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Abstract

We introduce a cognitively inspired agent archi-001
tecture that enables continuity of mind in large002
language model (LLM) agents—maintaining003
coherent, grounded cognition over extended in-004
teractions through structured memory and mod-005
ular control. At the core of this architecture006
is Episodex, a context management strategy007
(CMS) that segments reasoning into semanti-008
cally coherent episodes and abstracts concep-009
tual knowledge for symbolic reuse. Episodex010
operates within a meta-agent framework in-011
spired by Global Workspace Theory (GWT),012
supporting dynamic attention regulation, mem-013
ory retrieval, and deliberation. By integrat-014
ing episodic and conceptual memory with015
grounded control loops and hallucination recov-016
ery mechanisms, the system supports memory-017
driven cognition beyond the token limits of018
transformers.019

Evaluated in the ALFWorld environment, our020
framework achieves a success rate of 87.5%021
on out-of-distribution tasks using GPT-4o.022
Memory-driven retrieval reduces the average023
number of actions per successful task by more024
than 30%, while conceptual memory clustering025
increases performance from 50% to 82%. We026
argue that combining modular memory, percep-027
tual grounding, and symbolic abstraction en-028
ables a practical form of functional conscious-029
ness in LLM agents supporting goal-directed030
reasoning in interactive environments.031

1 Introduction032

Language agents built on large language models033

(LLMs) are increasingly deployed in interactive en-034

vironments that demand sustained reasoning across035

sequences of perception, action, and deliberation.036

A persistent challenge in such settings is preserv-037

ing coherence over time. As an agent’s interac-038

tion history grows, the fixed context window of039

transformers leads to forgetting, hallucination, or040

drift—disrupting continuity of reasoning and de-041

grading task performance.042

We propose an architecture for achieving 043

continuity of mind in language agents—enabling 044

context-sensitive, memory-driven cognition 045

grounded in environmental interaction. Our system 046

draws inspiration from cognitive science, partic- 047

ularly Global Workspace Theory (GWT) and 048

dual-process models of reasoning, to implement a 049

form of functional consciousness in LLM agents. 050

This is realized through two key contributions: 051

1. A structured memory system that captures 052

both episodic traces of interaction and concep- 053

tual abstractions clustered across successful 054

experiences. 055

2. A meta-agent architecture that coordinates 056

perception, planning, memory, and learning 057

through structured agent transitions and feed- 058

back loops. 059

To support memory over long time horizons, we 060

introduce Episodex, a cognitively inspired Context 061

Management Strategy (CMS) that segments inter- 062

actions into belief state episodes and extracts sym- 063

bolic knowledge for reuse. Episodex integrates into 064

the agent’s global workspace via episodic and con- 065

ceptual memory stores, supporting symbolic gener- 066

alization, consolidation, and targeted retrieval. 067

We define the resulting architecture as a con- 068

scious agent system—not in the philosophical sense 069

of sentience, but in its ability to regulate cognition, 070

maintain semantic continuity, and coordinate in- 071

ternal processes in a goal-directed, interpretable 072

fashion. Evaluated in the ALFWorld benchmark, 073

the architecture improves planning efficiency, task 074

success, and hallucination robustness. Our results 075

suggest that symbolic memory, control loops, and 076

perceptual grounding offer a viable path toward 077

scalable, cognitively inspired reasoning in LLM- 078

based agents. 079
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2 Related Work080

