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Abstract

Figurative language is central to humorous and001
persuasive communication. Internet memes, as002
a popular form of multimodal online communi-003
cation, often use figurative elements to convey004
layered meaning through the combination of005
text and images, but little is known on what006
elements vision-language models (VLMs) uti-007
lize to detect non-literal meaning in memes. To008
address this gap, we evaluate nine state-of-the-009
art generative VLMs on their ability to detect010
and classify six types of non-literal meaning011
in memes. Our results show that VLMs out-012
perform a majority-vote baseline, and, impor-013
tantly, their accuracy improves as the figura-014
tive complexity of memes increases. Model015
performance across figurative categories varies016
by modality: identifying irony relies on text,017
while anthropomorphism on image. Although018
VLMs demonstrate competitive performance019
on single-modality inputs, they fail to fully in-020
tegrate multimodal content. We thus highlight021
both the capabilities and limitations of today’s022
VLMs in figurative meme understanding.023

1 Introduction024

Figurative language uses words in a non-literal way025

to create more vivid, symbolic, or abstract mean-026

ings (Lakoff and Johnson, 2008). By enabling in-027

direct communication and intensifying rhetorical028

effects, figurative expressions are a key element to029

persuasive and humorous discourse, and have been030

shown to engage the audience emotionally (Fussell031

and Moss, 2014; Burgers et al., 2016).032

We believe generative AI needs to handle figu-033

rative language well to communicate and interact034

appropriately with humans. While in NLP figu-035

rative language is often studied based on the text036

alone (Chakrabarty et al., 2022a; Stowe et al., 2022;037

Lai et al., 2023), it is clearly a multimodal phe-038

nomenon (Chakrabarty et al., 2022b; Akula et al.,039

2023; Kulkarni et al., 2024). For example, Figure 1040

shows a meme, pairing a mischievous expression041

Figure 1: In our work we consider a meme as being
composed of an image and text that together convey a
message, but here we also decompose them to study
their respective effects on figurativeness. This meme
from FIGMEMES (Liu et al., 2022a) is human-annotated
with the label Irony/Sarcasm.

together with gestures, both of which highlight the 042

sarcastic tone to emphasize and critique selective 043

migration preferences expressed in text. 044

Tasks like automatically detecting hateful 045

memes (Zhang et al., 2024a; Pramanick et al., 046

2021; Hossain et al., 2024) or detecting humor, 047

sarcasm, metaphors (Sharma et al., 2020; Tanaka 048

et al., 2022; Nandy et al., 2024) are challenging for 049

vision-language models (VLMs) because different 050

modalities contribute to convey a meme’s message, 051

and processing non-literal meanings requires inte- 052

grating multimodal information. Furthermore, it 053

is less known to what degree different elements of 054

multimodality contribute to meme interpretation, 055

especially in today’s VLMs. Therefore, evaluating 056

how well models handle figurative meaning1 is es- 057

sential to understanding the limitations of VLMs 058

in multimodal figurative comprehension. 059

To the best of our knowledge, no study has yet 060

compared how generative VLMs perform across 061

different figurative categories in memes. To this 062

end, we pose the following research questions: 063

• RQ1: To what extent can VLMs detect the 064

1In this paper, we use the term figurative meaning instead
of the commonly used figurative language to emphasize the
multimodal nature of our analyses.
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presence of figurative meaning in memes?065

