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ABSTRACT

Federated learning (FL) has recently been actively studied to collaboratively train
machine learning models across clients without directly sharing data and to address
data-hungry issues. Many FL works have been focusing on minimizing a loss
function but many important machine learning tasks such as adversarial training,
GANs, fairness learning, and AUROC maximization are formulated as minimax
problems. In this paper, we propose a new federated learning method for minimax
problems. Our method allows client drift and addresses the data heterogeneity issue.
In theoretical analysis, we prove that our method can improve sample complexity
from O(ϵ−3) to O(ϵ−2). We also give convergence guarantees for the updates
of the model parameters, i.e., the sequences generated by the method. Given the
Kurdyka-Łojasiewicz (KL) exponent of a novel potential function related to the
objective function, we demonstrate that the sequences generated by our method
converge finitely, linearly, or sublinearly. Our assumptions on the KL property are
weaker than previous work on the sequential convergence of centralized minimax
methods. Additionally, we further weaken the KL assumption by deducing the KL
exponent of the maximizer-dependent potential function from that of the maximizer-
free function. We validate our federated learning method on AUC maximization
tasks. The experimental results demonstrate that our method outperforms state-of-
the-art federated learning methods when the distributions of local training data are
non-IID.

1 INTRODUCTION

In recent years, federated learning (FL) has garnered significant attention within the machine learning
community, owing to its wide real-world applications in finance, healthcare, edge computing, AIoT,
and more. Federated learning allows multiple clients to collaboratively train the same model locally
on their own devices. Once trained, the local models are sent to a central server, where they are
aggregated, and the updated global model is returned to the clients for further local training. This
decentralized approach enables the training of machine learning models using datasets from different
clients without the need for data sharing. Additionally, it avoids the transfer of large datasets to a
central server, thereby reducing bandwidth requirements and associated costs.

The classical federated learning problem focuses on minimizing a loss function using local training
datasets. However, many emerging scenarios, such as adversarial training (Tramèr et al., 2018;
Bai et al., 2021), distributionally robust optimization (Levy et al., 2020; Gao & Kleywegt, 2023;
Madras et al., 2018), generative adversarial networks (GANs) (Goodfellow et al., 2014), and AUROC
(Area Under the ROC Curve) maximization (Lei & Ying, 2021), often formulate their objectives
as minimax optimization problems. While centralized methods for solving minimax problems are
well-explored, federated learning methods for minimax optimization are still in their early stage.
These problems face similar challenges as traditional federated learning, particularly regarding data
sharing and communication overhead. Hence, it is necessary develop federated methods for these
minimax problems.
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Table 1: Local(L) SDGA (Sharma et al., 2022), Momentum Local (ML) SGDA (Sharma et al.,
2023), FedSGDA (Wu et al., 2023), FEDNEST (Tarzanagh et al., 2022). BH=Bounded Heterogeneity
Assumption, F/P=Partial/Full attendance, α is the KL exponent, ρ1 ∈ (0, 1), b and c are constants.

F/P Free of BHA
Sample Complexity

(Edist(0,∇
∑n

i=1
1
nfi(z

t)+∂g(zt)))
Model Parameter Convergence

(∥zt − z∗∥)
LSDGA F ✗ O(κ4n−1ϵ−4) ✗

MLSGDA P ✗ O(κ4n−1ϵ−4) ✗
FedSGDA F ✗ O(κ3n−1ϵ−3) ✗
FEDNEST P ✗ O(κ3ϵ−4) ✗
FedSGDA F ✗ O(κ3n−1ϵ−3) ✗

Ours P ✓ O(κ2 log(κ)n−1ϵ−2)

finite step convergence when α = 0
O(ρt1) (linear convergence) when α ∈ (0, 1

2 ]

O(t−
1

4α−2 ) (sublinear convergence) when α ∈ ( 12 , 1)

In this work, we focus on developing federated methods specifically for minimax optimization
problems. We consider the following general formulation:

min
x∈Rl

max
y∈Rd

1

n

n∑
i=1

fi(x, y) + g(x), (1)

where each fi(x, y) =
∑

j∈Di
f(x, y; ξj), with Di being the dataset of the ith client and ξj represent-

ing individual data points within it. Here, f is a smooth function that is nonconvex in x and strongly
concave in y, and g represents a proper closed function. Examples of strongly concave f include
fairness classification problems (Nouiehed et al., 2019), adversarial training (Sinha et al., 2017),
and GAN training (Vlatakis-Gkaragkounis et al., 2021). Common choices for g include convex
regularizers or indicator functions corresponding to convex constraints. In this work, we assume that
the proximal operator for g is easy to compute.

A key challenge in federated minimax optimization lies in handling the max problem nested within
the min problem, particularly when training must occur locally. In centralized settings, the Gradient
Descent Ascent (GDA) method is a classical approach to minimax problems. To extend this to
federated learning, one could adapt GDA to the FedAvg method, resulting in LocalSGDA (Deng
et al., 2020). Other variations, such as Momentum Local SGDA (Sharma et al., 2022), accelerate
convergence by adding momentum to local updates, while FedSGDA+ (Wu et al., 2023) further
reduces complexity. However, these methods require all clients to participate in every training round,
which introduces the risk of client drift due to unstable network connections. To address this, we
propose methods that allow only a subset of clients to participate in each training round.

In addition to client drift, data heterogeneity—where local data distributions vary significantly—poses
another challenge in federated learning. This heterogeneity can slow down training and reduce the
model’s performance. Previous works (Sharma et al., 2023; 2022; Wu et al., 2023) have proposed
methods to address heterogeneity, assuming bounds on the degree of heterogeneity and studying its
impact on convergence complexity. However, in real-world scenarios, these bounds can be large,
leading to loose convergence guarantees. Our work introduces methods that offer convergence
guarantees without relying on these heterogeneity bounds.

Moreover, while much of the existing research focuses on the complexity of federated learning
methods—such as the convergence of 1

T

∑T
t=1 Edist(0,∇

∑n
i=1

1
nfi(z

t)+∂g(zt)), (zt representing
model parameters), little attention has been given to the convergence of the model parameters
themselves. Even for minimization problems, such as those tackled by the classical LocalSGD
method (Stich, 2019), the primary focus has been on complexity rather than parameter convergence.
Understanding the convergence of model parameters is crucial for evaluating the method’s ability
to reach a solution. To the best of our knowledge, parameter convergence has only been studied for
strongly convex minimization problems in federated learning (Pathak & Wainwright, 2020). In this
work, we provides the first analysis of parameter convergence for nonconvex minimax problems.

1.1 CONTRIBUTIONS

In this work, we develop a novel federated learning method specifically designed for minimax
optimization problems, addressing the unique challenge of solving nested minimax problems in
a federated setting. Our approach allows for partial client participation during training rounds,
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mitigating client drift caused by unstable network conditions. Additionally, it effectively handles data
heterogeneity without relying on strict bounds for data distribution discrepancies, ensuring robust
convergence in real-world applications. By introducing a new termination criterion for local training,
we enhance the sample complexity of existing federated minimax methods, reducing the complexity
from O(ϵ−3) to O(ϵ−2) while maintaining a fixed number of local iterations.

In addition, we provide convergence guarantees for the sequence of model parameters generated
by the method, which we refer to as sequential convergence. We demonstrate that when all clients
participate in training and the local solvers are deterministic, the accumulation points of the sequence
generated by our method converge to a stationary point. Furthermore, we establish the convergence
rate of the sequence in nonsmooth and nonconvex settings. To achieve this, we leverage the Kurdyka-
Łojasiewicz (KL) framework, which specializes in analyzing sequence convergence in nonsmooth,
nonconvex cases (Attouch et al., 2010; Li & Pong, 2018; Attouch et al., 2013; Bolte et al., 2017).
We show that, depending on the KL exponent of the potential function, the sequence generated by
our method converges finitely, linearly, or sublinearly when the KL exponent is 0, (0, 1

2 ], or ( 12 , 1),
respectively.

Our method is the first one in federated learning that is able to have sequential conver-
gence guarantees in nonconvex nonsmooth settings.

Furthermore, we weaken the KL assumptions made on the potential function compared to previous
work on sequential analysis for the centralized minimax problem in Chen et al. (2021). In their work,
the potential function depends on the maximizer y(x) := argmax f(x, y) and the maximum function
f(x) := maxy f(x, y). The potential nonconvexity and nonsmoothness of the max function generally
make its subgradient discontinuous, posing challenges in calculating its KL exponent. In contrast,
our potential function does not rely on y(x) := argmax f(x, y). We introduce a calculus rule
(Proposition 3) to deduce the KL exponent of our potential function directly from the maximizer-free
function. As a result, our analysis offers a weaker assumption for sequential convergence in federated
learning methods for minimax optimization problems.

We apply our method to the AUC maximization problem in federated learning, particularly under
conditions of data heterogeneity. Our experiments demonstrate that the proposed method outperforms
existing federated minimax approaches in both efficiency and performance.

1.2 RELATED WORK

Federated learning for minimization problem Classical federated learning methods for minimiza-
tion problem include FedAvg (McMahan et al., 2017), LocalSGD (Stich, 2019), FedDualAvg, (Yuan
et al., 2021a), FedSplit (Pathak & Wainwright, 2020) and SCAFFOLD (Karimireddy et al., 2020). In
order to address the heterogeneity problem in FL, federated splitting methods are proposed, see Yuan
et al. (2021a); Li et al. (2020); Reddi et al. (2021); Pathak & Wainwright (2020); Tran-Dinh et al.
(2021) for examples. When the objective is minimizing a strongly convex objective function, Stich
(2019) shows the convergence rate of LocalSGD is O(1/nTb), where n is the number of clients,
b is the batch size and T is the communication round. On the other hand, Pathak & Wainwright
(2020) shows the sequence generated by their proposed method converges linearly when the objective
function is strongly convex. Our method is closely related to the FedDR method for the minimization
problem in Tran-Dinh et al. (2021). However, our work differs from Tran-Dinh et al. (2021) in
three perspectives: 1. We work on minimax problems. The existence of the maximization problem
raises new challenges in theoretical analysis. To address this challenge, we propose new potential
functions related to the variables in the maximization problem and are key to all our analysis. 2. We
provide comprehensive sequential convergence analysis. Our result is also new when our method
degenerates to solve the minimization problems in federated learning. 3. We conducted further
investigation on the KL assumption used for analyzing the minimax problems. The existing studies
on the KL property for minimax problems are quite few. Li & So (2022); Zheng et al. (2023)
investigate a global KL property. Li & So (2022) show that when the objective function is nonconvex
in x and nonconcave in y, if the objective function is a KL function with respect to y with an
exponent in [0, 1

2 ], their method can achieve optimal iteration complexity. In Zheng et al. (2023),
the authors propose a unified single-loop algorithm for solving centralized nonconvex-nonconcave,
nonconvex-concave, and convex-nonconcave minimax problems. Under a one-sided KL assumption,
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they show that the proposed method achieves a complexity of O(ϵ−4) in all cases and can improve
upon previously existing complexity results in the same scenarios under specific KL exponents.
On the other hand, Chen et al. (2021) also analyzes the sequential convergence of methods for the
centralized minimax problem. Compared with Chen et al. (2021), we weakened the KL assump-
tions made on the potential function. In their work, the potential function relies on the maximizer
y(x) := argmax f(x, y) and the maximum function f(x) := maxy f(x, y). The exact form of y(x)
is not known, which makes verifying the KL exponent difficult. In our work, the potential function
does not rely on y(x) := argmax yf(x, y), and we provide Proposition 3 to deduce the KL exponent
of the maximizer-dependent potential function from that of the maximizer-free function. Therefore,
our analysis provides a weaker assumption for the sequential convergence analysis of the method for
the minimax optimization problem.

Federated methods for minimax Li et al. (2023); Deng et al. (2020); Peng et al. (2020) are among the
early works that proposed federated minimax methods for adversarial training problems. Sharma et al.
(2022) investigated local stochastic gradient descent ascent in nonconvex-concave and nonconvex-
nonconcave settings. Their analysis assumed an equal number of SGDA-like local updates with
full client participation, whereas our method allows for different local updates and partial client
participation. Sharma et al. (2023) proposed a federated minimax optimization framework that
includes local SGDA as a special case. They analyzed the convergence of the proposed algorithm
under a global heterogeneity assumption that addresses inter-client data and system heterogeneity.
Wu et al. (2023) analyzed the nonconvex-strongly-concave case and showed that their proposed
method has a gradient complexity of O(κ2n−1ϵ−3). Tarzanagh et al. (2022) proposed FEDNEST to
address the general bilevel federated learning problem and discuss the minimax problem as a special
case.

In contrast to the previous work on federated learning minimax methods, we do not assume hetero-
geneity bound assumption while achieving a smaller sample complexity. More importantly, we have
convergence guarantees for the updates of the model parameters in nonconvex settings. This makes
our method novel not only among federated minimax methods but also among federated minimization
methods. We summarize the comparison in Table 1.

2 PRELIMINARIES

We denote Rn as the n-dimensional Euclidean space with inner product ⟨·, ·⟩ and Euclidean
norm ∥ · ∥. We denote the unit ball in Rn as B(0, 1). We denote the set of positive real
value as R++. Given a point x ∈ Rn and a set A, we denote the distance from x to A
as d(x,A). An extended-real-valued function f : Rn → [−∞,∞] is said to be proper if
dom f := {x ∈ Rn : f(x) < ∞} is not empty and f never equals −∞. We say a proper
function f is closed if it is lower semicontinuous. Following Definition 8.3 of Rockafellar & Wets
(1998), the regular subdifferential of a proper function f : Rn → [−∞,∞] at x ∈ dom f is defined
as: ∂̂f(x) :=

{
ξ∈Rn :lim infz→x, z ̸=x

f(z)−f(x)−⟨ξ,z−x⟩
∥z−x∥ ≥0

}
. The (limiting) subdifferential of f at

x ∈ dom f is defined as ∂f(x) :=
{
ξ∈Rn :∃xk f→x,ξk→ξwithξk∈ ∂̂f(xk),∀k

}
, where xk f→ x

means both xk → x and f(xk) → f(x). For x ̸∈ dom f , we define ∂̂f(x) = ∂f(x) = ∅. We denote
dom ∂f := {x : ∂f(x) ̸= ∅}. When f is convex, the limiting subdifferential reduces to the classical
subdifferential in convex analysis.

