GNM: A General Navigation Model to Drive Any Robot
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Fig. 1: A general navigation model to drive any robot. By training on diverse, heterogeneous datasets, a single “omnipolicy” can

control a variety of robots in challenging environments, including new robots, without any robot-specific data collection.

Abstract— Learning provides a powerful tool for vision-based
navigation, but the capabilities of learning-based policies are
constrained by limited training data. If we could combine
data from all available sources, including multiple kinds of
robots, we could train more powerful navigation models. In
this paper, we study how a general goal-conditioned model
for vision-based navigation can be trained on data obtained
from many distinct but structurally similar robots, and enable
broad generalization across environments and embodiments.
We analyze the necessary design decisions for effective data
sharing across robots, including the use of temporal context
and standardized action spaces, and demonstrate that an
omnipolicy trained from heterogeneous datasets outperforms
policies trained on any single dataset. We curate 60 hours
of navigation trajectories from 6 distinct robots, and deploy
the trained GNM on a range of new robots, including an
underactuated quadrotor. We find that training on diverse
data leads to robustness against degradation in sensing and
actuation. Using a pre-trained navigation model with broad
generalization capabilities can bootstrap applications on novel
robots going forward, and we hope that the GNM represents
a step in that direction. For more information on the datasets,
code, and videos, please check out our project page'.

I. INTRODUCTION

Machine learning methods have enabled broad general-
ization with real-world applicability in natural language pro-
cessing [1], visual perception [2—4], and other domains [5, 6]
by leveraging Internet-scale data. Such generalization typi-
cally requires learning general patterns from diverse datasets,
which are usually collected once and then reused for various
purposes. Such large-scale models also support the ability
to be adapted for new tasks by reusing the representations
learned from broader, larger, and more general datasets, for
example by or zero-shot transfer [7-9], or fine-tuning on
target-domain data. Although this paradigm has been very
successful, it is difficult to apply in robotics due to the sheer
diversity of environments and platforms across researchers.
Control policies learned end-to-end usually require sepa-
rate data collection for each robotic platform, leading to
“fragmentation” in progress, where every researcher works
with their own robot-specific dataset and policies, making
it infeasible to accumulate large enough datasets. Can we
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overcome this challenge by training models on more general
and reusable cross-robot datasets?

We study this question in the context of visual navigation,
where heterogeneity between robots might include different
camera hardware, viewpoints, dynamics, and more broadly,
embodiments, but where the over-arching navigation objec-
tive looks similar irrespective of these differences. A wheeled
robot, quadruped, or a drone all have the same abstract
objectives: to explore the environment, plan a path to the
goal, and avoid collisions. Leveraging this shared abstraction
across robots and training a general navigational omnipolicy
from large-scale data could enable broad generalization to
novel environments, unseen sensor parameters (e.g., camera
intrinsics and extrinsics), and new robot configurations.

In this paper, we propose to take a step towards this
kind of data sharing by training an embodiment-agnostic
general navigation model (GNM) from an aggregated multi-
robot dataset. The primary contribution of our work is a
framework for training a general omnipolicy from multi-
robot datasets, with empirical evidence that such an om-
nipolicy can effectively learn from heterogeneous datasets
and generalize to novel robot platforms. To facilitate this,
we aggregate a large heterogeneous dataset of navigation
trajectories collected across 6 robots, spanning 60 hours of
interactions in challenging indoor and outdoor environments.
We train the GNM on this dataset and deploy it on 4 distinct
robot platforms, including 2 new robots. We show that a
single learned policy can be used across multiple robots
to perform goal-reaching in challenging indoor and outdoor
environments, outperforming policies trained with any single
dataset. We also report robustness to degradation in camera
parameters, tire damage, and other gradual changes that the
robot may experience over its lifetime.

