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ABSTRACT

Prior work has shown that text-conditioned diffusion models can learn to identify
and manipulate primitive concepts underlying a compositional data-generating
process, enabling generalization to entirely novel, out-of-distribution composi-
tions. Beyond performance evaluations, these studies develop a rich empiri-
cal phenomenology of learning dynamics, showing that models generalize se-
quentially, respecting the compositional hierarchy of the data-generating pro-
cess. Moreover, concept-centric structures within the data significantly influence
a model’s speed of learning the ability to manipulate a concept. In this paper,
we aim to better characterize these empirical results from a theoretical standpoint.
Specifically, we propose an abstraction of prior work’s compositional generaliza-
tion problem by introducing a structured identity mapping (SIM) task, where a
model is trained to learn the identity mapping on a Gaussian mixture with struc-
turally organized centroids. We mathematically analyze the learning dynamics
of neural networks trained on this SIM task and show that, despite its simplicity,
SIM’s learning dynamics capture and help explain key empirical observations on
compositional generalization with diffusion models identified in prior work. Our
theory also offers several new insights—e.g., we find a novel mechanism for non-
monotonic learning dynamics of test loss in early phases of training. We validate
our new predictions by training a text-conditioned diffusion model, bridging our
simplified framework and complex generative models. Overall, this work estab-
lishes the SIM task as a meaningful theoretical abstraction of concept learning
dynamics in modern generative models.

1 INTRODUCTION

Human cognitive abilities have been argued to generalize to unseen scenarios through the identifica-
tion and systematic composition of primitive concepts that constitute the natural world (e.g., shape,
size, color) (Fodor, 2001; Fodor et al., 1975; Reverberi et al., 2012; Frankland & Greene, 2020;
Russin et al., 2024; Franklin & Frank, 2018; Goodman et al., 2008). Motivated by this perspective,
the ability to compositionally generalize to entirely unseen, out-of-distribution problems has been
deemed a desirable property for machine learning systems, leading to decades of research on the
topic (Smolensky, 1990; Lake & Baroni, 2018; Hupkes et al., 2020; Ramesh et al., 2021; Rombach
et al., 2022; Lake & Baroni, 2023; Kaur et al., 2024; Du & Kaelbling, 2024).

Recent work has shown that modern neural network training pipelines can lead to emergent abilities
that allow a model to compositionally generalize when it is trained on a data-generating process that
itself is compositional in nature (Lake & Baroni, 2023; Ramesh et al., 2023; Okawa et al., 2023;
Lepori et al., 2023; Arora & Goyal, 2023; Zhou et al., 2023; Khona et al., 2024; Rosenfeld et al.,
2020; Nagarajan et al., 2020; Arjovsky et al., 2019). For example, Okawa et al. (2023); Park et al.
(2024) show that text-conditioned diffusion models can learn to identify concepts that constitute the
training data and develop abilities to manipulate these concepts flexibly, enabling generations that
represent novel compositions entirely unseen during training. These papers also provide a spectrum
of intriguing empirical results regarding a model’s learning dynamics in a compositional task. For
example, they reveal that abilities to manipulate individual concepts are learned in a sequential
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Figure 1: Structured Identity Mapping Task and Swing-by Generalization Dynamics. (a) Given
the input “blue square apples on a tree with circular yellow leaves,” a multimodal model learns to
generate concepts in the following order: “apple,” “blue” (color), and “square” (shape) (example
adapted from Li et al. (2024)). (b) A multimodal synthetic task introduced by Okawa et al. (2023);
Park et al. (2024). The training set of the task consists of four distinct compositions of concepts,
depicted as blue nodes on a cubic graph. A diffusion model is trained on this dataset to systematically
study the dynamics of concept learning. With the test prompt “small, blue, triangle,” the diffusion
model sequentially learns the correct size, shape, and finally color. (c) In this work, we introduce
a structured identity mapping task as the foundation for a systematical and theoretical studying of
the dynamics of concept learning. The model is trained on a Gaussian mixture data, where the
centroids are positioned at certain nodes of a hyperrectangle (blue dots) and is evaluated on an out-
of-distribution test set (red dot). Our theoretical results not only reproduce and explain previously
characterized empirical phenomena but also depict a comprehensive picture of the non-monotonic
learning dynamics in the concept space and predict a “multiple-descent” curve of the test loss (red
curve).

order dictated by the data-generating process; the speed of learning such abilities is modulated
by data-centric measures (e.g., gradient of loss with respect to concept values, such as color of an
object); and the most similar composition seen during training often controls performance on unseen
compositions.

In this work, we aim to demystify the phenomenology of compositional generalization identified in
prior work and better ground the problem (or at least a specific variant of it called systematicity) via
a precise theoretical analysis. To that end, we instantiate a simplified version of the compositional
generalization framework introduced by Okawa et al. (2023); Park et al. (2024)—called the “concept
space” (see Fig. 1b)—that is amenable to theoretical analysis. In brief, a concept space is a vector
space that serves as an abstraction of real concepts. For each concept (e.g., color), a binary number
can be used to represent its value (e.g., 0 for red and 1 for blue). In this way, a binary string can be
mapped to a tuple (e.g., (1, 0, 1) might represent “big blue triangle”) and then fed into the diffusion
model as a conditioning vector. The model output is then passed through a classifier1which produces
a vector indicating how accurately the corresponding concepts are generated (e.g. a generated image
of big blue triangle might be classified as (0.8, 0.1, 0.9)). In this way, the process of generation
becomes a vector mapping, and a good generator essentially performs as an identity mapping in the
concept space.

We argue that in fact the salient characteristic of a concept space is its preemptively defined organi-
zation of concepts in a systematic manner, not the precise concepts used for instantiating the frame-
work itself. Grounded in this argument, we define a learning problem called the Structured Identity
Mapping (SIM) task wherein a regression model is trained to learn the identity mapping from points
sampled from a mixture of Gaussians with structurally organized centroids (see Fig. 1c). Through
a detailed analysis of the learning dynamics of MLP models, both empirically and theoretically, we
find that SIM, despite its simplicity, can both capture the phenomenology identified by prior work
and provide precise explanations for it. Our theoretical findings also lead to novel insights, e.g.,
predicting the existence of a novel mechanism for non-monotonic learning curves (similar to epoch-
wise double descent (Nakkiran et al., 2021), but for out-of-distribution data) in the early phase of
training, which we empirically verify to be true by training a text-conditioned diffusion model. Our
contributions are summarized below.

1Conceptually, we can think of an idealized perfect classifier here.
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• Structured Identity Mapping (SIM): A faithful abstraction of concept space. We empirically
validate our SIM task by training Multi-Layer Perceptrons (MLPs), demonstrating the reproduc-
tion of key compositional generalization phenomena characterized in recent diffusion model stud-
ies (Okawa et al., 2023; Park et al., 2024). Our findings show: (i) learning dynamics of OOD test
loss respect the compositional hierarchical structure of the data generating process; (ii) the rate at
which a model disentangles a concept and learns the capability to manipulate it is dictated by the
sensitivity of the data-generating process to changes in values of said concept (called “concept
signal” in prior work); and (iii) network outputs corresponding to weak concept signals exhibit
slowing down in concept space. These results also suggest that the structured nature of the data,
rather than specific concepts, drove observations reported in prior work.

• Swing-by Dynamics: Theoretical analysis reveals mechanisms underlying learning dy-
namics of a compositional task. Building on the successful reproduction of phenomenology
with MLPs trained on the SIM task, we further simplify the architecture to enable theoretical
analysis. We demonstrate that: (i) analytical solutions with a linear regression model repro-
duce the observed phenomenology above, and (ii) the analysis of a symmetric 2-layer network
(f(x;U) = UU⊤x) identifies a novel mechanism of non-monotonic learning dynamics in gen-
eralization loss, which we term Swing-by Dynamics. Strikingly, we show that the learning dy-
namics of compositional generalization loss can exhibit multiple descents in its early phase of
learning, corresponding to multiple phase transitions in the learning process.

• Empirical confirmation of the predicted Swing-by phenomenon in diffusion models. We ver-
ify the predicted mechanism of Swing-by Dynamics in text-conditioned diffusion models, observ-
ing the non-monotonic evolution of generalization accuracy for unseen combinations of concepts,
as predicted by our theory.

In summary, our theoretical analysis of networks trained on SIM tasks provides mechanistic explana-
tions for previously observed phenomenology in empirical works and introduces the novel concept
of Swing-by Dynamics. This mechanism is subsequently confirmed in text-conditioned diffusion
models, bridging theory and practice in compositional generalization dynamics.

2 PRELIMINARIES AND PROBLEM SETTING

Throughout the paper, we use bold lowercase letters (e.g., x) to represent vectors, and use bold
uppercase letters (e.g., A) to represent matrices. We use the unbold and lowercase version of corre-
sponding letters with subscripts to represent corresponding entries of the vectors or matrices, e.g., xi

represent the i-th entry of x and ai,j represent the (i, j)-th entry of A. For a vector x and a natural
number k, we use x:k to represent the k-dimensional vector that contains the first k entries of x.
For a natural number k, we use [k] to represent the set {1, 2, . . . , k}, and 1k to represent a vector
whose entries are all 0 except the k-th entry being 1; the dimensionality of this vector is determined
by the context if not specified. In the theory part, we frequently consider functions of time, denoted
by variable t. If a function g(t) is a function of time t, we denote the derivative of g with respect to
t by ġ(t0) =

dg
dt

∣∣∣
t=t0

. Moreover, we sometimes omit the argument t, i.e., g means g(t) for a time t

determined by the context. For a statement ϕ, we define 1{ϕ} =

{
1 ϕ is true
0 ϕ is false

to be the indicator

function of that statement.