For a proper function f : Rn → [−∞,∞], we denote the proximal operator of f as Proxβf (x) :=

Argminz∈Rn

{
f(z) + 1

2β ∥z − x∥2
}
.

Next, we make a general assumption on equation 1.

Assumption 1. For equation 1, we assume the followings hold:

(i) Each fi is strongly concave in y with modulus µ > 0.

(ii) Each fi is differentiable and ∇fi is Lipschitz continuous with modulus Lf .

For the maximum of a strongly concave function, we have the following property, see Lin et al.
(2020); Huang et al. (2021); Chen et al. (2021) for examples.
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Algorithm 1 Fast Federated Minimax DR (FFMDR) method for equation 1

1: Input: x0
i , z0i , y0i , Υi,0. Set w0

i = z0i . Set ϵi,w > 0, β ∈ (0, 1
L ). Let t = 0.

2: Sample clients St ⊆ {1, . . . , n} according to Assumption 2. For each client i ∈ St:
Let

xt+1
i = xt

i + zt − wt
i (2)

Find an approximate solution (wt+1
i , yt+1

i ) to minwi
maxyi

ri,t+1(wi, yi) such that equation 10
is satisfied, where ri,t+1 is defined in equation 7.
Let z̃t+1

i = 2wt+1
i − xt+1

i .
3: For the server: Let

zt+1 = Prox β
n g

(
1

n

n∑
i=1

z̃t+1
i

)
(3)

4: If a termination criterion is not met, let t = t+ 1 and go to Step 2.

Proposition 1. Consider equation 1. Suppose Assumption 1 holds. Then for any x, there exists
unique y(x) such that Fi(x) = fi(x, y(x)). In addition, Fi is continuously differentiable and
∇Fi(x) = ∇xfi(x, y(x)) is Lipschitz continuous with modulus L := Lf (1 + κ), where κ :=

Lf

µ .

We say x is a stationary point of equation 1 if it satisfies 0 ∈ ∇
∑n

i=1
1
nfi(x) + ∂g(x). Thanks to

Exercise 8.8 and Theorem 10.1 of Rockafellar & Wets (1998), we know that if x is a local minimizer
of equation 1, it is a stationary point.

Now we give the definition of the KL property.

Definition 1 (Kurdyka-Łojasiewicz property and exponent). A proper closed function f : Rn →
(−∞,∞] is said to satisfy the Kurdyka-Łojasiewicz (KL) property at an x̂ ∈ dom ∂f if there are
a ∈ (0,∞], a neighborhood V of x̂ and a continuous concave function φ : [0, a) → [0,∞) with
φ(0) = 0 such that

(i) φ is continuously differentiable on (0, a) with φ′ > 0 on (0, a);

(ii) for any x∈V with f(x̂)<f(x)<f(x̂)+a, it holds that φ′(f(x)−f(x̂))dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at x̂ ∈ dom ∂f and φ can be chosen as φ(ν) = a0ν
1−α for some

a0 > 0 and α ∈ [0, 1), then we say that f satisfies the KL property at x̂ with exponent α. A proper
closed function f satisfying the KL property at every point in dom ∂f is called a KL function, and
a proper closed function f satisfying the KL property with exponent α ∈ [0, 1) at every point in
dom ∂f is called a KL function with exponent α.

Many functions are KL functions. It is known that proper closed semi-algebraic functions (i.e.,
functions whose graphs are unions and intersections of polynomial functions) satisfy the KL property,
see Attouch et al. (2010); Li & Pong (2018); Attouch et al. (2013); Bolte et al. (2017). Semi-algebraic
functions include widely used losses such as quadratic loss, L2 loss, Huber loss, hinge loss, and 0-1
loss. KL property is a general property in convergence analysis when the considered function is not
smoothness.

3 FAST FEDERATED MINIMAX DR METHOD

The proposed Fast Federated Minimax DR (FFMDR) method is presented in Algorithm 1. The idea
is based on the Douglas-Rachford splitting method (Lions & Mercier) for the following reformation
of equation 1:

min
X

1

n

n∑
i=1

Fi(xi)︸ ︷︷ ︸
F (X)

+ g(x1) + δC(x1, . . . , xn)︸ ︷︷ ︸
g̃(X)

,
(4)

5
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where Fi(xi) := maxyi∈Rd fi(xi, yi), X = (x1, . . . , xn) and C = {X : x1 = x2 = · · · = xn}.
The Classic DR method (Lions & Mercier) to equation 4 is as follows: pick any X0, let Z0 = X0

and W 0 = proxβF (X
0). Then for t = 0, . . . , T , update:

Xt+1 = Xt + Zt −W t,

W t+1 = ProxβF (X
t+1),

Zt+1 = Proxβg̃(2W
t+1 −Xt+1).

(5)

Noting that Fi in equation 1 is a maximization function and F is separable, the update of W t in
equation 5 is equivalent to

W t+1 = min
W

max
Y

∑
i

fi(wi, yi) +
1

2β
∥wi − xt+1

i ∥2, (6)

where W = (w1, . . . , wn) and Y = (y1, . . . , yn). The above problem is a minimax problem and
cannot be solve exactly in the federated setting. This requires us to consider an efficient method
that can find an good inexact solution to equation 6. We notice that equation 6 is a smooth strongly
convex strongly concave (SC-SC) minimax problem. Since we let β < 1

L , Proposition 1 guarantees
the existence of the unique solution to the minimax subproblem.

Denote

ri,t+1(wi, yi) := fi(wi, yi) +
1

2β
∥wi − xt+1

i ∥2. (7)

Then equation 6 is equivalent to
min
wi

max
yi

ri,t+1(wi, yi), (8)

for i = 1, . . . , n. Then, we only need an inner solver to solve a SC-SC smooth minimax problem.
Many methods such as those in Benjamin et al. (2022); Fallah et al. (2020); Lin et al. (2020); Kovalev
& Gasnikov (2022); Palaniappan & Bach (2016) can be applied as an inner solver for our subproblem.
On the other hand, to have better convergence gurantees, we need an efficient termination criterion to
terminate the inner solver. In the following lemma, we show how the SAGA in Palaniappan & Bach
(2016) can be terminated in constant iterations when satisfying a termination criterion that depends
on the current updates.
Proposition 2. Suppose r : Rl × Rd → R is a µw-strongly convex µy strongly convex smooth
function. Suppose ∇r is Lipschitz continuous with modulus l. Apply SAGA in Palaniappan & Bach
(2016) to solve minw maxy r(w, y). Let (wk, yk) be the kth iteration of SAGA. Let (w̄, ȳ) satisfies
∇r(x̄, ȳ) ̸= 0. Let ϵw > 0. Then there exists k = O(max{ l

m , log(κ)}) such that

E
∥∥(wk+1, yk+1)− (w⋆, y⋆)

∥∥2 ≤ ϵwE∥(w̄, ȳ)− (wk+1, yk+1)∥2, (9)
where (x∗, y∗) is the unique solution.

In inspired by equation 9, we propose to terminate the solver used in client i for solving equation 8
when1

Et

∥∥(wk+1
i , yk+1

i )− (wt+1
i,⋆ , yt+1

i,⋆ )
∥∥2 ≤ ϵi,wEtΥi,t+1, (10)

where (wt+1
i,⋆ , yt+1

i,⋆ ) is the exact solution to equation 8 and

Υi,t+1 := ∥(wt
i , y

t
i)− (wt+1

i , yt+1
i )∥2.

On the other hand, using the first-order optimality condition of the problem in the update of zt in equa-
tion 5, Zt+1 in equation 5 is equivalent to (zt+1, . . . , zt+1︸ ︷︷ ︸

n′s

) with zt+1 = Prox β
n g(

1
n

∑
i(2w

t+1
i −

xt+1
i )), see Appendix of A.1 in Tran-Dinh et al. (2021) for more details.

Finally, considering the cliendt drift, we make the following assumption.
Assumption 2. At each round, the client i has the probability pi ∈ (0, 1] to attend the training.

Based on this fact, Assumption 2 and Proposition 2, we obtain Algorithm 1.
1We denote Etξ as the expectation of the outputs ξ of local stochastic solver conditioned on

{xt
1, . . . , x

t
n},{yt

1, . . . , y
t
n}, {zt},{wt

1, . . . , w
t
n}.
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(a) a9a (b) covtype (c) gisette

(d) ijcnn1 (e) phishing (f) w8a

Figure 1: AUC values w.r.t. communication rounds on test dataset: a9a, covtype, gisette, ijcnn1,
phishing and w8a.

4 CONVERGENCE ANALYSIS

4.1 SAMPLE COMPLEXITY OF ALGORITHM 1

In this section, we analyze Algorithm 1 in a general stochastic case. We first present a descent-type
lemma of a new potential function.

Theorem 1. Consider equation 1. Suppose Assumptions 1 and 2 hold. Assume 1
β > L, where L is

defined as in Proposition 1. Let {(xt
1, . . . , x

t
n)},{(yt1 . . . , ytn)}, {(wt

1, . . . , w
t
n)}, {zt} be generated

by Algorithm 1. Let L be the one in Proposition 1. Given a δ > 0, define

H(X,W,Z, Y,W ′, Y ′) := F (W )+g̃(Z)+
1

2β

(
∥X −W∥2 − ∥X − Z∥2

)
+

1

β
∥W − Z∥2

+
δ

β
∥W −W ′∥2+ 1

12L2

∑
i

pi∥(yi, wi)− (y
′

i, w
′

i)∥2.
(11)

where F and g̃ is defined in equation 4. Denote Xt = (xt
1, . . . , x

t
n), Y

t = (yt1, . . . , y
t
n), W

t =
(wt

1, . . . , w
t
n), Z

t = (zt, . . . , zt). and Ht := EH(Xt,W t, Zt, Y t,W t−1, Y t−1). Let δβ ∈ (0, 1
2 ).

Let β ∈ (0, 1
L ) be such that (1 + βL)

2− 3
2 +

5
2βL < −δβ . Let δ′ ∈ [0, δβ). Let ι > 0 and τ ∈ (0, 1)

be small enough such that 1−Lβ
2 τ2 + (1 + βL)2(2ι+ ι2) + (βL− 1)2ι < δ′. Denote δ := δβ − δ′.

Suppose that ϵw is small enough such that
(
Γ 2

( 1
β−L)2

+ 1
τ2

1
2( 1

β−L)

)
6CL2ϵw ≤ δ−δϵ

β , for some

δϵ > 0, where Γ := (1+ι)2

βι + 2
β

(
1
ι + βL− 1

)
and C := 2

(
(Lf+

1
β )2

µ2 + 1

)(
Lf + 1

β

)2
.

Then, for t ≥ 1,

Ht+1 ≤ Ht −
δϵ
β
∥W t −W t−1∥2. (12)

Remark 1. By letting δβ = 1/4, δ′ = 1/8, τ = 1/
√
8, ι = 1/64, δϵ = 1/16, β < −9+

√
82

L and ϵw ≤
392
96

(1−βL)2

β3 C−1L−2, we have the conclusion in Theorem 1 with Ht+1 ≤ Ht − 1
16β ∥W

t −W t−1∥2.

Now we calculate the complexity of Algorithm 1.

Theorem 2. Let assumptions in Theorem 1 hold. Let {(xt
1, . . . , x

t
n)},{(yt1 . . . , ytn)}, {(wt

1, . . . , w
t
n)},

{zt} be generated by Algorithm 1. We further suppose ϵw and β are small enough such that
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Table 2: Maximum AUC values obtained by each algorithm after 1000 communication rounds.

Algorithm a9a covtype gisette ijcnn1 phishing w8a
CODASCA (Yuan et al., 2021b) 0.8920 0.7967 0.9982 0.9264 0.9758 0.9007

Fed-Norm-SGDA (Sharma et al., 2023) 0.8961 0.7645 0.9961 0.9273 0.9786 0.8959
FedSGDA (Wu et al., 2023) 0.8963 0.7645 0.9962 0.9272 0.9786 0.8958

FEDNEST (Tarzanagh et al., 2022) 0.8963 0.8132 0.9989 0.9037 0.9714 0.9075
FFMDR (This Work) 0.8998 0.8208 0.9994 0.9288 0.9797 0.9076

1
2( 1

β−L)
Cϵw + 6L2

∑
i pi ≤

δ
β , where C is defined in Theorem 1. Then it holds that

1

T+1

T+1∑
t=1

Ed2(0,∇
n∑

i=1

Fi(z
t)+∂g(zt))≤ n

mini pi

1

T + 1

(
D1H̄0+D2Υ0+D3∥Y 0−y(W 0)∥2

)
,

where H̄0 := F (W 0) + g̃(Z0) + 1
2β ∥X

0 − W 0∥2 − 1
2β ∥X

0 − Z0∥2, D1 := 15L2β
δϵ

, D2 :=

6max{1, L}ϵw + 15L2β
δϵ

Cu, D3 := 3C2 + 15L2β
δϵ

3
2( 1

β−L)
Cϵw, Cu := 2Γ(ϵw + 1) +

1
β−L

2 ( 1
τ2 −

1)ϵw + 6max{1, L}ϵw and (X0, Y 0,W 0, Z0) are defined as in Theorem 1.

Remark 2. This theorem indicates that the communication complexity of Algorithm 1 is O(κ2ϵ−2).
When the inner solver is chosen as SAGA, Theorem 2 together with Proposition 2 shows that the
sample complexity of Algorithm 1 is O(κ2 log(κ)n−1ϵ2).

4.2 SEQUENTIAL CONVERGENCE OF ALGORITHM 1

In this section, we are devoted to analyze the convergence properties of the sequence generated by
Algorithm 1 with equation 10. We make the following assumption.
Assumption 3. Suppose for all t, equation 10 is deterministic and all clients attend the training at
each round.

