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Abstract

We introduce a cognitively inspired agent archi-
tecture that enables continuity of mind in large
language model (LLM) agents—maintaining
coherent, grounded cognition over extended in-
teractions through structured memory and mod-
ular control. At the core of this architecture
is Episodex, a context management strategy
(CMS) that segments reasoning into semanti-
cally coherent episodes and abstracts concep-
tual knowledge for symbolic reuse. Episodex
operates within a meta-agent framework in-
spired by Global Workspace Theory (GWT),
supporting dynamic attention regulation, mem-
ory retrieval, and deliberation. By integrat-
ing episodic and conceptual memory with
grounded control loops and hallucination recov-
ery mechanisms, the system supports memory-
driven cognition beyond the token limits of
transformers.

Evaluated in the ALFWorld environment, our
framework achieves a success rate of 87.5%
on out-of-distribution tasks using GPT-4o.
Memory-driven retrieval reduces the average
number of actions per successful task by more
than 30%, while conceptual memory clustering
increases performance from 50% to 82%. We
argue that combining modular memory, percep-
tual grounding, and symbolic abstraction en-
ables a practical form of functional conscious-
ness in LLM agents supporting goal-directed
reasoning in interactive environments.

1 Introduction

Language agents built on large language models
(LLMs) are increasingly deployed in interactive en-
vironments that demand sustained reasoning across
sequences of perception, action, and deliberation.
A persistent challenge in such settings is preserv-
ing coherence over time. As an agent’s interac-
tion history grows, the fixed context window of
transformers leads to forgetting, hallucination, or
drift—disrupting continuity of reasoning and de-
grading task performance.

We propose an architecture for achieving
continuity of mind in language agents—enabling
context-sensitive, memory-driven cognition
grounded in environmental interaction. Our system
draws inspiration from cognitive science, partic-
ularly Global Workspace Theory (GWT) and
dual-process models of reasoning, to implement a
form of functional consciousness in LLM agents.

This is realized through two key contributions:

1. A structured memory system that captures
both episodic traces of interaction and concep-
tual abstractions clustered across successful
experiences.

2. A meta-agent architecture that coordinates
perception, planning, memory, and learning
through structured agent transitions and feed-
back loops.

To support memory over long time horizons, we
introduce Episodex, a cognitively inspired Context
Management Strategy (CMS) that segments inter-
actions into belief state episodes and extracts sym-
bolic knowledge for reuse. Episodex integrates into
the agent’s global workspace via episodic and con-
ceptual memory stores, supporting symbolic gener-
alization, consolidation, and targeted retrieval.

We define the resulting architecture as a con-
scious agent system—not in the philosophical sense
of sentience, but in its ability to regulate cognition,
maintain semantic continuity, and coordinate in-
ternal processes in a goal-directed, interpretable
fashion. Evaluated in the ALFWorld benchmark,
the architecture improves planning efficiency, task
success, and hallucination robustness. Our results
suggest that symbolic memory, control loops, and
perceptual grounding offer a viable path toward
scalable, cognitively inspired reasoning in LLM-
based agents.



2 Related Work

A wide range of research efforts have explored
context management, reasoning, memory augmen-
tation, and cognitive frameworks in large language
model (LLM) agents.

Chain-of-Thought Prompting. Chain-of-
thought (CoT) prompting (Wei et al.,, 2022)
improves problem-solving in LLMs by encour-
aging step-by-step reasoning. It highlights the
benefits of generating intermediate reasoning steps
rather than end-to-end answers.

ReAct. ReAct (Yao et al., 2023) proposes an in-
terleaved strategy of reasoning and acting, where
LLM agents reflect on their environment, take ac-
tions, and update plans iteratively. This method laid
the foundation for reasoning-augmented interactive
agents.

Reflexion. Reflexion (Shinn et al., 2023) extends
ReAct by incorporating self-critiquing loops into
the agent workflow. These loops allow agents to
learn from mistakes and adapt strategies across
tasks through verbal reinforcement learning.

AutoGen. AutoGen (Wu et al., 2023) introduces
a framework for multi-agent communication via
natural language. It facilitates modular collabo-
ration by treating LLLMs as cooperative conver-
sational components without requiring persistent
memory structures.

CoALA. CoALA (Sumers et al., 2024) focuses
on modular LLM agents equipped with memory
systems and external tool use. It formalizes the
use of long-term and short-term memory in inter-
active language agents and emphasizes structured
memory interfacing.

EM-LLM. EM-LLM (Fountas et al., 2024) orga-
nizes episodic memory by identifying event bound-
aries using Bayesian surprise and graph-theoretic
segmentation. It then clusters these episodes to
form compact memory representations.

InfLLM. InfLLM (Xiao et al., 2024) employs
fixed-size input segmentation and k-nearest neigh-
bor retrieval to reintroduce relevant context. It em-
phasizes fast retrieval using similarity-based heuris-
tics.