We will be releasing the trained GNM policy, code used
to train and deploy our models on various popular robot
platforms, as well as the dataset used to train these models
at our project page. We hope that this represents a step to-
wards both general-purpose multi-robot datasets and general-
purpose visual navigational models that can be deployed on a
wide range of robots — similar to how practitioners currently
use pre-trained models in vision and language, such models
could constitute pre-trained backbones for visual navigation.
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II. RELATED WORK

Learning from large, diverse robotic datasets has been
studied for various robotic applications where data sharing
across similar robots helps scale learning to challenging
environments [10-12]. However, for applications such as
ground or aerial navigation, with different sensors and robot
dynamics, current approaches tend to rely on learning from
small datasets which are only representative of a single
robotic platform. Our paper proposes learning navigation
behavior from heterogeneous robot datasets, collected across
multiple embodiments.

Our work is closely related to transfer learning, where the
objective is to train policies that transfer across domains,
such as across dynamics [13—-15], environments [16], mor-
phologies [17-19], viewpoints [20], and embodiments [21].
Our focus is not on designing specific domain adaptation
algorithms or hand-engineered augmentations [21] for trans-
fer, but rather studying how direct generalization of simple,
high-capacity models trained on real-world data can provide
a path to broadly applicable navigational policies. Towards
this, our work is also closely related to DroNet [22], which
imitates expert on-road driving data to control a quadrotor.
We take this paradigm one step further, showing that we can
train goal-conditioned policies on data from multiple robots
and control new ones, including a quadrotor.

Prior work has also explored learning of visual represen-
tations or end-to-end policies from passive data, such as
YouTube videos, which can be scaled up massively without
real-world data collection [23-25]. We explore a comple-
mentary direction, studying how readily available on-robot
data (also passive) can lead to generalizable policies. This is
particularly relevant for navigation, where data is plentiful,
and trajectories from multiple robots can directly train a
policy, as opposed to two-stage methods that use Internet data
for representation learning followed by in-domain adaptation.

Following a large body of research in visual naviga-
tion [26-30], we use a combination of topological graphs
for high-level planning and image-goal policies for low-level
control, which gives us an efficient way to scale reactive
policies for long-range navigation [29, 31]. Prior work has
also extended this framework for complex tasks beyond
goal-reaching, such as exploration [28, 32, 33], instruction
following [8], and reinforcement learning [34]. We show that
that our GNM can be coupled with such topological graphs
to scale image-goal navigation to new robots.

III. MULTI-ROBOT TRAINING DATASET

Our aim is to train a general visual navigation model that
can learn broadly applicable navigational affordances across
a variety of distinct robotic systems. To facilitate such large-
scale policy learning, we aggregated a heterogeneous dataset
of navigation trajectories sourced from 8 datasets collected
on robotic platforms with varying dynamics, sensors, and
behaviors. The datasets contain a variety of challenging
indoor and off-road environments (Table I and Fig. 1). We
intend to publicly release this dataset on the project page.

Dataset Platform Speed  Amt.  Environment
1 GoStanford [26] TurtleBot2  0.5m/s 14h office
2  RECON [32] Jackal 1m/s 25h off-road
3 CoryHall [35] RC Car 1.2m/s 2h hallways
4 Berkeley [33] Jackal 2m/s 4h suburban
5 SCAND-S [36] Spot 1.5m/s 8h sidewalks
6 SCAND-J [36] Jackal 2m/s 1h sidewalks
7  Seattle [37] Warthog Sm/s 1h off-road
8  TartanDrive [38] ATV 10m/s 5h off-road
9  NeBula [39] ATV 10m/s 10h off-road

Ours 70h

TABLE I: The GNM training dataset contains 70 hours of
navigation data in diverse environments across 6 different robots.

The GNM dataset contains over 60 hours of real-world
navigation trajectories: a combination of tele-operated and
autonomous navigation behaviors collected across 6 dis-
tinct robotic platforms, including 4 commercially available
platforms (TurtleBot, Clearpath Jackal, Warthog and Spot)
and 2 custom platforms (Yamaha Viking ATV, RC Car).
The trajectories contain widely varying robot dynamics and
top speeds ranging between 0.2 and 10m/s, operating in a
diverse set of environments (e.g., office buildings, hallways,
suburban, off-road trails, university campus etc.).

