Subj
Batch size 32 32
Learning rate (Full, LoRA fine tuning) 0.0005 0.001
Trained layer W, W, (last layer only) W, W,, (last layer only)
Weight decay 0.01 0.01

Table 1. Hyperparameters on experiment in Section 6 (NLP tasks)

Task Image classification Speech classification
Batch size 16 16
Learning rate (Full, LoRA fine tuning) 0.005 0.005
Trained layer  W,, W, (last layer only) W, W, (last layer only)
Weight decay 0 0.001

Table 2. Hyperparameters on experiment in Section 6 (Image and speech classification tasks)
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Figure 4. Test curves (accuracy vs. epochs) on different NLP tasks. We used the LoRA rank of 16.

Test accuracy. For the setting of Section 6 on NLP tasks, we additionally conduct evaluations on a test set of 1000 samples
during training and present the results in Figure 4. We observed that in most tasks the performance using LoRA eventually
converges a test accuracy that matches that of full fine-tuning, although the rates of convergence sometimes differ. We list

the hyperparameters in Table 3

Task  SST-2,QQP,MR,CR Subj QNLI
Batch size 32 32 24
Learning rate (Full, LoRA fine tuning) 0.0001 0.001 0.0005
Trained layer Wy, W, (all layers) ~ W, W, (all layers) W, W, (all layers)
Weight decay 0.005 0.005 0.005

Table 3. Hyperparameters on experiment in Figure 4
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For image and speech classification tasks, we also validate the performance of our linearized update to confirm that the
accuracy is on par with actual LoRA updates. Accuracies are averaged over 3 runs (See Table 4).

Task Image classification Speech classification

Accuracy ( actual / linearized) 86.20 / 87.00 74.67/73.67

Table 4. Accuaricies of LoRA updates on vision and speech classification tasks
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