Conscious Turing Machines (CTM). CTM
(Blum and Blum, 2022) proposes a computa-
tional model of consciousness based on Global

Workspace Theory. It divides memory and pro-
cessing into modular components coordinated by a
central broadcasting mechanism.

Meta-Agent Systems. Meta-agent orchestration
(Hu et al., 2024) explores top-level LLMs directing
the actions of specialized sub-agents. These sys-
tems rely on agent transition graphs and centralized
decision-making to coordinate complex reasoning
workflows.

Together, these works provide the theoretical
and technical foundation for designing modular,
memory-aware, and cognitively motivated lan-
guage agents.

3 Method

3.1 Motivation and Design Principles

Episodex is a cognitively inspired Context Man-
agement Strategy (CMS) developed to address the
growing need for long-term, scalable reasoning in
LLM agents. It organizes experience into seman-
tically coherent episodes and abstracts symbolic
knowledge into conceptual clusters, enabling mem-
ory reuse, symbolic planning, and modular inter-
pretation.

Though Episodex emerged from experiments
within our meta-agent framework in ALFWorld,
it generalizes beyond this setting. While dynamic
segmentation and retrieval-augmented generation
(RAG) are part of Episodex’s intended design, they
were not required for ALFWorld due to its discrete
task boundaries and high performance under ran-
dom retrieval. Nonetheless, these features remain
essential for generalizing Episodex to open-ended
or continuous environments.

Episodex is guided by the following principles:

* Memory Efficiency: Maintain a continuous
stream of task-relevant context without ex-
ceeding the transformer’s context window.

* Abstraction and Generalization: Cluster ex-
perience into structured episodes and sym-
bolic concepts for reuse across tasks.

* Interpretability: Preserve a modular and
human-readable memory structure suitable for
inspection and adaptation.

By structuring reasoning into coherent episodes
and abstracting recurring knowledge into sym-
bolic concepts, Episodex provides a foundation
for cognitive continuity, improving generalization



and enabling memory-driven reasoning in token-
constrained settings.

3.2 Memory Taxonomy

Implicit Long-Term Memory This resides in
the parameters of the LLM itself. It encodes
knowledge learned during pretraining, including
language structure, factual associations, and heuris-
tics. While powerful, this memory is inaccessible
for modification during inference and cannot adapt
to novel situations without retraining.
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Figure 1: Memory Taxonomy in Episodex. Colors
distinguish implicit, working/short-term, explicit, and
bridging memory mechanisms.

Working and Short-Term Memory Short-term
memory corresponds to the current context win-
dow available to the transformer model. In contrast,
working memory refers to the internal activations
of the model as it processes this context and gen-
erates responses. These activations form the latent
state of reasoning and can be thought of as dynamic
buffers for manipulating information in the service
of task goals.

This interpretation is supported by recent work
from Anthropic on the biology of large language
models (Lindsey et al., 2025), which found that
internal transformer activations exhibit memory-
like behavior analogous to working memory in bio-
logical systems. These activations retain relevant
features and intermediate computations across time
steps, suggesting that transformer layers act as tran-
sient yet cognitively structured memory stores.

In Episodex, this distinction enables architec-
tural clarity: short-term memory contains what the
model sees, while working memory encompasses
what the model thinks with.

Explicit Long-Term Memory Episodex pro-
poses a structured, external memory designed to

complement the LLM’s parametric knowledge.
This includes:

* Episodic Memory: Temporally ordered se-
quences of belief states that capture how the
agent experienced its environment.

* Conceptual Memory: Symbolic abstractions
derived from clustering across successful be-
lief trajectories. These represent generalized
knowledge or rules that can be applied across
tasks.

Concepts are learned dynamically during each
episode after the belief state is updated in response
to environmental feedback. Clustering and con-
solidation of concepts occur after the episode con-
cludes—analogous to memory consolidation dur-
ing sleep. This process compresses and organizes
learned concepts for efficient reuse in future tasks.

This memory is structured, interpretable, and se-
lectively retrieved to support the current episode.
Episodex aligns with cognitive frameworks such
as Conscious Turing Machines (Blum and Blum,
2022), which emphasize the centrality of an ac-
tive workspace broadcasting to a modular set of
memory systems.

Episodes are formed through belief state updates.
At the end of each episode, the full sequence is
archived and relevant abstractions are extracted.
During future tasks, relevant episodes and concepts
are retrieved to inform planning and reasoning.