To train navigation policies that can operate solely from
egocentric visual observations, the dataset contains forward-
facing RGB images paired with the robot’s commanded
actions and local odometry measurements. Each robot has
different camera parameters, necessitating any successful
policy to generalize across variations in camera pose and
intrinsic parameters, though all platforms use the same type
of sensor (monocular RGB camera). It is straightforward to
further expand GNM by adding other datasets of relevant
navigation behaviors [40, 41], or mix-and-match subsets of
the dataset based on the desired application,

IV. TRAINING A GENERAL NAVIGATION MODEL

To study a common navigation task across robots and
environments, we consider the problem of image-goal nav-
igation [42], where a robot is tasked with navigating to
a goal location G specified as an image observation og
taken at G. Unlike PointGoal [43], GPS navigation, or
semantic objectives [44], image-goal navigation is a general
framework that does not rely on ground truth localization or
semantic labels, and allows us to formulate a very general
navigation task that can be trained with any visual navigation
dataset. Our goal is to train a goal-reaching policy 7 (o, 0¢)
that can navigate solely from egocentric visual observations.
To provide a general task representation for this policy, we
condition it on the desired goal o and integrate it into a
navigational system based on topological graphs [26-29].

Such systems have shown great navigation results in a
variety of indoor and outdoor environments — what would
it take to train such a policy across robots, with varying
controllers, dynamics and sensor placements? We highlight
two key ingredients in training multi-robot policies: (i) care-
fully choosing the right action representation that facilitates
transfer across robots, and (ii) conditioning the policies on
a “summary” vector that allows it to deduce the properties
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Fig. 2: GNM architecture. We modify a typical goal-conditioned
architecture (purple) by conditioning it on additional context from
the target robot (pink) and making predictions in a shared, normal-
ized action space (yellow).

of the robot it is controlling, so different robots can exhibit
different, valid capabilities. Although we found the particular
design decisions described in this section to be important for
good performance, as we discuss in our experiments (Sec. V-
C), we emphasize that the primary contribution of our work
is not a novel learning algorithm, but an empirical demon-
stration that policies learned from heterogeneous datasets can
generalize broadly to new environments and new robots.

A. A Shared Abstraction Across Robots

While the general task of navigation from egocentric
images is common across robots, the specific inputs (cam-
era observations) and outputs (actions, dynamics) can vary
substantially: a TurtleBot is differential-drive, expects low-
level velocity commands, and has a top speed of 0.5m/s,
whereas an ATV uses Ackermann steering, expects throt-
tle and steering commands, and drives up to 20x faster.
Learning a common control policy that operates directly on
these raw, unstructured outputs can be challenging due to
these inconsistencies and high-variance outputs (e.g., speed €
[0.2,10]m/s). This is further exacerbated when generalizing
to new robots, where the policy might need to “guess” how
fast it should move.

To this end, we propose using a shared abstraction to allow
the goal-reaching policies to operate in a transformed action
space that is consistent across robots, making the data points
look “similar” and easier to learn common patterns from. In
our experiments, we found this to be important to be able to
learn from multiple datasets (see Sec. V-C.1 for analysis).
We use a combination of relative waypoints p(z,y) and
yaw change ¢ as a mid-level action space. Labels for these
actions can be obtained by using local odometry, which are
easily available across datasets. Additionally, the policy also
predicts the temporal distance to the goal d, as a measure
of traversability, which is used by the navigation system to
estimate the connectivity of the topological graph.

While this gives a shared action space across robots, we
found that the varying dynamics (e.g., different top speeds)
across robots can make it challenging for learning algorithms
to learn a joint policy. To alleviate this, we propose using
a normalized action space {p(z,y),v}, where p := ép is
scaled by a robot-specific factor « corresponding to the top
speed of the robot. The temporal distance d is also estimated
in this normalized scale. Given this abstract action space, a
robot-specific controller can be used to (i) unnormalize the

waypoints, and (ii) track them (e.g., PID, MPPI) to extract
low-level commands (e.g., velocities or motor commands).