2.1 PROBLEM SETTING

Now we formally define SIM, which is an abstraction of the concept space. For each concept class,
we model them as a Gaussian cluster in the Euclidean space, placed along a unique coordinate di-
rection. The distance between the cluster mean and the origin represents the strength of the concept
signal, and the covariance of the Gaussian cluster represents the data diversity within the correspond-
ing concept class. Additionally, we allow more coordinate directions than the clusters, meaning that
some coordinate directions will not be occupied by a cluster, which we call non-informative di-
rections, and they correspond to the free variables in the generalization task. See Fig. 1c for an
illustration of the dataset of SIM.

Training Set. Let d ∈ N be the dimensionality of the input space and s ∈ [d] be the number
of concept classes, i.e., there are s Gaussian clusters, and n ∈ N number of samples from each

cluster. The training set D =
⋃

p∈[s]

{
x
(p)
k

}n

k=1
is generated by the following process: for each
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p ∈ [s], each training point of the p-th cluster is sampled i.i.d. from a Gaussian distribution x
(p)
k ∼

N
[
µp1p,diag (σ)

2
]
, where µp ≥ 0 is the distance of the p-th cluster center from the origin, and

σ is a vector with only the first s entries being non-zero, and σ2
i describing the data variance on the

i-th direction. There is also optionally a cluster centered at 0 in addition to the s clusters.

Loss function. The training problem is to learn identity mapping on Rd. For a model f : Rm×Rd →
Rd and a parameter vector θ ∈ Rm, we train the model parameters θ via the mean square error loss.

L(θ) = 1

2sn

s∑
p=1

n∑
k=1

∥∥∥f (θ;x(s)
k

)
− x

(s)
k

∥∥∥2 . (2.1)

Evaluation. We evaluate the model at a Gaussian cluster centered at the point that combines the
cluster means of all training clusters. When the variance of the test set is small, the expected loss
within the test cluster is approximately equivalent to the loss at its cluster mean. Therefore, for
simplicity, in this paper, we focus on the loss at the sum of the test cluster, which is a single test
point x̂ =

∑s
p=1 µp1p. In App. B, we report further results for the case of various combinations of

training clusters, which leads to multiple OOD test points.

3 OBSERVATIONS ON THE SIM TASK

We first begin by summarizing our key empirical findings on the SIM task. In all experiments we
use MLP models of various configurations, including different number of layers and both linear and
non-linear (specifically, ReLU) activations. Throughout this section and the subsequent sections, we
frequently consider the model output at the test point x̂ over training time, which we call output
trajectory of the model.

Due to space constraints, we only present the results for a subset of configurations in the main paper
and defer other results to App. F. We note that the findings reported in this section are in one-to-one
correspondence with results identified using diffusion models in Sec. 5 and prior work (Park et al.,
2024).

3.1 GENERALIZATION ORDER CONTROLLED BY SIGNAL STRENGTH AND DIVERSITY

One interesting finding from previous work is that if we alter the strength of one concept signal from
small to large, the contour of the learning dynamics would dramatically change (Park et al., 2024).
Moreover, it is also commonly hypothesised that with more diverse data, the model generalizes
better (Gong et al., 2019; Dı́ez-Pastor et al., 2015). Recall that in the SIM task, the distance µk of
each cluster represents the corresponding signal strength, and the variance σk represents the data
diversity. In Fig. 2, we present the output trajectory under the setting of s = 2, in which case the
trajectory can be visualized in a plane. There are two components to be learned in this task and,
from the contour of the curve, we can tell the order of different components being learned.

Fig. 2 (a) presents the output trajectory for a setting with a fixed and balanced σ, and a varied µ. The
results show that when µ1 < µ2, the dynamics exhibit an upward bulging, indicating a preference
for the direction of stronger signal. As µ1 is gradually increased, this contour shifts from an upward
bulging to a downward concaving, and consistently maintains the stronger signal preference.

In Fig. 2 (b), the µ is fixed to an unbalanced position, with one signal stronger than the other. As we
mentioned above, when σ is balanced, the model will first move towards the cluster with a stronger
signal strength. However, when the level of diversity of the cluster with weaker signal is gradually
increased, the preference of the model shifts from one cluster to another.

A very concrete conclusion can be thus drawn from the results in Fig. 2 (a) and (b): the generalization
order is jointly controlled by the signal strength and data diversity, and, generally speaking, the
model prefers direction that has a stronger signal and more diverse data. We note that the conclusion
here is more qualitative and in Sec. 4, we provide a more precise quantitative characterization of
how these two values control the generalization order.

3.2 CONVERGENCE RATE SLOW DOWN IN TERMINAL PHASE

In Fig. 2, the arrow-like markers on the line indicate equal training time intervals. In the later
phase of training, we observe that the arrows get denser, indicating a slowing down of the learning
dynamics: at the terminal phase of training, the time required to reduce the number of training steps
to reduce the same amount of loss is significantly larger than at the beginning.
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Figure 2: Learning dynamics of MLP on SIM task. The figures show the output trajectory of
the MLP on a two-dimensional setting (i.e., s = 2), and each marker represents an optimization
timepoint. Notice that we only plot the center of the training set as a circle, but the actual training
set can have varied shapes based on the configuration of σ. (a) one-layer linear model with σ:2 =
(.05, .05) and varied µ. Concepts i with larger signal (µi) learnt first. (b) one-layer linear model
with µ:2 = (1, 2) and varied σ. Concepts i with larger diversity (σi) learnt first. (c) 4 layer linear
models under µ:2 = (1, 2) and σ:2 = (.05, .05) and different dimensionality. high dim: d = 64,
low dim: d = 2. Notice that (a) and (b) are both in high dim setting. The lower the dimensionality,
the stronger Swing-by it has.

3.3 SWING-BY DYNAMICS

The results in Fig. 2 (a) and (b) are both performed with one-layer models and under a high dimen-
sional setting (d = 64). Despite the overall trend being similar in other settings, it is worth explor-
ing the change of trajectory as we increase the number of layers, and / or reduce the dimension.
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Figure 3: The test loss of multi-layer
models.

In Fig. 2 (c), we perform experiments with deeper mod-
els, and optionally with a lower dimension. Under these
changes, we find that the model shows an interesting
irregular behavior, where it initially heads towards the
OOD test point, but soon turns toward the training set
cluster with the strongest signal. This indicates the model,
while seems to be generalizing OOD at the beginning, is
memorizing the train distribution and unable to general-
ize OOD at this point. However, with enough training, we
find the model start to again move towards the test point

and thus generalizes OOD. We call this overall dynamic of the output trajectory Swing-by, which
we could be suggestive of a non-monotonic test loss curve. To assess this further, we track the value
of the loss function during training in Fig. 3, demonstrating a double descent-like curvee2. We also
note that the Swing-by phenomena seems to be strongest when dimensionality d of the dataset is low,
and is rather modest with high dimensional settings. In the high dimensional setting, the OOD loss
descent slows down at some point but does not actually exhibit non-monotonic behavior. This low
dimensional preference can also be explained perfectly by our theory, further described in Sec. 4.

4 THEORETICAL EXPLANATION

We next study the training dynamics of a specific class of linear models that are tractable on the SIM
task and explain the empirical phenomenology of OOD learning dynamics seen in previous section.
In Sec. 4.1, we first analyze a one-layer model whose dynamics can be solved analytically. We show
that it can explain most phenomena observed in the experiment; however, it fails to reproduce Swing-

2We would like to note that, it is possible to understand Swing-by Dynamics as a special case of so-called
epoch-wise double descent (Nakkiran et al., 2021; Olmin & Lindsten, 2024; Schaeffer et al., 2023); how-
ever, epoch-wise double descent is generally understood as a consequence of either noisy training or over-
parametrization, affecting model’s in-distribution generalization. In contrast, Swing-by is a distributional phe-
nomenon where the model fits the training distribution and is hence unable to generalize well OOD, revealing
a novel mechanism that although leads towards a familiar double descent-like curve.

5



Published as a conference paper at ICLR 2025

by Dynamics, suggesting that Swing-by Dynamics is intrinsic to deep models, which highlights
the fundamental difference between shallow and deep models. In Sec. 4.2, we further analyze the
dynamics of a symmetric 2-layer linear model, which successfully captures Swing-by Dynamics.
Our theoretical results reveal a multi-stage behavior of the model Jacobian during training, which
leads to the non-monotonic behavior in model output. We show that each stage in the Swing-by
Dynamics precisely corresponds to each stage in the Jacobian evolution.

Throughout this section, we assume f(θ;x) is a linear function of x. In this case the Jacobian of f
with respect to x is a matrix that is completely determined by θ, which we denote by Wθ = ∂f(θ;x)

∂x .
In this way, the output of the model can be written as f(θ;x) = Wθx. Using the trace trick (with
detailed calculations provided in App. C.1), it is easy to show that the overall loss function is equal
to

L(θ) = 1

2

∥∥∥(Wθ − I)A1/2
∥∥∥2
F
, (4.1)

where A = 1
sn

∑s
p=1

∑n
k=1 x

(p)
k x

(p)⊤
k is the empirical covariance. In this section, we assume n is

large, in which case A converges to the true covariance of the dataset A = Ex∼D[xx
⊤], which is a

diagonal matrix A = diag(a), defined by ap =

{
σ2
p +

µ2
p

s p ≤ s

0 p > s
, for any p ∈ [d].

Remark. Notice that in the linear setting we might not directly train Wθ; instead, we train its
components. For example, we might have θ = (W1,W2) and have Wθ = W1W2. Then, what
we actually train is W1 and W2, instead of Wθ. As many previous works have emphasized (Arora
et al., 2018; Ji & Telgarsky, 2018; Arora et al., 2019; Advani et al., 2020), although the deep linear
model has the same capacity as a one-layer linear model, their dynamics can be vastly different and
the loss landscape of deep linear models can be non-convex.