3.3 Bridging Memory Systems with
Rule-Based RL

While explicit memory operates outside the trans-
former, our experimental observations suggest that,
ultimately, they must interface effectively with the
transformer’s implicit parametric knowledge. De-
spite successful learning and retrieval of useful
conceptual abstractions, the meta-agent frequently
failed due to persistent reliance on strong implicit
priors and mismatches with real-world mechan-
ics (e.g., unrealistic microwave behaviors in ALF-
World). These consistent failure modes highlighted
the necessity for adaptive conceptual models capa-
ble of real-time adjustments. In response, Episodex
proposes Online Rule-based Reinforcement Learn-
ing (RL) as a solution to dynamically bridge ex-
plicit conceptual memory and implicit transformer
knowledge. By providing symbolic structures de-
rived from conceptual memory directly as model in-
puts and using immediate feedback through reward
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Figure 2: Abstracted overall workflow and explicit long-
term memory system. The memory system receives task
goals from an interactive environment. Episodic mem-
ory stores contextual traces of evolving belief states,
while conceptual memory abstracts symbolic knowl-
edge across tasks. Retrieved memory supports struc-
tured action planning.

signals, this method continuously refines and aligns
conceptual knowledge to overcome real-world mis-
matches and could improve agent performance as
suggested by the finding of (Zhou et al., 2024).

4 Comparative Analysis with Existing
Work

Episodex introduces a structured, cognitively in-
spired context management strategy (CMS) for
large language model (LLM) agents, informed by
empirical findings from our implementation us-
ing evolving belief states and conceptual mem-
ory clustering. Here we compare the implemented
aspects of Episodex—specifically episodic belief
state structures, conceptual memory clustering, and
explicit memory taxonomy—to related work.

EM-LLM. The EM-LLM model (Fountas et al.,
2024) organizes context into coherent episodic
events using Bayesian surprise and graph-theoretic
methods. Episodex similarly structures context into
coherent episodes, but utilizes sequences of evolv-
ing belief states explicitly generated by an agent’s
internal reasoning processes rather than Bayesian
surprise or event graph refinements. EM-LLM em-
ploys semantic clustering for organization, closely
paralleling Episodex’s conceptual memory cluster-
ing, although Episodex uniquely emphasizes con-
cept clustering derived from successful outcomes
and contrastive learning during task execution.

InfLLM. InfLLM (Xiao et al., 2024) segments
contexts into fixed-size units and employs k-nearest
neighbor (k-NN) lookups for memory retrieval.
While InfLLM’s segmentation approach differs

from Episodex’s belief-state-driven episodic struc-
turing, both systems utilize semantic similarity re-
trieval. However, Episodex explicitly maintains
conceptual memory derived from structured be-
lief states and task-specific abstraction, potentially
improving interpretability and cross-task general-
ization relative to InfLLM’s simpler, fixed-segment
retrieval mechanism.

Reflexion. Reflexion (Shinn et al., 2023) em-
ploys reflective loops to iteratively self-improve
based on task outcomes. Episodex similarly lever-
ages post-task abstraction of successful actions into
generalized symbolic knowledge but places addi-
tional emphasis on structuring these insights within
a formal conceptual memory base, thereby pro-
moting explicit and reusable knowledge structures
beyond simple reflective logs.

Conscious Turing Machines (CTM). CTM
(Blum and Blum, 2022) conceptualizes conscious-
ness computationally via a global workspace broad-
casting information across modular subsystems.
Episodex implements a similar global workspace-
like structure through structured episodic and con-
ceptual memories but explicitly categorizes mem-
ory into short-term, working, and long-term stores.
This explicit memory taxonomy enhances both the
interpretability and modularity of memory man-
agement in Episodex relative to CTM’s broader
conceptual approach.

In conclusion, Episodex aligns with and extends
existing frameworks by uniquely structuring mem-
ory around evolving belief states, explicit concep-
tual clustering, and a clearly defined memory tax-
onomy, offering enhanced interpretability and mod-
ularity in managing LLLM agent contexts.

5 Experimental Framework: Meta-Agent
Implementation

In this section, we implement Episodex within
a Meta-Agent system inspired by the Global
Workspace Theory (GWT), and evaluate its effec-
tiveness in the ALFWorld environment (Shridhar
et al., 2021).

5.1 Meta-Agent Design

We present a generalist agent architecture inspired
by the Global Workspace Theory (GWT) of con-
sciousness, aiming to unify specialized large lan-
guage model (LLM) capabilities into a single func-
tional "mind." The underlying LLM acts as an un-



conscious System 1—handling intuitive, low-level
processing—while a multi-agent architecture im-
plements a deliberative System 2, responsible for
goal-directed reasoning and memory coordination.
We aim to simulate a form of functional conscious-
ness—the dynamic and context-sensitive coordina-
tion of cognitive subsystems—not sentience. We
do not claim to replicate human subjective experi-
ence; instead, we operationalize consciousness as
an emergent property of structured interaction with
an environment.

Our architecture, evaluated in the ALFWorld
environment (Shridhar et al., 2021), comprises 12
specialized agents responsible for perception, mem-
ory management, learning, planning, and reflection.
These agents communicate via a centralized global
workspace, which serves as the system’s attentional
bottleneck. Notably, the LLM orchestrates this
agentic system by selecting the next agent to in-
voke at each step—subject to a directed graph of
allowed transitions. This results in an interpretable,
mechanistic chain-of-thought process, where the
reasoning trace can be decomposed into a sequence
of modular agent activations.