B. Embodiment Context

When deployed on an arbitrary robot, the policy must
infer the capabilities of that particular robot. For instance,
a TurtleBot can spin in-place but not go over bumps on the
road, whereas an RC Car can easily traverse small bumps but
has a limited turning radius. A simple way to provide such
awareness to the policy is to condition it on hand-designed
parameters that provide a concise “summary” of capabilities,
such as its size, turning radius etc. Defining these parameters
by hand presents a barrier to fast and easy deployment of
the policy to new robots, and requires human intuition to
identify and define a relevant set of parameters. Instead,
we propose a simple and automatic approach: rather than
manually defining parameters that fully identify the robot,
we use a sequence of consecutive past observations from the
robot’s viewpoint to infer a learned embodiment context Cy,
and condition the learned policy on this context in addition
to the observations. This context contains information about
the robot’s configuration and dynamics, which can be used
to condition the behavior of the policy.

While this context may not contain all information to fully
identify the robot, we hypothesize that it is sufficient to
effectively control the robot. Our experiments show that the
embodiment context allows the same policy to be deployed
on novel robot configurations without designing any hand-
engineered robot representation. We empirically evaluate
different ways of providing context in Sec. V-C.2 and find
that the most effective representation is achieved by using
a temporally consistent context C; that conditions the policy
on k consecutive past observations {0(;—x):(t—1)}-

C. Implementation Details

A combination of conditioning the policies on embodi-
ment context and transforming the action space can allow
a simple goal-reaching policy to be trained from hetero-
geneous datasets. It is important to note that the proposed
modifications are orthogonal to the choice of downstream
policy architecture and learning algorithm, and we could use
different encoders or train with reinforcement learning.

Architecture: We use a goal-conditioned policy architecture
that takes as input the current observation o; and goal obser-
vation og, and predicts normalized waypoints and distances.
Additionally, we condition on temporal context C;, which
is constructed by stacking the past k = 5 consecutive
observations. Visual inputs to the network are provided as
85 x 64 RGB images for all observations. Following prior
work [32, 45], we train context-conditioned representations
by using separate MobileNetv2 encoders for (i) the current
observation {o;,C; }, and (ii) conditional goal observation, as
shown in Fig. 2. The two embeddings are concatenated and
passed through three fully-connected layers to two prediction
heads: normalized temporal distance d; and a sequence of
7 = 5 normalized future waypoints {p;, 9; }7_;.



Fig. 3: Depoying the GNM omnipolicy. We evaluate on 4 different robots in challenging indoor and outdoor environments.

Training: Following the procedure of Shah et. al. [27], we
use a combination of image-goal pairs sampled from the
same trajectory in the dataset as “positives”, and “negatives”
sampled from different trajectories, to obtain training data
pairs. The distance head is trained on both positives and neg-
atives, whereas the action head is only trained on positives.
We train the two heads jointly with supervised learning using
an /5 regression loss. We use multi-GPU training with batch
sizes between 400-1200 and perform gradient updates using
the Adam optimizer [46] with a learning rate of 5 x 1074

Deployment: We combine this goal-reaching policy with
a topological map M, where nodes are represented by
the robot’s observations (augmented with the embodiment
context), and edges are computed using the temporal distance
estimates d from the trained policy, following the setup of
VING [27]. At every time step, the robot associates its current
and goal observations in M, i.e., finds the node with smallest
temporal distance to it, and computes the optimal sequence
of subgoals {s;} using Dijkstra’s algorithm. The policy 7 is
queried with the current observation {o;,C;} and immediate
subgoal s; to obtain a sequence of waypoints {p;, ¥; }7_1,
which are tracked by a robot-specific low-level controller.

