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Abstract

Recent work has explored the use of generator networks with low latent dimension
as signal priors for image recovery in compressed sensing. However, the recovery
performance of such models is limited by high representation error. We introduce a
method to reduce the representation error of such generator signal priors by cutting
one or more initial blocks at test time and optimizing over the resulting higher-
dimensional latent space. Experiments demonstrate significantly improved recovery
for a variety of architectures. This approach also works well for out-of-training-
distribution images and is competitive with other state-of-the-art methods. Our
experiments show that test-time architectural modifications can greatly improve
the recovery quality of generator signal priors for compressed sensing.

1 Introduction

In inverse imaging problems, we recover an image signal from undersampled measurements. As
the problem is underdetermined, additional structural assumptions are required. Classical methods
leverage sparsity or compressibilty in a known basis [[1,2]. Recent developments in deep generative
modeling, such as generative adversarial networks (GANs [3]]) and variational autoencoders (VAEs,
[4]) have led to their use as a signal prior for these problems. While Bora et al. [5] showed that
generator signal priors outperform sparsity priors at low undersampling ratios, recovery quality is
limited by low latent dimension and high representation error (formal definitions below). We focus
on improving these generator-based signal priors.

To reduce representation error, it is natural to seek models with high latent dimension, but existing
optimizers cannot reliably train such models. This has motivated a variety of approaches for obtaining
generator signal priors with more degrees of freedom [6H11]], though these methods are often
computationally expensive or complicated. For example, Gu et al. [[6] optimize multiple latent codes,
composing them at an intermediate layer with optimizable weights. Abu Hussein et al. [7]] optimize
both the latent code and the generator’s weights. Untrained methods such as Deep Image Prior
[L1] and Deep Decoder [[10] recover an image by optimizing the weights of a randomly-initialized
network.

We address the problem of high representation error in generator signal priors and substantially
improve their performance in compressed sensing with a simple and inexpensive technique we call
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Figure 1: Applying Generator Surgery.

Generator Surgery. Using a pre-trained generator with low latent dimension, we ‘cut’ one or more
early blocks from the network at test time, and treat the intermediate activations as a new latent image
representation. By cutting early blocks at test time, we trade the generative sampling capability of the
model for increased recovery quality.

Our method is applicable for a wide variety of network architectures, and is competitive with other
recent baselines. We also show that our method can even recover high-quality images that are out-
of-training-distribution; this is important as real-world applications like MRI imaging often include
target images with novel features. Our results suggest more broadly that test-time architectural
modifications can allow a model trained on one task (image generation) to perform well on a different
task (image recovery).

2 Method
2.1 Generator Surgery (GS)

We define a generator network Gy : R¥0 — R™ that maps a low-dimensional latent code 2y € R*0 to
an image © = Gy(zp). The generator is composed of d blocks:

Go(z0) = Bg—10...0 By(20), (D

where we define z; € RFi as the input to block B;. Each block B; can consist of arbitrary neural
network operations (such as convolution, upsampling, and activation functions). We assume k; >
ko,¥i =1,...d — 1, which holds for all architectures considered in this paper. We refer to Eqn. (I)
as an ‘uncut’ generator or ‘No Generator Surgery (no GS)’.

After training the model in Eqn.[T|or using pre-trained weights, we cut away the first ¢ > 1 blocks,
resulting in a ‘cut generator’ G, : RFe s R™ = B;_;0...0 B, which accepts a latent code 2. € RFe
as input. We refer to this model as ‘Generator Surgery (GS)’, and we apply it on inverse problems.

It is important to note that the cut generator is not a generative model. In effect, we are intentionally
trading our ability to approximately sample from the learned distribution over images for increased
expressivity of the latent representation in inversion tasks. Furthermore, since we remove blocks
relative to the original generator, the cut generator requires fewer backpropagation steps and thus less
computation at inversion time.