• RQ2: How effectively can VLMs classify dif-066

ferent types of figurative meaning in memes?067

We conduct controlled ablations across input068

types to gain a complete understanding to how069

each modality—text and image in isolation or070

combined—contributes to the construction and in-071

terpretation of figurative meaning in memes. Our072

results show that while VLMs outperform the base-073

line in general figurative meaning detection, they074

struggle with multimodal integration at granular075

figurative category classification tasks.076

2 Related Work077

Figurative Language in NLP Research on fig-078

urative language typically follows two main ap-079

proaches. One approach studies individual rhetor-080

ical devices, such as idioms, irony, metaphors,081

and other expressions that go beyond literal mean-082

ing (Tay et al., 2018; Chakrabarty et al., 2021; Tong083

et al., 2021). Another line of work treats all non-084

literal expressions as a unified category, studying085

them collectively (Ghosh et al., 2015; Do Dinh086

et al., 2018; Chen et al., 2024; Lee et al., 2024).087

As dialogue systems develop, research has088

shifted toward investigating models’ ability non-089

literal expressions in communication (Jhamtani090

et al., 2021; Stowe et al., 2022; Liu et al., 2022b;091

Jang et al., 2023; Yerukola et al., 2024). Incor-092

porating vision encoders into LLMs extends this093

focus to interpreting non-literal meaning across094

modalities (Hessel et al., 2023; Zhang et al., 2024b).095

Memes, rich in multimodal figurative content, have096

thus become an important object of study (Hwang097

and Shwartz, 2023; Nandy et al., 2024).098

Multimodal Meme Understanding Internet099

memes are a distinctive form of multimodal com-100

munication, where visuals shape the interpreta-101

tion of text through context, priming, or template-102

based expectations (Shifman, 2013; Nissenbaum103

and Shifman, 2017; Wiggins, 2019). NLP and104

vision-language communities have increasingly105

studied memes, with studies showing how images106

influence text via templates (Zhou et al., 2024;107

Bates et al., 2025). Various tasks have been ex-108

plored, including sentiment analysis (Hossain et al.,109

2022), hateful or harmful meme detection (Gomez110

et al., 2020; Kiela et al., 2020; Cao et al., 2022),111

and emotion classification (Sharma et al., 2020).112

Although memes feature a wide range of figu-113

rative categories, few studies examine how well114

Total memes 1,542

Memes with OCR text 1,396

C
at

eg
or

y

Allusion 229
Exaggeration 240
Irony 315
Anthropomorphism 113
Metaphor 244
Contrast 163

#l
ab

el
s

0 label 445
1 label 651
2 labels 250
3 labels 47
4 labels 3

Table 1: Statistics of FIGMEMES test split, label distri-
bution and multi-label composition. #label = number of
labels in the meme.

models handle them. Liu et al. (2022a) laid ground- 115

work with a new dataset of politically-opinionated 116

memes (FIGMEMES), enabling cross-modal com- 117

parisons across discriminative models. 118

3 Experimental Setup 119

3.1 Dataset 120

We use FIGMEMES (Liu et al., 2022a). Each meme 121

is annotated for the presence of any of six distinct 122

figurative categories: allusion, exaggeration, irony, 123

anthropomorphism, metaphor, and contrast (see 124

Appendix A for the definition of each category). 125

The dataset also includes text extracted via OCR. 126

Our evaluation is conducted on the test split de- 127

fined by Liu et al. (2022a). To ensure comparability 128

across modality conditions, we restrict evaluation 129

to the 1,396 memes with OCR-extracted text. Ta- 130

ble 1 summarizes dataset statistics. 131

3.2 Image Processing 132

In previous work (including Liu et al. (2022a)), the 133

whole meme – with its embedded text– is usually 134

treated as visual input, without removing textual 135

information that VLMs can easily extract. To in- 136

vestigate the contribution of different modalities 137

comprehensively, we include an image-only input 138

condition. We use OCR to detect text and mask 139

them to exclude textual information, as shown in 140

Figure 1. (see Appendix B.1). 141

3.3 Task Setup 142

We design two tasks to assess detection and classi- 143

fication of figurative meaning in memes. The first 144

is a binary classification task, aimed at determin- 145

ing whether any non-literal meaning is generally 146

present in a meme. The second is a more granular 147
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Figure 2: Macro F1 scores (%) for binary classification across input types. Each group corresponds to an input
type (meme, mix, image, text), and within each group, different bars represent models grouped by family type.