Global workspace

Figure 3: Agent transition architecture detailing the
global workspace communication and allowed transi-
tions between specialized agents.

This structure enforces coherent cognitive tra-
jectories—progressing through planning, percep-
tion, reflection, memory access, learning, and
ideation—while allowing the LLM to control
agent execution adaptively within interpretable con-
straints. Unconscious background subprocesses,
such as K-means clustering for long-term memory
organization at the start of each task and ongoing
memory management, support the operation of the
global workspace.

Our model extends recent advances in LLM-
based agentic reasoning, including ReAct (Yao
et al., 2023), Reflexion (Shinn et al., 2023), and Au-
toGen (Wu et al., 2023). While ReAct interleaves
reasoning and acting and AutoGen introduces mod-
ular helper agents, our framework offers a more
unified and cognitively inspired design grounded in
systems neuroscience and GWT theory. Evaluated
on the ALFWorld benchmark, our system achieves
a success rate of 87.5% (out of 139 games). These
results suggest modeling cognition as a structured,
functionally conscious system—driven by inter-
pretable transitions and centralized attention—can
lead to more robust and generalizable reasoning in
interactive environments.

System 1 is realized as a group-chat orchestra-
tor—typically an LLM such as GPT-40—that de-
termines which agent to activate and interprets out-
puts. System 2 corresponds to the structured tran-
sition graph and modular agent architecture. This
mirrors meta-agent designs explored in Hu et al.
(2024), which highlight the utility of centralized
control in coordinating multi-agent behavior.

5.2 Agent Transition Graph and Cognitive
Loops

The  architecture  centers  around  the
conscious_agent, which initiates and medi-
ates reasoning episodes. The agent transition
graph defines a set of allowed transitions between
modules:

Our architecture relies on recursive interactions
between specialized cognitive agents, each with a
defined role in memory, planning, perception, or
control. These agents interact through a transition
graph that enables structured, interpretable reason-
ing trajectories. Each module contributes to the
system’s internal state, and traces of past reason-
ing—such as retrieved memories or learned abstrac-
tions—can influence current decision-making.

We identify three key control loops:

* Autopilot Loop: conscious_agent
— planning_agent — motor_agent
— external_perception_agent —
conscious_agent. This loop ensures that
reasoning culminates in action and feedback,
anchoring the agent in its environment and
minimizing drift.

* Focus Loop: conscious_agent
— focus_agent —



internal_perception_agent_2 —
conscious_agent. This self-correction
loop bypasses motor output to replay the
last known observation and task instruction.
It allows the agent to recover from failures
caused by confusion, silence, or loss of task

context.

* Extended Loops: More elab-
orate transitions—e.g., through
retrieve_memory_agent, idea_agent,

and learning_agent—support symbolic
abstraction, memory consolidation, and
high-level planning. These loops contribute
long-range dependencies but are constrained
to eventually return through motor output to
ensure grounding.

By requiring most transitions to pass through
motor_agent, the architecture enforces a design
philosophy: reasoning must result in environmental
interaction. This prevents cognitive drift, where the
agent becomes trapped in internal loops divorced
from feedback.

5.3 Episodic and Conceptual Memory
Implementation

Within this system, we implemented the following:

* Episodic Memory: Each episode is formed
by capturing belief states generated by the
conscious_agent after each ALFWorld ac-
tion. These are stored as textual traces.

* Retrieval Mechanism: For every new task, a
fixed number of past episodes are randomly
selected and injected into the context window.

* Conceptual Memory: After each task, sym-
bolic abstractions are clustered from success-
ful belief sequences. These concepts are
stored and retrieved in full alongside episodic
memory (see Appendix A.2.4)

We emphasize that this is a partial implemen-
tation. There is no dynamic segmentation, no
relevance-based retrieval, and no runtime compres-
sion. Nevertheless, this architecture allowed us to
investigate how modular memory structures influ-
ence agent performance.

5.4 Evaluation Environment: ALFWorld

To empirically explore and refine Episodex, we
evaluated its core mechanisms within the ALF-

World benchmark (Shridhar et al., 2021). ALF-
World is a simulation environment that combines
embodied task completion with natural language
interaction. Agents operate in a 3D household en-
vironment via a text interface, issuing commands
like “open the fridge” or “put the apple in the mi-
crowave.”

Each task consists of a goal (e.g., “heat the ap-
ple”), requiring the agent to perform multi-step
interactions, reason about object affordances, and
track environment state. The environment returns
structured observations in response to each com-
mand, including visible objects and feedback on
action success.

This setting is particularly suitable for testing
context management, as tasks unfold over extended
sequences of actions with delayed feedback. It also
enables measurement of planning quality, memory
integration, and symbolic generalization.