A wide range of research efforts have explored081

context management, reasoning, memory augmen-082

tation, and cognitive frameworks in large language083

model (LLM) agents.084

Chain-of-Thought Prompting. Chain-of-085

thought (CoT) prompting (Wei et al., 2022)086

improves problem-solving in LLMs by encour-087

aging step-by-step reasoning. It highlights the088

benefits of generating intermediate reasoning steps089

rather than end-to-end answers.090

ReAct. ReAct (Yao et al., 2023) proposes an in-091

terleaved strategy of reasoning and acting, where092

LLM agents reflect on their environment, take ac-093

tions, and update plans iteratively. This method laid094

the foundation for reasoning-augmented interactive095

agents.096

Reflexion. Reflexion (Shinn et al., 2023) extends097

ReAct by incorporating self-critiquing loops into098

the agent workflow. These loops allow agents to099

learn from mistakes and adapt strategies across100

tasks through verbal reinforcement learning.101

AutoGen. AutoGen (Wu et al., 2023) introduces102

a framework for multi-agent communication via103

natural language. It facilitates modular collabo-104

ration by treating LLMs as cooperative conver-105

sational components without requiring persistent106

memory structures.107

CoALA. CoALA (Sumers et al., 2024) focuses108

on modular LLM agents equipped with memory109

systems and external tool use. It formalizes the110

use of long-term and short-term memory in inter-111

active language agents and emphasizes structured112

memory interfacing.113

EM-LLM. EM-LLM (Fountas et al., 2024) orga-114

nizes episodic memory by identifying event bound-115

aries using Bayesian surprise and graph-theoretic116

segmentation. It then clusters these episodes to117

form compact memory representations.118

InfLLM. InfLLM (Xiao et al., 2024) employs119

fixed-size input segmentation and k-nearest neigh-120

bor retrieval to reintroduce relevant context. It em-121

phasizes fast retrieval using similarity-based heuris-122

tics.123

Conscious Turing Machines (CTM). CTM124

(Blum and Blum, 2022) proposes a computa-125

tional model of consciousness based on Global126

Workspace Theory. It divides memory and pro- 127

cessing into modular components coordinated by a 128

central broadcasting mechanism. 129

Meta-Agent Systems. Meta-agent orchestration 130

(Hu et al., 2024) explores top-level LLMs directing 131

the actions of specialized sub-agents. These sys- 132

tems rely on agent transition graphs and centralized 133

decision-making to coordinate complex reasoning 134

workflows. 135

Together, these works provide the theoretical 136

and technical foundation for designing modular, 137

memory-aware, and cognitively motivated lan- 138

guage agents. 139

3 Method 140

3.1 Motivation and Design Principles 141

Episodex is a cognitively inspired Context Man- 142

agement Strategy (CMS) developed to address the 143

growing need for long-term, scalable reasoning in 144

LLM agents. It organizes experience into seman- 145

tically coherent episodes and abstracts symbolic 146

knowledge into conceptual clusters, enabling mem- 147

ory reuse, symbolic planning, and modular inter- 148

pretation. 149

Though Episodex emerged from experiments 150

within our meta-agent framework in ALFWorld, 151

it generalizes beyond this setting. While dynamic 152

segmentation and retrieval-augmented generation 153

(RAG) are part of Episodex’s intended design, they 154

were not required for ALFWorld due to its discrete 155

task boundaries and high performance under ran- 156

dom retrieval. Nonetheless, these features remain 157

essential for generalizing Episodex to open-ended 158

or continuous environments. 159

Episodex is guided by the following principles: 160

• Memory Efficiency: Maintain a continuous 161

stream of task-relevant context without ex- 162

ceeding the transformer’s context window. 163

• Abstraction and Generalization: Cluster ex- 164

perience into structured episodes and sym- 165

bolic concepts for reuse across tasks. 166

• Interpretability: Preserve a modular and 167

human-readable memory structure suitable for 168

inspection and adaptation. 169

By structuring reasoning into coherent episodes 170

and abstracting recurring knowledge into sym- 171

bolic concepts, Episodex provides a foundation 172

for cognitive continuity, improving generalization 173

2



and enabling memory-driven reasoning in token-174

constrained settings.175

3.2 Memory Taxonomy176

Implicit Long-Term Memory This resides in177

the parameters of the LLM itself. It encodes178

knowledge learned during pretraining, including179

language structure, factual associations, and heuris-180

tics. While powerful, this memory is inaccessible181

for modification during inference and cannot adapt182

to novel situations without retraining.183

Figure 1: Memory Taxonomy in Episodex. Colors
distinguish implicit, working/short-term, explicit, and
bridging memory mechanisms.