multiclass classification task, aimed at predicting148

the presence of each specific figurative category.149

See Appendix B.2 for prompt templates.150

In addition, to analyze how models capture and151

integrate features across modalities, we test four152

input conditions: the original meme and text-only153

as used in Liu et al. (2022a), as well as image-only,154

and mix (image+text).155

3.4 Vision-Language Models156

We evaluate three families of state-of-the-art157

VLMs, each including variants of different sizes:158

Aya-Vision (Aya, Üstün et al. 2024), Gemma 3159

(Gemma, Team et al. 2025), and Qwen2.5-VL (Qwen,160

Bai et al. 2025). For Gemma and Qwen, we test161

their instruction-tuned versions. All models are162

prompted in zero-shot settings. Implementation163

details are provided in Appendix B.3. Due to data164

imbalance, we report macro F1 scores.165

4 Results & Analysis166

4.1 How Well Can VLMs Identify Whether a167

Meme Contains Figurative Meaning?168

All evaluated models outperform the majority-vote169

baseline (macro F1 = 40.45%) under every modal-170

ity configuration, as shown in Figure 2. Among171

the nine models, Qwen-72B ranks highest for the172

meme, image-only, and mixed input modality, and173

is surpassed by Qwen-32B in the text setting.174

Figurative Complexity. In order to better un-175

derstand the models’ performance in the general176

detection task, we quantify the complexity of the177

figurative meaning in the meme by the number of178

figurative categories present. Based on the label179

distribution in Table 1, we split the memes into180

five subclasses with 0 (non-figurative) to 4 labels.181

Using Qwen-72B as an illustrative case, we observe182

a consistent trend across all modality input settings183

in Figure 3: as the figurative complexity of memes184

increases, models are more likely to give positive 185

predictions for the presence of figurative meaning. 186

These findings can be interpreted as: the more fig- 187

urative elements are present in a meme, the more 188

likely the model is to encounter one it can recog- 189

nize—thus making the classification task easier. 190

Other large-scale models such as Qwen-32B and 191

Aya-32B also exhibit similar trends across input 192

modalities (see Appendix C.1). In contrast, smaller 193

models such as Aya-8B and Gemma-4B are biased 194

toward positive predictions regardless of figurative 195

complexity, explaining their weaker performance. 196

Input Modality. All models except for Gemma-4B 197

show higher performance on image-only inputs 198

compared to text-only inputs (see Figure 2). Sur- 199

prisingly, the image-only condition—where the 200

text is removed—often outperforms the original 201

meme input that contains both modalities. How- 202

ever, further analysis in Figure 3 reveals a more 203

nuanced pattern. Regardless of the figurative com- 204

plexity of inputs, the likelihood of being classified 205

as containing figurative meaning consistently fol- 206

lows the pattern: original meme > mix (image+text) 207

> image or text alone. This suggests that instruction- 208

tuned VLMs are more inclined to associate the 209

meme format—where text is visually embedded 210

in the image—with figurative intent, even beyond 211

what the actual semantic content may indicate. This 212

may be expected, as plain images on the web are 213

generally less likely to be figurative than those con- 214

taining text (Scott, 2021). 215

Figure 3: Predicted label distribution by Qwen-72B
across groups defined by label complexity.
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Model Size Input Allus. Exagg. Irony Anthr. Metaph. Contr.

baseline - - 52.32 44.00 49.77 41.76 44.87 56.91

Aya

8B

text 55.79 52.78 51.81 51.06 36.56 63.66
image 53.67 44.45 47.78 36.10 43.55 43.94
mix 50.84 46.75 50.75 44.52 42.34 58.44
meme 39.35 40.31 39.84 37.14 30.56 43.71

32B

text 60.71 48.12 54.98 53.01 53.04 46.80
image 69.37 39.62 51.46 59.77 54.04 39.07
mix 69.17 42.57 52.01 60.00 57.67 43.62
meme 63.04 31.48 41.24 62.13 54.55 42.11