4.1 A ONE-LAYER MODEL THEORY AND ITS LIMITATIONS

As a warm-up, we first study the dynamics of one-layer linear models, i.e., f(W ;x) = Wx, in
which case the Jacobian Wθ is simply W . As we will show, this setting can already explain most of
the observed phenomenology from the previous section including the order of generalization and the
terminal phase slowing down, but fails to capture the Swing-by Dynamics, which we will explore in
next subsection. Here we present Theorem 4.1, which gives the analytical solution of the one-layer
model on the SIM task.
Theorem 4.1. Let W (t) ∈ Rd×d be initialized as W (0) = W (0), and updated by Ẇ = −∇L(W ),
with L be defined by eq. (4.1) with f(W , z) = Wz, then we have for any z ∈ Rd,

f(W (t), z)k = 1{k≤s} [1− exp (−akt)] zk︸ ︷︷ ︸
G̃k(t)

+

s∑
i=1

exp (−ait)wk,i(0)zi︸ ︷︷ ︸
Ñk(t)

. (4.2)

See App. C.2 for proof of Theorem 4.1. The Theorem shows that the k-th dimension of the output of
a one-layer model evaluated on the test point x̂ can be decomposed into two terms: the growth term
G̃k(t) = 1{k≤s} [1− exp (−akt)]µk, and the noise term Ñk(t) =

∑s
i=1 exp (−ait)wk,i(0)µi.

The following properties can be observed for these two terms: (i) the growth term converges to µk

when k ≤ s and 0 when k > s, while the noise term converges to 0; (ii) both terms converge at
an exponential rate; and (iii) the noise term is upper bounded by

∑s
i=1 wk,i(0)µi. If the model

initialization is small in scale, specifically wk,i(0) ≪ 1
smaxi∈[s] µi

, then Ñk(t) will always be small,
and thus can be omitted. With this assumption in effect, the model output is dominated by the growth
term. A closer look at the growth term then explains part of the observed phenomenology.

Generalization Order and Terminal Phase Slowing Down. It can be observed that G̃k(t) con-
verges at an exponential rate, which leads an exponential decay of evolution speed and explains the
terminal phase slowing down. Moreover, the exponential convergence rate of G̃k(t) is controlled
by the coefficient ak = 1

s

(
sσ2

k + µ2
k

)
. Therefore, the direction with larger ak, i.e., larger µk and

/ or σk, converges faster, hence explaining the order of generalization to different concepts. The
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theorem also reveals the proportional relationship between µk (concept signal strength) and σk (data
diversity).

The Limitation of the One Layer Model Theory. While we have demonstrated that Theorem 4.1
effectively explains both the generalization order and the terminal phase slowing down, in the solu-
tion eq. (4.2), the learning of each direction is independent. This independence omits the possible
interaction between the dynamics of different directions in deeper models, and leads to monotonic
and rather regular output trajectory (this is verified by the experiment results in Sec. 3.1). However,
as the experiments in Sec. 3.3 show, when the number of layers becomes larger, the model actually
exhibits a non-monotonic trace that can have detours. The theory based on the one-layer model fails
in capturing this behavior. In the subsequent subsection, we introduce a more comprehensive theory
based on a deeper model, and demonstrate that this model explains all the phenomena observed in
Sec. 3, especially the Swing-by Dynamics.

4.2 A SYMMETRIC TWO-LAYER LINEAR MODEL THEORY

In this subsection, we analyze a symmetric 2-layer linear model, namely f(U ;x) = UU⊤x, where
U ∈ Rd×d′

and d′ ≥ d. We demonstrate that it accurately captures all the observations presented
in Sec. 3, and, more importantly, the theory derived from this model provides a comprehensive
understanding of the evolution of the model Jacobian and output, offering a clear and intuitive ex-
planation for the underlying mechanism of the model’s seemingly irregular behaviors. Due to space
constraints, we focus on providing an intuitive explanation of the multi-stage behavior of the model
Jacobian and output, and defer the formal proofs to the appendix. It is also worth noting that this
symmetric 2-layer linear model is a frequently studied model in theoretical analysis (Li et al., 2020;
Stöger & Soltanolkotabi, 2021; Jin et al., 2023), and most existing theoretical results for this model
focus on the implicit bias of the solution found, instead of on the non-monotonic behavior during
training, which is the focus of our analysis.
For convenience, we denote the Jacobian of f at time point t by W (t) = WU(t). The gradient flow
update of the i, j-th entry of W is given by

ẇi,j =wi,j(ai + aj)︸ ︷︷ ︸
Gi,j(t)

− 1

2
wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
︸ ︷︷ ︸

Si,j(t)

− 1

2

∑
k ̸=i
k ̸=j

wk,iwk,j(ai + aj + 2ak)

︸ ︷︷ ︸
Ni,j(t)

.

(4.3)

As noted in eq. (4.3), we decompose the update of wi,j into three terms. We call Gi,j(t) =
wi,j(t)(ai + aj) the growth term, Si,j(t) = 1

2wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
the

suppression term, and Ni,j(t) =
1
2

∑
k ̸=i
k ̸=j

wk,i(t)wk,j(t)(ai + aj + 2ak) the noise term. The name
of these terms suggests their role in the evolution of the Jacobian: the growth term Gi,j always has
the same sign as wi,j , and has a positive contribution to the update, so it always leads to the direction
that increases the absolute value of wi,j ; the suppression term Si,j also has the same sign3 as wi,j ,
but has a negative contribution in the update of wi,j , so it always leads to the direction that decreases
the absolute value of wi,j ; and the effect direction of the noise term is rather arbitrary since it de-
pends on the sign of wi,j and other terms. It is proved in Lemma D.8 that under mild assumptions,
the noise term will never be too large; for brevity, we omit it in the following discussion and defer
the formal treatment of it to the rigorous proofs in App. D.

4.2.1 THE EVOLUTION OF ENTRIES OF JACOBIAN

In order to better present the evolution of the Jacobian, we divide the entries of the Jacobian into
three types: the major entries are the first s diagonal entries, and the minor entries are the off-
diagonal entries who are in the first s rows or first s columns, and other entries are irrelevant
entries. Notice that the irrelevant entries do not contribute to the output of the test point so we will
not discuss them. Moreover, we also divide minor entries into several groups. The minor entries in
the p-th row or column belongs to the p-th group (thus each entry belongs to two groups). See Fig. 4
for an illustration of the division of the entries.

3Notice that since W = UU⊤ is a PSD matrix, the diagonal entries are always non-negative.
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Figure 4: An illustration of the en-
tries of the Jacobian.

Initial Growth. In this section we assume wi,j∀i, j are ini-
tialized around a very small value ω such that ω ≪ 1

dmaxi∈[s] ai

(This has been shown crucial for generalization (Xu et al.,
2019; Liu et al., 2022b), and especially in compositional tasks
(Zhang et al.); See App. D.1 for specific assumptions). It is
evident that when all wi,j are close to ω (we call this period
the initial phase), the growth term is Θ(ω), while the suppres-
sion term and the noise term are Θ(ω2). This suggests that the
evolution of wi,j is dominated by the growth term. Therefore,
in the initial phase, every value in the Jacobian grows towards
the direction of increasing its absolute value, with the speed
determined by ai + aj . Since we assumed that a is ordered
in a descending order, it is evident that each entry grows faster
than those below it or to its right. The Initial Growth stage is formally characterized by Lemmas D.1
to D.3.

First Suppression. In the Initial Growth stage, the first major entry will be the one that grows
exponentially faster than all other entries, making it the first one that leaves the initial phase. Once
the first major entry becomes significant and non-negligible, it will effect on the suppression term
of all minor entries in the first group. When the difference between a1 and a2 is large enough, the
first major entry is able to flip the growth direction of the first group of minor entries and push their
values to 0. The suppression stages are characterized by Lemma D.7.

Second Growth and Cycle. Once the suppression of the first group of minor entries takes effect,
the second major entry becomes the one that grows fastest. Thus, the second major entry will be the
second one that leaves the initial stage. Again, when the second major entry becomes large enough,
it will suppress the second group of minor entries and push their value to 0. This process continues
like this: the growth of a major entry is followed by the suppression of the corresponding group
of minor entries, which, in turn, leaves space for the growth of the next major entry. The general
growth stages are characterized by Lemma D.4 and the fate of off-diagonal entries is characterized
by Lemma D.8.

Growth Slow Down and Stop. Notice that the suppression term of a major entry is also influ-
enced by its own magnitude. Therefore, when a major entries becomes significantly large, it also
suppresses itself, leading to the slowing down of its growth. Note that this effect only slows down
the growth but will not reverse the direction, since for major entries the suppression term is always
smaller than the growth term, until wi,i becomes 1 where the growth and suppression terms are
equal and the evolution stops. The terminal stage of the growth of major entries are characterized
by Lemma D.5.
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4.2.2 EXPLAINING MODEL BEHAVIOR

Recall that we have f (U(t); x̂)k =
∑s

p=1 wk,p(t)µp. We now explain how the stage-wise evolution
of Jacobian described in Sec. 4.2.1 determines the evolution of the model output.

Generalization Order and Terminal Phase Slowing Down. From the discussions in Sec. 4.2.1,
by the end of the training, all the major entries converge to 1 and all minor entries converge to 0. The
major entries grows in the order of corresponding ap, which is determined by µp and σp, and slows
down when approaching the terminal. This explains our observation that directions with larger µp

and / or σp is learned first, as well as the terminal phase slowing down.

Swing-by Dynamics and Non-monotonic Loss Curve. We argue that the Swing-by Dynamics
and the non-monotonic loss curve is caused by the multi-stage major growth vs. minor growth /
suppression process. Importantly, in certain configurations, minor entries growing towards larger
absolute values (which is the incorrect solution) can lead to the decay of the OOD test loss, and
cause an “illusion of generalizing” that the output trajectory is moving towards improving OOD
generalization. However, this effect is later eliminated by the suppression of the corresponding
minor entries, leading to a double (or multiple) descent-like loss curve and a reversal in the output
trajectory.