Theorem 3. Consider equation 1. Let {(Xt,W t, Zt, Y t)} as in Theorem 1. Suppose Assumption 3
holds. Suppose F and g are bounded from below and g is level-bounded. Suppose in addition that
H is a KL function with exponent α ∈ [0, 1). Then {(Xt,W t, Zt, Y t)} is convergent. In addition,
denoting (X∗,W ∗, Z∗, Y ∗) := limt(X

t,W t, Zt, Y t), it holds that

(i) If α = 0, then {(Xt,W t, Zt)} converges finitely.

(ii) If α ∈ (0, 1
2 ], then there exist b > 0, t1 ∈ N and ρ1 ∈ (0, 1) such that max{∥W t−W ∗∥, ∥Xt−

X∗∥, ∥Zt − Z∗∥, ∥Y t − Y ∗∥} ≤ bρt1 for t ≥ t1.

(iii) If α ∈ ( 12 , 1), then there exist t2 ∈ N and c > 0 such that max{∥W t−W ∗∥, ∥Xt−Y ∗∥, ∥Zt−
Z∗∥, ∥Y t − Y ∗∥} ≤ ct−

1
4α−2 for t ≥ t2.

Finally, we elaborate on how to verify the KL assumption in Theorem 3. Note that the KL assumption
is on H in equation 11. Since the F in H is a max function, H can be viewed as a max function, i.e.,

H(X,W,Z, Y,W ′, Y ′) := max
Y ′′

U(X,W,Z, Y,W ′, Y ′, Y
′′
),

where Y
′′
:= (y

′′

1 , . . . , y
′′

n) and

U(X,W,Z, Y,W ′, Y ′,W ′) :=
1

n

n∑
i=1

fi(wi, y
′′

i ) + g̃(Z) +
1

2β

(
∥X −W∥2 − ∥X − Z∥2

)
+

1

β
∥W − Z∥2 + δ

β
∥W −W ′∥2 + 1

12L2

∑
i

pi∥(yi, wi)− (y
′

i, w
′

i)∥2.

Therefore, it is hard to directly verify the KL property of H . However, it is easier to verify the KL
property of U . For example, when U is a proper closed semi-algebraic function that has a closed
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(a) a9a (b) covtype (c) gisette

(d) ijcnn1 (e) phishing (f) w8a

Figure 2: AUC values w.r.t. communication rounds on test dataset: a9a, covtype, gisette, ijcnn1,
phishing and w8a.

domain and is continuous on their domains, U is a KL function (Attouch et al., 2010). Given this
fact, it is natural to ask whether we can deduce the KL property of a max function like H from the
KL property of the objective in the maximization like U . The following property provides a positive
answer.

Proposition 3. Let f(x, y) : Rm × Rn → (−∞,∞) be a smooth function strongly concave in y
and g : Rm → (−∞,∞) is a continuous function. Let F (x, y) := f(x, y) + g(x). Suppose for
any y, F (·, y) has the KL property at x with exponent α ∈ [0, 1) with constants ϵ(y), c(y) and a(y).
Suppose ϵ(y), c(y) and a(y) are continuous in y. Let G(x) = maxy F (x, y). Let x ∈ dom ∂G.
Then G has KL property at x with exponent α.

Remark 3. If we further use Theorem 3.3 in Li & Pong (2018), the KL exponent of U can be
deduced from that of f(x, y) + g(x). A similar rule is investigated in Yu et al. (2022) where the
authors address the infimum projection of a function, i.e., h(x) := infy f(x, y), while we address
the max function h(x) := maxy f(x, y). The maximization is more challenging for preserving the
KL exponent compared to the infimum projection. Here is a counterexample mentioned in Jiang
& Li (2019). Suppose Hinf(x) = min{h1(x) := x2

1, h2(x) := (x1 + 1)2 + x2
2 − 1}. According

to Theorem 3.1 in [2], the KL exponent of Hinf is 1/2. However, if we consider the maximization
Hmax : R2 → R with Hmax(x) = max{h1(x) := x2

1, h2(x) := (x1 + 1)2 + x2
2 − 1}, the following

work shows that the KL exponent is 3/4 when h1 = h2, even though the KL exponents of both h1

and h2 are 1/2. Thus, the maximization requires more assumptions to preserve the KL exponent. In
the minimax problem we consider, the objective function is strongly concave. In this case, we show
that the KL exponent of the maximization function is preserved.

Remark 4. We provide an example where the assumptions in Proposition 3 is satisfied. For simplicity,
we consider the following robust classification problem (Sinha et al., 2017):

min
θ

max
δ

F (θ, δ) := log(1 + exp(−yθ(x+ δ)))︸ ︷︷ ︸
ℓ(θ,δ)

−c|δ|2 + λ|θ|,
(13)

where (x, y) ∈ R×{−1, 1} is a data point, θ ∈ R is the weight, δ is a perturbation and c, λ > 0 are
scalers. Now fix any δ. For any θ̄, there exists ϵ(δ) continuous w.r.t. δ such that F (·, δ) satisfies the
KL property at θ̄ with exponent 1

2 and constants ϵ(δ), c = 1 and a = 1. More details can be found in
the supplementary material.
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5 EXPERIMENTS

Learning task In this section, we apply our method to maximizing the Area under the ROC curve
(AUC) problem (Natole et al., 2018) in the federated learning settings. This problem is formed as the
following minimax problem:

min
w∈Rl,a∈R,b∈R

max
α∈R

1

n

n∑
i=1

∑
η∈Di

[fi(w, a, b, α; η)] + g(w), (14)

where, η = (x, y) is a datapoint, n is the number of clients, fi(w, a, b, α; η) = p(1 − p) + (1 −
p)(wTx−a)2I[y=1]+p(wTx− b)2I[y=−1]+2(1+α)wTx(pI[y=−1]− (1−p)I[y=1])−p(1−p)α2,
IA(x) = 1 when x ∈ A for any set A and IA(x) = 0 otherwise. Here p is the probability of
Pr(y = 1). The goal of AUC maximization tasks is to pursue a high AUC score for binary
classification, which is defined by Pr(wTx > wTx′|y = 1, y′ = −1). This F is an equivalent
formulation and it is strongly concave in α. The g(w) in equation 14 is a convex regularization. In
our experiments, we consider g(w) = λ∥w∥1 where λ = 0.001 is fixed during the experiment. In
our experiment, the total number of clients is set to 20.

Dataset We perform our experiments on six real-world dataset for binary classification: a9a,
covtype, gisette, ijcnn1, phishing and w8a, all of which can be downloaded from the LIBSVM
repository (Chang & Lin, 2011). The training data is distributed to all clients heterogeneously where
each client only owns the data from one class.

Compared methods We compare our stochastic method with CODASCA in Yuan et al. (2021b),
Fed-Norm-SGDA in Sharma et al. (2023) and FedSGDA in Wu et al. (2023). All these baselines are
applicable to the AUC maximization problem in stochastic manner with a non-smooth regularization.
CODASCA is an algorithm to solve federated AUC maximization problem for heterogeneous data.
Other compared methods are general minimax algorithms which have been introduced in previous
sections. In our experiments, the local solver of FFMDR is chosen as SGDA.

Parameters For FFMDR, we select the best value of 1
2β from {1, 0.1, 0.01, 0.001}, ϵw from

{0.95, 0.75, 0.5, 0.25, 0.05}. For all methods, the stepsize is selected from {0.1, 0.01, 0.001, 0.0001,
0.00001} so that it achieves the best experimental result. The batchsize is fixed to be 40. The local
epoch is fixed to be 5.

Results In Figure 1, we plot the AUC values of each algorithm with respect to the number of
communication rounds. In Table 2, we report detailed AUC scores obtained by each algorithm after
1000 communication rounds. From these experimental results we can see our FFMDR algorithm
achieves the best AUC scores on all of the six datasets. Also, our method converges faster than the
compared methods in most cases. These experimental results verify the performance of our proposed
method to solve federated minimax problems with data heterogeneity.

Additionally, we also test our FFMDR method in the case where only a fraction of clients can
participate in the training process in each communication round. The result is shown in Figure 2,
where the percentage of clients attending the training in each round is 100%/50%/25%. Figure 2
indicates that in most cases, our FFMDR method with partial attendance of the clients also works as
well as FFMDR with full attendance of clients.

6 CONCLUSION

In this paper, we proposed a new federated minimax method for nonconvex, strongly concave
minimax problems. We demonstrated that our method has smaller sample complexity compared to
existing federated minimax methods. More importantly, we showed the proposed method has global
finite-step/linear/sublinear convergence guarantees for the updates of model parameters under KL
assumption on novel potential function. We further made the KL exponent of the potential function
easier to check by relating the maximizer-dependent potential function from that of the maximizer-
free function. Empirically, our method is applied to the AUC maximization problem and consistently
outperforms existing federated minimax methods in scenarios with high data heterogeneity.
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Hédy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized
gauss-seidel methods. Math. Program., 137(1-2):91–129, 2013.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training
for adversarial robustness. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August
2021, pp. 4312–4321. ijcai.org, 2021.

Grimmer Benjamin, Lu Haihao, Worah Pratik, and Mirrokni Vahab. The landscape of the proximal
point method for nonconvex–nonconcave minimax optimization. To appear in Mathematical
Programming, 2022.
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A PROOF OF PROPOSITION 2

The minimax subproblem in Algorithm 1 for each selected client can be generalize to the following
problem: Consider the general minimax problem

min
w,y

r(w, y) :=
1

l

l∑
j=1

rj(w, y; ξj)

=

l∑
j=1

1

l
ri(w, y; ξj)−

1

l

λ

2
∥w∥2 + 1

l

γ

2
∥y∥2︸ ︷︷ ︸

Rj(w,y;ξj)

+
1

l

λ

2
∥w∥2 − 1

l

γ

2
∥y∥2︸ ︷︷ ︸

s(w,y)

,

(15)

where {ξ1, . . . , ξl} is the dataset, r is λ-strongly convex and γ-strongly concave. We consider the
Algorithm 2 (SAGA) in (Palaniappan & Bach, 2016). For completeness, we let present Algorithm
2 for equation 15. The next proposition restate Proposition 2 and shows that equation 10 can be
satisfied after finite iterates of Algorithm 2.

Algorithm 2 SAGA for equation 15

1: Input: (W,Y ) ∈ Rl × Rd, ς > 0. Mini-batch size m. L > 0 and L̄ > 0. Let σ :=(
max{ l

m − 1, L2 + 3 L̄
m}
)−1

2: Compute gj = ∇Rj(w, y; ξj) for j = 1, . . . , l and G = ∇
∑l

j=1 Rj(w, y; ξj)
3: Let k = 0.
4: Uniformly sample a mini-batch {j1, . . . , jm} ⊆ {1, . . . , l}. Compute hi = ∇Rji(w, y; ξji) for

i ∈ {1, . . . ,m}.
Let

(w, y) = Prox 1
σ s

(w, y)− σ

[
1
λ 0
0 1

γ

]G+
1

m

jm∑
j=j1

(
lhj − lgji

)
5: Replace G with G− 1

m

∑m
i=1

(
gji − hj

)
and let gji = hj for i ∈ {1, . . . ,m}

6: If a termination criterion is satisfied, terminate and output (w, y). Else, let k = k + 1 and go to
Step 3.

Proposition 4. Apply Algorithm 2 to equation 15. Let (w̄, ȳ) satisfies ∇r(x̄, ȳ) ̸= 0. Let ϵw > 0.
Then, there exists k = O(max{ l

m , log(κ)}) such that

E ∥(w, y)− (w⋆, y⋆)∥2 ≤ ϵwE∥(w̄, ȳ)− (w, y)∥2.

Proof. Since r is strongly convex stronly concave, minw maxy r(w, y) has the unique solution
(x⋆, y⋆). Using Theorem 2 in Palaniappan & Bach (2016), there exist λ = (max{ 3l

2m , 1+ L2

min{λ,γ}2 +
3L̄2

mmin{λ,γ}2 })−1 ∈ (0, 1) such that

E
∥∥(wk+1, yk+1)− (w⋆, y⋆)

∥∥2 ≤ (1− λ)k
∥∥(w0, y0)− (w⋆, y(w⋆))

∥∥2 . (16)

Since ∇r(w̄, ȳ) ̸= 0, we know that (w̄, ȳ) is not the solution to miny r(w,w(y)). Thus,
∥(w̄, ȳ)− (w⋆, y⋆)∥2 > 0.

Since a2 ≥ 1
2 (a+ b)2 − b2 for any vectors a and b, it holds that

E∥(wk+1, yk+1)− (x̄, ȳ)∥2 ≥ 1

2
∥(w⋆, y⋆)− (x̄, ȳ)∥2 − E∥(wk+1, yk+1)− (x⋆, y⋆)∥2

≥ 1

2
∥(w⋆, y⋆)− (x̄, ȳ)∥2 − (1− λ)k

∥∥(w0, y0)− (w⋆, y⋆)
∥∥2 , (17)

where the second inequality uses equation 16.
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Let k ≥ log1−λ

1
4∥(w⋆,y⋆)−(x̄,ȳ)∥2

∥(w0,y0)−w⋆,y(w⋆))∥2 = O(max{ l
m , log(κ)}) such that

2(1− λ)k
∥∥(w0, y0)− w⋆, y(w⋆))

∥∥2 ≤ 1

2
∥(w⋆, y⋆)− (x̄, ȳ)∥2.

Then equation 17 can be further passed to

E∥(wk+1, yk+1)− (x̄, ȳ)∥2 ≥ (1− λ)k
∥∥(W t, Y t)− wt+1

⋆ , y(wt+1
⋆ ))

∥∥2
≥ E

∥∥(wk+1, yk+1)− (w⋆, y⋆)
∥∥2 . (18)

Combining this with equation 18, and equation 16, we have that

E
∥∥(wk+1, yk+1)− (w⋆, y⋆)

∥∥2 ≤ E∥(wk+1, yk+1)− (x̄, ȳ)∥2. (19)

B DETAILS FOR RESULTS IN SECTION 4.1

We first present the following useful fact.
Fact 1. Let f : Rn → R be a strongly convex function with modulus µ. Suppose in addition that f is
smooth and has Lipschitz continuous gradient with modulus L. Then there exists unique minimizers
x∗ that minimize f and it holds that

∥∇f(x)∥2 ≥ 2µ (f(x)− f(x∗)) ≥ µ2∥x− x∗∥2. (20)

We next present a proposition on Υi,t+1.