Additional inputs Our method is applicable to many different architectures, including models with
skip connections or class-conditional models. Specifically, if we cut the first ¢ blocks of a model
and the new initial layer B, requires multiple inputs, all of these inputs are treated as optimizable
parameters at inversion time. We use several architectures in experiments, one of which includes skip
connections (BEGAN [12]).

2.2 Compressed Sensing

We consider the problem of noisy compressed sensing (CS). All norms || - || are Lo unless otherwise
stated. For an unknown target image z € R", we are given a measurement matrix A € R"™*" m < n



and measurements y = Ax + 7, where 7 is noise. Our goal is to find & € R" that minimizes ||z — Z||.
Note that the problem is underdetermined, since m < n. Using a generator G : R¥ — R™, we can
estimate & by finding a latent code z that optimizes the loss function:

min|ly — AG(2)] @

We study the case of a Gaussian measurement matrix A;; ~ N(0,1/m) and i.i.d. Gaussian noise
n ~ N(0,02). We follow Bora et al. [5] and set ¢ = 0.1 for 64px images, and scale the noise
level for larger images such that E [||n||? /|| Az||?] is kept constant. Applying ‘Generator Surgery’ to
compressed sensing and using gradient descent to optimize Eqn. (2) results in Alg.[T]

2.3 Theoretical Motivation

Define the representation error of Gy w.r.t. an image x as Ert,¢,(Go, £) = min, cpe, ||z — Go(2)|],
and analogously for G.. Bora et al. [5] show in their Theorem 1.2 that for an L-Lipschitz network,
overall error in image recovery using a neural network signal prior is bounded w.h.p. by four terms:
representation error, the norm of the measurement noise 1, optimization error ¢, and an additive error
0 based on the sensing matrix.

Consider the performance of the uncut generator Gy and cut generator G. applied to the same set
of measurements y. Since we use the same measurements y, both the sensing error § and the
measurement noise 7 are equal for the two generators. We can assume that both models are optimized
to below a fixed error level € (we empirically find that optimization error is indeed low). Thus, in
order to compare overall recovery quality between the two models, we only need to compare their
representation error:

Ettyep(Ger0) = min [l = Go(:)|| < min [fo = Ge(Beor o Bo(2))| = Ertrep (Go,2) - (3)

The inequality in Eqn. arises by comparing the minimization of z € R¥ to the constrained
minimization of Z € R¥° for k. > ko. Intuitively, we can see that cutting blocks increases the range
of the model and thereby reduces representation error.

3 Experiments

Experimental Design. We apply Generator Surgery (GS) to DCGAN [13]], BEGAN [12], and
VAE [4] architectures. We measure recovery performance using average peak signal-to-noise ratio
(PSNR). All models are trained on CelebA [14]. We measure average PSNR on recovery of test
images from CelebA and COCO 2017 [15]. For each architecture, we choose the cut index c that
maximizes average PSNR over 100 validation images on CelebA. For all experiments, we use 100
images per dataset, and run Alg.|l|with 3 random restarts.

We first compare against the standard sparsity-based Lasso-DCT to demonstrate utility [[16]]. Lasso-
DCT solves the Lasso optimization Z = min, ||y — A®z||3 + 0.01[|z|; . Next, we compare against
several recent learned and unlearned methods: IAGAN [7], Deep Decoder (DD) [10], and mGANprior
[6]. To compare GS against baselines, we use the same generator architecture for Generator Surgery,
IAGAN, and mGANprior. For Deep Decoder (DD), we use a similar number of parameters as
Generator Surgery for a fair comparison. We follow hyperparameters given in the literature, except
for mGANprior as the given settings were not applicable.

Generator Surgery for CS. Fig. 2] shows recovery on images from CelebA test set as well as
COCO. For CelebA, the “No GS" model matches the results of Bora et al. [3], outperforming
Lasso-DCT at low measurement regimes for all models. The “GS" model improves recovery
performance substantially for all architectures, and outperforms the Lasso-DCT baseline over almost
all undersampling ratios.