More concretely, consider the first (initial) growth stage as an example. In this stage, for each
k ∈ [s], f (U(t); x̂)k is dominated by wk,1(t)µk, since wk,1 grows fastest among all the entries in
the k-th row. If wk,1 happens to be initialized positive, then f (U(t); x̂)k grows towards 1, which
is the correct direction4, and loss thus decays. Since in a symmetric initialization, each entry has
equal chance of being initialized positive or negative, when s is small, it is easy to have many minor
entries initialized positive, whose growth contributes to the decaying of loss. This causes an illusion
that the model is going towards the right direction of OOD generalization. After the minor entries
of the first group are suppressed, their contribution to the decaying of the loss is canceled, which
leads to the output trajectory turning back to the direction of memorizing a training cluster and a
transient loss increase.

Fig. 5 presents the loss curve and the Jacobian entry evolution predicted by the theory with a specific
initialization. Notice how, as claimed above, the first and second descending of loss accurately
corresponds to the initial and second growth of the major entries, and the ascending of the loss
corresponds to the suppression of the minor entries. When s > 2, there are multiple turns of
growth and suppression stages and can possibly leads to a multiple-descent-like loss curve, which
we confirm and illustrate in App. E.1.

Remark on the Role of Out-of-Distribution. If one of the training cluster is very close to the test
point, i.e. there is an p ∈ [s] where σp ≳ µp, then the setting becomes highly in-distribution, and
intuitively there shouldn’t be a significant Swing-by since the training loss monotonically decays.
We note that this intuition is captured by our theory through Assumption D.5, which requires that
the signal strength of different directions to be distinct enough, and this essentially prevents a too
large σp (compared to µp).

Remark on Failure Modes. We note that our theory also provides an explanation on instances
when the model fails to achieve OOD generalization when one or more of our assumptions outlined
in App. D.1 breakdown. A specific case is when a major entry wk,k is overly suppressed by a
corresponding minor entry before it can begin to grow, causing the growth term Gk,k becomes
nearly zero. Consequently, the model output at x̂ in that direction converges to 0, instead of µk as
expected. See App. E.3 for more discussions and illustrations.

Remark on Existing Work. There has been extensive research on the non-monotonic behavior
of linear neural networks (in various settings). We note that existing studies either focus on one-
layer networks (Pezeshki et al., 2022; Heckel & Yilmaz, 2020) or diagonally initialized networks
(Lampinen & Ganguli, 2018; Saxe et al., 2019; Even et al., 2023; Pesme & Flammarion, 2023;
Olmin & Lindsten, 2024), which essentially make the evolution of each direction decoupled. This
decoupling simplifies the learning dynamics and can overlook critical aspects thereof (as we dis-
cussed in the preceding subsection). In contrast, our analysis, through a careful treatment of each
entry of the Jacobian, does not need to make the diagonal initialization assumption, hence allowing

4Notice that this is true even when k ̸= 1, i.e. wk,1 is a minor entry.
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us to capture and characterize the rich behaviors that arise from the interaction between different
directions.

5 DIFFUSION MODEL RESULTS

Tying back to our original motivation of devising an abstraction of concept space first explored in
text-to-image generative diffusion models, we now aim to verify if our findings and predictions made
on SIM task can be reproduced in a more involved practical setup with diffusion models. To this
end, we borrow the setup from Okawa et al. (2023); Park et al. (2024) and train conditional image
diffusion models on two concepts—size and color.
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Figure 6: Main observations reproduced on prompt-to-image diffusion models. (a) Signal
strength controls generalization speed and order; and a transient bend towards the concept with
stronger signal. (b) A double descent-like curve for the concept space MSE caused by Swing-by
Dynamics. (c) Concept learning gradually slows down. Our theory predicts speed of concept learn-
ing slows down at an exponential rate, which broadly matches the experimental results.

In Fig. 6, we repeat the experiments did in Section 4 of Park et al. (2024): we consider a synthetic
setup where the model learns to generate the image of a circle of the indicated size and color given
by a text input. The training set only contains samples from input pairs (red, big), (blue, big)
and (red, small), and the test set contains samples from an OOD input pair (blue, small). A
pretrained classier is applied to map the image generated by the diffusion model back to the concept
space so that we can plot the model output curve in the concept space, as shown in Fig. 6 (a). In
order to compare model behaviors under different signal strength, we tune the contrast between the
color of red samples and blue samples in the training set to control the strength of the color signal
(See Fig. 19 for an illustration). See App. G for experiment details.

Fig. 6 (a) shows that the level of concept signal largely alters the generalization dynamics. Specif-
ically, we see that the order of compositional generalization is determined by the color concept
signal, and can be reversed when we tuning the concept signal. Additionally, Fig. 6 (a) along with
the corresponding loss curve plot Fig. 6 (b) also shows Swing-by Dynamics where the generalization
dynamics show a bend towards the concept with stronger signal; the bend is transient and the gen-
eration eventually converges to the correct class (small blue circle), and the corresponding test loss
curve shows a double descent-like trend. Fig. 6 (c) confirms that the speed of compositional gener-
alization, quantified by the concept space traversal distance per step, decelerates at an exponential
rate, as expected from our theoretical findings (Theorem 4.1).

6 CONCLUSION

In this paper, we propose SIM task as a further abstraction of the “concept space” previously ex-
plored by Okawa et al. (2023); Park et al. (2024). We conduct comprehensive investigation into the
behaviors of a regression model trained on SIM, both empirically and theoretically, demonstrating
that the learning dynamics on SIM effectively captures the phenomena observed on image gener-
ation task, establishing SIM as a basis for studying compositional generalization. Critically, our
theoretical analysis uncovers the underlying causes of several phenomena that previously observed
on compositional generalizations, as well as predicting new ones that characterizes the multi-stage
and non-monotonic learning dynamics, which have been largely overlooked in earlier research. Our
diffusion model experiments further verify the validity of our analysis. Additional discussions and
potential future work directions can be found in App. E.
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A RELATED WORK

In this section, we provide some context for this paper by reviewing some existing work on compo-
sitional generalization and the study of deep linear networks.

Compositional Generalization. Prior work on compositionality has often focused on benchmark-
ing of pretrained models (Thrush et al., 2022; Andreas, 2019; Lewis et al., 2022; Lake & Baroni,
2018; Yun et al., 2022; Lepori et al., 2023; Johnson et al., 2017; Conwell & Ullman, 2022; Yuksek-
gonul et al., 2022; Schott et al., 2021; Gokhale et al., 2022; Valvoda et al., 2022) or proposition of
protocols that allow generation of compositional samples (Du et al., 2021; 2023; Liu et al., 2022a;
Xu et al., 2022; Yuksekgonul et al., 2022; Bugliarello & Elliott, 2021; Spilsbury & Ilin, 2022; Ku-
mari et al., 2023; Du & Kaelbling, 2024). While perfect compositionality in natural settings is still
lacking (Marcus et al., 2022; Leivada et al., 2022; Conwell & Ullman, 2022; 2023; Gokhale et al.,
2022; Du et al., 2023; Liu et al., 2022a; Singh et al., 2021; Rassin et al., 2022; Feng et al., 2022;
Hutchinson et al., 2022), several works have demonstrated via use of toy settings that this is unlikely
to be an expressibility issue, as was hypothesized, e.g., by Fodor et al. (1975), since the model can
in fact learn to perfectly compose in said toy settings. The ability to compose is in fact rather dis-
tinctly emergent (Okawa et al., 2023; Lubana et al., 2024) and the model learning it often correlates
with distinctive patterns in the learning dynamics, as identified by Park et al. (2024). We note that
there has in fact been some work on understanding compositional generalization abilities in neural
networks (Wiedemer et al., 2024; Udandarao et al., 2024; Ramesh et al., 2023), but, unlike us, the
focus of these papers is not on the model’s learning dynamics.

Learning Dynamics of Deep Linear Networks. Deep linear networks has been a commonly
studied model for learning dynamics, and existing works mostly focus on the final solution found
by the model, which primarily concerns the stationary point of the dynamics (Arora et al., 2018; Ji
& Telgarsky, 2018; Du & Hu, 2019; Arora et al., 2019; Advani et al., 2020). There have also been
works that try to characterize the full learning dynamics; however, they generally require the learning
of each direction (neuron) to be decoupled (Saxe et al., 2013; Olmin & Lindsten, 2024; Lampinen
& Ganguli, 2018; Even et al., 2023; Pesme & Flammarion, 2023; Pesme et al., 2021), which can be
realized through a specific initialization choice. The decoupling assumption ignores the interaction
between different neurons and highly simplify the dynamics, and as we mentioned in Sec. 4.1, make
it unable to capture some important phenomena in practice. The symmetric 2-layer linear model is
also a specific model that is frequently studied, especially in matrix sensing (Li et al., 2020; Stöger
& Soltanolkotabi, 2021; Jin et al., 2023), and as we noted in Sec. 4.2, current theoretical results
of this model focus on the implicit biases in the solutions learned, while our analysis, on the other
hand, aims at characterizing the full learning dynamics and focus on its OOD behavior.

B MODEL COMPOSITIONALLY GENERALIZE IN TOPOLOGICALLY
CONSTRAINED ORDER

In this section, we introduce another phenomenon observed on SIM task learning that we do not put
in the main paper: the order of compositional generalization happens in a topologically constrained
order.

In this section, instead of the single test point x̂, we introduce a hierarchy of test points. Specifically,
let I = {0, 1}s be the index set of test points. For each v ∈ I, we define a test point

x̂(v) =

s∑
p=1

vpµp1p, (B.1)

and call x̂(v) the test point with the index v. Intuitively, the index v describes which training sets
are combined into the current test point. If ∥v∥ = 1 then x̂(v) is the center of one of the training
clusters.

We assign the component-wise ordering ⪯ to the index set I, i.e., for u,v ∈ I, we say u ⪯ v if
and only if ∀i ∈ [n], ui ≤ vi. It’s easy to see that ⪯ is a partial-ordering.