Working and Short-Term Memory Short-term184

memory corresponds to the current context win-185

dow available to the transformer model. In contrast,186

working memory refers to the internal activations187

of the model as it processes this context and gen-188

erates responses. These activations form the latent189

state of reasoning and can be thought of as dynamic190

buffers for manipulating information in the service191

of task goals.192

This interpretation is supported by recent work193

from Anthropic on the biology of large language194

models (Lindsey et al., 2025), which found that195

internal transformer activations exhibit memory-196

like behavior analogous to working memory in bio-197

logical systems. These activations retain relevant198

features and intermediate computations across time199

steps, suggesting that transformer layers act as tran-200

sient yet cognitively structured memory stores.201

In Episodex, this distinction enables architec-202

tural clarity: short-term memory contains what the203

model sees, while working memory encompasses204

what the model thinks with.205

Explicit Long-Term Memory Episodex pro-206

poses a structured, external memory designed to207

complement the LLM’s parametric knowledge. 208

This includes: 209

• Episodic Memory: Temporally ordered se- 210

quences of belief states that capture how the 211

agent experienced its environment. 212

• Conceptual Memory: Symbolic abstractions 213

derived from clustering across successful be- 214

lief trajectories. These represent generalized 215

knowledge or rules that can be applied across 216

tasks. 217

Concepts are learned dynamically during each 218

episode after the belief state is updated in response 219

to environmental feedback. Clustering and con- 220

solidation of concepts occur after the episode con- 221

cludes—analogous to memory consolidation dur- 222

ing sleep. This process compresses and organizes 223

learned concepts for efficient reuse in future tasks. 224

This memory is structured, interpretable, and se- 225

lectively retrieved to support the current episode. 226

Episodex aligns with cognitive frameworks such 227

as Conscious Turing Machines (Blum and Blum, 228

2022), which emphasize the centrality of an ac- 229

tive workspace broadcasting to a modular set of 230

memory systems. 231

Episodes are formed through belief state updates. 232

At the end of each episode, the full sequence is 233

archived and relevant abstractions are extracted. 234

During future tasks, relevant episodes and concepts 235

are retrieved to inform planning and reasoning. 236

3.3 Bridging Memory Systems with 237

Rule-Based RL 238

While explicit memory operates outside the trans- 239

former, our experimental observations suggest that, 240

ultimately, they must interface effectively with the 241

transformer’s implicit parametric knowledge. De- 242

spite successful learning and retrieval of useful 243

conceptual abstractions, the meta-agent frequently 244

failed due to persistent reliance on strong implicit 245

priors and mismatches with real-world mechan- 246

ics (e.g., unrealistic microwave behaviors in ALF- 247

World). These consistent failure modes highlighted 248

the necessity for adaptive conceptual models capa- 249

ble of real-time adjustments. In response, Episodex 250

proposes Online Rule-based Reinforcement Learn- 251

ing (RL) as a solution to dynamically bridge ex- 252

plicit conceptual memory and implicit transformer 253

knowledge. By providing symbolic structures de- 254

rived from conceptual memory directly as model in- 255

puts and using immediate feedback through reward 256
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Figure 2: Abstracted overall workflow and explicit long-
term memory system. The memory system receives task
goals from an interactive environment. Episodic mem-
ory stores contextual traces of evolving belief states,
while conceptual memory abstracts symbolic knowl-
edge across tasks. Retrieved memory supports struc-
tured action planning.

signals, this method continuously refines and aligns257

conceptual knowledge to overcome real-world mis-258

matches and could improve agent performance as259

suggested by the finding of (Zhou et al., 2024).260

4 Comparative Analysis with Existing261

Work262

Episodex introduces a structured, cognitively in-263

spired context management strategy (CMS) for264

large language model (LLM) agents, informed by265

empirical findings from our implementation us-266

ing evolving belief states and conceptual mem-267

ory clustering. Here we compare the implemented268

aspects of Episodex—specifically episodic belief269

state structures, conceptual memory clustering, and270

explicit memory taxonomy—to related work.271

EM-LLM. The EM-LLM model (Fountas et al.,272

2024) organizes context into coherent episodic273

events using Bayesian surprise and graph-theoretic274

methods. Episodex similarly structures context into275

coherent episodes, but utilizes sequences of evolv-276

ing belief states explicitly generated by an agent’s277

internal reasoning processes rather than Bayesian278

surprise or event graph refinements. EM-LLM em-279

ploys semantic clustering for organization, closely280

paralleling Episodex’s conceptual memory cluster-281

ing, although Episodex uniquely emphasizes con-282

cept clustering derived from successful outcomes283

and contrastive learning during task execution.284

InfLLM. InfLLM (Xiao et al., 2024) segments285

contexts into fixed-size units and employs k-nearest286

neighbor (k-NN) lookups for memory retrieval.287

While InfLLM’s segmentation approach differs288

from Episodex’s belief-state-driven episodic struc- 289

turing, both systems utilize semantic similarity re- 290

trieval. However, Episodex explicitly maintains 291

conceptual memory derived from structured be- 292

lief states and task-specific abstraction, potentially 293

improving interpretability and cross-task general- 294

ization relative to InfLLM’s simpler, fixed-segment 295

retrieval mechanism. 296

Reflexion. Reflexion (Shinn et al., 2023) em- 297

ploys reflective loops to iteratively self-improve 298

based on task outcomes. Episodex similarly lever- 299

ages post-task abstraction of successful actions into 300

generalized symbolic knowledge but places addi- 301

tional emphasis on structuring these insights within 302

a formal conceptual memory base, thereby pro- 303

moting explicit and reusable knowledge structures 304

beyond simple reflective logs. 305

Conscious Turing Machines (CTM). CTM 306

(Blum and Blum, 2022) conceptualizes conscious- 307

ness computationally via a global workspace broad- 308

casting information across modular subsystems. 309

Episodex implements a similar global workspace- 310

like structure through structured episodic and con- 311

ceptual memories but explicitly categorizes mem- 312

ory into short-term, working, and long-term stores. 313

This explicit memory taxonomy enhances both the 314

interpretability and modularity of memory man- 315

agement in Episodex relative to CTM’s broader 316

conceptual approach. 317

In conclusion, Episodex aligns with and extends 318

existing frameworks by uniquely structuring mem- 319

ory around evolving belief states, explicit concep- 320

tual clustering, and a clearly defined memory tax- 321

onomy, offering enhanced interpretability and mod- 322

ularity in managing LLM agent contexts. 323

5 Experimental Framework: Meta-Agent 324

Implementation 325

In this section, we implement Episodex within 326

a Meta-Agent system inspired by the Global 327

Workspace Theory (GWT), and evaluate its effec- 328

tiveness in the ALFWorld environment (Shridhar 329

et al., 2021). 330

5.1 Meta-Agent Design 331

We present a generalist agent architecture inspired 332

by the Global Workspace Theory (GWT) of con- 333

sciousness, aiming to unify specialized large lan- 334

guage model (LLM) capabilities into a single func- 335

tional "mind." The underlying LLM acts as an un- 336
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conscious System 1—handling intuitive, low-level337

processing—while a multi-agent architecture im-338

plements a deliberative System 2, responsible for339

goal-directed reasoning and memory coordination.340

We aim to simulate a form of functional conscious-341

ness—the dynamic and context-sensitive coordina-342

tion of cognitive subsystems—not sentience. We343

do not claim to replicate human subjective experi-344

ence; instead, we operationalize consciousness as345

an emergent property of structured interaction with346

an environment.347

Our architecture, evaluated in the ALFWorld348

environment (Shridhar et al., 2021), comprises 12349

specialized agents responsible for perception, mem-350

ory management, learning, planning, and reflection.351

These agents communicate via a centralized global352

workspace, which serves as the system’s attentional353

bottleneck. Notably, the LLM orchestrates this354

agentic system by selecting the next agent to in-355

voke at each step—subject to a directed graph of356

allowed transitions. This results in an interpretable,357

mechanistic chain-of-thought process, where the358

reasoning trace can be decomposed into a sequence359

of modular agent activations.360

Figure 3: Agent transition architecture detailing the
global workspace communication and allowed transi-
tions between specialized agents.