Gemma

4B

text 57.45 41.86 41.72 49.93 25.72 49.54
image 68.29 30.23 43.49 56.84 19.91 41.99
mix 67.76 22.35 33.55 59.21 19.83 37.50
meme 65.14 17.52 28.17 57.25 16.67 31.67

12B

text 59.75 46.40 57.57 52.46 43.96 64.80
image 61.90 39.45 48.38 59.64 49.01 35.29
mix 60.49 31.10 50.82 62.74 49.12 33.43
meme 54.05 30.83 42.39 60.19 48.05 33.15

27B

text 55.23 46.54 50.34 51.12 47.69 56.92
image 49.79 49.37 42.62 61.05 52.07 45.27
mix 50.61 44.53 34.47 62.07 51.52 49.29
meme 43.26 46.34 28.32 62.37 50.18 49.52

Qwen

3B

text 49.69 51.78 54.72 49.01 45.46 59.20
image 47.61 60.89 45.81 60.32 45.78 66.78
mix 54.30 58.66 53.93 59.68 45.79 65.96
meme 52.00 58.68 57.43 59.63 47.80 67.01

7B

text 51.96 51.80 54.36 49.06 48.21 54.42
image 70.37 55.30 50.04 58.84 54.10 58.19
mix 70.22 53.26 52.61 59.39 52.55 59.89
meme 72.87 51.33 51.42 59.36 55.26 57.43

32B

text 50.24 53.32 62.17 52.14 50.87 61.72
image 55.81 60.64 49.35 55.76 57.35 55.30
mix 46.99 55.23 60.02 56.46 56.96 55.76
meme 43.81 52.91 58.28 56.85 58.94 54.44

72B

text 58.82 52.15 58.90 51.16 54.16 65.40
image 64.63 53.92 51.07 59.70 58.93 63.09
mix 60.84 47.27 54.32 61.80 60.12 63.40
meme 60.00 40.45 46.25 61.85 59.58 61.56

Table 2: Macro-F1 scores (in %) for each figurative
category. The best score in each model family is high-
lighted in bold. Results are averaged over 5 runs.