Interestingly, in the SIM experiment, the order of the generalization in different test points strictly
follow the component-wise order. This finding can be described formally in the following way: the
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loss function is an order homomorphism between ⪯ on the index set, and ≤ on the real number. Let
ℓ(z) be the loss function of the test point z, then we have the following empirical observation:

∀u,v ∈ I,u ⪯ v =⇒ ℓ
(
x̃(u)

)
≤ ℓ

(
x̃(v)

)
. (B.2)

Figure 7: The loss at each test point in different timepoints during training for a 2-layer MLP with
ReLU activation. Each graph represents a timepoint. Each node in the graph represents a test point,
with index printed on it, and edges connecting nodes with Hamming distance 1. The color of the
graph represents the loss of corresponding test point. Notice that we truncate the loss at 1 in order
to unify the scale. From lest to right: epoch = 1, 3, 5.

In Fig. 7 we show the loss of each test point in several timepoints, with µ = (1, 2, 3, 4), σ =
{

1
2

}4
.

There is a clear trend that the test points that are on the right of the graph (larger in the component-
wise order) will only be learned after all of its predecessors are all learned. We call this phenomenon
the topological constraint since the constraint is based on the topology of the graph in Fig. 7.

C PROOFS AND CALCULATIONS

In the main text we have omitted some critical proofs and calculations due to space limitation. In this
section we provide the complete derivations. Note that we postpone the proof of related theorems
of Sec. 4.2 to App. D because of their length.

C.1 THE LOSS FUNCTION WITH LINEAR MODEL AND INFINITE DATA LIMIT

In this subsection we derive the transformed loss function eq. (4.1), as well as the expression of the
data matrix A. For convenience we denote Wθ by W . We have

L(θ) = 1

2ns

s∑
p=1

n∑
k=1

∥∥∥(W − I)x
(p)
k

∥∥∥2 (C.1)

=
1

2ns
Tr
[
x
(p)⊤
k (W − I)⊤(W − I)x

(p)
k

]
(C.2)

=
1

2ns
Tr
[
(W − I)⊤(W − I)x

(p)
k x

(p)⊤
k

]
(C.3)

=
1

2
Tr

[
(W − I)⊤(W − I)

1

ns
x
(p)
k x

(p)⊤
k

]
(C.4)

=
1

2
Tr
[
A1/2(W − I)⊤(W − I)A1/2

]
(C.5)

=
1

2

∥∥∥(W − I)A1/2
∥∥∥2
F
. (C.6)

Let G be the data generating process. It can be viewed as two components: first assign one of the s
clusters, and then draw a Gaussian vector from a Gaussian distribution in that cluster. Specifically,
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let x be an arbitrary sample from the traning set, then the distribuition of x is equal to

x ≃ µ(η) + diag(σ)ξ, (C.7)

where η is a uniform random variable taking values in [s] and ξ ∼ N (0, I) is a random Gaussian
vector that is independent from η. Here ≃ represents having the same distribution.

When n → ∞, the data matrix A converges to the true covariance, which is is

A → E
(
xx⊤) (C.8)

= E
[(

µ(η) + diag(σ)ξ
)(

µ(η) + diag(σ)ξ
)⊤]

(C.9)

= E
(
µ(η)µ(η)⊤

)
+ Ediag(σ)ξξ⊤ diag(σ) (C.10)

=
1

s

s∑
p=1

µ(p)µ(p)⊤ + diag(σ)2 (C.11)

=
1

s

s∑
p=1

µ2
p1p1

⊤
p + diag(σ)2 (C.12)

=
1

s
diag (µ)

2
+ diag(σ)2. (C.13)

C.2 PROOF OF THEOREM 4.1

In this subsection for the notation-wise convenience we denote W = θ. Since the model is one-
layer, the loss function eq. (4.1) becomes

L(W ) =
1

2

∥∥∥(W − I)A1/2
∥∥∥2
F
, (C.14)

and the gradient is

∇L(W ) = (W − I)A = WA−A. (C.15)

We denote the k-th row of W and A by wk and Ak respectively. Then we have

ẇk = −Awk + ak. (C.16)

The solution of this differential equation is

wk(t) = exp (−At)
[
wk(0)−A−1ak

]
+A−1ak, (C.17)

where we use the convention 0×
(
0−1
)
= 0 to avoid the non-invertible case of A.

Thus for any z ∈ Rd we have

f(W (t); z)k = ⟨wk(t), z⟩ (C.18)

=
〈(
I − e−At

)
A−1ak, z

〉
+
〈
e−Atwk(0), z

〉
(C.19)

=

n∑
p=1

1− e−apt

ap
1{k=p}apzp +

n∑
i=1

e−aitwk,i(0)zi (C.20)

= 1{k≤s}
(
1− e−akt

)
zk +

n∑
i=1

e−aitwk,i(0)zi, (C.21)

and this proves the claim.

D THEORETICAL ANALYSIS OF THE TWO LAYER MODEL

In this section we provide a detailed analysis of the symmetric two-layer linear model described in
Sec. 4.2.
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In this section we assume a finite step size, i.e., W : N → Rd×d is initialized by W (0) and updated
by
W (t+ 1)−W (t)

η
= −U(t)∇L(U(t))⊤ −∇L(U(t))U(t)⊤ (D.1)

= W (t)A+AW (t)− 1

2

[
AW (t)2 +W (t)2A+ 2W (t)AW (t)

]
. (D.2)

The update of each entry wi,j(t) can be decomposed into three terms, as we described in the main
text:

wi,j(t+ 1)− wi,j(t)

η
=wi,j(t)(ai + aj)−

1

2

d∑
k=1

wk,iwk,j(ai + aj + 2ak) (D.3)

=wi,j(t)(ai + aj)︸ ︷︷ ︸
Gi,j(t)

(D.4)

− 1

2
wi,j

[
wi,i(3ai + aj) + 1{i ̸=j}wj,j(3aj + ai)

]
︸ ︷︷ ︸

Si,j(t)

(D.5)

− 1

2

∑
k ̸=i
k ̸=j

wk,i(t)wk,j(t)(ai + aj + 2ak)

︸ ︷︷ ︸
Ni,j(t)

. (D.6)

D.1 ASSUMPTIONS

We need make several assumptions to prove the results. Below we make several assumptions that
all commonly hold in the practice. The first assumption to make is that both the value of ak and the
initialization of W is bounded.
Assumption D.1 (Bounded Initialization and Signal Strength). There exists α > 0, γ > 1, β > 1
such that

∀k, α ≤ ak ≤ γα, (D.7)
∀i, j, ω ≤ |wi,j(0)| ≤ βω. (D.8)

The second assumption is that the step size is small enough.
Assumption D.2 (Small Step Size). There exists a constant K ≥ 20, such that η ≤ 1

9Kγα .

Next, we define a concept called initial phase. The definition of initial phase is related to a constant
P > 0.
Definition D.1. Assume there is a constant P > 0. For an entry (i, j) and time t, if |wi,j(t)| ≤ Pβω,
we say this entry is in initial phase.

As the name suggests, in the initial phase, the entries shouldn’t be too far away from the initializa-
tion, and we achieve this by an upper bound of P .
Assumption D.3 (Small Initial Phase). Pωβ ≤ 0.4.

The next assumption to make is that the initialization value (i.e. ω) should not be too large.
Assumption D.4 (Small Initialization).

ω ≤ min

{
min{κ− 1, 1− κ−1/2}

PKγdβ2
,

1√
2β

}
(D.9)

and κ > 1.1, and κ ≤ 1 + 1
2KC−1, P ≥ 2.

Finally, we also assume that the signal strength difference is significant enough.
Assumption D.5 (Significant Signal Strength Difference). For any i > j, we have

ai + aj
2ai

≤ logP

10κ2 log 1
Pβω + logPβ

. (D.10)

and there exists a constant C > 1 such that ai − 3aj ≥ C−1α.
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D.2 THE CHARACTERIZATION OF THE EVOLUTION OF THE JACOBIAN

In this subsection, we provide a series of lemmas that characterize each stage the evolution of the
Jacobian matrix W .

The whole proof is based on induction, and in order to avoid a too complicated induction, we make
the following assertion, which obviously holds at initialization.

Assertion D.1. For all t ∈ N, if i ̸= j, then the entry (i, j) stays in the initial phase for all time.

We will use Assertion D.1 as an assumption throughout the proves and prove it at the end. This is
essentially another way of writing inductions.

We have the following corollary that directly followed by Assertion D.1.

Corollary D.1. For all t ∈ N and all i, j, |Ni,j(t)| ≤ 2Pγαdβ2ω2.

Now, we are ready to present and prove the major lemmas. The first lemma is to post a (rather loose)
upper bound of the value of the entries.

Lemma D.1 (Upper Bounded Growth). Consider entry (i, j). We have for all t ∈ N, at timepoint t
the absolute value of the (i, j)-th entry satisfies

|wi,j(t)| ≤ |wi,j(0)| exp [ηt(ai + aj)κ] . (D.11)

Proof. Since of the Ni,j term we only use its absolute value, the positive case and negative case
are symmetric. WLOG we only consider the case where wi,j(0) > 0 here.

The claim is obviously satisfied at initialization. We use it as the inductive hypothesis. Suppose at
timepoint t ≤ T − 1 the claim is satisfied, we consider the time step t+ 1.

Since Assertion D.1 guaranteed that every non-diagonal entry is in the initial phase, and the Si,j

term has different symbol with wi,j(0), we have

|Si,j(t) +Ni,j(t)| ≤ 2Pγαdβ2ω2. (D.12)

We have

wi,j(t+ 1)− wi,j(t) ≤ ηwi,j(t)(ai + aj) + 2Pηγαdβ2ω2 (D.13)

≤ η(ai + aj)wi,j(0) exp [ηt(ai + aj)κ] + 2Pηγαdβ2ω2 (D.14)

= wi,j(0) exp [ηt(ai + aj)κ]

[
η(ai + aj) +

2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ]

]
(D.15)

From Assumption D.4, we have

η(ai + aj) +
2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ]
≤ η(ai + aj) + 2Pγαdβ2ω (D.16)

≤ η(ai + aj) + 2(κ− 1)ηα (D.17)
≤ κη(ai + aj) (D.18)
≤ exp(κη[ai + aj ])− 1, (D.19)

thus we have

wi,j(t+ 1) ≤ wi,j(t) + [exp(κη[ai + aj ])− 1]wi,j(t) (D.20)
≤ wi,j(0) exp [η(t+ 1)(ai + aj)κ] . (D.21)

Next, we prove that Lemma D.1 is tight in the initial stage of the training, up to a constant κ in the
exponential term.