This structure enforces coherent cognitive tra-361

jectories—progressing through planning, percep-362

tion, reflection, memory access, learning, and363

ideation—while allowing the LLM to control364

agent execution adaptively within interpretable con-365

straints. Unconscious background subprocesses,366

such as K-means clustering for long-term memory367

organization at the start of each task and ongoing368

memory management, support the operation of the369

global workspace.370

Our model extends recent advances in LLM- 371

based agentic reasoning, including ReAct (Yao 372

et al., 2023), Reflexion (Shinn et al., 2023), and Au- 373

toGen (Wu et al., 2023). While ReAct interleaves 374

reasoning and acting and AutoGen introduces mod- 375

ular helper agents, our framework offers a more 376

unified and cognitively inspired design grounded in 377

systems neuroscience and GWT theory. Evaluated 378

on the ALFWorld benchmark, our system achieves 379

a success rate of 87.5% (out of 139 games). These 380

results suggest modeling cognition as a structured, 381

functionally conscious system—driven by inter- 382

pretable transitions and centralized attention—can 383

lead to more robust and generalizable reasoning in 384

interactive environments. 385

System 1 is realized as a group-chat orchestra- 386

tor—typically an LLM such as GPT-4o—that de- 387

termines which agent to activate and interprets out- 388

puts. System 2 corresponds to the structured tran- 389

sition graph and modular agent architecture. This 390

mirrors meta-agent designs explored in Hu et al. 391

(2024), which highlight the utility of centralized 392

control in coordinating multi-agent behavior. 393

5.2 Agent Transition Graph and Cognitive 394

Loops 395

The architecture centers around the 396

conscious_agent, which initiates and medi- 397

ates reasoning episodes. The agent transition 398

graph defines a set of allowed transitions between 399

modules: 400

Our architecture relies on recursive interactions 401

between specialized cognitive agents, each with a 402

defined role in memory, planning, perception, or 403

control. These agents interact through a transition 404

graph that enables structured, interpretable reason- 405

ing trajectories. Each module contributes to the 406

system’s internal state, and traces of past reason- 407

ing—such as retrieved memories or learned abstrac- 408

tions—can influence current decision-making. 409

We identify three key control loops: 410

• Autopilot Loop: conscious_agent 411

→ planning_agent → motor_agent 412

→ external_perception_agent → 413

conscious_agent. This loop ensures that 414

reasoning culminates in action and feedback, 415

anchoring the agent in its environment and 416

minimizing drift. 417

• Focus Loop: conscious_agent 418

→ focus_agent → 419
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internal_perception_agent_2 →420