For COCO images, cutting blocks still gives a large jump in recovery quality. The performance
increase over “No GS” is similar to CelebA images; this may indicate that much of the bias towards
the training domain is contained in the early blocks of the generator.
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Figure 2: Effect of Generator Surgery for DCGAN, BEGAN, and VAE on CS for CelebA (top) and
COCO (bottom). Shaded bands show 1 standard deviation. All models were trained on CelebA.

Baseline Comparisons. Fig. [3] shows the
comparison to baselines for BEGAN. We em-
phasize that our focus is not to produce the
highest performance but to be competitive with
other methods while being simpler. GS gener-
ally beats mGANprior and performs similarly to
DD (GS is slightly worse at lower measurements
and slightly better at higher measurements). IA-
GAN outperforms all methods by a fair mar-
gin; this is expected as IAGAN is highly over-
parametrized. In general, performance increases
with increasing overparametrization ratio (see
Table[T). Qualitative comparisons are provided
in the Appendix.

3.1 Understanding GS Effect

Optimization and Representation Error.

CelebA a5 coco
40
R a— 35
—vV—v——7 *
= —, 30 ra—
./«z(é/\"*‘)‘ 4 25 V//‘?"/ 2 1
T ————

0.1 0.2 0. 0.4
Undersampling Ratio (m/n)

—+— mGANprior

0.1 0.2 0. 0.4 0.5
Undersampling Ratio (m/n)

-¢- GS IAGAN

0.5

—v— DD

Figure 3: CS on CelebA and COCO. GS using
BEGAN model outperforms mGANprior and per-
forms similarly to Deep Decoder.

Table 1: Overparameterization ratio

BEGAN
mGANprior 0.195
GS 0.833
DD 0.838
IAGAN 43.7

We explore the relative magnitude of sources of error

in our models. We set A = I and n = 0 to eliminate measurement error and sensing error, leaving
only representation error and optimization error. We then evaluate recovery performance for cut
and uncut models on images generated from the model (for which representation error is zero by
definition), as well as CelebA train, test, and COCO images (Fig. EI, left). The uncut generator Gy
achieves a very high PSNR on generated images, confirming that it has low optimization error, but
performs poorly on all real images, indicating it suffers from high representation error. By contrast,
the cut generator G, achieves high quality recovery on generated images, indicating low optimization
error, and also performs well on real images, indicating reduced representation error.
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Figure 4: Left: Average PSNR for BEGAN model. Right: Trained vs. untrained GS for BEGAN

model on CS task.



Do Learned Weights Matter? We examine whether the performance increase from GS is solely
due to increased degrees of freedom, or whether this performance benefits from the learned weights.
Fig. [ (right) shows recovery performance using a trained and untrained BEGAN generator in Alg[T]
The pre-trained model weights produce significantly higher recovery quality in both image domains.

Other considerations All results for this subsection are provided in the Appendix. We confirm
that directly training a cut generator fails for a variety of hyperparameter settings, indicating that
cutting blocks must be done at test time. We also show that there is a tradeoff in choosing how many
blocks to cut; while cutting initial blocks increases the generator’s expressivity and reduces bias
towards the training domain, cutting too many blocks results in poor image quality. We also consider
different initialization strategies and how they impact performance. Finally, we show samples from
the cut generator, demonstrating it no longer behaves as a generative model.
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A Appendix

A.1 Baseline Comparisons
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Figure 5: Compressed sensing of CelebA (left) and COCO (right) images for BEGAN(128px) at
m/n =~ 0.16.

Fig.[5|show recovered images from CelebA and COCO for compressed sensing at m /n =~ 0.16. We
use BEGAN for GS. First, we can clearly see that “no GS" recovers a clearly different face than the
original for CelebA and hallucinates a non-existent face for COCO (this is expected as the models
are trained on CelebA). This qualitatively demonstrates the large representation error of the uncut
generator. mGANprior produces slightly lower quality results than GS; it is grainier and sometimes
creates different colors than the original. DD and GS show subtle qualitative differences. DD often
produces smoother images, sometimes losing fine textural details such as eyes, hair strands, and clock
numerals; GS produces grainier images but recovers such fine details.