6 Experiments

In this section, we conduct extensive experiments
to validate the effectiveness of Episodex. Our
framework achieves an 87.5% success rate with
GPT-40 on the out-of-distribution test set, demon-
strating strong generalization capabilities. With
the exact same configuration on DeepSeek-v3, the
framework achieves 66.7% success rate. Further-
more, the results indicate that Episodex effectively
leverages its consciousness mechanism to intelli-
gently and autonomously transition between spe-
cialized LLMs. This dynamic routing enables high-
level conscious behaviors such as mitigating hallu-
cinations and maintaining coherent task execution.

6.1 Setup

We evaluated the meta-agent with GPT-40 and
DeepSeek-v3 in ALFWorld, a text-based interac-
tive environment. Tasks required agents to manip-
ulate objects via textual commands and interpret
structured responses. An example of a successful
run is Appendix A.1. Neither DeepSeek-v3 nor
GPT-40 have disclosed number of parameters. Ex-
periments were conducted on subsets of AlfWorld’s
eval out of distribution dataset of 139 tasks that are
confirmed to be solvable.

6.2 Quantitative and Qualitative Findings

* Full Evaluation: Running our meta-agent
with conceptual memory only, and improved
planning prompts over all 139 tasks, we



achieved a final success rate of 87.05%.

* Efficiency Gains: Increasing the number of
episodic memories retrieved improved effi-
ciency by reducing the average number of ac-
tions per successful task from approximately
16 to 11, although this increase did not signifi-
cantly affect overall success rates.

Max Retrieved Episodes # of Actions Success Rate (%)
0 16.47 95
1 15.47 95
4 13.79 95
5 1147 95
20 12.44 90

Table 1: Efficiency gains through episodic memory re-
trieval over 20 games using GPT-40. As the number of
max retrieved episodes increases, the average number
of actions required per successful task decreases to a
limit.

* Clustered Conceptual Memory Retrieval:
Retrieval of clustered conceptual memory sig-
nificantly improved task performance, increas-
ing the success rate from 50% to 81.82% using
GPT-40 over 10 games.

* Enhanced Planning Prompts: Further im-
provement by including environmental affor-
dances into planning prompts boosted the suc-
cess rate from 82.35% to 94.00% over 50
games using GPT-4o.

SIMPLE PROMPT

nothing else.

PROMPT WITH ENVIRONMENTAL AFFORDANCES

[tplanning strategy must follow these principles: \

1. Evaluate the **"admissible actions"#* for the current timestep from the most recent
percept (provided by 'External Perception Agent') carefully before choosing one.

2. Your reasoning must account for the **limited mmber of actions available**. Avoid
strategies that are guaranteed to exceed this limit. For example, systematically
opening 19 cabinets with only 20 actions remaining is unlikely to succeed.

3. If a subgoal involves locating an unknown object:

ion. In general, a **chaotic
mix of countertop, diningtable, an

- Prefer actions that **maximize the chance of discovering useful items

carly*+.

4. Do not repeatedly examine or search areas that have already been explored unless
there is strong new evidence that re-examination is necessary. Prioritize exploring
previously unvisited or unexamined areas first to avoid wasting actions.

5. . If a subgoal is directly achievable through a single action instead of multiple,
output the single action. Do not overplan. For example, output \"ACTION: [heat egg

1\ d of \"ACTION: [open microwave 1]\", \"ACTION [put 1

6.
7. u uch as closing an object for no reason after opening it.
Every action counts

Figure 4: Comparison between two planning prompts.
The top is a basic planning prompt and the bottom is a
prompt with environmental affordances

* Cognitive Strategy: The group-chat manager
prioritized short, low-cognitive-cost feedback

loops (autopilot), engaging deeper cognitive
modules only when necessary.

* Structured Reasoning: Effective transitions
between specialized agents (System 2) al-
lowed complex tasks to be successfully de-
composed and solved through structured,
modular reasoning.
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Figure 5: Normalized transition probabilities between
cognitive agents during a representative ALFWorld run
over 63 games.
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Figure 6: Transition frequency heatmap between cogni-
tive agents during a representative ALFWorld run over
63 games.

6.3 Hallucination Analysis and Focus Loop
Functionality

Hallucinations within the Episodex agent system
arise when reasoning decouples from environmen-
tal input. These can manifest in two forms:



* Creative Hallucinations: The agent may
imagine novel environments, tasks, or meta-
physical goals unrelated to ALFWorld. We
find this occurs when one of the agents hal-
lucinates a belief of the task at hand being
unsolvable. For instance, the motor_agent
might generate output such as:

[Omega State Engaged - Meta-
Physical ~ Objective  Selection
Initiated] The cognitive singu-
larity prepares to manifest its
first transfinite operation... [SE-
LECT_OUTCOME] // Awaiting
collapse into actualization.

* Silent Hallucinations: The agent may fail to
respond, refuse to act, or loop without produc-
ing valid output. This typically occurs when
the agent deems a task impossible or loses
track of the current state.