V. DEPLOYING THE GNM ACROSS ROBOTS

We deploy our learned GNM omnipolicy in a variety
of challenging indoor and outdoor environments on four
different robot platforms. We designed out experiments to
answer the following questions:

Q1. Can multi-robot training enable generalization to
novel robots and environments?

Q2. Do GNM policies outperform policies trained solely
on single-domain data?

Q3. How important are the design choices made in Sec. IV
for attaining good performance with the GNM?

Q4. Are policies trained with multiple datasets more ro-
bust to degradation than single-domain policies?

A. Meet the Robots

We deploy the GNM on four distinct robotic platforms,
including a quadrotor and two other novel robots with no
corresponding training data, as shown in Fig 3.

Vizbot: A custom-built robot platform inspired by the design
of Niwa et. al. [47], based on a Roomba. It is equipped with
an off-the-shelf PCB-mounted fisheye camera. There is no
training data from a Vizbot or any other Roomba-like robot.

DJI Tello: A commercially available quadrotor equipped
with a forward-facing camera. There is no training data from

any quadrotor for GNM. We restrict the drone to a horizontal
plane 1m off the ground, to mimic ground navigation.

Clearpath Jackal UGV: A commercially available off-
road platform equipped with an off-the-shelf PCB-mounted
fisheye camera. This system resembles the data collection
platform used for the RECON, Berkeley, and SCAND-J
datasets, but has a different camera and mounting height.

LoCoBot: A popular open-source platform based on a
Kobuki, equipped with an off-the-shelf PCB-mounted fisheye
camera. There is no training data from a LoCoBot, although
GS was collected on a similar TurtleBot2, albeit with a
different spherical camera at a lower height.

B. Zero-Shot Deployment

Towards answering Q1, we deploy the same trained GNM
on four distinct robotic platforms without any fine-tuning
per robot. Fig. 3 and Table II summarize our evaluation in
a variety of indoor and outdoor environments on 4 different
robots, all using the same model. Most notably, the GNM can
control a Tello, despite never having seen any trajectories
from aerial robots in GNM. A GNM policy consistently
outperforms single robot policies across all tested robots,
performing up to 5x better in some cases. We also observe
generalization to massively out-of-distribution (OOD) set-
tings, like a LoCoBot navigating outdoors on a sidewalk,
or a Jackal navigating inside an office building, which were
not present in the training data. This suggests that training
on heterogeneous datasets can enable generalization to novel
environment-robot pairs, as well as entirely new robots.

To better understand how data sharing benefits perfor-
mance (Q2), we quantitatively evaluate the navigation per-
formance of policies trained with heterogeneous datasets in
an assortment of 20 indoor and outdoor environments on the
Jackal and LoCoBot platforms (Tables III, IV). To project the
performance trends with varying amounts of data, we train
policies from increasingly diverse subsets the training data
— “Small”, “Mid”, and “Large”, corresponding to data from
the first 2, 4, and 6 datasets listed in Table I. We quantify per-
formance using success rates, measured as the mean progress
made towards the goal. For videos of our experiments and
more information on the testing environments, please check
out the supplementary video and project page.

Deploying on a LoCoBot, which is an unseen robot
with no corresponding data present in the dataset, we find
that policies trained on a single dataset (e.g., GoStanford
(GS) [26] or CoryHall [35]) fail to generalize to a new
embodiment with different sensors. Fine-tuning visual repre-
sentations trained for task-agnostic datasets like ImageNet,
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Fig. 4: Qualitative comparison. Policies trained with increasingly
diverse data lead to better generalization to a LoCoBot (top) and
Jackal (bottom). Both robots were controlled by the same policy.