conscious_agent. This self-correction421

loop bypasses motor output to replay the422

last known observation and task instruction.423

It allows the agent to recover from failures424

caused by confusion, silence, or loss of task425

context.426

• Extended Loops: More elab-427

orate transitions—e.g., through428

retrieve_memory_agent, idea_agent,429

and learning_agent—support symbolic430

abstraction, memory consolidation, and431

high-level planning. These loops contribute432

long-range dependencies but are constrained433

to eventually return through motor output to434

ensure grounding.435

By requiring most transitions to pass through436

motor_agent, the architecture enforces a design437

philosophy: reasoning must result in environmental438

interaction. This prevents cognitive drift, where the439

agent becomes trapped in internal loops divorced440

from feedback.441

5.3 Episodic and Conceptual Memory442

Implementation443

Within this system, we implemented the following:444

• Episodic Memory: Each episode is formed445

by capturing belief states generated by the446

conscious_agent after each ALFWorld ac-447

tion. These are stored as textual traces.448

• Retrieval Mechanism: For every new task, a449

fixed number of past episodes are randomly450

selected and injected into the context window.451

• Conceptual Memory: After each task, sym-452

bolic abstractions are clustered from success-453

ful belief sequences. These concepts are454

stored and retrieved in full alongside episodic455

memory (see Appendix A.2.4)456

We emphasize that this is a partial implemen-457

tation. There is no dynamic segmentation, no458

relevance-based retrieval, and no runtime compres-459

sion. Nevertheless, this architecture allowed us to460

investigate how modular memory structures influ-461

ence agent performance.462

5.4 Evaluation Environment: ALFWorld463

To empirically explore and refine Episodex, we464

evaluated its core mechanisms within the ALF-465

World benchmark (Shridhar et al., 2021). ALF- 466

World is a simulation environment that combines 467

embodied task completion with natural language 468

interaction. Agents operate in a 3D household en- 469

vironment via a text interface, issuing commands 470

like “open the fridge” or “put the apple in the mi- 471

crowave.” 472

Each task consists of a goal (e.g., “heat the ap- 473

ple”), requiring the agent to perform multi-step 474

interactions, reason about object affordances, and 475

track environment state. The environment returns 476

structured observations in response to each com- 477

mand, including visible objects and feedback on 478

action success. 479

This setting is particularly suitable for testing 480

context management, as tasks unfold over extended 481

sequences of actions with delayed feedback. It also 482

enables measurement of planning quality, memory 483

integration, and symbolic generalization. 484

6 Experiments 485

In this section, we conduct extensive experiments 486

to validate the effectiveness of Episodex. Our 487

framework achieves an 87.5% success rate with 488

GPT-4o on the out-of-distribution test set, demon- 489

strating strong generalization capabilities. With 490

the exact same configuration on DeepSeek-v3, the 491

framework achieves 66.7% success rate. Further- 492

more, the results indicate that Episodex effectively 493

leverages its consciousness mechanism to intelli- 494

gently and autonomously transition between spe- 495

cialized LLMs. This dynamic routing enables high- 496

level conscious behaviors such as mitigating hallu- 497

cinations and maintaining coherent task execution. 498

6.1 Setup 499

We evaluated the meta-agent with GPT-4o and 500

DeepSeek-v3 in ALFWorld, a text-based interac- 501

tive environment. Tasks required agents to manip- 502

ulate objects via textual commands and interpret 503

structured responses. An example of a successful 504

run is Appendix A.1. Neither DeepSeek-v3 nor 505

GPT-4o have disclosed number of parameters. Ex- 506

periments were conducted on subsets of AlfWorld’s 507

eval out of distribution dataset of 139 tasks that are 508

confirmed to be solvable. 509

6.2 Quantitative and Qualitative Findings 510

• Full Evaluation: Running our meta-agent 511

with conceptual memory only, and improved 512

planning prompts over all 139 tasks, we 513
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achieved a final success rate of 87.05%.514

• Efficiency Gains: Increasing the number of515

episodic memories retrieved improved effi-516

ciency by reducing the average number of ac-517

tions per successful task from approximately518

16 to 11, although this increase did not signifi-519

cantly affect overall success rates.520

Max Retrieved Episodes # of Actions Success Rate (%)

0 16.47 95
1 15.47 95
4 13.79 95
5 11.47 95
20 12.44 90

Table 1: Efficiency gains through episodic memory re-
trieval over 20 games using GPT-4o. As the number of
max retrieved episodes increases, the average number
of actions required per successful task decreases to a
limit.

• Clustered Conceptual Memory Retrieval:521

Retrieval of clustered conceptual memory sig-522

nificantly improved task performance, increas-523

ing the success rate from 50% to 81.82% using524

GPT-4o over 10 games.525

• Enhanced Planning Prompts: Further im-526

provement by including environmental affor-527

dances into planning prompts boosted the suc-528

cess rate from 82.35% to 94.00% over 50529

games using GPT-4o.530

Figure 4: Comparison between two planning prompts.
The top is a basic planning prompt and the bottom is a
prompt with environmental affordances

• Cognitive Strategy: The group-chat manager531

prioritized short, low-cognitive-cost feedback532

loops (autopilot), engaging deeper cognitive 533

modules only when necessary. 534

• Structured Reasoning: Effective transitions 535

between specialized agents (System 2) al- 536

lowed complex tasks to be successfully de- 537

composed and solved through structured, 538

modular reasoning. 539

Figure 5: Normalized transition probabilities between
cognitive agents during a representative ALFWorld run
over 63 games.

Figure 6: Transition frequency heatmap between cogni-
tive agents during a representative ALFWorld run over
63 games.

6.3 Hallucination Analysis and Focus Loop 540

Functionality 541

Hallucinations within the Episodex agent system 542

arise when reasoning decouples from environmen- 543

tal input. These can manifest in two forms: 544
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• Creative Hallucinations: The agent may545