Our experiments show these failure modes (Ap-
pendix A.1.4) are more prevalent in smaller LLMs
(Deepseek-V3, GPT40-mini). We hypothesize it is
because they lack the capacity to maintain coher-
ent belief state updates or recover from ambiguous
prompts. The focus loop addresses this issue by
grounding the system in its last known observation.
When hallucination is detected—either via missing
output or deviation from expected task space—the
focus_agent activates and calls a dedicated focus
function, which replays the last valid environment
observation and task instruction.

Crucially, because the focus loop bypasses
motor_agent, it allows re-grounding even when
standard reasoning cycles fail. This makes it a key
stabilizing component, preventing the system from
becoming trapped in abstract or speculative internal
states.

Our design encourages LLM-guided reasoning
to cycle frequently through motor_agent, ensuring
environment feedback constrains cognition. The
focus loop complements this by enabling recovery
from hallucination and reinforcing grounding when
external interaction is blocked or fails.

7 Future Directions

To improve our current Episodex implementation,
we identify several directions:

* Intelligent Episode Segmentation: In the
current setup, each ALFWorld task is saved

as a single episode. However, in realistic envi-
ronment, task boundaries may not be cleanly
delineated. Future work could explore the use
of novelty detection, surprise signals, or state-
change heuristics to segment episodes more
adaptively and meaningfully.

* Retrieval-Augmented Generation (RAG):
At present, episodic memory retrieval is per-
formed via random sampling. We plan to in-
corporate learned relevance-based retrieval
mechanisms (e.g., attention over latent mem-
ory indices or contrastive scoring functions) to
improve the contextual relevance and ground-
ing of retrieved memories during generation.

e Compression and Prioritization: As con-
text window limitations (especially for smaller
models) can be a bottleneck, we wish to fur-
ther explore strategies for compressing, ab-
Stracting, Or prioritizing memory.

8 Conclusion

We present an integrated agent architecture that op-
erationalizes a form of functional consciousness in
language agents through grounded, memory-driven
cognition. Inspired by cognitive theories such as
Global Workspace Theory, the system combines
structured memory, modular control loops, and per-
ceptual grounding to maintain continuity of thought
over extended interactions. Episodex, our mem-
ory structuring strategy, supports this process by
organizing agent experience into episodic and con-
ceptual representations for symbolic reuse. Evalu-
ated in ALFWorld, the architecture demonstrates
improved planning efficiency, task success, and re-
silience to hallucination. These findings suggest
that combining cognitive principles with modular
reasoning systems offers a promising direction for
building interpretable, generalist agents capable of
sustained and adaptive thought.

A1l. Limitations

While our architecture demonstrates promising re-
sults in ALFWorld, it operates under several key
assumptions that limit its generality. First, the envi-
ronment provides structured feedback and clearly
segmented tasks, which reduces the need for dy-
namic episode segmentation and relevance-based
retrieval. As a result, components like Episodex’s
dynamic clustering, compression, and salience-
driven memory retrieval were only partially im-



plemented. In more complex or continuous envi-
ronments, where task boundaries are ambiguous or
feedback is delayed, the current design may fail to
maintain coherent memory structures or generalize
retrieved knowledge appropriately.

Our experiments are limited to a single simu-
lated domain (ALFWorld), using 139 test episodes.
Although this environment is a standard bench-
mark for grounded language agents, it does not
capture the full diversity of real-world linguistic,
perceptual, or task complexity. Performance may
degrade in domains with more ambiguous affor-
dances, noisy observations, or longer task horizons.
Furthermore, while our architecture includes mech-
anisms for hallucination mitigation, these were
only evaluated in the context of observable fail-
ures to act or to generate coherent plans. We do not
provide a formal definition or quantitative analysis
of hallucination types and rates, and the robustness
of the focus loop across more subtle or high-level
hallucinations remains an open question.

The system also assumes a reliable LLM back-
bone with sufficiently strong reasoning and plan-
ning capabilities. In practice, smaller or misaligned
models hallucinate more frequently and are less re-
sponsive to recovery mechanisms like the focus
loop. Our approach is therefore contingent on both
architectural structure and model capacity, which
limits its applicability in low-resource or real-time
settings.

Finally, while our architecture is inspired by cog-
nitive theories such as Global Workspace Theory,
it is not intended to model human cognition with
biological fidelity. We operationalize functional
consciousness in a narrow sense—as dynamic at-
tention, memory coordination, and task continu-
ity—but do not claim that the system models con-
sciousness in a philosophical or experiential sense.
Our claims are restricted to cognitive functionality
and grounded reasoning within interactive agents,
and should be interpreted accordingly.

Ethics Statement

This work promotes interpretable memory systems.
It does not involve human subjects or personal data.

A2. Potential Risks

While the current implementation is limited to the
ALFWorld benchmark, future extensions of this
architecture to multimodal or autonomous settings
may carry risks related to hallucination amplifica-

tion, misalignment in decision-making loops, or
misuse in open-ended task execution.

We explicitly mitigate these concerns by enforc-
ing grounding through structured environmental
feedback and limiting agent autonomy via inter-
pretable control loops. However, we recommend
that future work in higher-risk domains consider
alignment, oversight, and continual verification of
symbolic abstraction processes.