20



Published as a conference paper at ICLR 2025

Lemma D.2 (Lower Bounded Initial Growth). Let T1 = logP
2ηγακ . We have for all t ∈ [T1], at

timepoint t every entry (i, j) is in the initial phase, and the absolute value of the (i, j)-th entry
satisfies

|wi,j(t)| ≥ |wi,j(0)| exp
[
ηt(ai + aj)κ

−1
]

(D.22)

and wi,j(t)wi,j(0) > 0.

Proof. Similar to the proof of Lemma D.1, we may just assume wi,j(0) > 0.

Moreover, we also use the claim as an inductive hypothesis and prove it by induction. Since here
the inductive hypothesis states that every entry is in the initial phase, we have

|Si,j(t) +Ni,j(t)| ≤ 4γαdβ2ω2. (D.23)

We have

wi,j(t+ 1)− wi,j(t) ≥ η(ai + aj)wi,j(0) exp
[
ηt(ai + aj)κ

−1
]
− 2Pηγαdβ2ω2 (D.24)

= wi,j(0) exp
[
ηt(ai + aj)κ

−1
] [

η(ai + aj)−
2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ−1]

]
(D.25)

From Assumption D.4, we have

2Pηγαdβ2ω2

wi,j(0) exp [ηt(ai + aj)κ−1]
≤ 2Pηγαdβ2ω (D.26)

≤
(
1− κ−1/2

)
η(ai + aj). (D.27)

Moreover, notice that when κ > 1.1, for any x < 0.1, we have κ−1/2x + 1 ≥ eκ
−1x. Since

Assumption D.2 ensured that η ≤ 1
10(ai+aj)

, we have

wi,j(t+ 1) ≥ wi,j(t) + wi,j(t)
[
κ−1/2η(ai + aj)

]
(D.28)

≥ wi,j(t) exp
(
η(ai + aj)κ

−1
)

(D.29)

≥ wi,j(0) exp
[
η(t+ 1)(ai + aj)κ

−1
]
. (D.30)

Finally, from Lemma D.1, we have when

wi,j(t) ≤ |wi,j(0)| exp (ηt(ai + aj)κ) (D.31)
≤ βω exp (2ηT1γακ) (D.32)
= Pβω, (D.33)

which confirms that every entry (i, j) stays in the initial phase before time T1.

Notice that the time bound T1 in Lemma D.2 is a uniform one which applies to all entries. For the
major entries, we might want to consider a finer bound of the time that it leaves the initial phase.
This can be proved by essentially repeating the same proof idea of Lemma D.2.
Lemma D.3 (Lower Bounded Initial Growth for Diagonal Entries). Consider an diagonal entry

(i, i). Let T (i)
1 =

log Pβω
wi,i(0)

2ηaiκ
. We have for all t ∈

[
T

(i)
1

]
, at timepoint t the entry (i, i) is in the initial

phase, and the absolute value of the (i, i)-th entry satisfies

wi,i(t) ≥ wi,i(0) exp
(
2ηtaiκ

−1
)
. (D.34)

We omit the proof of Lemma D.3 since it is almost identical to the proof of Lemma D.2, only with
replacing γα by ai and βω by wi,i(0).

Next, we characterize the behavior of one diagonal entry after it leaves the initial phase.
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Lemma D.4 (Lower Bounded After-Initial Growth for Diagonal Entries). Consider a diagonal entry
(i, i). If at time t0 we have |wi,i(t0)| ≥ Pβω, and for a λ ∈ (Pβω, 1−K−1), before time T (λ) we
have wi,i(t+ t0) < λ for all t ∈ [T (λ)], then we have

wi,i(t+ t0) ≥ wi,i(t0) exp
[
2ηtai(1− λ)κ−1

]
. (D.35)

Moreover, wi,i(0), wi,i(t0), wi,i(t0 + t) ≥ 0.

Proof. Notice that since W = UU⊤ is a PSD matrix, its diagonal entries are always non-negative,
this ensures that wi,i(0), wi,i(t0), wi,i(t0 + t) ≥ 0.

For the time after t0 and before t0 + T (λ), we use an induction to prove the claim, with the claim
itself as the inductive hypothesis. It clearly holds when t = 1.

Notice that when wi,j(t
′) < λ, we have

Gi,j(t
′)− Si,j(t

′) = 2aiwi,i(t
′) [1− wi,i(t

′)] ≥ 2aiwi,i(t
′)(1− λ). (D.36)

Thus we have

wi,i(t0 + t+ 1)− wi,i(t0 + t) (D.37)

≥ 2ηai(1− λ)wi,i(t0) exp
[
ηt(ai + aj)(1− λ)κ−1

]
− 2Pηγαdβ2ω2 (D.38)

= wi,i(t0) exp
[
2ηtai(1− λ)κ−1

] [
2ηai(1− λ)− 2Pηγαdβ2ω2

wi,i(t0) exp [2ηtai(1− λ)κ−1]

]
(D.39)

Since λ < 1−K−1, and wi,i(t0) ≥ 2βω ≥ ω, from Assumption D.4, we have

2Pηγαdβ2ω2

wi,i(t0) exp [2ηtai(1− λ)κ−1]
≤ 2Pηγαdβ2ω (D.40)

≤ 2K−1
(
1− κ−1/2

)
ηα (D.41)

≤ 2
(
1− κ−1/2

)
ηai(1− λ). (D.42)

Moreover, since Assumption D.2 ensured that η ≤ 1
2Kai(1−λ) ≤ 1

20ai(1−λ) , using the fact that if

κ > 1.1 then κ−1/2x+ 1 ≥ eκ
−1x for any x < 0.1, we can get

wi,i(t+ 1) ≥ wi,i(t) + wi,i(t)
[
κ−1/22ηai(1− λ)

]
(D.43)

≥ wi,i(t) exp
(
2ηaiκ

−1(1− λ)
)

(D.44)

≥ wi,i(t0) exp
[
2η(t+ 1)κ−1(1− λ)

]
. (D.45)

Next, we provide an uniform upper bound (over time) of the diagonal entries. Remember that we
mentioned in the gradient flow case, the diagonal term stops evolving when it reaches 1. In the
discrete case, since the step size is not infinitesimal, Lemma D.5 shows that it can actually exceed 1
a little bit but not too much since the step size is small.
Lemma D.5 (Upper Bounded Diagonal Entry). For any diagonal entry (i, i) and any time t, 0 ≤
wi,i(t) ≤ 1 + 2K−1.

Proof. First notice that since W (t) is PSD, its diagonal entry wi,i(t) should always be non-negative,
thus wi,i(t) ≥ 0 is always satisfied. In the following we prove wi,i(t) ≤ 1 + 2K−1.

We use induction to prove this claim. The inductive hypothesis is the claim it self. It is obviously
satisfied at initialization. In the following we assume the claim is satisfied at timepoint t and prove
it for timepoint t+ 1. Notice that since K ≤ 10, we have 1 +K−1 ≤ 1 + 2K−1 ≤ 2.

Notice that by Assertion D.1 and Assumption D.4,

|Ni,i(t)| ≤ 2Pγαdβ2ω2 ≤ (κ− 1)2

K2γdβ2
α ≤ K−1ai. (D.46)
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If wi,i(t) ≥ 1 +K−1, we have

Gi,i(t)− Si,i(t) = 2aiwi,i(1− wi,i) ≤ −2aiK
−1. (D.47)

Therefore,

wi,i(t+ 1) = wi,i(t) + η [Gi,i(t)− Si,i(t)−Ni,i(t)] (D.48)

≤ wi,i(t)− aiK
−1η (D.49)

≤ wi,i(t) (D.50)

≤ 1 + 2K−1. (D.51)

Moreover, since wi,i(t) ≤ 1 + 2K−1 ≤ 2, we have

|Gi,i(t)|+ |Si,i(t)|+ |Ni,i(t)| ≤ 4ai + 4ai +K−1ai ≤ 9γα ≤ 1

Kη
. (D.52)

When wi,i(t) ≤ 1 +K−1, using eq. (D.52), we have

wi,i(t+ 1) ≤ wi,i(t) + η (|Gi,i(t)|+ |Si,i(t)|+ |Ni,i(t)|) ≤ 1 + 2K−1. (D.53)

The above results together shows that wi,i(t+ 1) ≤ 1 + 2K−1.

Corollary D.2 (Upper Bounded Diagonal Update). For any diagonal entry (i, i) and any time t,
|wi,i(t+ 1)− wi,i(t)| ≤ K−1.

Corollary D.2 is a direct consequence of Lemma D.5 (and we actually proved Corollary D.2 in the
proof of Lemma D.5).

The next lemma lower bounds the final value of diagonal entries. Together with Lemma D.5 we
show that in the terminal stage of training the diagonal entries oscillate around 1 by the amplitude
not exceeding 2K−1.
Lemma D.6. Consider a diagonal entry (i, i). If at time t0 we have wi,i(t0) ≥ 1− 2K−1, then for
all t′ ≥ t0 we have wi,i(t

′) ≥ 1− 2K−1.

Proof. We use an induction here. The inductive hypothesis is the claim itself. This obviously holds
when t′ = t0. We assume wi,i(t

′) ≥ 1− 2K−1 at timepoint t′ and prove the claim for t′ + 1.