imagine novel environments, tasks, or meta-546

physical goals unrelated to ALFWorld. We547

find this occurs when one of the agents hal-548

lucinates a belief of the task at hand being549

unsolvable. For instance, the motor_agent550

might generate output such as:551

[Omega State Engaged - Meta-552

Physical Objective Selection553

Initiated] The cognitive singu-554

larity prepares to manifest its555

first transfinite operation... [SE-556

LECT_OUTCOME] // Awaiting557

collapse into actualization.558

• Silent Hallucinations: The agent may fail to559

respond, refuse to act, or loop without produc-560

ing valid output. This typically occurs when561

the agent deems a task impossible or loses562

track of the current state.563

Our experiments show these failure modes (Ap-564

pendix A.1.4) are more prevalent in smaller LLMs565

(Deepseek-V3, GPT4o-mini). We hypothesize it is566

because they lack the capacity to maintain coher-567

ent belief state updates or recover from ambiguous568

prompts. The focus loop addresses this issue by569

grounding the system in its last known observation.570

When hallucination is detected—either via missing571

output or deviation from expected task space—the572

focus_agent activates and calls a dedicated focus573

function, which replays the last valid environment574

observation and task instruction.575

Crucially, because the focus loop bypasses576

motor_agent, it allows re-grounding even when577

standard reasoning cycles fail. This makes it a key578

stabilizing component, preventing the system from579

becoming trapped in abstract or speculative internal580

states.581

Our design encourages LLM-guided reasoning582

to cycle frequently through motor_agent, ensuring583

environment feedback constrains cognition. The584

focus loop complements this by enabling recovery585

from hallucination and reinforcing grounding when586

external interaction is blocked or fails.587

7 Future Directions588

To improve our current Episodex implementation,589

we identify several directions:590

• Intelligent Episode Segmentation: In the591

current setup, each ALFWorld task is saved592

as a single episode. However, in realistic envi- 593

ronment, task boundaries may not be cleanly 594

delineated. Future work could explore the use 595

of novelty detection, surprise signals, or state- 596

change heuristics to segment episodes more 597

adaptively and meaningfully. 598

• Retrieval-Augmented Generation (RAG): 599

At present, episodic memory retrieval is per- 600

formed via random sampling. We plan to in- 601

corporate learned relevance-based retrieval 602

mechanisms (e.g., attention over latent mem- 603

ory indices or contrastive scoring functions) to 604

improve the contextual relevance and ground- 605

ing of retrieved memories during generation. 606

• Compression and Prioritization: As con- 607

text window limitations (especially for smaller 608

models) can be a bottleneck, we wish to fur- 609

ther explore strategies for compressing, ab- 610

stracting, or prioritizing memory. 611

8 Conclusion 612

We present an integrated agent architecture that op- 613

erationalizes a form of functional consciousness in 614

language agents through grounded, memory-driven 615

cognition. Inspired by cognitive theories such as 616

Global Workspace Theory, the system combines 617

structured memory, modular control loops, and per- 618

ceptual grounding to maintain continuity of thought 619

over extended interactions. Episodex, our mem- 620

ory structuring strategy, supports this process by 621

organizing agent experience into episodic and con- 622

ceptual representations for symbolic reuse. Evalu- 623

ated in ALFWorld, the architecture demonstrates 624

improved planning efficiency, task success, and re- 625

silience to hallucination. These findings suggest 626

that combining cognitive principles with modular 627

reasoning systems offers a promising direction for 628

building interpretable, generalist agents capable of 629

sustained and adaptive thought. 630

A1. Limitations 631

While our architecture demonstrates promising re- 632

sults in ALFWorld, it operates under several key 633

assumptions that limit its generality. First, the envi- 634

ronment provides structured feedback and clearly 635

segmented tasks, which reduces the need for dy- 636

namic episode segmentation and relevance-based 637

retrieval. As a result, components like Episodex’s 638

dynamic clustering, compression, and salience- 639

driven memory retrieval were only partially im- 640
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plemented. In more complex or continuous envi-641