4.2 How Well Can VLMs Distinguish216

Figurative Meaning Types?217

We treat the best results from Liu et al. (2022a)218

across modalities and models as a baseline. Table 2219

shows that the top-performing zero-shot results220

from Aya, Gemma, and Qwen all exceed this baseline.221

For more visualized results, see Appendix C.2.222

Input Modality. Intuitively, one might expect223

that providing more input information would lead224

to better model performance—for example, using225

memes would outperform the mix setting, which226

in turn would outperform image-only or text-only227

inputs. However, the results deviate significantly228

from this expectation. For irony, we observe that,229

with the exception of the smaller models Gemma-4B230

and Qwen-3B, the other models achieve their best231

performance when given text-only input. Adding or232

replacing visual information appears to introduce233

noise rather than provide useful signals for the task.234

Nevertheless, for anthropomorphism, providing vi-235

sual elements significantly enhances performance236

in all models except Aya-8B. In the remaining cate-237

gories, patterns are less evident.238

Figurative categories often align with differ- 239

ent modalities in memes. For example, irony 240

tends to rely more on textual wordplay, while an- 241

thropomorphism is more grounded in visual cues. 242

These results suggest that generative VLMs capture 243

modality-specific patterns to some extent. How- 244

ever, the fact that memes—which exhibit the rich- 245

est combination of modalities—do not result in 246

the best performance suggests that the models are 247

failing to fully integrate multimodal information. 248

Model Type & Model Size. Based on the best 249

scores of each model family in Table 2, Qwen 250

achieves higher performance than Aya and Gemma 251

in all categories except anthropomorphism. Unlike 252

Aya and Gemma, Qwen achieves its best performance 253

in most categories when visual input is provided. 254

Specifically, Qwen’s top scores in allusion, anthro- 255

pomorphism, and contrast are attained with meme 256

input. Instead, Aya benefits from meme input when 257

identifying anthropomorphism, while Gemma never 258

performs best with meme input for any category. 259

As discussed in Section 4.1, larger Qwen and 260

Aya models perform better in general figurative 261

meaning detection. When detecting the metaphor 262

category, all nine models show consistent perfor- 263

mance gains with increasing model size, regard- 264

less of input modality. However, for other cate- 265

gories, no clear trend for model size is observed. 266

The distinct metaphor results likely stem from 267

the relatively abundant training data for this cat- 268

egory (Shutova et al., 2016; Kehat and Pustejovsky, 269

2020; Chakrabarty et al., 2023), and larger models 270

leveraging data more effectively. 271

5 Conclusion 272

We evaluate Aya, Gemma, and Qwen on their ability 273

to detect and classify figurative meaning in internet 274

memes. All models’ best setup for the respective 275

task outperforms the baseline. For general figu- 276

rative meaning detection, large-scale models like 277

Qwen-72B are more likely to detect figurative mean- 278

ing as memes’ figurative complexity increases. All 279

models show a strong bias toward predicting figura- 280

tive meaning in the meme input setting. For granu- 281

lar figurative meaning classification, models benefit 282

differently from modality combinations: text sup- 283

ports irony, while images help with anthropomor- 284

phism. Despite their generative strength, current 285

VLMs still struggle to fully integrate multimodal 286

signals. 287
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Limitations288

Limited Dataset Diversity Due to the scarcity289

of datasets annotated with multiple types of fig-290

urative meanings in memes, our experiments are291

conducted solely on the FIGMEMES (Liu et al.,292

2022a) dataset. Moreover, FigMemes collects data293

exclusively from the 4chan2 platform, which may294

differ significantly in style and content from other295

popular social media platforms such as Reddit, X296

(Twitter), and Facebook. This limitation may affect297

the generalizability of our findings across different298

meme communities.299

Simplified Masking and Inpainting Approach300

For masking text in memes, we adopt a relatively301

straightforward method. As a result, the inpainting302

process is sometimes imperfect and may introduce303

artifacts even when successful. However, in most304

cases, this approach is sufficient because meme305

creators often avoid placing text over important306

visual elements or follow established templates that307

position text outside the core image (see Section B).308

Ethical considerations309

We see no ethical issues related to this work. All ex-310

periments were conducted with publicly available311

data and open-source software, and we have made312

all of our code openly available for reproducibility.313

Use of AI Assistants. The authors acknowledge314

the use of ChatGPT solely for correcting grammat-315

ical errors, enhancing the coherence of the final316

manuscripts, and providing assistance with coding.317
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A Definitions for the categories of630