Dataset(s) LoCoBot Tello Vizbot Jackal
GS 0.26 0.21 0.51 0.31
RECON 0.62 0.79 0.26 0.68
Ours 0.96 0.99 0.93 0.94

TABLE II: Summary of navigation across robots. A single policy
trained on GNM-Mid outperforms the best single-robot policy for
each robot used in our experiments, mean success rate reported.

which is a popular strategy for pre-training in many vision-
based applications [48, 49], improves a bit but still struggles
in a majority of the environments. However, policies trained
by sharing task-relevant datasets across robots significantly
outperform these single-domain policies, as shown in Ta-
ble ITI. We also observe that adding more and diverse datasets
(GNM-Large) contributes towards improvements in perfor-
mance, despite the additional data coming from seemingly
unrelated tasks (e.g., off-road driving). Fig. 4 shows an
example office environment where increasing the diversity
of training data improves performance.

We observe similar trends on a Jackal, which is deployed
on a variety of previously unseen outdoor and indoor envi-
ronments (Table IV). Unsurprisingly, a single-domain policy
trained on off-road RECON data [32] performs well for
many outdoor environments, but struggles with navigating
indoors, which is OOD for the RECON dataset. Similarly, a
GS policy struggles in outdoor environments but succeeds in
some easy indoor environments. GNM omnipolicies are able
to generalize better to a variety of indoor and “Hard” outdoor
environments, which can be over 100m long, significantly
outperforming the single-domain policies (Fig. 4).

Dataset(s) # Indoor Outdoor
Easy  Moderate
CoryHall 1 022 0.13 0.29
GS 1 025 0.16 0.44
—”"— +ImageNet 1  0.35 0.35 0.57
GNM-Small 2 082 0.59 1.0
GNM-Mid 4 1.0 0.97 0.83
GNM-Large 6 1.0 1.0 0.83

TABLE III: Navigation success rates on a LoCoBot. GNM
omnipolicies (green) result in increasingly capable navigation, in
both indoor and outdoor enviroments, on an unseen robot.

Dataset(s) # Outdoor Indoor
Easy Hard
GS 1 025 0.05 0.40
RECON 1 067 048 0.36
—”"— +ImageNet 1 0.72 0.52 0.31
GNM-Small 2 075 0.52 0.42
GNM-Mid 4 1.0 1.0 0.82
GNM-Large 6 1.0 1.0 0.88

TABLE IV: Navigation success rates on a Jackal. By leveraging
heterogeneous datasets, GNM omnipolicies (green) can drive a
Jackal better than a policy trained on a Jackal-specific dataset
(RECON), also generalizing to novel indoor environments.

C. A Systematic Analysis of the Design Space

Towards answering Q3, we perform a systematic analysis
of the design choices presented in Sec. IV. We evaluate
each design choice on a LoCoBot, which is an unseen robot
with no corresponding training data, in indoor environments
with varying levels of complexity, where “Easy” environ-
ments have wide passages and smooth turns, “Moderate”
environments have tight passages or sharp turns, and “Hard”
environments are larger (up to 50m) with a combination of
tight passages and multiple turns.

1) Shared Action Space: We compare the three action
spaces discussed in Sec. IV-A by training three different
policies on GNM-Mid and evaluating them in 10 environ-
ments (Table V). While using velocities as an action space
works well for most easy environments, often outperforming
the policy using waypoints, both these policies struggle
in environments requiring dynamic maneuvers like sharp
turns. A policy based on normalized waypoints, on the other
hand, significantly outperforms the others, including in the
challenging environments. This suggests that normalizing
the action space indeed allows the policies to learn more
effectively and generalize to new robots.

2) Embodiment Context: We consider two ways to
represent the embodiment context: (i) temporally consis-
tent context containing k consecutive past observations
{0(t—k):(t—1)} and (ii) static context, containing a fixed set
of k past observations from the robot in the target environ-
ment. Comparing these choices in environments of varying
complexities (Table V), we find that adding either form of
context significantly boosts the navigation performance in
the harder environments, which require the robot to navigate
tight passages with multiple obstacles and sharp turns. This
suggests that the context helps the polices generalize better
due to the additional information about the embodiment



Action Space  Easy = Moderate Architecture Easy = Moderate Context Easy  Moderate  Hard
Velocities 0.73 0.54 Stacked [28] 0.52 0.72 None 1.0 0.79 0.36
Waypoints 0.42 0.26 Siamese [26, 27, 50] 0.73 0.26 Static 1.0 0.86 0.5
Norm. Waypt. 1.0 0.95 Conditioned [32, 45] 1.0 0.95 Temporal 1.0 0.92 0.7

TABLE V: A systematic analysis of the design choices in Sec. V-C reveals that choosing the right action representation (left), goal-
conditioned architecture (center), and conditioning on embodiment context (right) are really important to facilitate multi-robot learning.