Proposition 5. Suppose Assumptions 1 and 2 hold. Assume 1
β > L, where L is the one defined as in

Proposition 1. Suppose 12max{1, L}ϵw ≤ 1
4 . Assume that Υi,0 > ∥y0i −yi(w

0
i,⋆)∥2+∥w0

i,⋆−w0
i ∥2,

where w0
i,⋆ := minwi

f(wi, yi(wi)) +
1
2β ∥wi − x0

i ∥2. Then,

(i) For t ≥ 0,∑
i

piEΥi,t+1 ≤ 1

2

(∑
i

piEΥi,t −
∑
i

piEΥi,t+1

)
+ 6L2

∑
i

piE∥wt
i − wt+1

i ∥2.

(21)

(ii) When we choose the deterministic case. It holds that∑
i

piE∥∇ri,t+1(w
t+1
i , yi(w

t+1
i ))∥2 ≤ Cϵw

∑
i

piEΥi,t+1, (22)

where C := 2

(
(Lf+

1
β )2

µ2 + 1

)(
Lf + 1

β

)2
.

Proof. For (i), note that for t ≥ 0, it holds that

∥(wt
i , y

t
i)− (wt+1

i , yt+1
i )∥2

≤ 3∥(wt
i , y

t
i)− (wt

i , yi(w
t
i))∥2 + 3∥(wt

i , yi(w
t
i))− (wt+1

i , yi(w
t+1
i ))∥2

+ 3∥(wt+1
i , yi(w

t+1
i ))− (wt+1

i , yt+1
i )∥2

= 3∥yti − yi(w
t
i)∥2 + 3∥(wt

i , yi(w
t
i))− (wt+1

i , yi(w
t+1
i ))∥2 + 3∥yi(wt+1

i )− yt+1
i ∥2

≤ 3∥yti − yi(w
t
i)∥2 + 3L2∥wt

i − wt+1
i ∥2 + 3∥yi(wt+1

i )− yt+1
i ∥2

(23)

where the second inequality uses Proposition 1. In addition, under the assumption that Υi,0 ≥
∥y0i − yi(w

0
i,⋆)∥2 + ∥w0

i,⋆ − w0
i ∥2, for t ≥ 0, it holds that for i ∈ St−1,

Et−1∥yti − yi(w
t
i)∥2 ≤ 2Et−1∥Y t

i − y(wt
i,⋆)∥2 + 2Et−1∥y(wt

i,⋆)− yi(w
t
i)∥2

≤ 2max{1, L}Et−1

(
∥Y t

i − yi(w
t
i,⋆)∥2 + ∥wt

i,⋆ − wt
i∥2
)

≤ 2max{1, L}ϵwEt−1Υi,t,

(24)
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where the second inequality is thanks to equation 10. Taking expectation with respect to St−1, the
above inequality becomes∑

i

piEt−1∥yti − yi(w
t
i)∥2 = ESt−1Et−1∥yti − yi(w

t
i)∥2

≤ 2max{1, L}ϵwESt−1Et−1Υi,t = 2max{1, L}ϵw
∑
i

piEt−1Υi,t,
(25)

Taking expectation with respect to Yt−1 = {S0, . . . ,St−2, (x1, Y 1,W 1), . . . , (xt−1, Y t−1,W t−1)},
we have ∑

i

piE∥yti − yi(w
t
i)∥2 ≤ 2max{1, L}ϵw

∑
i

piEΥi,t, (26)

Similarly, for t ≥ 0, it holds that∑
i

piE∥yt+1
i − yi(w

t+1
i )∥2 ≤ 2

∑
i

piE∥yt+1
i − yi(w

t+1
i,⋆ )∥2 + 2

∑
i

piE∥yi(wt+1
i,⋆ )− yi(w

t+1
i )∥2

≤ 2max{1, L}
∑
i

piE
(
∥yt+1

i − yi(w
t+1
i,⋆ )∥2 + ∥wt+1

⋆ − wt+1
i ∥2

)
≤ 2max{1, L}ϵw

∑
i

piEΥi,t+1.

(27)

Combining equation 23, equation 24 and equation 27, it holds that∑
i

piEΥi,t+1

≤ 3

(
2max{1, L}ϵw

∑
i

piEΥi,t

)
+ 6max{1, L}ϵw

∑
i

piEΥi,t+1 + 3L2
∑
i

piEt∥wt
i − wt+1

i ∥2.

Since ϵw is small enough such that 6max{1, L}ϵw ≤ 6max{1, L}ϵw ≤ 1
5 , rearranging the above

inequality and recalling the definition of Υi,t+1, we have that

∑
i

piEΥi,t+1 ≤ 1

2

∑
i

pi (EΥi,t − EΥi,t+1) + 6L2
∑
i

piEt∥wt
i − wt+1

i ∥2.

For (ii), note that for i ∈ St,

∥∇ri,t+1(w
t+1
i , yi(w

t+1
i ))∥2

≤ 2∥∇ri,t+1(w
t+1
i , yi(w

t+1
i ))−∇ri,t+1(w

t+1
i , yt+1

i )∥2 + 2∥∇ri,t+1(w
t+1
i , yt+1

i )∥2

≤ 2(Lf +
1

β
)2∥yi(wt+1

i )− yt+1
i ∥2 + 2∥∇ri,t+1(w

t+1
i , yt+1

i )∥2,
(28)

where the second inequality is because ri,t+1 is Lipschitz continuous with modulus Lf + 1
β . In

addition, since ∇ri,t+1(wi,⋆t+1 , yi,⋆t+1) is the solution of minwi
maxyi

ri,t+1(yi, wi), it holds that
for i ∈ St,

∥∇ri,t+1(w
k+1
i , yk+1

i )∥2 = ∥∇ri,t+1(w
k+1
i , yk+1

i )−∇ri,t+1(wi,⋆t+1 , yi(wi,⋆t+1))∥2

≤
(
Lf +

1

β

)2 ∥∥(wk+1
i , yk+1

i )− (wi,⋆t+1 , yi(wi,⋆t+1))
∥∥2 , (29)
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where the second inequality is because r is Lipschitz continuous with modulus Lf + 1
β . Combining

equation 28 and equation 29, we have that for i ∈ St,

∥∇ri,t+1(w
t+1
i , yi(w

t+1
i ))∥2

≤ 2(Lf +
1

β
)2∥yi(wt+1

i )− yt+1
i ∥2 + 2

(
Lf +

1

β

)2 ∥∥(wk+1
i , yk+1

i )− (wi,⋆t+1 , yi,⋆t+1)
∥∥2

≤ 2
(Lf + 1

β )
2

µ2
∥∇wfi(w

t+1
i , yt+1

i )∥2 + 2

(
Lf +

1

β

)2 ∥∥(wk+1
i , yk+1

i )− (wi,⋆t+1 , yi,⋆t+1)
∥∥2

≤ 2

(
(Lf + 1

β )
2

µ2
+ 1

)(
Lf +

1

β

)2 ∥∥(wk+1
i , yk+1

i )− (wi,⋆t+1 , yi,⋆t+1)
∥∥2

where the second inequality is because yi(w
t+1
i ) is the minimizer of minw −ri,t+1(y, w) and the

fact that −ri,t+1(y, w) is strongly convex with modulus µ and Proposition 1, the last inequality uses
equation 29. Combining the above inequality with equation 10, taking the expectation on St and
taking the expectation on Yt, we reach the conclusion (ii).

Before prove Theorem 1, we need the following lemma.
Lemma 1. Let

et+1
i := wt+1

i − wt+1
i,⋆ . (30)

Suppose β < L, where L defined in Proposition 1. Assume w0
i = Proxβfi(x

0
i , yi(x

0
i )). Then exists

ηt+1 ∈ ∂g̃(Zt+1) such that the following relations hold:

(i) for all i,

0 ∈ ∇fi(·, yi(·))(wt+1
i,⋆ ) +

1

β
(wt+1

i,⋆ − xt+1
i ) (31)

and

z̃t+1
i = 2wt+1

i − xt+1
i . (32)

For i ∈ St,

− 1

β
(wt+1

i,⋆ − xt+1
i ) = ∇fi(·, yi(·))(wt+1

i,⋆ )

⇔ − 1

β
(wt+1

i − et+1
i − xt+1

i ) = ∇fi(·, yi(·))(wt+1
i,⋆ )

(33)

(ii)

ηt+1 =
1

β
(2W t+1 −Xt+1)− Zt+1). (34)

Proof. We prove (i) by induction. For t = 0, we have by assumption that w0
i = Proxβfi(x

0
i , yi(x

0
i )).

Then x0
i = w0

i +∇fi(·, yi(·))(w0
i,⋆), and z̃0i = 2w0

i −x0
i . Now suppose equation 33 and equation 32

holds at iteration t. For iteration t+1, when i ∈ St, equation 33 follows from the firs-order optimality
condition of the subproblem in equation 10. When i ̸∈ St, since xt+1

i = xt
i, by induction, we have

that

∇fi(·, yi(·))(wt+1
i,⋆ ) +

1

β
(wt+1

i,⋆ − xt+1
i ) = ∇fi(·, yi(·))(wt

i,⋆) +
1

β
(wt

i,⋆ − xt
i) = 0.

In addition, for i ̸∈ St, we have z̃t+1
i = z̃ti = 2wt

i − xt
i = 2wt+1

i − xt+1
i .

equation 34 follows from (i), Excercise 8.8 of Rockafellar & Wets (1998) and the firs-order optimality
condition of the subproblem in equation 3.

Next, we show the detailed version of Theorem 1 and its proof.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Theorem 4. Consider equation 1. Suppose the conditions in Proposition 5 hold. Apply Algorithm 1
to equation 1. Let {(xt+1

i , wt+1
i , yti , z

t+1)} be defined as in Algorithm 1. Define Xt = (xt
1, . . . , x

t
n),

Y t = (yt1, . . . , y
t
n), W

t = (wt
1, . . . , w

t
n) and Zt = (zt, . . . , zt). Let δβ ∈ (0, 1

2 ). Let β ∈ (0, 1
L ) be

such that

(1 + βL)
2 − 3

2
+

5

2
βL < −δβ . (35)

Let δ′ ∈ [0, δβ). Let ι > 0 and τ ∈ (0, 1) be small enough such that

1− Lβ

2
τ2 + (1 + βL)2(2ι+ ι2) + (βL− 1)2ι < δ′. (36)

Denote δ := δβ − δ′. Suppose that ϵw is small enough such that(
Γ

2

( 1β − L)2
+

1

τ2
1

2( 1β − L)

)
6CL2ϵw ≤ δ − δϵ

β
,

for some δϵ > 0, where Γ := (1+ι)2

βι + 2
β

(
1
ι + βL− 1

)
and C is defined as in Proposition 5. Then

the following statements hold:

(i) Let et+1
i be defined as in equation 30. It holds that

∑
i

piE∥et+1
i ∥2 ≤ 1

( 1β − L)2

(
Cϵw

∑
i

piEΥi,t+1

)
, (37)

where C is defined in Proposition 5.

(ii) It holds that,∑
i

piE∥xt+1
i − xt

i∥2

≤ (1 + βL)2

(
1 + ι+ (1 + βL)2

(
1 +

1

ι

)
2

( 1β − L)2
Cϵw

)∑
i

piEΥi,t+1

+ (1 + βL)2
(
1 +

1

ι

)(
2

( 1β − L)2
Cϵw

∑
i

piEΥi,t

)
.

(38)

(iii) Define

H(X,W,Z, Y,W ′, Y ′)

:= F (W ) + g̃(Z) +
1

2β

(
∥X −W∥2 − ∥X − Z∥2

)
+

1

β
∥W − Z∥2

+
δ

β
∥W −W ′∥2 + 1

12L2

∑
i

pi∥(yi, wi)− (y
′

i, w
′

i)∥2.

(39)

where g̃ is defined in equation 4. It holds that for t ≥ 1,

EH(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t)

≤ EH(Xt,W t, Zt, Y t,W t−1, Y t−1)− δϵ
β

∑
i

piE∥wt
i − wt−1

i ∥2

− 1

2β

∑
i

piE∥zt+1
i − zti∥2.

(40)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. For (i), note that ri,t+1(wi, yi(wi)) is strongly convex with modulus 1
β−L, using the definition

of et+1
i , it holds that

∑
i

piE∥et+1
i ∥2 = ESt

∑
i∈St

EYtEt∥et+1
i ∥2 = ESt

∑
i∈St

EYtEt∥wt+1
i − wt+1

i,⋆ ∥2

≤ 1

( 1β − L)2
ESt

∑
i∈St

EYtEt∥∇ri,t+1(·, yi(·))(wt+1
i )∥2

=
1

( 1β − L)2
ESt

∑
i∈St

EYtEt∥∇yri,t+1(w
t+1
i , yi(w

t+1
i ))∥2

=
1

( 1β − L)2

∑
i

piEYtEt∥∇yri,t+1(w
t+1
i , yi(w

t+1
i ))∥2

≤ 1

( 1β − L)2

(
Cϵw

∑
i

piEΥi,t+1

)
,

where the first inequality uses equation 20, the second equality uses the last inequality uses equa-
tion 22.Taking expectation on Yt, we obtain equation 37.