figurative language631

The definitions for the categories of figurative lan-632

guage below are adapted from Liu et al. (2022a):633

• Allusion: Referencing historical events, fig-634

ures, symbols, art, literature, or pop culture.635

• Exaggeration/Hyperbole: Use of exagger-636

ated terms for emphasis, including exagger-637

ated visuals (including unrealistic features por-638

traying minorities).639

• Irony/Sarcasm: Use of words that convey640

a meaning opposite to their usual meaning/-641

mock someone or something through caustic642

or bitter expression.643

• Anthropomorphism/Zoomorphism: At-644

tributing human qualities to animals, objects,645

natural phenomena, or abstract concepts, or646

applying animal characteristics to humans in647

a way that conveys additional meaning.648

• Metaphor/Simile: Implicit or explicit com-649

parisons between two items or groups, attribut-650

ing the properties of one thing to another. This651

category includes dehumanizing metaphors.652

• Contrast: Comparison between two position-653

s/people/objects (usually side-by-side).654

B Implementation Details655

B.1 Examples of Image Preprocessing656

657

We use EasyOCR3 to detect overlaid text in the658

meme, and then apply the OpenCV4 inpainting659

algorithm to mask the text. Since meme creators660

often avoid placing text over important visual ele-661

ments—or follow templates that place text outside662

the core image region—the OpenCV inpainting663

process generally produces satisfactory results (see664

Figure 4). However, in cases where the text is665

slanted or handwritten, the inpainting performance666

can degrade due to the irregularity of the text struc-667

ture (see Figure 5).668

B.2 Prompt Templates669

670

We design two prompt templates correspond-671

ing to our main tasks. The first prompt (see Fig-672

ure 6) is used for the figurative meaning detection673

task, where the model determines whether figura-674

tive meaning is present in a given multimodal input675

3https://github.com/JaidedAI/EasyOCR
4https://github.com/opencv/opencv

Original Text Removed

Figure 4: Examples of successful inpainting where
meme text is placed on uniform or non-critical regions.

Original Text Removed

Figure 5: Examples where inpainting is less effective
due to slanted or handwritten text.

and provides a structured explanation. The second 676

prompt (see Figure 7) is designed for the figurative 677

meaning classification task, where the model cate- 678

gorizes the types of figurative meaning expressed 679

in the input. 680

We approach category detection as a multi-label 681

classification task. Instead of performing binary 682

classification for each label directly, we prompt 683

the model to produce probabilities, and assign a 684

positive label when the probability exceeds 0.5. 685

B.3 Model Setup 686

We evaluate the following vision-language mod- 687

els: Aya-Vision5 (Üstün et al., 2024)), Gemma 36 688

(Team et al., 2025), and Qwen2.5-VL7 (Bai et al., 689

5https://huggingface.co/collections/CohereLabs/
cohere-labs-aya-vision-67c4ccd395ca064308ee1484

6https://huggingface.co/collections/google/
gemma-3-release-67c6c6f89c4f76621268bb6d

7https://huggingface.co/collections/Qwen/
qwen25-vl-6795ffac22b334a837c0f9a5
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### Task Description:
You will be shown an input that may include an image, text, or a
combination of both.

<VISUAL IMPUT>
The following text is written inside the image: <OCR TEXT>

Your task is to evaluate the input for the presence and usage of
figurative meaning.
Please proceed in three steps:

• Step 1: State whether any figurative meaning is present in
the input. Respond only with “Yes” or “No”.

• Step 2: If you answered “Yes” in Step 1, estimate the
probability (a value between 0 and 1) that figurative meaning
is present.

• Step 3: Explain the reasoning behind the probability assess-
ment. Be specific and refer to both the visual and textual
elements of the input where relevant.

Definitions of figurative meaning:
sFigurative meaning refers to a non-literal interpretation of
language or imagery, where expressions convey meanings that
differ from their standard, literal sense–often to illustrate abstract
ideas, create emphasis, or evoke imagery.

### Output Format:
Your final response should follow this JSON format:

{
''Is any figurative meaning present in the

input?'': ''Yes'' or ''No'',
''Probability'': float between 0 and 1,
''Explanation'': ''Explanation for detection

of figurative meaning''
}

Figurative Meaning Detection Prompt

Figure 6: The prompt used for the zero-shot figurative
meaning detection tasks when instructing VLMs. Text
enclosed in sharp brackets <. . . > is replaced by the ac-
tual examples. In meme mode, the original meme is
added as <VISUAL INPUT>; in image and mix mode,
the text-removed version is added as <VISUAL IN-
PUT>; in text and mix mode, “The following text is
written inside the image: <OCR TEXT>” line is acti-
vated.

2025).690

All models are conducted locally on NVIDIA691

A100 and H200 GPUs with the vLLM8 framework692

(Kwon et al., 2023) for efficient and consistent693

inference. Table 3 summarizes the decoding hyper-694

parameters used during inference across all models.695

Each experiment is repeated 5 times using fixed696

random seeds: 2024, 3024, 4024, 5024, and 6024.697

Parameter Value

Temperature 0.7
Top-p 0.1
Repetition Penalty 1.05
Max Tokens 512

Table 3: Sampling parameters used during inference.