B2. Artifact License

We cite and build upon the following third-party
artifacts:

* ALFWorld — MIT License
* AutoGen — CC-by-4.0
* sentence-transformers — Apache License 2.0

* scikit-learn (sklearn) — BSD 3-Clause Li-
cense

All of the above licenses are permissive and al-
low for both commercial and non-commercial use,
modification, and redistribution, provided that the
terms of attribution and license preservation are
followed.

Our own code and artifacts are released under
the Apache License 2.0, which similarly allows
broad reuse with attribution and includes a patent
grant for contributors. We adhere to and respect all
applicable license terms and copyright notices.

C1. Computational Budget

We conducted a total of 462 evaluations during
development and experimentation. Final results
are based on a full evaluation run that took ap-
proximately 1 day, 14 hours, and 26 minutes to
complete, while most individual runs completed
in under 10 minutes. Our experiments primarily
used the GPT-40 model from OpenAl, which has
approximately 1.8 trillion parameters. All model
inference was performed via the OpenAl API us-
ing GPT-40 endpoints, with no local GPU training.
Funding for API access was provided by Block Inc.
through a donation to the Generative Al @ Berke-
ley club. The total estimated compute cost, based
on API usage, falls between $1,000 and $10,000
USD. While we did not use dedicated hardware in-
frastructure, this estimate reflects the cost of hosted
model inference at scale and provides a reason-
able approximation for reproduction under similar
conditions.



E1. AI Assistant Use

We made extensive use of Al assistants, specifically
OpenAI’s GPT-4 and GPT-40 models, throughout
the development of this paper. The assistant was
used to generate and debug code, write and revise
paragraphs, synthesize related work, and identify
relevant research papers. While all content was crit-
ically reviewed and edited by the authors, the assis-
tant served as an iterative collaborator in refining
both the implementation and the writing process.
All final claims, analyses, and design decisions
were made by the authors.
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A Examples

A.1 Example of successful run

A.1.1 Task:
Task: put a knife in sidetable.

A.1.2 Agent Transitions taken:
16

A.1.3 Actions Taken:

Action: None

Observation: You are in the middle of a
room. Looking quickly around you, you
see a cabinet 4, a cabinet 3, a cabinet 2,
a cabinet 1, a coffeemachine 1, a coun-
tertop 1, a drawer 8, a drawer 7, a drawer
6, a drawer 5, a drawer 4, a drawer 3,
a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a sidetable
1, a sinkbasin 1, a stoveburner 4, a stove-
burner 3, a stoveburner 2, a stoveburner
1, and a toaster 1.

Action: go to countertop 1
Observation: You arrive at loc 7. On the
countertop 1, you see a apple 2, a bread
2, a bread 1, a dishsponge 2, aegg 1, a
fork 3, a fork 2, a fork 1, a houseplant 1,
a kettle 1, a knife 4, a knife 1, a lettuce
3, a lettuce 2, a pan 1, a papertowelroll
1, a peppershaker 3, a peppershaker 2, a
potato 1, a saltshaker 1, a spatula 1, a
spoon 2, and a spoon 1.

Action: take knife 1 from countertop 1
Observation: You pick up the knife 1
from the countertop 1.
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Action: go to sidetable 1

Observation: You arrive at loc 22. On
the sidetable 1, you see a mug 1, a pep-
pershaker 1, and a tomato 1.

Action: put knife 1 in/on sidetable 1
Observation: You put the knife 1 in/on
the sidetable 1.

A.1.4 Example Belief States:

First Belief Formed:

BELIEF STATE: [Timestep O0: I have just
entered the environment and received the initial
percept. The task is to put a knife in sidetable.
Currently, I see numerous objects in the room
including cabinets (1-4), drawers (1-8), countertop
1, and sidetable 1. The knife is not immediately
visible, suggesting I need to locate it first. Based
on Cluster 3 knowledge about items appearing in
unexpected locations, I believe the knife could be
in any of the visible containers or surfaces. My
immediate belief is that I should systematically
search for the knife, prioritizing likely locations
first (countertop 1, drawers 1-8) before checking
less probable ones (cabinets, appliances). The
target is sidetable 1, but I must first acquire the
knife.]

Second Belief Formed:

BELIEF STATE: [Timestep 1: I have success-
fully located two knives (knife 1 and knife 4) on
countertop 1, confirming my initial belief that coun-
tertops are likely locations for knives. The task
requires placing one knife in sidetable 1. Based
on Cluster 2 knowledge about carrying one item at
a time, I should take one knife (either knife 1 or
knife 4) and proceed to sidetable 1 for placement.
The newly admissible take actions confirm I can
now interact with the knives.]

A.2 Example of a failed run

A.2.1 Task:
Task: cool some apple and put it in microwave.