For (ii), using equation 33, we have that

∑
i

piE∥xt+1
i − xt

i∥2 = ESt

∑
i∈St

EYtEt∥xt+1
i − xt

i∥2

≤ (1 + βL)2ESt

∑
i∈St

EYtEt∥wt+1
i,⋆ − wt

i,⋆∥2

≤ (1 + βL)2

(
(1 + ι)ESt

∑
i∈St

EYtEt∥wt+1
i − wt

i∥2 +
(
1 +

1

ι

)
ESt

∑
i∈St

EYtEt∥ − et+1
i − eti∥2

)

= (1 + βL)2

(
(1 + ι)

∑
i

pi∥wt+1
i − wt

i∥2 +
(
1 +

1

ι

)∑
i

piE∥ − et+1
i − eti∥2

)
,

(41)

where the second inequality uses the Young’s inequality. Noting that thanks to equation 10, we have
that

∑
i

piE∥ − et+1
i − eti∥2 = ESt

∑
i∈St

EYtEt∥ − et+1
i − eti∥2

≤ 2ESt

∑
i∈St

EYtEt∥et+1
i ∥2 + 2E∥eti∥2

≤ 2

( 1β − L)2
CϵwESt

∑
i∈St

EYt (EtΥi,t + EtΥi,t+1)

=
2

( 1β − L)2
Cϵw

∑
i

pi (EΥi,t + EΥi,t+1) ,

(42)

where the last inequality is because of equation 37.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Combining this with equation 41 we have that

∑
i

piE∥xt+1
i − xt

i∥2

≤ (1 + βL)2 (1 + ι)
∑
i

piE∥wt+1
i − wt

i∥2

+ (1 + βL)2
(
1 +

1

ι

)(
2

( 1β − L)2
Cϵw

∑
i

pi (EΥi,t + EΥi,t+1)

)
≤ (1 + βL)2 (1 + ι)

∑
i

piEΥi,t+1

+ (1 + βL)2
(
1 +

1

ι

)(
2

( 1β − L)2
Cϵw

∑
i

pi (EΥi,t + EΥi,t+1)

)
.

Now we prove (iii). Denote

H̄(X,W,Z) := F (W ) + g̃(Z) +
1

2β

(
∥X −W∥2 − ∥X − Z∥2

)
. (43)

Note that

H̄(Xt+1,W t, Zt)− H̄(Xt,W t, Zt)

=
1

2β

(
∥Xt+1 −W t∥2 − ∥Xt+1 − Zt∥2

)
− 1

2β

(
∥Xt −W t∥2 − ∥Xt − Zt∥2

)
= − 1

β

〈
Xt+1 −Xt,W t − Zt

〉
(a)
=

1

β
∥Xt+1 −Xt∥2 =

1

β

∑
i∈St

∥xt+1
i − xt

i∥2.

where (a) uses equation 2 and the last in equality is because Xt+1 = Xt for i ̸∈ St.

Taking expectation on St and then on Yt, the above inequality becomes

EH̄(Xt+1,W t, Zt)− EH̄(Xt,W t, Zt) =
1

β

∑
i

piE∥xt+1
i − xt

i∥2. (44)

Note that wt+1
i,⋆ in Step 3 of Algorithm 1 is the minimizer of miny ri,t+1(wi, yi(wi)), where ri,t is

defined in Algorithm 1. Since β < 1
L , the objective F̃ (W ) is strongly convex with modulus 1

β − L.
Thus, using equation 20, we have that for i ∈ St,

Etri,t+1(w
t+1
i , yi(w

t+1
i ))

≤ Etri,t+1(w
t+1
i,⋆ , yi(w

t+1
i,⋆ )) +

1

2( 1β − L)
Et∥∇yr(w

t+1
i , yi(w

t+1
i ))∥2

≤ Eri,t+1(w
t+1
i,⋆ , yi(w

t+1
i,⋆ )) +

1

2( 1β − L)
(CϵEtΥi,t+1) ,
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where the last inequality is due to equation 10, the second equality uses the last inequality uses
equation 22. Using the above inequality, we have that

EtH̄(Xt+1,W t+1, Zt)− EtH̄(Xt+1,W t, Zt)

=

n∑
i=1

Etri,t+1(w
t+1
i , yi(w

t+1
i ))− F (W t)− 1

2β
Et∥Xt+1 −W t∥2

≤
∑
i∈St

Etri,t+1(w
t+1
i,⋆ , yi(w

t+1
i,⋆ )) +

∑
i∈St

1

2( 1β − L)
CϵwΥi,t+1 − EF (W t)

− 1

2β
Et∥Xt+1 −W t∥2

≤
∑
i∈St

Eri,t+1(w
t
i , yi(w

t
i))−

1
β − L

2
∥wt

i − wt+1
i,⋆ ∥2 − EF (W t)− 1

2β
Et∥Xt+1 −W t∥2

+
∑
i∈St

1

2( 1β − L)
CϵwEtΥi,t+1

= −
∑
i∈St

1
β − L

2
Et∥wt+1

i,⋆ − wt
i∥2 +

∑
i∈St

1

2( 1β − L)
CϵwEtΥi,t+1.

(45)

Note that
∥wt+1

i,⋆ − wt
i∥2 = ∥wt+1

i,⋆ − wt+1
i ∥2 + 2

〈
wt+1

i,⋆ − wt+1
i , wt+1

i − wt
i

〉
+ ∥wt+1

i − wt
i∥2

≥ ∥wt+1
i,⋆ − wt+1

i ∥2 −
(

1

τ2
∥wt+1

i,⋆ − wt+1
i ∥2 + τ2∥wt+1

i − wt
i∥2
)
+ ∥wt+1

i − wt
i∥2

= (1− 1

τ2
)∥wt+1

i,⋆ − wt+1
i ∥2 + (1− τ2)∥wt+1

i − wt
i∥2,

where τ ∈ (0, 1) by assumption. Using this, equation 45 can be further passed to

EtH̄(Xt+1,W t+1, Zt)− EtH̄(Xt+1,W t, Zt)

≤ −
∑
i∈St

1
β − L

2
(1− τ2)Et∥wt+1

i − wt
i∥2 +

∑
i∈St

1
β − L

2
(
1

τ2
− 1)Et∥wt+1

i,⋆ − wt+1
i ∥2

+
∑
i∈St

1

2( 1β − L)
(CϵwEtΥi,t+1)

Taking expectation on St and then on Yt, the above inequality becomes

EH̄(Xt+1,W t+1, Zt)− EH̄(Xt+1,W t, Zt)

≤ −
∑
i

pi

1
β − L

2
(1− τ2)E∥wt+1

i − wt
i∥2 +

1
β − L

2
(
1

τ2
− 1)

∑
i

piE∥wt+1
i,⋆ − wt+1

i ∥2

+
∑
i

pi
1

2( 1β − L)
(CϵwEΥi,t+1)

(46)

On the other hand, note that

H̄(X,W,Z)

= F (W ) + g̃(Z) +
1

2β

(
∥X −W∥2 −

(
∥X −W∥2 − 2 ⟨X −W,Z −W ⟩+ ∥W − Z∥2

))
= F (W ) + g̃(Z)

+
1

2β

(
∥X −W∥2 −

(
∥X −W∥2 − ∥X − Z − 2W∥2 + ∥X −W∥2 + ∥Z −W∥2 + ∥W − Z∥2

))
= F (W ) + g̃(Z) +

1

2β
∥X − Z − 2y∥2 + 1

2β

(
−∥X −W∥2 − 2∥W − Z∥2

)
(47)
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In addition, note that Zt+1 is the minimizer of min g̃(Z) + 1
2β ∥2W

t+1 − Xt+1 − Z∥2, whose
objective is strongly convex with modulus 1

β . Using this fact together with equation 47, we have that

H̄(Xt+1,W t+1, Zt+1)− H̄(Xt+1,W t+1, Zt)

=

(
g(Zt+1) +

1

2β
∥Xt+1 − Zt+1 − 2W t+1∥2 − 1

β
∥W t+1 − Zt+1∥2

)
− g̃(Zt)− 1

2β
∥Xt+1 − Zt − 2W t+1∥2 + 1

β
∥W t+1 − Zt∥2

≤
(
g(Zt) +

1

2β
∥Xt+1 − Zt − 2W t+1∥2 − 1

2β
∥Zt+1 − Zt∥2 − 1

β
∥W t+1 − Zt+1∥2

)
− g̃(Zt)− 1

2β
∥Xt+1 − Zt − 2W t+1∥2 + 1

β
∥W t+1 − Zt∥2

= − 1

2β
∥Zt+1 − Zt∥2 − 1

β
∥W t+1 − Zt+1∥2 + 1

β
∥W t+1 − Zt∥2

(48)

where the last equality uses equation 2.

Now, we bound the last term in the above inequality. Note that

∥W t+1 − Zt∥2 = ∥W t+1 −W t +W t − Zt∥2

=
∑
i∈St

∥wt+1
i − wt

i − xt+1
i + xt

i∥2 +
∑
i ̸∈St

∥wt
i − zti∥2

=
∑
i∈St

∥wt+1
i − wt

i∥2 − 2
〈
wt+1

i − wt
i , x

t+1
i − xt

i

〉
+ ∥xt

i − xt+1
i ∥2 +

∑
i̸∈St

∥wt
i − zti∥2.

(49)

On the other hand, Using Exercise 8.8 of Rockafellar & Wets (1998), it holds that ∂(F (·) + L
2 ∥ ·

∥2)(W ) = ∇F (W )+LW . Since F (·)+ L
2 ∥ · ∥

2 is convex, we have that F (·)+ L
2 ∥ · ∥

2 is monotone.
This together with equation 33 implies that for i ∈ St,

0 ≤
〈
− 1

β
(wt+1

i,⋆ − xt+1
i ) + Lwt+1

i,⋆ −
(
− 1

β
(wt

i,⋆ − xt
i) + Lwt

i,⋆

)
, wt+1

i,⋆ − wt
i,⋆

〉
=
〈
ξt+1
i,⋆ + Lwt+1

i,⋆ − ξti,⋆ − Lwt
i,⋆, w

t+1
i,⋆ − wt

i,⋆

〉
=

〈
− 1

β
(wt+1

i − et+1
i − xt+1

i )+L
(
wt+1

i − et+1
i

)
+

1

β
(wt

i − eti − xt
i)− L

(
wt

i − eti
)
, wt+1

i −wt
i

〉
+

〈
− 1

β
(wt+1

i − et+1
i − xt+1

i )+L
(
wt+1

i − et+1
i

)
+

1

β
(wt

i − eti − xt
i)− L

(
wt

i − eti
)
,−et+1

i +eti

〉
.

Multiply both sides of the above inequality by 2β and rearranging terms, we have that

−
〈
xt+1
i − xt

i, w
t+1
i − wt

i

〉
≤
〈
xt+1
i − xt

i,−et+1
i + eti

〉
+ (βL− 1)∥wt+1

i − wt
i∥2

+ 2
〈
(βL− 1)

(
wt+1

i − wt
i

)
,−et+1

i + eti
〉
+ (βL− 1)∥et+1

i − eti∥2

(a)

≤ ι

2
∥xt+1

i − xt
i∥2 +

1

2ι
∥ − et+1

i + eti∥2 + (βL− 1)∥wt+1
i − wt

i∥2

+ |βL− 1|2 ι
2
∥wt+1

i − wt
i∥2 +

1

2ι
∥ − et+1

i + eti∥2 + (βL− 1)∥et+1
i − eti∥2

=
ι

2
∥xt+1

i − xt
i∥2 + (βL− 1 +

|βL− 1|2ι
2

)∥wt+1
i − wt

i∥2 +
(
1

ι
+ βL− 1

)
∥ − et+1

i + eti∥2

(50)

where ι > 0 and (a) uses Young’s inequality for products.
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Combining this with equation 49 we obtain that

∥W t+1 − Zt∥2 ≤
∑
i̸∈St

∥wt
i − zti∥2 +

∑
i∈St

∥wt+1
i − wt

i∥2 + ∥xt
i − xt+1

i ∥2

+
∑
i∈St

ι∥xt+1
i − xt

i∥2 + (2βL− 2 + |βL− 1|2ι)∥wt+1
i − wt

i∥2

+ 2

(
1

ι
+ βL− 1

)
∥ − et+1

i + eti∥2

=
∑
i ̸∈St

∥wt
i − zti∥2 +

∑
i∈St

(1 + ι)∥xt+1
i − xt

i∥2 + (2βL− 1 + |βL− 1|2ι)∥wt+1
i − wt

i∥2

+
∑
i∈St

2

(
1

ι
+ βL− 1

)
∥ − et+1

i + eti∥2.

This together with equation 48 we have that

H̄(Xt+1,W t+1, Zt+1)− H̄(Xt+1,W t+1, Zt)

≤ − 1

2β
∥Zt+1 − Zt∥2 − 1

β
∥Zt+1 −W t+1∥2 + 1

β

∑
i ̸∈St

∥wt
i − zti∥2

+
∑
i∈St

1 + ι

β
∥xt+1

i − xt
i∥2 +

1

β
(2βL− 1 + |βL− 1|2ι)∥wt+1

i − wt
i∥2

+
2

β

(
1

ι
+ βL− 1

)
∥ − et+1

i + eti∥2

≤ − 1

2β
∥Zt+1 − Zt∥2 − 1

β
∥W t+1 − Zt+1∥2 + 1

β

∑
i ̸∈St

∥wt
i − zti∥2

+
∑
i∈St

1 + ι

β
∥xt+1

i − xt
i∥2 +

1

β
(2βL− 1 + |βL− 1|2ι)∥wt+1

i − wt
i∥2

+
2

β

(
1

ι
+ βL− 1

)
∥ − et+1

i + eti∥2.

Taking expectation on St and then on Yt, the above inequality becomes

EH̄(Xt+1,W t+1, Zt+1)− EH̄(Xt+1,W t+1, Zt)

≤ − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2 + 1

β

∑
i

(1− pi)∥wt
i − zti∥2

+
∑
i

pi
1 + ι

β
E∥xt+1

i − xt
i∥2 +

1

β
(2βL− 1 + |βL− 1|2ι)E∥wt+1

i − wt
i∥2

+
2

β

(
1

ι
+ βL− 1

)
E∥ − et+1

i + eti∥2.