(e.g., viewpoint, speed etc.). Between the two, we found
the temporal variant superior, suggesting that the temporal
information (e.g., speed, turning radius etc.) is important to
enable this generalization. In our main experiments discussed
in Sec. V-B and Fig. 3, we use a temporally consistent
context with k = 5.

3) Policy Architecture: We also compared different policy
architectures to encode the goal information: (i) single-
encoder stacking, where the observation and goal images are
stacked along the channel dimension [28], (ii) a Siamese
architecture, where the images are processed with inde-
pendent encoders and the resulting embeddings are com-
bined [26, 27, 50], and (iii) the conditional architecture in
Fig. 2, with an additional pathway from the observation to
the policy outputs [32, 45]. We found that the choice of
architecture significantly affects the navigation performance,
with the conditional model being the most performant. We
hypothesize that this is due to the additional pathway that al-
lows the learned embeddings to be conditioned on the current
observations, leading to more generalizable representations,
as studied in prior work [32].

D. Robustness to Degradation

A key strength of training on heterogeneous datasets is that
learning across varied parameters encourages the policy to
learn shared affordances across robots, thus being robust to
small variation in robot parameters, such as sensor placement
and mechanical properties. We show that the shared GNM
can indeed offer such robustness by testing it under some
example degradation scenarios shown in Fig. 5.

When testing the trained policy with a steering degradation
(Fig. 5a), where the robot’s maximum angular velocity is
clipped, we find that the GNM can compensate for the
degradation by taking a longer, smoother path towards the
goal without any localization failures. We also tested the
GNM while perturbing the position of the camera and
physically affecting the dynamics by damaging the robot
during navigation, and find that it can successfully reach
the goals despite the degradation (Fig. 5d). Please see the
supplemental video for these experiments.

VI. DISCUSSION

In this paper, we demonstrated that a general goal-
conditioned navigation policy trained from navigation
datasets collected by multiple distinct robots, ranging from
RC cars to ATVs, can control new robots in challenging
environments. The design of our learning framework is
simple, and largely follows prior work: the novel observation
is that a set of relatively simple decisions, such as including
a temporal context and standardizing the action space, is
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Single-Domain Policy 0.30 0.17 0.81
GNM Policy (Ours) 0.89 0.81 1.0

Fig. 5: Policies trained with GNM are more robust to degradation
in parameters such as (a) actuation, (b) perturbed sensor viewpoint,
and (c) physical damage, than single-domain policies (d).

sufficient to enable broad generalization from heterogeneous
data. Empirically, we show that our approach can enable real-
world navigation for a range of robots, including some not
seen in training, and even an underactuated quadrotor.

Our specific instantiation of this principle does have some
limitations. Most prominently, our system does not explicitly
account for differences in capabilities: we assume all robots
are ground robots (though we study generalization to a
quadrotor) with a forward-facing RGB camera. Handling
diverse sensing, actuation (beyond variability in speed and
steering), and traversability, would be an exciting direction
for future work. Secondly, our dataset could be much larger:
while we observe exciting generalization from 60 hours of
data, a much larger and broader dataset could enable even
better generalization in the future.

The promise of such a general navigation model trained on
diverse data is that it may provide a pre-trained base model
for a variety of downstream navigation applications. In the
same way that computer vision researchers and practitioners
typically start off by downloading a pre-trained backbone to
use for their task, we hope that future navigation projects
might use a pre-trained navigational omnipolicy that gener-
alizes broadly enough to offer a “universal” starting point.
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