8https://github.com/vllm-project/vllm

C Supplementary Results on Figurative 698

Meaning in Memes 699

C.1 Detection Results Supplement 700

While the detection results for Qwen-72B are al- 701

ready presented in the main text, here we provide a 702

supplementary figure showing the predicted label 703

distributions for the remaining eight models. Fig- 704

ure 9 illustrates the performance of each model on 705

meme samples categorized by figurative complex- 706

ity and content type (text, image, mix, meme). For 707

each model, the proportion of samples predicted as 708

positive or negative is shown, with hatch patterns 709

indicating different levels of figurative complexity 710

(from 0 to 4). 711

In addition, we analyze category co-occurrence 712

patterns across the 1,396 test memes, as illustrated 713

in Figure 8. 714

C.2 Classification Results Supplement 715

Table 4 reports macro-F1 scores for each figurative 716

category. The text rows show the baseline scores, 717

while the image, mix, and meme rows indicate per- 718

formance differences compared to these baselines. 719

Darker cell colors highlight larger differences. 720

Figures 10 and 11 visualize the results of multi- 721

class figurative meaning classification, grouped by 722

input modality and by model, respectively. 723
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Model Size Input Allusion Exaggeration Irony Anthrop Metaphor Contrast

8B

text 56.76 52.34 48.8 51.48 37.1 63.84
image -3.12 -7.13 -0.08 -14.24 5.76 -19.61
mix -6.07 -5.18 2.19 -5.08 5.01 -3.29
meme -18.53 -11.68 -10.37 -13.12 -8.12 -19.83

32B

text 62.13 50.38 52.66 51.21 53.46 50.66
image 7.28 -9.97 0 11.12 0.43 -10.91
mix 7.04 -6.87 -0.42 10.83 4.12 -5.63

Aya

meme 0.08 -18.92 -13.08 13.44 0.84 -7.37

4B

text 57.45 41.86 41.72 49.93 25.72 49.54
image 10.92 -10.6 3.88 8.25 -6.62 -7.06
mix 10.71 -19.2 -7.86 11.11 -6.82 -12.14
meme 7.21 -24.59 -13.91 8.53 -10.14 -18.71

12B

text 59.75 46.4 57.57 52.46 43.96 64.8
image 2.01 -6.25 -7.6 8.58 4.2 -28.63
mix 0.47 -15.39 -4.95 12.33 4.41 -30.9
meme -6.66 -15.73 -14.95 9.36 3.47 -31.22

27B

text 55.44 48.62 47.1 51.61 48.35 62.55
image -5.48 1.71 -2.22 11 2.68 -16.76
mix -4.47 -3.36 -11.65 12 2.17 -12.16

Gemma

meme -12.46 -1.69 -18.71 12.34 0.89 -12.02

3B

text 50.54 52.26 53.75 49.3 45.91 59.36
image -2.35 8.2 -8.53 12.51 0.34 7.71
mix 4.85 5.84 -0.6 11.14 0.38 6.88
meme 2.48 5.71 2.27 10.8 2.69 7.94

7B

text 53.1 52.01 53.73 49.36 49.04 54.46
image 17.3 4.26 -2.72 10.81 4.77 4.48
mix 17.28 1.71 -0.22 10.52 3.05 6.68
meme 20.15 -0.18 -2.11 11.16 6.37 3.06

32B

text 49.8 53.21 61.09 52.66 51.09 61.45
image 6.34 7.22 -11.96 4.23 4.56 -4.89
mix -2.99 1.24 -1.23 4.98 4.74 -4.77
meme -6.55 -1.28 -4.14 5.76 7.22 -6.1

72B

text 59.86 51.72 57.28 51.68 55.13 65.57
image 5.03 2.79 -5.64 9.71 3.63 -2.03
mix 1.27 -4.41 -2.78 12.43 4.61 -1.51

Qwen

meme 0.03 -11.66 -12.53 12.33 4.67 -3.71

Table 4: Macro-F1 scores (in %) for each figurative categories. The text rows show the macro-F1 scores. The image,
mix, and meme rows represent the difference in performance compared to the corresponding text configuration.
Positive values indicate better performance than the text, while negative values indicate worse performance. Cell
background colors become darker as the absolute value of the difference increases, highlighting greater variation.
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### Task Description:
You will be shown an input that may include an image, text, or a combination of both.