(51)
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Now summing equation 44, equation 46 and equation 51, we obtain that

EH̄(Xt+1,W t+1, Zt+1)− EH̄(Xt,W t, Zt)

≤ 1

β

∑
i

piE∥xt+1
i − xt

i∥2 −
1

2β
E∥Zt+1 − Zt∥2 − 1

β
∥W t+1 − Zt+1∥2

+
1

β

∑
i

(1− pi)∥wt
i − zti∥2 +

∑
i

−
1
β − L

2
(1− τ2)piE∥wt+1

i − wt
i∥2

+

1
β − L

2
(
1

τ2
− 1)piE∥wt+1

i,⋆ − wt+1
i ∥2 + 1

2( 1β − L)
(CϵwpiEΥi,t+1)

+
∑
i

1 + ι

β
piE∥xt+1

i − xt
i∥2 +

1

β
(2βL− 1 + |βL− 1|2ι)piE∥wt+1

i − wt
i∥2

+
2

β

(
1

ι
+ βL− 1

)
piE∥ − et+1

i + eti∥2

=
1

β
E∥W t − Zt∥2 − 1

β
∥W t+1 − Zt+1∥2 − 1

2β
E∥Zt+1 − Zt∥2

+
∑
i

1
β − L

2
(
1

τ2
− 1)piE∥wt+1

i,⋆ − wt+1
i ∥2 + 1

2( 1β − L)
(CϵwpiEΥi,t+1)

+
2

β

(
1

ι
+ βL− 1

)
piE∥ − et+1

i + eti∥2 +
∑
i

1 + ι

β
piE∥xt+1

i − xt
i∥2

+

(
1

β
(2βL− 1 + |βL− 1|2ι)−

1
β − L

2
(1− τ2)

)
piE∥wt+1

i − wt
i∥2.

(52)

On the other hand, equation 41 together with equation 52 yields

EH̄(Xt+1,W t+1, Zt+1)− H̄(Xt,W t, Zt)

≤ 1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2

+
∑
i

1 + ι

β

(
(1 + βL)2

(
(1 + ι)E∥W t+1 −W t∥2 +

(
1 +

1

ι

)
piE∥ − et+1

i − eti∥2
))

+
∑
i

1
β − L

2
(
1

τ2
− 1)piE∥wt+1

i,⋆ − wt+1
i ∥2 + 1

2( 1β − L)
(CϵwEΥi,t+1)

+
2

β

(
1

ι
+ βL− 1

)
piE∥ − et+1

i + eti∥2

+
∑
i

(
1

β
(2βL− 1 + |βL− 1|2ι)−

1
β − L

2
(1− τ2)

)
piE∥wt+1

i − wt
i∥2
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Rearranging the above term we have
EH̄(Xt+1,W t+1, Zt+1)− H̄(Xt,W t, Zt)

≤ 1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2

+
∑
i

(
(1 + ι)2

βι
+

2

β

(
1

ι
+ βL− 1

))
piE∥ − et+1

i − eti∥2

+
∑
i

1
β − L

2
(
1

τ2
− 1)piE∥wt+1

i,⋆ − wt+1
i ∥2 + 1

2( 1β − L)
(CϵwEΥi,t+1)

+
∑
i

1

β

(2βL− 1 + |βL− 1|2ι)− 1− Lβ

2
(1− τ2) + (1 + ι)2(1 + βL)2︸ ︷︷ ︸

Θ

 piE∥wt+1
i − wt

i∥2

(53)

Now, rearranging the formula of Θ, we have that

Θ = (1 + βL)
2 − 3

2
+

5

2
βL+

1− Lβ

2
τ2 + (1 + βL)2(2ι+ ι2) + (βL− 1)2ι

≤ −δβ +
1− Lβ

2
τ2 + (1 + βL)2(2ι+ ι2) + (βL− 1)2ι ≤ −δβ + δ′ = −δ,

where the second inequality uses equation 57, the last inequality uses equation 58, and the last
equality uses the definition of δ.

Then equation 53 can be further passed to
EH̄(Xt+1,W t+1, Zt+1)− EH̄(Xt,W t, Zt)

≤ 1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2

+
∑
i

 (1 + ι)2

βι
+

2

β

(
1

ι
+ βL− 1

)
︸ ︷︷ ︸

Γ

 piE∥ − et+1
i − eti∥2

+
∑
i

1
β − L

2
(
1

τ2
− 1)E∥W t+1

⋆ −W t+1∥2 + 1

2( 1β − L)
(CϵwpiEΥi,t+1)−

δ

β
E∥W t+1 −W t∥2.

(54)

Now, using equation 37 and equation 42, equation 54 can be further passed to
EH̄(Xt+1,W t+1, Zt+1)− EH̄(Xt,W t, Zt)

≤ 1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2

+
∑
i

Γ

(
2

( 1β − L)2
Cϵwpi (EΥi,t + EΥi,t+1)

)

+
∑
i

(
1

τ2
− 1)

1

2( 1β − L)
(CϵwpiEΥi,t+1) +

1

2( 1β − L)
(CϵwEΥi,t+1)−

δ

β
piE∥wt+1

i − wt
i∥2

=
1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2

+
∑
i

Γ

(
2

( 1β − L)2
Cϵwpi (EΥi,t + EΥi,t+1)

)

+
∑
i

1

τ2
1

2( 1β − L)
(CϵwpiEΥi,t+1)−

δ

β
piE∥wt+1

i − wt
i∥2

(55)
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Now, we bound the term with Υi,t in the above inequality. Using equation 21, the above inequality
can be further passed to

EH̄(Xt+1,W t+1, Zt+1)− EH̄(Xt,W t, Zt)

≤ 1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2 −

∑
i

δ

β
piE∥wt+1

i − wt
i∥2

+
∑
i

(
Γ

2

( 1β − L)2
+

1

τ2
1

2( 1β − L)

)(
Cϵw

(
1

2
(piEΥi,t − piEΥi,t+1) + 6L2piE∥wt−1

i − wt
i∥2
))

=
1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2 −

∑
i

δ

β
piE∥wt+1

i − wt
i∥2

+
∑
i

(
Γ

2

( 1β − L)2
+

1

τ2
1

2( 1β − L)

)
Cϵw6L

2piE∥wt−1
i − wt

i∥2

+
∑
i

(
Γ

2

( 1β − L)2
+

1

τ2
1

2( 1β − L)

)(
Cϵw

(
1

2
(piEΥi,t−1 − piEΥi,t)

))
≤ 1

β
E∥W t − Zt∥2 − 1

2β
E∥Zt+1 − Zt∥2 − 1

β
E∥W t+1 − Zt+1∥2 − δ

β
piE∥wt+1

i − wt
i∥2

+
∑
i

δ

β
piE∥wt−1

i − wt
i∥2 +

∑
i

1

12L2
(piEΥi,t − piEΥi,t+1) ,

(56)
where the last inequality uses the assumption that ϵw is small enough such that(
Γ 2

( 1
β−L)2

+ 1
τ2

1
2( 1

β−L)

)
6CL2ϵw ≤ δ−δϵ

β .

Rearranging the above inequality and recalling the definition of H , we have that

EH(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t)

≤ EH(Xt,W t, Zt, Y t,W t−1, Y t−1, wt−2, yt−2)−
∑
i

δϵ
β
piE∥wt

i − wt−1
i ∥2

−
∑
i

1

2β
piE∥zt+1

i − zti∥2.

Finally, we summarize and simplify the hyper parameter we use in this proof. In this proof, we first
let δβ ∈ (0, 1

2 ). Let β ∈ (0, 1
L ) be such that

(1 + βL)
2 − 3

2
+

5

2
βL < −δβ . (57)

To satisfy this, we let δβ = 1/4 and β < −9+
√
82

L .

Then we let δ′ ∈ [0, δβ). Let ι > 0 and τ ∈ (0, 1) be small enough such that
1− Lβ

2
τ2 + (1 + βL)2(2ι+ ι2) + (βL− 1)2ι < δ′. (58)

To satisfy this, we let δ′ = 1/8, τ = 1/
√
8, ι = 1/64 and β ≤ 3

10L .

Finally, we denote δ := δβ − δ′. Suppose that ϵw is small enough such that(
Γ

2

( 1β − L)2
+

1

τ2
1

2( 1β − L)

)
6CL2ϵw ≤ δ − δϵ

β
, (59)

for some δϵ > 0, where Γ := (1+ι)2

βι + 2
β

(
1
ι + βL− 1

)
and C is defined as in Proposition 5. Note

that since τ = τ = 1/
√
8 and ι = 1/64and βL < 1, then Γ < (1+ι)2

βι + 2
β

1
ι and thus

Γ
2

( 1β − L)2
+

1

τ2
1

2( 1β − L)
≤ 392

β

1− βL
. (60)
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To satisfy equation 59, it suffices to let δϵ = 1/16 and

ϵw ≤ 392

96

(1− βL)2

β3
C−1L−2.

In summary, by δβ = 1/4, δ′ = 1/8, τ = 1/
√
8, ι = 1/64, δϵ = 1/16, β < −9+

√
82

L and

ϵw ≤ 392
96

(1−βL)2

β3 C−1L−2, we have the conclusion.

Next, we present a corollary that will be used in the convergence analysis.

Corollary 1. Let assumptions in Theorem 4 hold. Denote Ht := EH(Xt,W t, Zt, Y t,W t−1, Y t−1).
Then it holds that

d2(0,

n∑
i=1

∇f(zt) + ∂g(zt)) ≤ n

p

∑
i

C2 (piEΥi,t + piEΥi,t+1) (61)

where C2 := max{
(

4
β2 + 4L2

)
(1 + βL)2 (1 + ι) , (1 + βL)2

(
1 + 1

ι

)
2

( 1
β−L)2

Cϵw}.

Proof. Recalling the definition of C in equation 4, it holds that

NC(Z
t) =

{
(d1, . . . , dn) :

n∑
i=1

di = 0, di ∈ Rl

}
. (62)

Using Corollary 10.9 and Proposition 10.5 in Rockafellar & Wets (1998), we have that

∂g̃(Zt) =
{
(ξt, 0, . . . , 0) : ξt ∈ ∂g(zt)

}
+NC(Z

t). (63)

combining equation 62 and equation 63, for any (d1, . . . , dn) ∈ NC(Z
t) and ξt ∈ ∂g(zt),∥∥∥∥∥ 1n

n∑
i=1

∇fi(z
t) + ξt

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

∇fi(z
t) + ξt +

n∑
i=1

di

∥∥∥∥∥
2

= n

∥∥∥∥∥ 1n∇f1(z
t) + ξt +

n∑
i=1

di

∥∥∥∥∥
2

+ n

n∑
i=2

∥∥∥∥ 1n∇fi(z
t)

∥∥∥∥2 = n∥∇F (Zt) + ηt∥2
(64)

where ηt ∈ ∂g̃(Zt).

On the other hand, using Lemma 1, we obtain that

∇fi(z
t) = − 1

β
(wt

i,⋆ − xt
i) +∇fi(z

t
i)−∇fi(w

t
i,⋆), for all i.

This together with equation 64 and equation 34 implies that

1

n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(z
t) + ξt

∥∥∥∥∥
2

≤ Et∥∇F (Zt) + ηt∥2

= Et

n∑
i=1

∥ − 1

β
(wt

i − eti − xt
i) +∇fi(z

t)−∇fi(w
t
i,⋆) +

1

β
(2wt

i − xt
i − zti)∥2

= Et

n∑
i=1

∥ 1
β
eti +

(
∇fi(z

t)−∇fi(w
t
i)
)
+
(
∇fi(w

t
i)−∇fi(w

t
i,⋆)
)
+

1

β
(wt

i − zt)∥2

≤ Et

n∑
i=1

(
4

β2
+ 4L2

)(
∥eti∥2 + ∥zt − wt

i∥2
)
,

(65)

where the inequality uses the Lipschiz continuity of F and Cauchy-Schwarz inequality.
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On the other hand, since each client has the probability pi to be sampled, it holds that

ESt

∑
i∈St

∥wt
i − zt∥2 =

n∑
i=1

pi∥wt
i − zt∥2 ≥ p

n∑
i=1

∥wt
i − zt∥2, (66)

where p = min{p1, . . . , pn}. Similarly, we have

ESt

∑
i∈St

∥et+1
i ∥2 ≥ p

n∑
i=1

∥et+1
i ∥2.

Combining this with equation 65 and equation 66, we have

1

n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(z
t) + ξt

∥∥∥∥∥
2

≤ 1

p
ESt

∑
i∈St

(
4

β2
+ 4L2

)(
Et∥eti∥2 + Et∥Zt − wt

i∥2
)
. (67)

Using equation 37 and equation 38, the above inequality can be further passed to

1

n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(z
t) + ξt

∥∥∥∥∥
2

≤ 1

p
ESt

∑
i∈St

(
4

β2
+ 4L2

)(
1

( 1β − L)2
(CϵwEΥi,t)

)

+
1

p
ESt

∑
i∈St

(
4

β2
+ 4L2

)(
(1 + βL)2(1 + ι)EΥi,t+1 + (1 + βL)2

(
1 +

1

ι

)(
2

( 1β − L)2
CϵwEΥi,t

))

=
1

p
ESt

∑
i∈St

(
4

β2
+ 4L2

)(
1

( 1β − L)2
(CϵwEΥi,t)

)

+
1

p
ESt

∑
i∈St

(
4

β2
+ 4L2

)(
(1 + βL)2 (1 + ι)EΥi,t+1 + (1 + βL)2

(
1 +

1

ι

)(
2

( 1β − L)2
CϵwEΥi,t

))

≤ 1

p
ESt

∑
i∈St

C2(EΥi,t + EΥi,t+1) =
1

p

∑
i

C2 (piEΥi,t + piEΥi,t+1)

where C2 is defined in the statement. Thus, (ii) holds.

Now, we give the detailed statement of Theorem 2 and its proofs.