If wi,i(t
′) < 1−K−1, then from Lemma D.4 we know

wi,i(t
′ + 1) ≥ wi,i(t

′) ≥ 1− 2K−1. (D.54)

If wi,i(t
′) > 1−K−1, then from Corollary D.2 we have

wi,i(t
′ + 1) ≥ wi,i(t

′)−K−1 ≥ 1− 2K−1. (D.55)

Now, we are ready to prove Assertion D.1 by considering the suppression. We first prove a lemma
that upper bounds the absolute value of the minor entries after its corresponding major entry becomes
significant.
Lemma D.7 (Suppression). Consider an off-diagonal entry (i, j) where i > j. If there exists a time
t0 such that wi,i(t0) > 0.8, then for any t′ ≥ t0 we have

|wi,j(t
′)| ≤ max {|wi,j(t0)| , ω} . (D.56)

Proof. Since K > 10, from Lemma D.6 and Lemma D.4 we know wi,i(t
′) > 0.8 for all t′ ≥ t0.

In this proof, we use an induction with the inductive hypothesis being the claim itself, i.e., we assume
the claim is true at timepoint t′ and prove it for t′ + 1. The claim obviously holds for t′ = t0.

Since in this proof we only use the absolute value of Ni,j , WLOG we may assume that wi,j(t
′) > 0.
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If wi,j(t
′) < ω then we have proved the claim. In the following we may assume wi,j(t

′) ≥ ω.

We have

Gi,j(t
′)− Si,j(t

′) ≤ wi,j(t
′)(ai + aj)−

1

2
wi,j(t

′)wi,i(3ai + aj) (D.57)

≤ wi,j(t
′)(ai + aj)− wi,j(t

′) [0.4(3ai + aj)] (D.58)

= −1

5
wi,j(t

′)ai +
3

5
wi,j(t

′)aj (D.59)

(i)
≤ −C−1ωα, (D.60)

where in (i) we use Assumption D.5.

Thus we have

Gi,j(t
′)− Si,j(t

′)−Ni,j(t
′) ≤ Gi,j(t

′)− Si,j(t
′) + |Ni,j(t

′)| (D.61)

≤ −C−1ωα+ 2Pγαdβ2ω2 (D.62)
(i)
< 0, (D.63)

where (i) is from Assumption D.4 and Assumption D.5. This confirms that wi,j(t
′+1) < wi,j(t

′) ≤
max {|wi,j(t0), ω}.

Next, we prove wi,j(t
′+1) ≥ −max {|wi,j(t0)|, ω}. Notice that Lemma D.5 stated that |wi,i| ≤ 2.

Notice that we also have wi,j(t
′) ≤ K−1, thus from Assumption D.2,

|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t
′)| ≤ 10γα|wi,j(t

′)|+ 2Pγαdβ2ω2 (D.64)

≤ 10|wi,j(t
′)|+ 2Pdβ2ω2

9Kη
(D.65)

≤ 10|wi,j(t
′)|+ 2ω

9Kη
(D.66)

≤ |wi,j(t
′)|+ ω

2η
. (D.67)

We have

wi,j(t
′ + 1) ≥ wi,j(t

′)− η(|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t)
′|) (D.68)

≥ −η(|Gi,j(t
′)|+ |Si,j(t

′)|+ |Ni,j(t
′)|) (D.69)

≥ −1

2
(|wi,j(t

′)|+ ω) (D.70)

≥ −max{|wi,j(t
′)|, ω}. (D.71)

With all the lemmas proved above, we are now ready to prove Assertion D.1.

Lemma D.8 (Assertion D.1). For all t ∈ N, if i ̸= j, then the entry (i, j) stays in the initial phase
for all time.

Proof. Notice that since W is symmetric, we only need to prove the claim for i > j. Moreover,
From Lemma D.7, we only need to prove that there exists a timepoint t∗, such that wi,i(t

∗) ≥ 0.8,
and |wi,j(t

∗)| ≤ Pβω.

Let t0 =
log Pβω

wi,i(0)

2ηaiκ
, by Lemma D.3, we have wi,i(t0) ≥ Pβω. By Lemma D.3 and Lemma D.4, we

have for any t ≥ t0 such that wi,i(t) ≤ λ, where λ = 0.85,

wi,i(t) ≥ wi,i(t0) exp
[
0.3η(t− t0)aiκ

−1
]

(D.72)

≥ Pβω exp
[
0.3η(t− t0)aiκ

−1
]

(D.73)
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Let t′ be the first time that wi,i(t
′) arrives above 0.8. Let t∗ = min

{
κ log 0.8

Pβω

0.3ηai
+ t0, t

′
}

≥ t0. If

t∗ = t′, we have wi,i(t
∗) ≥ 0.8. If t∗ =

κ log 0.8
Pβω

0.3ηai
+ t0, we have

wi,i(t
∗) ≥ wi,i(0) exp

(
0.3ηt∗aiκ

−1
)

(D.74)

≥ Pβω exp

(
log

0.8

Pβω

)
(D.75)

= 0.8. (D.76)

Moreover, from Lemma D.1 and Assumption D.5, we have

|wi,j(t
∗)| ≤ |wi,j(0)| exp [ηt∗κ(ai + aj)] (D.77)

≤ βω exp

[(
κ2 log 0.8

Pβω

0.15
+ log

Pβω

wi,i(0)

)
× ai + aj

2ai

]
(D.78)

≤ βω exp

[(
10κ2 log

1

Pβω
+ logPβ

)
× ai + aj

2ai

]
(D.79)

≤ βω exp [log(P )] (D.80)
= Pωβ. (D.81)

The claim is thus proved by combining the above bounds on |wi,j(t
∗)| and wi,i(t

∗) with Lemma D.7.

E ADDITIONAL DISCUSSIONS

In this section, we further discuss the findings and theoretical predictions presented in this paper.

E.1 MULTIPLE DESCENTS

In Fig. 5, we verified our theoretical predictions of the Swing-by Dynamics through an experiment
of an s = 2 example. However, in our theory, there can be multiple growth / suppression stages
when s > 2, which should give us a multiple descent-like curve. We note here that based on the
conditions given in App. D.1, it is indeed possible to see multiple descent but only with a subtle
choice of the signal strengths (µ) and under specific initialization conditions.

In Fig. 8 and 9, we illustrate two settings where the loss curves exhibit epoch-wise triple and quadru-
ple descent. In both settings we use symmetric 2-layer linear model, same as the model used in
Sec. 4.2. Note that we tuned initialization random seed to generate these results. Moreover, since
the time scale of each descent vary, we use a log scale for the number of epochs to make the results
more apparent.

It is worth noting that in Fig. 8 and 9, each major entry starts to grow only after the corresponding
minor entry is suppressed (for example in Fig. 8, w2,2 starts to grow after w2,3 is suppressed, w1,2

starts to decay after w2,2 is close to 1, and w1,1 starts to grow after w1,2 is suppressed), and each
ascending / descending stage of loss curve aligns well with a stage of growth / suppression of the
minor and major entries. These correspondence match exactly with our theoretical prediction and
shows the correctness and preciseness of our theory.

E.2 THE BREAKDOWN OF THE INITIALIZATION ASSUMPTION

In Sec. 3.3, we mentioned that Swing-by Dynamics seems to be more significant when the dimen-
sionality of the dataset is low, and in Sec. 4.2.2, we attributed the reason of it to the fact that when
the dimensionality of the dataset is small, it’s easier to have more minor entries initialized positive,
which lead to an illusion of learning in the minor entry growth stage, whose later suppression leads
to the non-monotonic output trajectory behavior of Swing-by Dynamics.

In this section, we note that, another reason for the Swing-by Dynamics to be less significant is that
Assumption D.4 breaks down when the dimension is high, if we use standard Gaussian initialization
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Figure 8: An illustration of epoch-wise triple
descent of the symmetric 2-layer linear model.
The dataset has dimensionality and number of in-
formative directions d = s = 3, signal strength
values µ = (1.0, 1.5, 2.2), and noise values σ =
(0.05, 0.05, 0.05).
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Figure 9: An illustration of epoch-wise
quadruple descent with the symmetric 2-layer
linear model. The dataset has dimensionality
and number of informative directions d = s = 4,
signal strength values µ = (1.0, 1.5, 2.2, 2.7),
and noise values σ = (0.05, 0.05, 0.05, 0.5).

to initialize the model weights. Specifically, in Assumption D.4, we require that all entries of W
are initialized around a relatively small value ω, which indicates that there is no huge difference
between the magnitude of the initialization of major entries and minor entries.

However, notice that W = UU⊤ and thus wi,j = ⟨u− i,uj⟩, where ui ∈ Rd′
is the i-th row of

U . If we use Gaussian distribution to initialize U , i.e. ui ∼ N
(
0, τ2I

)
, where τ is a small real

number, then we have the expectation of wi,j be

Ewi,j =

{
0 i ̸= j

d′τ2 i = j,
(E.1)

which highlights the different between major entries and minor entries in initialization when d′ is
large (and notice that d′ is lower bounded by d, which is the dataset dimensionality). Moreover,
when d′ is small, the variance of wi,j will be large, so there is a greater chance for them to be away
from 0.

E.3 FAILURE MODES

A breakdown in the assumptions in App. D.1 can also lead to the model converging to “wrong”
solutions that do not fully generalize OOD. For example, if a minor entry happens to be initialized
too large (breaking the Assumption D.4), and / or the corresponding signal strength distinction is
not large enough (breaking the Assumption D.5), then it is possible that the minor entry is not
suppressed until it grows to a significant value, which can, in turn, lead to a too strong suppression
on the corresponding major entry. In this case, a major entry might be suppressed to 0 (or at least,
leave the initial phase from below) before it starts to grow, and thus never has chance to grow.
This case corresponds to the model being “trapped” in a state that it only learns to compositionally
generalize to a combination of certain (but not all) concepts.

In Fig. 10, we exhibit a case of such failure mode where the model fails to fully achieve OOD
generalization. Notice how the loss value converges to a non-zero value and the major entry w1,1 is
suppressed at the very beginning and never grows. Additionally, the output trajectory is trapped at a
point that combines only two directions, missing the third direction.