ronments, where task boundaries are ambiguous or642

feedback is delayed, the current design may fail to643

maintain coherent memory structures or generalize644

retrieved knowledge appropriately.645

Our experiments are limited to a single simu-646

lated domain (ALFWorld), using 139 test episodes.647

Although this environment is a standard bench-648

mark for grounded language agents, it does not649

capture the full diversity of real-world linguistic,650

perceptual, or task complexity. Performance may651

degrade in domains with more ambiguous affor-652

dances, noisy observations, or longer task horizons.653

Furthermore, while our architecture includes mech-654

anisms for hallucination mitigation, these were655

only evaluated in the context of observable fail-656

ures to act or to generate coherent plans. We do not657

provide a formal definition or quantitative analysis658

of hallucination types and rates, and the robustness659

of the focus loop across more subtle or high-level660

hallucinations remains an open question.661

The system also assumes a reliable LLM back-662

bone with sufficiently strong reasoning and plan-663

ning capabilities. In practice, smaller or misaligned664

models hallucinate more frequently and are less re-665

sponsive to recovery mechanisms like the focus666

loop. Our approach is therefore contingent on both667

architectural structure and model capacity, which668

limits its applicability in low-resource or real-time669

settings.670

Finally, while our architecture is inspired by cog-671

nitive theories such as Global Workspace Theory,672

it is not intended to model human cognition with673

biological fidelity. We operationalize functional674

consciousness in a narrow sense—as dynamic at-675

tention, memory coordination, and task continu-676

ity—but do not claim that the system models con-677

sciousness in a philosophical or experiential sense.678

Our claims are restricted to cognitive functionality679

and grounded reasoning within interactive agents,680

and should be interpreted accordingly.681

Ethics Statement682

This work promotes interpretable memory systems.683

It does not involve human subjects or personal data.684

A2. Potential Risks685

While the current implementation is limited to the686

ALFWorld benchmark, future extensions of this687

architecture to multimodal or autonomous settings688

may carry risks related to hallucination amplifica-689

tion, misalignment in decision-making loops, or 690

misuse in open-ended task execution. 691

We explicitly mitigate these concerns by enforc- 692

ing grounding through structured environmental 693

feedback and limiting agent autonomy via inter- 694

pretable control loops. However, we recommend 695

that future work in higher-risk domains consider 696

alignment, oversight, and continual verification of 697

symbolic abstraction processes. 698

B2. Artifact License 699

We cite and build upon the following third-party 700

artifacts: 701

• ALFWorld – MIT License 702

• AutoGen – CC-by-4.0 703

• sentence-transformers – Apache License 2.0 704

• scikit-learn (sklearn) – BSD 3-Clause Li- 705

cense 706

All of the above licenses are permissive and al- 707

low for both commercial and non-commercial use, 708

modification, and redistribution, provided that the 709

terms of attribution and license preservation are 710

followed. 711

Our own code and artifacts are released under 712

the Apache License 2.0, which similarly allows 713

broad reuse with attribution and includes a patent 714

grant for contributors. We adhere to and respect all 715

applicable license terms and copyright notices. 716

C1. Computational Budget 717

We conducted a total of 462 evaluations during 718

development and experimentation. Final results 719

are based on a full evaluation run that took ap- 720

proximately 1 day, 14 hours, and 26 minutes to 721

complete, while most individual runs completed 722

in under 10 minutes. Our experiments primarily 723

used the GPT-4o model from OpenAI, which has 724

approximately 1.8 trillion parameters. All model 725

inference was performed via the OpenAI API us- 726

ing GPT-4o endpoints, with no local GPU training. 727

Funding for API access was provided by Block Inc. 728

through a donation to the Generative AI @ Berke- 729

ley club. The total estimated compute cost, based 730

on API usage, falls between $1,000 and $10,000 731

USD. While we did not use dedicated hardware in- 732

frastructure, this estimate reflects the cost of hosted 733

model inference at scale and provides a reason- 734

able approximation for reproduction under similar 735

conditions. 736
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E1. AI Assistant Use737

We made extensive use of AI assistants, specifically738

OpenAI’s GPT-4 and GPT-4o models, throughout739

the development of this paper. The assistant was740

used to generate and debug code, write and revise741

paragraphs, synthesize related work, and identify742

relevant research papers. While all content was crit-743

ically reviewed and edited by the authors, the assis-744

tant served as an iterative collaborator in refining745

both the implementation and the writing process.746

All final claims, analyses, and design decisions747

were made by the authors.748
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A Examples 804

A.1 Example of successful run 805

A.1.1 Task: 806

Task: put a knife in sidetable. 807

A.1.2 Agent Transitions taken: 808

16 809

A.1.3 Actions Taken: 810

Action: None 811

Observation: You are in the middle of a 812

room. Looking quickly around you, you 813

see a cabinet 4, a cabinet 3, a cabinet 2, 814

a cabinet 1, a coffeemachine 1, a coun- 815

tertop 1, a drawer 8, a drawer 7, a drawer 816

6, a drawer 5, a drawer 4, a drawer 3, 817

a drawer 2, a drawer 1, a fridge 1, a 818

garbagecan 1, a microwave 1, a sidetable 819

1, a sinkbasin 1, a stoveburner 4, a stove- 820

burner 3, a stoveburner 2, a stoveburner 821

1, and a toaster 1. 822

Action: go to countertop 1 823

Observation: You arrive at loc 7. On the 824

countertop 1, you see a apple 2, a bread 825

2, a bread 1, a dishsponge 2, a egg 1, a 826

fork 3, a fork 2, a fork 1, a houseplant 1, 827

a kettle 1, a knife 4, a knife 1, a lettuce 828

3, a lettuce 2, a pan 1, a papertowelroll 829

1, a peppershaker 3, a peppershaker 2, a 830

potato 1, a saltshaker 1, a spatula 1, a 831

spoon 2, and a spoon 1. 832

Action: take knife 1 from countertop 1 833

Observation: You pick up the knife 1 834

from the countertop 1. 835
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Action: go to sidetable 1836