Theorem 5. Let assumptions in Theorem 1 hold. Let {(Xt,W t, Zt)} be generated by Algorithm 1.
We further suppose ϵw and β are small enough such that 1

2( 1
β−L)

Cϵw + 6L2
∑

i pi ≤
δ
β , where C is

defined as in Proposition 5. Then It holds that

1

T + 1

T+1∑
t=1

Ed2(0,∇
n∑

i=1

fi(z
t) + ∂g(zt)) ≤ n

p

1

T + 1

(
D1H̄0 +D2Υ0 +D3∥Y 0 − Y (W 0)∥2

)
,

where H̄0 := F (W 0) + g̃(Z0) + 1
2β

(
∥X0 −W 0∥2 − ∥X0 − Z0∥2

)
, D1 := 15L2β

δϵ
, D2 :=

6max{1, L}ϵw + 15L2β
δϵ

Cu, D3 := 3C2 +
15L2β

δϵ
3

2( 1
β−L)

Cϵw, D4 := 13 + 15L2β
δϵ

C1, D5 := with

Cu := 2Γ(ϵw + 1) +
1
β−L

2 ( 1
τ2 − 1)ϵw + 6max{1, L}ϵw.
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Proof. Using equation 61, it holds that
T∑

t=1

E∥ 1
n

n∑
i=1

∇fi(z
t) + ξt∥2 ≤ n

p
C2

∑
i

C2 (piEΥi,t + piEΥi,t+1)

≤ n

p
C2

(
2

T+1∑
t=1

∑
i

piEΥi,t

)

≤ n

p
C2

(
E

n∑
i=1

Υi,1 + 12L2
T+1∑
t=1

∑
i

piE∥wt−1
i − wt

i∥2
) (68)

where the last inequality uses equation 21. We next bound EΥ1.
EΥ1 = E∥(w0, Y 0)− (W 1, Y 1)∥2

≤ 3∥(W 0, Y 0)− (W 0, Y (W 0))∥2

+ 3E∥(W 0, Y (W 0))− (W 1, Y (W 1))∥2 + 3E∥(W 1, Y (W 1))− (W 1, Y 1)∥2

= 3∥Y 0 − Y (W 0)∥2 + 3E∥(W 0, Y (W 0))− (W 1, Y (W 1))∥2 + 3E∥Y (W 1)− Y 1∥2

≤ 3∥Y 0 − Y (W 0)∥2 + 3L2E∥W 0 −W 1∥2 + 3E∥Y (W 1)− Y 1∥2,

(69)

where the second inequality uses Proposition 1. Note that
E∥Y 1 − Y (W 1)∥2 ≤ 2E∥Y 1 − Y (W 1

⋆ )∥2 + 2E∥Y (W 1
⋆ )− Y (W 1)∥2

≤ 2max{1, L}E
(
∥Y 1 − Y (W 1

⋆ )∥2 + ∥W 1
⋆ −W 1∥2

)
≤ 2max{1, L}ϵwΥ0,

(70)

where the second inequality is thanks to equation 10. Combining equation 69 with equation 70, we
have that

EΥ1 ≤ 3∥Y 0 − Y (W 0)∥2 + 3L2E∥W 0 −W 1∥2 + 3 (2max{1, L}ϵwΥ0) (71)
Combining equation 71 with equation 68, it holds that

T∑
t=1

E∥ 1
n

n∑
i=1

∇fi(z
t) + ξt∥2 ≤ n

p

(
12L2

T+1∑
t=1

∑
i

piE∥wt−1
i − wt

i∥2
)

+
n

p
C2

(
3∥Y 0 − Y (W 0)∥2 + 3L2E∥W 0 −W 1∥2 + 3 (2max{1, L}ϵwΥ0)

)
≤ n

p

(
15L2

T+1∑
t=1

∑
i

piE∥wt−1
i − wt

i∥2
)

+ C2
n

p

(
3∥Y 0 − Y (W 0)∥2 + 3 (2max{1, L}ϵwΥ0)

)
.

(72)

On the other hand, rearranging equation 40, we have that∑
i

piE∥wt
i − wt−1

i ∥2

≤ β

δϵ

(
EH(Xt,W t, Zt, Y t,W t−1, Y t−1)− EH(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t)

)
−
∑
i

β

δϵ

1

2β
piE∥zt+1

i − zti∥2

≤ β

δϵ

(
EH(Xt,W t, Zt, Y t,W t−1, Y t−1)− EH(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t)

)
.

Summing the above inequality from t = 1 to T + 1, we deduce that
T+1∑
t=1

∑
i

piE∥wt
i − wt−1

i ∥2

≤ β

δϵ

(
EH(X1,W 1, Z1, Y 1,W 0, Y 0)− EH(XT+1,WT+1, ZT+1, Y T+1,WT , Y T )

)
≤ β

δϵ

(
EH(X1,W 1, Z1, Y 1,W 0, Y 0)−B

)
,

(73)
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where B is the lower bound of EH(XT+1,WT+1, ZT+1, Y t+1,WT , Y T ) guaranteed in Corollary
1.

Now we bound EH(X1,W 1, Z1, Y 1,W 0, Y 0). To this end, we first bound EH̄(x1,W 1, z1), where
H̄ is defined in equation 43. Making use of equation 55, it holds that

EH̄(X1,W 1, Z1)− EH̄(X0,W 0, Z0) ≤ 1

β
E∥W 0 − z0∥2 − 1

2β
E∥z1 − z0∥2 − 1

β
E∥W 1 − z1∥2

+

(
Γ

2

( 1β − L)1
+

1

τ1
1

2( 1β − L)

)
(Cϵw(EΥ1 +Υ0))−

δ

β
E∥W 1 −W 0∥2

=
1

β
E∥W 0 − z0∥2 − 1

2β
E∥z1 − z0∥2 − 1

β
E∥W 1 − z1∥2

+

(
Γ

2

( 1β − L)1
+

1

τ1
1

2( 1β − L)

)
(Cϵw(EΥ1 +Υ0))−

δ

β
E∥W 1 −W 0∥2,

(74)

where the last equality use equation 2 and the settings that W 0 = z0 at Step 1 in Algorithm 1. Using
equation 10, it holds that

E∥e1∥2 ≤ ϵwΥ1 (75)
and
E∥ − e1 − e0∥2 ≤ 2E∥e1∥2 + 2∥e0∥2 ≤ 2 (ϵwΥ1) + 2Υ0

≤ 2((ϵw + 1)Υ0) + 6L2
∑
i

piE∥w0
i − w1

i ∥2,

(76)

where the last inequality uses equation 21. Combining equation 75 and equation 76 with equation 74,
we have that

EH̄(X1,W 1, Z1)− EH̄(X0,W 0, Z0)

≤ − 1

2β
E∥Z1 − Z0∥2 − 1

β
E∥w1 − Z1∥2 + 2Γ((ϵw + 1)Υ0)

+

1
β − L

2
(
1

τ2
− 1) (ϵwΥ0) +

1

2( 1β − L)
(CϵwΥ1)−

δ

β
E∥w1 −W 0∥2

≤ 2Γ((ϵw + 1)Υ0) +

1
β − L

2
(
1

τ2
− 1) (ϵwΥ0)

+
1

2( 1β − L)
CϵwΥ1 −

δ

β
E∥w1 −W 0∥2 + 6L2

∑
i

piE∥w0
i − w1

i ∥2.

(77)

Combining equation 71 with equation 77, we have that

EH̄(X1,W 1, Z1)− EH̄(X0,W 0, Z0) ≤ 2Γ((ϵw + 1)Υ0) +

1
β − L

2
(
1

τ2
− 1) (ϵwΥ0)

+
1

2( 1β − L)
Cϵw

(
3∥Y 0 − Y (W 0)∥2 + 3 (2max{1, L}ϵwΥ0)

)
+

1

2( 1β − L)
Cϵw3L

2E∥W 0 −W 1∥2 − δ

β
E∥w1 −W 0∥2 + 6L2

∑
i

piE∥w0
i − w1

i ∥2

≤ 2Γ((ϵw + 1)Υ0) +

1
β − L

2
(
1

τ2
− 1) (ϵwΥ0)

+
1

2( 1β − L)
Cϵw

(
3∥Y 0 − Y (W 0)∥2 + 3 (2max{1, L}ϵwΥ0)

)
,

(78)

where the last inequality uses the assumption that ϵw and β are small enough such that 1
2( 1

β−L)
Cϵw +

6L2
∑

i pi ≤
δ
β .
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Rearranging the above inequality, recalling the definition of H , we have that

EH(X1,W 1, Z1, Y 1,W 0, Y 0)

≤ EH̄(X0,W 0, Z0) + 2Γ((ϵw + 1)Υ0) +

1
β − L

2
(
1

τ2
− 1) (ϵwΥ0)

+
1

2( 1β − L)
Cϵw

(
3∥Y 0 − Y (W 0)∥2 + 3 (2max{1, L}ϵwΥ0)

)
= F (W 0) + g(z0) +

1

2β

(
∥x0 −W 0∥2 − ∥x0 − z0∥2

)
+ 2Γ((ϵw + 1)Υ0)

+

1
β − L

2
(
1

τ2
− 1) (ϵwΥ0)

+
1

2( 1β − L)
Cϵw

(
3∥Y 0 − Y (W 0)∥2 + 3 (2max{1, L}ϵwΥ0)

)
= F (W 0) + g(z0) +

1

2β

(
∥x0 −W 0∥2 − ∥x0 − z0∥2

)
+ CuΥ0

+
3

2( 1β − L)
Cϵw∥Y 0 − Y (W 0)∥2

(79)

where Cu := 2Γ(ϵw+1)+
1
β−L

2 ( 1
τ2 −1)ϵw+6max{1, L}ϵw, Cv := 2Γ+

1
β−L

2 ( 1
τ2 −1)+ 1

2( 1
β−L)

+3.

Now, summing equation 73 and equation 79, we have that

T+1∑
t=1

piE∥wt
i − wt−1

i ∥2

≤ − β

δϵ
B +

β

δϵ

·

(
F (W 0) + g(z0) +

1

2β

(
∥x0 −W 0∥2 − ∥x0 − z0∥2

)
+ CuΥ0 +

3

2( 1β − L)
Cϵw∥Y 0 − Y (W 0)∥2

)
.

Recalling equation 72 and the definition of ηt, we have that

T+1∑
t=1

Ed2(0,∇
n∑

i=1

fi(z
t) + ∂g(zt)) ≤

T+1∑
t=1

E∥ 1
n

n∑
i=1

∇fi(z
t) + ξt∥2

≤ n

p
C2

(
3∥Y 0 − Y (W 0)∥2 + 3

1

p
(2max{1, L}ϵwΥ0)

)
+

n

p

15L2β

δϵ

·

(
F (W 0) + g(z0) +

1

2β

(
∥x0 −W 0∥2 − ∥x0 − z0∥2

)
+ CuΥ0 +

3

2( 1β − L)
Cϵw∥Y 0 − Y (W 0)∥2

)
.

Finally, dividing both sides with T + 1, we reach the conclusion.
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C DETAILS FOR RESULTS IN SECTION 4.2

We start with the following properties of the generated sequences.
Theorem 6. Let assumptions in Theorem 4 hold. Suppose Assumption 3 holds. Suppose F and g are
bounded from below and g is level-bounded. Then the following statements hold.

(i) {Ht} is convergent.

(ii) lim ∥Xt+1 −Xt∥ = lim ∥W t+1 −W t∥ = lim ∥Zt+1 − Zt∥ = lim ∥Y t+1 − Y t∥ = 0.

Proof. For (i), since g is level bounded and noting that H̄(Xt,W t, Zt) ≤
H(Xt,W t, Zt, Y t,W t−1, Y t−1), forllowing similar arguments in Theorem 4 of Li & Pong
(2016), it is easy to show that {(Xt,W t, Zt)} is bounded when ϵw is small enough. Then we have
that Note that

H(Xt+1,W t+1, Zt+1,W t, Y t) ≥ F (W t+1) + g(Zt+1))− 1

2β
− ∥Xt+1 − Zt+1∥2

≥ Bf +Bg −
2

β
B2

s .

where Bf , Bg and Bs in the second inequality are the lower bounds of f and g and bounds of
{Xt+1} and {Zt+1}. This together with equation 40 shows that Ht is nonincreasing. Thus, {Ht} is
convergent.

For (ii), since all clients attend training in eahc round, we have p1 = · · · = pn = 1. Summing
equation 40 from t = 2 to T , we have that

H(XT+1,WT+1, ZT+1,WT , Y T )

≤ H(X2,W 2, Z2,W 1, Y 1)− δϵ
β

T∑
t=1

∥W t+1 −W t∥2 − 1

2β

T∑
t=1

∥Zt+1 − Zt∥2.

Rearranging the above inequality we have that

δϵ
β

T∑
t=1

∥W t+1 −W t∥2 + 1

2β

T∑
t=1

∥Zt+1 − Zt∥2

≤ H(X2,W 2, Z2,W 1, Y 1)−H(XT+1,WT+1, ZT+1,WT , Y T )

≤ H(X2,W 2, Z2,W 1, Y 1)− lim
T→∞

H(XT+1,WT+1, ZT+1,WT , Y T ) < ∞,

(80)

where the second inequality is because {H(XT+1,WT+1, ZT+1,WT , Y T )} is convergent and
nonincreading in the deterministic case thanks to equation 40. Taking T in the above inequality
to infinity, we deduce that {∥W t+1 −W t∥} and {∥Zt+1 − Zt∥} are summable. This implies that
limt ∥W t+1−W t∥ = limt ∥Zt+1−Zt∥ = 0. The limt ∥Xt+1−Xt∥ = 0 follows from equation 38.
Now, using the deterministic case of equation 21 and the definition of Υt+1, we have that

T∑
t=0

∥Y t+1 − Y t∥2 ≤
T∑

t=0

Υt+1 ≤ 1

2
(Υ0 −ΥT+1) + 6L2

T∑
t=0

∥W t −W t+1∥2

≤
T∑

t=0

Υt+1 ≤ 1

2
Υ0 + 6L2

T∑
t=0

∥W t −W t+1∥2.

(81)

Since {∥W t+1 −W t∥} is summable, taking T in the above inequality to infinity, we deduce that
limt ∥Y t+1 − Y t∥ = 0.

Next, we show how the accumulation points of {(Xt,W t, Zt, Y t)} behave.
Theorem 7. Let assumptions in Theorem 6 hold. Suppose Assumption 3 holds. Then {Y t} is bounded.
Let (X∗,W ∗, Z∗, Y ∗) be any accumulation point of {(Xt,W t, Zt, Y t)}. Then the following results
hold.
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(i) W ∗ = Z∗ and Z∗ is a stationary point of equation 1.

(ii) H(X,W,Z,W ′, Y ′) is constant on the set of accumulation points of
{(Xt+1,W t+1, Zt+1, Y t)}.

Proof. We first show {Y t} is bounded. In fact, thanks to the first relation in equation 33 and the
boundedness of {Xt} shown in Theorem 6, we deduce that {Y (W t+1

⋆ )} is bounded. This together
with the fact that ∥Y t+1∥ ≤ ∥Y t+1 − Y (W t+1

⋆ )∥+ ∥Y (W t+1
⋆ )∥ implies that {Y t} is bounded.