E.4 FUTURE DIRECTIONS

We note that, current characterization of the model learning dynamics relies on the critical assump-
tions in App. D.1. Although those assumptions are reasonable and common in practice, the model
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Figure 10: An illustration of a failure case where the model doesn’t successfully generalize
OOD. The dataset has d = s = 3, µ = (0.7, 1.7, 3) and σ = (0.05, 0.05, 0.05). Left: The evolution
of values of Jacobian and the OOD loss evaluated at test point x̂; Right: The output trajectory
(orange curve).

behavior still shows some regularity when those assumptions breakdown. We have discussed some
of the possible consequences when one of those assumptions breakdown above, but more in an intu-
itive way, instead of a systematic way. Therefore, one important future direction is to systematically
characterize what will happen beyond the assumptions given in App. D.1. Among which, one spe-
cific and very important topic is the failure modes, i.e. under what conditions the model fails to
generalize OOD.

Another important direction is to generalize current analysis to more complex models, such as deep
linear networks, two-layer ReLU networks, or models in the NTK regime. The key point of current
analysis of the 2-layer symmetric model is to correctly slice the learning dynamics of each entry of
the Jacobian into multiple stages, such that in each stage, the learning dynamics is dominated by a
rather simple dynamics.

Currently, since the model is 2-layer and without bias terms, there are only first-order and second-
order terms in the learning dynamics. However, if we consider deeper models, there might be
higher-order terms in the dynamics, and it is important to identify and simplify the effect these
higher-order interactions in order to make the problem tractable.

For ReLU networks, it is known that there will be an “early-alignment” stage when trained on
linear-separable data (Maennel et al., 2018; Min et al., 2023), where each neuron converge to a
fixed direction, and make the model behaves like a linear model. We claim that investigating the
early-alignment of 2-layer ReLU networks on the SIM task can be the starting point of theoretically
characterizing the behavior of ReLU networks on the SIM task.

F ADDITIONAL SIM EXPERIMENT DETAILS AND RESULTS

In this section, we present the results of SIM experiments under different settings, including linear
and non-linear models. The consistent behavior observed across these settings confirms the univer-
sality of our findings and explanations.

F.1 EXPERIMENT DETAILS

In all SIM experiments, including those presented in main paper and in appendix, the number of
training samples in each Gaussian cluster is 5000. We use MLP models with either linear activations
or ReLU activations, and all the models are trained using stochastic gradient descent with a batch
size of 128 and a learning rate of 0.1 for 40 epochs. Unless otherwise specified, the dimensionality
of all data points is d = 64, and the hidden layer dimensionality of the models is also 64 by default.
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It is important to note that in our theory, we assumed that all training clusters and the test point
are aligned with the standard coordinate. However, in our experiments, in order to make the results
more universal and general, we add a random rotation to all the train / test points.

F.2 ADDITIONAL EXPERIMENT RESULTS

Fig. 11 and Fig. 12 repeat the learning order experiments described in Sec. 3.1, using a 2-layer
model with and without ReLU activation, respectively. It is easy to see that despite showing more
non-regular curves, in multi-layer models the overall trends described in Sec. 3.1 and Sec. 3.2 are
preserved.
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Figure 11: Output trajectory of 2-layer models with linear activations. The number of informa-
tive directions in the dataset is s = 2. Left: µ:2 = (1, 2) with varied σ’s; Right: σ:2 = (0.05, 0.05)
with varied µ’s.
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Figure 12: Output trajectory of 2-layer models with ReLU activations. The number of in-
formative directions in the dataset is s = 2. Left: µ:2 = (1, 2) with varied σ values; Right:
σ:2 = (0.05, 0.05) with varied µ values.

In Fig. 14, we present the output trajectory for two settings that exhibit significant Swing-by and
Fig. 14 the corresponding loss curve. Specifically, the dataset has a dimensionality of d = 3, and is
not randomly rotated. The models used have 3 layers, 3 hidden dimensions and linear activations.
Comparing these results with the curve presented in Fig. 11, Fig. 12 and in Fig. 2, it is evident that
models with more layers and fewer input dimensions are easier to have Swing-by, which confirms
our theoretical prediction in Sec. 4.2.2.
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Figure 13: Output trajectory of 3-layer models with linear activations and 3 hidden dimensions.
The dataset has dimensionality d = 3, number of informative directions s = 2 and variance σ:2 =
(0.05, 0.05). Left: µ:2 = (1, 2); Right: µ:2 = (2, 4).
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Figure 14: The loss curve of corresponding models in Fig. 13. Small µ: µ:2 = (1, 2); Large µ:
µ:2 = (2, 4).

F.3 FURTHER EXPERIMENTS ON THE ROLE OF OUT-OF-DISTRIBUTION

In Sec. 4.2.2, we briefly discussed that Swing-by must be an OOD phenomenon: the test point should
be sufficiently away from the training clusters. In this subsection, we verify that this condition is
satisfied in our SIM experiments.

In Fig. 15, we repeat the experiment of Fig. 2 (c), but in addition to the output curve, we also plot
each training point. It is clear that there is no training point that is close to the test point.

In order to further ensure the separation of the training clusters with the testing point, in Fig. 16,
we again repeat the experiment of Fig. 2 (c), but we make a truncation of the training distribution:
we force that no training point can lie within the distance of 1

2 minp∈[s] µp of the testing point5. It
is evident that only a few training samples are discarded and this truncation has little impact on the
dynamics.

F.4 FURTHER EXPERIMENTS ON THE TRAJECTORY OF TRAINING SET

In order to make it clearer to compare the model behavior on training set and test point, here in
Fig. 17 and Fig. 18 we repeat the setting of Fig. 5, with additional information provided: 1) in
Fig. 17, we added the training loss curve ; 2) In Fig. 18 we added two trajectories, corresponding to
the model output given the training cluster means as input. We omit the training cluster centered at
the origin since the 2-layer linear model always output 0 for this point.

5This a repeatedly sampling training points and discarding those within the specified distance of the testing
point, until the training set reaches the desired size.
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Figure 15: Reproducing Fig. 2 (c), with train-
ing points plotted.

Figure 16: Reproducing Fig. 2 (c), with train-
ing distribution truncated.
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Figure 17: Reproducing Fig. 5 left, with
training loss plotted.
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Figure 18: Reproducing Fig. 5 right, with the
output trajectory of training set.

As shown in Fig. 17, the training loss monotonically decreases, exhibiting a different behavior com-
pared to the non-monotonic test loss curve. This is expected because we used a small learning rate,
and it is well-known that, under such conditions, the training loss must decay monotonically. In
Fig. 18, the two curves of training trajectories both exhibit non-regular behaviors, but at different
stages of the training. This observation aligns with our analysis of the multi-stage behavior of the
learning.

G DIFFUSION MODEL EXPERIMENTS

We describe experimental details for the diffusion model experiments. We largely follow Park et al.
(2024) in these experiments.

G.1 SYNTHETIC DATA

Fig. 19 illustrates the DGP. We borrow part of the compositional data generating process (DGP)
introduced by in Park et al. (2024). The DGP generates a set of images of circles based on the
concept variables color={red,blue} and size={big,small}. Each concept variable can
be selected as composed to yield four classes 00, 01, 10, 11 respectively corresponding to (red,
big), (red, small), (blue, big), (blue, small). Here, class average pixels values of red
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Figure 19: Data Generation process with different concept signals. Figure from (Park et al.,
2024). The data generating processed used to train the diffusion model, where we can control the
strength of the two concept signals independently. Left: A data distribution with a stronger concept
signal in the color dimension. Right: A data distribution with a stronger concept signal in size.

and blue colors will control the concept signal for color and the difference between small and
big. In Fig. 6, we fix the big circle’s diameter to 70% of the image and the small circle’s diameter
to 30% of the image. We then adjust the absolute difference between the blue color and red color
from 0.2 (very similar colors) to 0.7 (very different colors). The DGP randomizes the location of the
circle, the background color and adds some noise to avoid having a very narrow data distribution.
Please refer to Park et al. (2024) for further detail.

In Fig. 19, we show two different data distributions, one with a big color concept signal and one
with a big size concept signal.

G.2 MODEL & TRAINING

We train a conditional diffusion model on the synthetic data defined above. In specific, we train a
variational diffusion model (Kingma et al., 2021) to generate 3× 32× 32 images conditioned on a
4-dimensional vector where the first element of the vector specifies the size of the circle and the 3
others specifies the RGB colors.

Model Architecture We use a conditional U-Net (Ronneberger et al., 2015) with hidden dimen-
sions [64, 128, 256] before each downsampling layer and two ResNet (He et al., 2015) layers in each
level. The conditioning vector is first transformed into the same dimensions as the hidden dimen-
sions using a 2-layer MLP and are added to the representation after every downsampling layer. The
U-Net has a self attention layer (Dosovitskiy et al., 2021) in its bottleneck. We used LayerNorm (Ba
et al., 2016) for normalization layers and GELU (Hendrycks & Gimpel, 2023) activations.

Diffusion We use a learned linear noise schedule for the diffusion process as defined in Kingma
et al. (2021), initialized with γmax = 10, γmin = −5. We assume a data noise of 1 × 10−3.
Variational diffusion models do not require fixing the number of diffusion steps at training time, but
we use 100 steps for generation at inference time.

Training We train our model with the AdamW optimizer (Loshchilov & Hutter, 2019) with learn-
ing rate 1× 10−3 and weight decay 0.01. We use a batch size of 128 and train for 20k steps.

G.3 EVALUATION

We evaluate the concept space representation of the generated output image using a trained classifier.
Since we have the ground truth DGP, we used a large amount of data to train a perfect classifier. We
used a U-Net backbone followed by a max pooling layer and a MLP classifier to classify each
concept variable color and size. We train this classifier for 10k steps and achieve a 100%
accuracy on a held out test set. We average over 32 generated images and 5 model run seeds to get
the ensemble average concept space representation.
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The concept space MSE in Fig. 6 (b) is simply calculated as the MSE distance in the concept space
defined in Park et al. (2024). The concept learning speed |dC/dt| is quantified by estimating the
movement speed in the same concept space by a finite difference method.
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