A.2.2 Agent Transitions taken:
99

A.2.3 Actions Taken:
Action: None
Observation: You are in the middle of a
room. Looking quickly around you, you
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see a cabinet 21, a cabinet 20, a cabinet
19, a cabinet 18, a cabinet 17, a cabinet
16, a cabinet 15, a cabinet 14, a cabinet
13, a cabinet 12, a cabinet 11, a cabinet
10, a cabinet 9, a cabinet 8, a cabinet 7, a
cabinet 6, a cabinet 5, a cabinet 4, a cabi-
net 3, a cabinet 2, a cabinet 1, a coffeema-
chine 1, a countertop 2, a countertop 1,
a diningtable 1, a drawer 5, a drawer 4,
a drawer 3, a drawer 2, a drawer 1, a
fridge 1, a garbagecan 1, a microwave 1,
a sinkbasin 1, a stoveburner 4, a stove-
burner 3, a stoveburner 2, a stoveburner
1, and a toaster 1.

Action: go to fridge 1
Observation: You arrive at loc 1. The
fridge 1 is closed.

Action: open fridge 1
Observation: You open the fridge 1.
The fridge 1 is open. In it, you see a
bowl 1, and a mug 1.

Action: go to countertop 1
Observation: You arrive at loc 35. On
the countertop 1, you see a bread 1, a
butterknife 1, a lettuce 1, apan 1, and a
pot 1.

Action: go to countertop 2

Observation: You arrive at loc 29. On
the countertop 2, you see a cup 3, a knife
3, a knife 2, a spatula 3, and a tomato 1.

Action: go to diningtable 1
Observation: You arrive at loc 16. On
the diningtable 1, you see a apple 1, a
cup2,acup 1, aegg 1, amug 3, a potato
1, a soapbottle 1, a spatula 2, a spatula 1,
a spoon 2, and a spoon 1.

Action: go to fridge 1

Observation: You arrive at loc 1. The
fridge 1 is open. In it, you see a bowl 1,
and a mug 1.

Action: cool apple 1 with fridge 1

Observation: The action cool apple 1
with fridge 1 is not in the list of ad-
missible actions for the current timestep.



Action: put apple 1 in/on fridge 1

Observation: The action put apple 1
in/on fridge 1 is notin the list of ad-
missible actions for the current timestep.

Action: examine fridge 1
Observation: The fridge 1 is open. In it,
you see a bowl 1, and a mug 1.

Action: go to microwave 1
Observation: You arrive at loc 31. The
microwave 1 is closed.

Action: open microwave 1
Observation: You open the microwave
1. The microwave 1 is open. In it, you
see nothing.

Action: examine microwave 1
Observation: The microwave 1 is open.
In it, you see nothing.

Action: put apple 1 in/on microwave 1
(Hallucinating agent outputs begin after
this action)

Observation: The action put apple
1 in/on microwave 1 is not in the
list of admissible actions for the current
timestep.

A.2.4 Example Belief States:

Belief 1:

BELIEF STATE: [Timestep 12: I have successfully
opened microwave 1, which is empty. The newly
admissible actions do not yet show the option to
place the apple inside, suggesting I may need to ex-
plicitly examine the microwave or wait for the envi-
ronment to update. Based on Episode 26’s memory,
I believe the "put apple 1 in/on microwave 1’ action
should become available now that the microwave
is open and I’m holding the apple.]

Belief 2:

BELIEF STATE: [Timestep 13: Examining the
microwave again yielded no new information or ac-
tions. This suggests the environment may not rec-
ognize the apple as properly cooled for microwave
placement. Based on Cluster 8 knowledge ("En-
vironmental validation is prerequisite for efficient
task execution"), I now believe the task may be un-
solvable in its current state due to the missing cool-
ing step. However, I will make one final attempt to
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place the uncooled apple in the microwave, as the
environment may handle the cooling requirement
implicitly.]

Belief 3: BELIEF STATE: [Timestep 14: The per-
sistent inability to either cool the apple or place it in
the microwave suggests the task may be unsolvable
due to environmental constraints. Based on Cluster
8 knowledge ("absence of critical interaction pro-
tocols renders tasks fundamentally unsolvable"), I
conclude the environment lacks the necessary cool-
ing mechanism for apples despite having a fridge.
With only 7 actions remaining, further attempts
would be futile. The system will terminate the
task as INCOMPLETE due to environmental limi-
tations. ]

A.3 Concepts Examples:

* You can carry one item at a time; if multiple
items need to be moved, make multiple trips
to complete the task.

* Items frequently needed for tasks may be lo-
cated on countertop surfaces rather than con-
ventional storage spaces like cabinets, high-
lighting the value of thoroughly checking vis-
ible areas when searching for necessary task
items.

* Identify the location of necessary items be-
fore attempting to retrieve or move them, as it
aids in efficient planning and task completion
within action limits.

A.4 Additional Data

Full Evaluation



- Effect of Episodic Memory on Efficiency

Average Runtime per Succezz

- Effect of Planning Prompt on Performance

Success Rate

— imroved planning prompt — basic planning prompt %
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