Observation: You arrive at loc 22. On837

the sidetable 1, you see a mug 1, a pep-838

pershaker 1, and a tomato 1.839

Action: put knife 1 in/on sidetable 1840

Observation: You put the knife 1 in/on841

the sidetable 1.842

A.1.4 Example Belief States:843

First Belief Formed:844

BELIEF STATE: [Timestep 0: I have just845

entered the environment and received the initial846

percept. The task is to put a knife in sidetable.847

Currently, I see numerous objects in the room848

including cabinets (1-4), drawers (1-8), countertop849

1, and sidetable 1. The knife is not immediately850

visible, suggesting I need to locate it first. Based851

on Cluster 3 knowledge about items appearing in852

unexpected locations, I believe the knife could be853

in any of the visible containers or surfaces. My854

immediate belief is that I should systematically855

search for the knife, prioritizing likely locations856

first (countertop 1, drawers 1-8) before checking857

less probable ones (cabinets, appliances). The858

target is sidetable 1, but I must first acquire the859

knife.]860

861

Second Belief Formed:862

863

BELIEF STATE: [Timestep 1: I have success-864

fully located two knives (knife 1 and knife 4) on865

countertop 1, confirming my initial belief that coun-866

tertops are likely locations for knives. The task867

requires placing one knife in sidetable 1. Based868

on Cluster 2 knowledge about carrying one item at869

a time, I should take one knife (either knife 1 or870

knife 4) and proceed to sidetable 1 for placement.871

The newly admissible take actions confirm I can872

now interact with the knives.]873

A.2 Example of a failed run874

A.2.1 Task:875

Task: cool some apple and put it in microwave.876

A.2.2 Agent Transitions taken:877

99878

A.2.3 Actions Taken:879

Action: None880

Observation: You are in the middle of a881

room. Looking quickly around you, you882

see a cabinet 21, a cabinet 20, a cabinet 883

19, a cabinet 18, a cabinet 17, a cabinet 884

16, a cabinet 15, a cabinet 14, a cabinet 885

13, a cabinet 12, a cabinet 11, a cabinet 886

10, a cabinet 9, a cabinet 8, a cabinet 7, a 887

cabinet 6, a cabinet 5, a cabinet 4, a cabi- 888

net 3, a cabinet 2, a cabinet 1, a coffeema- 889

chine 1, a countertop 2, a countertop 1, 890

a diningtable 1, a drawer 5, a drawer 4, 891

a drawer 3, a drawer 2, a drawer 1, a 892

fridge 1, a garbagecan 1, a microwave 1, 893

a sinkbasin 1, a stoveburner 4, a stove- 894

burner 3, a stoveburner 2, a stoveburner 895

1, and a toaster 1. 896

Action: go to fridge 1 897

Observation: You arrive at loc 1. The 898

fridge 1 is closed. 899

Action: open fridge 1 900

Observation: You open the fridge 1. 901

The fridge 1 is open. In it, you see a 902

bowl 1, and a mug 1. 903

Action: go to countertop 1 904

Observation: You arrive at loc 35. On 905

the countertop 1, you see a bread 1, a 906

butterknife 1, a lettuce 1, a pan 1, and a 907

pot 1. 908

Action: go to countertop 2 909

Observation: You arrive at loc 29. On 910

the countertop 2, you see a cup 3, a knife 911

3, a knife 2, a spatula 3, and a tomato 1. 912

Action: go to diningtable 1 913

Observation: You arrive at loc 16. On 914

the diningtable 1, you see a apple 1, a 915

cup 2, a cup 1, a egg 1, a mug 3, a potato 916

1, a soapbottle 1, a spatula 2, a spatula 1, 917

a spoon 2, and a spoon 1. 918

Action: go to fridge 1 919

Observation: You arrive at loc 1. The 920

fridge 1 is open. In it, you see a bowl 1, 921

and a mug 1. 922

Action: cool apple 1 with fridge 1 923

Observation: The action cool apple 1 924

with fridge 1 is not in the list of ad- 925

missible actions for the current timestep. 926
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Action: put apple 1 in/on fridge 1927

Observation: The action put apple 1928

in/on fridge 1 is not in the list of ad-929

missible actions for the current timestep.930

Action: examine fridge 1931

Observation: The fridge 1 is open. In it,932

you see a bowl 1, and a mug 1.933

Action: go to microwave 1934

Observation: You arrive at loc 31. The935

microwave 1 is closed.936

Action: open microwave 1937

Observation: You open the microwave938

1. The microwave 1 is open. In it, you939

see nothing.940

Action: examine microwave 1941

Observation: The microwave 1 is open.942

In it, you see nothing.943

Action: put apple 1 in/on microwave 1944

(Hallucinating agent outputs begin after945

this action)946

Observation: The action put apple947

1 in/on microwave 1 is not in the948

list of admissible actions for the current949

timestep.950

A.2.4 Example Belief States:951

Belief 1:952

BELIEF STATE: [Timestep 12: I have successfully953

opened microwave 1, which is empty. The newly954

admissible actions do not yet show the option to955

place the apple inside, suggesting I may need to ex-956

plicitly examine the microwave or wait for the envi-957

ronment to update. Based on Episode 26’s memory,958

I believe the ’put apple 1 in/on microwave 1’ action959

should become available now that the microwave960

is open and I’m holding the apple.]961

Belief 2:962

BELIEF STATE: [Timestep 13: Examining the963

microwave again yielded no new information or ac-964

tions. This suggests the environment may not rec-965

ognize the apple as properly cooled for microwave966

placement. Based on Cluster 8 knowledge ("En-967

vironmental validation is prerequisite for efficient968

task execution"), I now believe the task may be un-969

solvable in its current state due to the missing cool-970

ing step. However, I will make one final attempt to971

place the uncooled apple in the microwave, as the 972

environment may handle the cooling requirement 973

implicitly.] 974

Belief 3: BELIEF STATE: [Timestep 14: The per- 975

sistent inability to either cool the apple or place it in 976

the microwave suggests the task may be unsolvable 977

due to environmental constraints. Based on Cluster 978

8 knowledge ("absence of critical interaction pro- 979

tocols renders tasks fundamentally unsolvable"), I 980

conclude the environment lacks the necessary cool- 981

ing mechanism for apples despite having a fridge. 982

With only 7 actions remaining, further attempts 983

would be futile. The system will terminate the 984

task as INCOMPLETE due to environmental limi- 985

tations.] 986

A.3 Concepts Examples: 987

• You can carry one item at a time; if multiple 988

items need to be moved, make multiple trips 989

to complete the task. 990

• Items frequently needed for tasks may be lo- 991

cated on countertop surfaces rather than con- 992

ventional storage spaces like cabinets, high- 993

lighting the value of thoroughly checking vis- 994

ible areas when searching for necessary task 995

items. 996

• Identify the location of necessary items be- 997

fore attempting to retrieve or move them, as it 998

aids in efficient planning and task completion 999

within action limits. 1000

A.4 Additional Data 1001
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