Your task is to evaluate the input for the presence and usage of figurative meaning.
Please proceed in three steps:

• Step 1: State whether any figurative meaning is present in the input. Respond only with "Yes"
or "No".

• Step 2: If you answered "Yes" in Step 1, estimate the probability (a value between 0 and 1) that
figurative meaning is present.

• Step 3: Explain the reasoning behind the probability assessment. Be specific and refer to both
the visual and textual elements of the input where relevant.

Definitions of figurative meaning:
Allusion: Referencing historical events, figures, symbols, art, literature or pop culture.
Exaggeration/Hyperbole: Use of exaggerated terms for emphasis, including exaggerated visuals
(including unrealistic features portraying minorities).
Irony/Sarcasm: Use of words that convey a meaning that is the opposite of its usual meaning/mock
someone or something with caustic or bitter use of words.
Anthropomorphism/Zoomorphism: Attributing human qualities to animals, objects, natural
phenomena or abstract concepts or applying animal characteristics to humans in a way that conveys
additional meaning.
Metaphor/Simile: Implicit or explicit comparisons between two items or groups, attributing the
properties of one thing to another. This category includes dehumanizing metaphors.
Contrast: Comparison between two positions/people/objects (usually side-by-side).

### Output Format:
Your final response should follow this JSON format:

{
"Is any figurative meaning present in the input?": "Yes" or "No",
"figurative meaning": {
"Allusion": probability (float between 0 and 1),
"Exaggeration": probability (float between 0 and 1),
"Irony": probability (float between 0 and 1),
"Anthropomorphism": probability (float between 0 and 1),
"Metaphor": probability (float between 0 and 1),
"Contrast": probability (float between 0 and 1)

},
"Explanations": {
"Allusion": "Explanation for Allusion",
"Exaggeration": "Explanation for Exaggeration",
"Irony": "Explanation for Irony",
"Anthropomorphism": "Explanation for Anthropomorphism",
"Metaphor": "Explanation for Metaphor",
"Contrast": "Explanation for Contrast"

}
}

Figurative Meaning Classification Prompt

Figure 7: The prompt used for the zero-shot figurative meaning classification tasks when instructing VLMs. Text
enclosed in sharp brackets <. . . > is replaced by the actual examples. In meme mode, the original meme is added as
<VISUAL INPUT>; in image and mix mode, the text-removed version is added as <VISUAL INPUT>; in text and
mix mode, “The following text is written inside the image: <OCR TEXT>” line is activated.
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Figure 8: Category co-occurrence statistics among
1,396 test memes.
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Figure 9: Prediction ratio of positive and negative labels for each model across different figurative complexity
levels and content types. Hatch patterns denote complexity levels.
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Figure 10: F1 scores (%) for different models across input types. Each group corresponds to an input type (meme,
mix, image, text), and within each group, different bars represent models. Aya, Gemma, and Qwen model families
are shown using the same color but distinguished with different hatch patterns. The exact F1 score is annotated
above each bar, with error bars indicating standard deviation across seeds.
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Figure 11: F1 scores (%) for different models across input types. Each group corresponds to an input type (meme,
mix, image, text), and within each group, different bars represent models. Aya, Gemma, and Qwen model families
are shown using the same color but distinguished with different hatch patterns. The exact F1 score is annotated
above each bar, with error bars indicating standard deviation across seeds.
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