A.2 Choice of Initialization
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Figure 6: Initialization strategies for GS using BEGAN model on CS task. We use m/n = 0.16 over
100 images from CelebA and COCO. See text for label explanations.

We consider different initialization strategies in Fig. El “Zero” is the all-zeros vector and “CN(0,1)”
denotes a standard normal distribution censored to the range [—1, 1]. “LassoInv” denotes using the
solution to the Lasso-DCT optimization (the latent vector z) as initialization. N'(0, 5), N'(0, 10) are



normal distributions with increasing variance. All initializations were run with the best of 3 random
restarts. We find that performance varies widely for different initialization strategies, supporting our
claim of the source of regularization. We find that C N (0, 1) and “Zero” perform best, though “Zero”
has slightly higher variance. We use C'N (0, 1) for all experiments.

A.3 Choosing Number of Blocks to Cut
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Figure 7: Varying cut index c of GS using DCGAN, BEGAN, VAE models on CS task. For each
model, we use 100 validation images and select c that maximizes PSNR on CelebA.

We find the best number of cuts ¢ for each model by evaluating compressed sensing performance on
validation images from CelebA and COCO. We use 100 images and compute the average PSNR for
each dataset. Fig.[7]shows the average PSNR for these datasets when applying Generator Surgery to
DCGAN, BEGAN, and VAE models. For all other experiments, we select the ¢ which achieves the
highest PSNR on CelebA here, which is ¢ = 1 for DCGAN, ¢ = 2 for BEGAN, and ¢ = 1 for VAE.

A.4 Generator samples with and without Generator Surgery

Figure 8: Generated samples from pre-trained DCGAN, BEGAN, and VAE with varying cut index.

We give samples from our pre-trained generators, before Generator Surgery (“cuts= 0"), and after
cutting 1, 2, or 3 blocks from each model. The high quality samples in the first rows show that



our original generators have been successfully trained, while the low quality samples from the cut
generators show that these no longer behave as a generative model after Generator Surgery.

We produce samples from cut generators by sampling from a censored normal p(z.) = CN (0, 1)k«
in the latent space of a cut generator. We note that sampling from the prior p(zo) = C'N (0, 1)*° in the
original latent space, and pushing that vector through the removed blocks would recover the original
generative sampling procedure. There may exist a method for sampling from this "pushforward prior"
without saving all parameters from the removed blocks, and such a method could provide a cheap
and effective initialization for image recovery, but we defer this exploration to future work.

A.5 Surgery before Training
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Figure 9: Models cut before training (¢ = 1). All models were trained for 20 epochs. Each row
represents one hyperparameter setting, each column is a different random seed. Generated samples
show failed training; no faces are produced in any iteration for any setting.

To confirm that layers cannot be cut at training time, we try training BEGAN and DCGAN with a
variety of hyperparameter settings for at least 20 epochs after cutting ¢ = 1 blocks. In Fig.[9] each
row represents a single hyperparameter setting and each column is an independent random sample
from after just one epoch. All attempts appear to result in mode collapse with poor quality output
images. Note the stark difference when compared to the samples from successful training in the first
rows of Fig.

A.6 Experiment Details
We use L-BFGS for all problems and use the following hyperparamters:

Model  Task Learning Rate  Optimizer Steps
DCGAN ggw Reconstruction 0‘} 1(2)8
BEGAN ggw Reconstruction } 1(2)8

VAE ggw Reconstruction } 4218

Table 2: Optimizer Settings. “CS” is for compressive measurements and “Raw reconstruction” refers
to reconstructing the image with no degradation (A = I, = 0).
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