For (i), since (X∗,W ∗, Z∗, Y ∗) is an accumulation point of {(Xt,W t, Zt, Y t)}, there exists {tj}j
with limj(X

tj ,W tj , Ztj , Y tj ) = (X∗,W ∗, Z∗, Y ∗). Using the fact that limt ∥Xt+1 − Xt∥ = 0
and equation 2, we know that W ∗ = Z∗. Using Lemma 1, there exists ηt ∈ ∂g̃(Zt) such that
equation 33 and equation 34 hold. Thus,

0 =

(
1

n
∇f1(w

t
1,⋆) +

1

β
(wt

1 − et1 − xt
1), . . . ,

1

n
∇fn(w

t
n,⋆) +

1

β
(wt

n − etn − xt
n)

)
+ ηt

− 1

β
(2W t −Xt − Zt)

= ∇F (W t
⋆) + ηt − 1

β
(et1, . . . , e

t
n)−

1

β
(Xt+1 −Xt).

(82)

where the second equality uses equation 2.

On the other hand, note that ztj is the minimizer of equation 3, Ztj = Proxg̃(2W
tj −Xtj ) and thus

g(Ztj ) +
1

2β
∥2W tj −Xtj − Ztj∥2 ≤ g(Z∗) +

1

2β
∥2W tj −Xtj − Z∗∥2. (83)

Letting i in the above inequality goes to infinity and making use of (i), we have that

lim
j

g(Ztj ) +
1

β
∥W ∗ −X∗∥2 = lim

j
g(Ztj ) +

1

β
∥W tj −Xtj∥2

≤ lim sup
i

(
g(Ztj ) +

1

2β
∥2W tj −Xtj − Ztj∥2

)
− lim

j

(
1

2β
∥2W tj −Xtj − Ztj∥2 + 1

2β
∥W tj −Xtj∥2

)
≤ g(Z∗) +

1

2β
∥W ∗ −X∗∥2,

(84)

where the first equality makes use of W ∗ = Z∗, which implies that lim supi g(Z
tj ) ≤ g(Z∗).

Thus, we have that lim supi g(Z
tj ) ≤ g(Z∗). This together with the closedness of g gives that

limj g(Z
tj ) = g(Z∗).

Combining equation 37 and Theorem 6 (ii), we deduce that limt ∥eti∥ = 0 and limt W
t
⋆ = W ∗. With

this fact and equation 84, letting t in equation 82 be ti and letting i goes to infinity, recalling (i) and
the continuity of ∇F , we obtain that

0 = lim
j

∇F (W t
⋆) + lim

j
ηtj ∈ ∇F (W ∗) + ∂g(Z∗) = ∇F (Z∗) + ∂g(Z∗),

where the last equality uses the fact that W ∗ = Z∗. This together with Exercise 8.8 of Rockafellar &
Wets (1998) gives the conclusion.

For (ii), we first note that thank to Theorem 6 (ii), it holds that limj Y
tj−1 = limj Y

tj = Y ∗,
limj W

tj−1 = limj W
tj = W ∗. Denote Υt =

∑n
i=1 Υi,t. Then limj Υtj = 0. Using Theorem

6 (i), we know that there exists H∗ such that limt H(Xt,W t, Zt, Y t,W t−1, Y t−1) = H∗. On the
other hand, note that

∥Xt −W t∥2 −
(
∥Xt −W t∥2 − 2

〈
Xt −W t, Zt −W t

〉
+ ∥W t − Zt∥2

)
= ∥Xt −W t∥2

−
(
∥Xt −W t∥2 − ∥Xt − Zt − 2W t∥2 + ∥Xt −W t∥2 + ∥Zt −W t∥2 + ∥W t − Zt∥2

)
= ∥Xt − Zt − 2W t∥2 − ∥Xt −W t∥2 − 2∥W t − Zt∥2.

(85)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Then

H∗ = lim
t

H(Xt,W t, Zt, Y t,W t−1, Y t−1)

= lim
j

H(Xtj ,W tj , Ztj ,W tj−1, Y tj−1,W tj−2, Y tj−2)

= lim
j

H̄(Xtj ,W tj , Ztj ) +
δ

β
∥W tj −W tj−1∥2 + 1

12L2
lim
j

Υtj−1

(a)
= lim

j
F (W tj ) + g(Ztj ) +

1

2β
∥Xtj − Ztj − 2W tj∥2

+
1

2β

(
−∥Xtj −W tj∥2 − 2∥W tj − Ztj∥2

)
+

δ

β
∥W tj −W tj−1∥2

(b)
= F (W ∗) + g(Z∗) = F (W ∗) + g(Z∗) +

1

2β

(
∥X∗ −W ∗∥2 − ∥X∗ − Z∗∥2

)
+

1

β
∥W ∗ − Z∗∥2

(c)
= H(X∗,W ∗, Z∗,W ∗,W ∗, Y ∗),

(86)

where (a) uses equation 85 and the fact that limj Υtj−1 = 0, (b) and (c) use the continuity of F and
the fact that lim g(Ztj ) = g(Z∗), limj W

tj−1 = limj W
tj = W ∗ and the fact that W ∗ = Z∗.

To analyze the convergence rate of the generated sequence, we need the following additional theorem.

Theorem 8. Let assumptions in Theorem 6 hold. Suppose Assumption 3 holds. Then, there exists
Γ1 > 0, Γ2 > 0 and Γ3 such that

d(0, ∂H(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t))

≤ Γ1∥W t+2 −W t+1∥+ Γ2∥W t+1 −W t∥+ Γ3

√
Υt.

(87)

Remark 5. Note that this bound holds whenever W t+1 in equation 10 is solved using a deterministic
or stochastic method.

Proof. Using Proposition 10.5 of Rockafellar & Wets (1998) together with Exercise 8.8 of Rockafellar
& Wets (1998), we have that

∂H(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t)

=



1
β (Z

t+1 −W t+1)

∇F (W t+1)− 1
β (X

t+1−W t+1)+ 2δ
β (W t+1 −W t)+ 2

β (W
t+1 − Zt+1)+ 1

6L2 (W
t+1−W t)

∂g̃(Zt+1)− 1
β (X

t+1 − Zt+1)− 2
β (W

t+1−Zt+1)

− 1
6L2 (W

t+1 −W t)
1

6L2 (Y
t+1 − Y t)

− 1
6L2 (Y

t+1 − Y t)



=



− 1
β (X

t+2 −Xt+1)

[A1, . . . ,An]
∂g̃(Zt+1)− 1

β (X
t+1 − Zt+1)− 2

β (W
t+1 − Zt+1)

− 1
6L2 (W

t+1 −W t)
1

6L2 (Y
t+1 − Y t)

− 1
6L2 (Y

t+1 − Y t)


(88)

where Ai := ∇ 1
nfi(w

t+1
i )− 1

β (x
t+1
i −wt+1

i )+ 2δ
β (wt+1

i −wt
i)+

2
β (w

t+1
i −zt+1

i )+ 1
6L2 (w

t+1
i −wt

i)

and the second equation makes uses the equation 2. Now we bound the second and third coordinates
of in the above matrix.
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Using equation 33, it holds that

Ai = ∇ 1

n
fi(w

t+1
i )− 1

β
(xt+1

i − wt+1
i ) +

2δ

β
(wt+1

i − wt
i) +

2

β
(wt+1

i − zt+1
i )

+
1

6L2
(wt+1

i − wt
i)−

1

β
(wt+1

i − et+1
i − xt+1

i )−∇ 1

n
fi(w

t+1
i,⋆ )

= ∇ 1

n
fi(w

t+1
i )−∇ 1

n
fi(w

t+1
i,⋆ ) +

2δ

β
(wt+1

i − wt
i) +

2

β
(wt+1

i − zt+1
i )

+
1

β
et+1
i +

1

6L2
(wt+1

i − wt
i)

= ∇ 1

n
fi(w

t+1
i )−∇ 1

n
fi(w

t+1
i,⋆ ) +

2δ

β
(wt+1

i − wt
i) +

2

β
(xt+2

i − xt+1
i ) +

1

β
et+1
i

+
1

6L2
(wt+1

i − wt
i),

(89)

where the second equality uses equation 2. Thus, using Cauchy-Schwarz inequality, we have that

∥Ai∥

= 4∥∇ 1

n
fi(w

t+1
i )−∇ 1

n
fi(w

t+1
i,⋆ )∥2 + 16δ2

β2
∥wt+1

i − wt
i∥2 +

16

β2
∥xt+2

i − xt+1
i ∥2 + 4

β2
∥et+1

i ∥2

+
1

6L2
(wt+1

i − wt
i)

≤ 4L2∥wt+1
i − wt+1

i,⋆ ∥2 + 16δ2

β2
∥wt+1

i − wt
i∥2 +

16

β2
∥xt+2

i − xt+1
i ∥2 + 4

β2
∥et+1

i ∥2

+
1

6L2
(wt+1

i − wt
i)

=
16δ2

β2
∥wt+1

i − wt
i∥2 +

16

β2
∥xt+2

i − xt+1
i ∥2 +

(
4L2 +

4

β2

)
∥et+1

i ∥2 + 1

6L2
(wt+1

i − wt
i),

(90)

where the first inequality uses the Lipshcitz continuity of ∇F .

For the third coordinate on the right hand side of equation 88, using equation 34, we have that

d2(0, ∂g̃(Zt+1) +
1

β
(Xt+1 − Zt+1)− 2

β
(W t+1 − Zt+1))

≤ ∥ 1
β
(2W t+1 −Xt+1 − Zt+1) +

1

β
(Xt+1 − Zt+1)− 2

β
(W t+1 − Zt+1)∥2

= 0.

(91)
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Denoting Et = (et1, . . . , e
t
n) and combining this with equation 88 and equation 90 gives that

d2(0, ∂H(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t) ≤ 1

β2
∥Xt+2 −Xt+1∥2 + 16δ2

β2
∥W t+1 −W t∥2

+
16

β2
∥Xt+2 −Xt+1∥2 +

(
4L2 +

4

β2

)
∥Et+1∥2 + 8δ2

β2
∥W t+1 −W t∥2 + 2

3L2
Υt

=

(
1

β2
+

16

β2

)
∥Xt+2 −Xt+1∥2 +

(
16δ2

β2
+

8δ2

β2

)
∥W t+1 −W t∥2

+

(
4L2 +

4

β2

)
∥Et+1∥2 + 2

3L2
Υt

a
≤
(

1

β2
+

16

β2

)
∥Xt+2 −Xt+1∥2 +

(
16δ2

β2
+

8δ2

β2

)
∥W t+1 −W t∥2

+

(
4L2 4

β2

)
1

( 1β − L)2
CϵwEΥt+1 +

2

3L2
Υt

≤
(

1

β2
+

16

β2

)
∥Xt+2 −Xt+1∥2 +

(
16δ2

β2
+

8δ2

β2

)
∥W t+1 −W t∥2

+

(
4L2 4

β2

)
1

( 1β − L)2
CϵwE

(
1

2
Υt + 6L2∥W t −W t+1∥2

)
+

2

3L2
Υt,

(92)

where (a) uses equation 37 and the last inequality uses equation 38. Now we bound ∥Xt+2−Xt+1∥2.
Recalling equation 38, it holds that

∥Xt+2 −Xt+1∥2 ≤ (1 + βL)2 (1 + κ)Υt+2 + (1 + βL)2
(
1 +

1

κ

)
2

( 1β − L)2
CϵwΥt+1

≤ (1 + βL)2 (1 + κ)Υt+2 + (1 + βL)2
(
1 +

1

κ

)
2

( 1β − L)2
Cϵw

(
1

2
Υt + 6L2∥W t −W t+1∥2

)
.

(93)

where the last inequality use equation 21. In addition, summing equation 21 from t+ 1 to t+ 2, we
have that

Υt+2 ≤ 1

2
(Υt −Υt+2) + 6L2∥W t+1 −W t+2∥2 + 6L2∥W t −W t+1∥2

≤ 1

2
EΥt + 6L2∥W t+1 −W t+2∥2 + 6L2∥W t −W t+1∥.

(94)

Combining equation 93, equation 94 and equation 92, we see that there exist Γ′
1, Γ′

2 and Γ′
3 such that

d2(0, ∂H(Xt+1,W t+1, Zt+1, Y t+1,W t, Y t)) ≤ Γ′
1∥W t+2 −W t+1∥2 + Γ′

2∥W t+1 −W t∥2 + Γ′
3Υt.

(95)

Combining this with the fact that a2 + b2 + c2 < (a+ b+ c)2 for any a > 0, b > 0 and c > 0, the
conclusion holds with Γ1 =

√
Γ′
1, Γ2 =

√
Γ′
2 and Γ3 = Γ′

3.

Next, we show the proofs of Theorem 3. For convenience, we restate Corollary 3 as follows.
Theorem 9. Let assumptions in Theorem 6 hold. Suppose Assumption 3 holds. Suppose in addition
that H is a KL function with exponent α ∈ [0, 1). Then {(Xt,W t, Zt, Y t)} is convergent. In
addition, denoting (X∗,W ∗, Z∗, Y ∗) := limt(X

t,W t, Zt, Y t), it holds that

(I) If α = 0, then {(Xt,W t, Zt)} converges finitely and {W t} converges linearly for large t.

(II) If α ∈ (0, 1
2 ], then there exist a > 0 and ρ ∈ (0, 1) such that max{∥W t − W ∗∥, ∥Xt −

X∗∥, ∥Zt − Z∗∥, ∥Y t − Y ∗∥} ≤ aρt for large t.

(III) If α ∈ ( 12 , 1], then there exist b > 0 such that max{∥W t−W ∗∥, ∥Xt−X∗∥, ∥Zt−Z∗∥, ∥Y t−
Y ∗∥} ≤ bt−

1
4α−2 for large t.
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Proof. We first show the global convergence and convergence rates of {W t}. In the deterministic
case, we have from Theorem 6 (i) that {H(Xt,W t, Zt, Y t,W t−1, Y t−1)} is convergent. De-
note its limit as H∗. For simplicity of the proofs, in the rest of the proof, we denote Ht :=
H(Xt,W t, Zt,W t−1, Y t−1). First, suppose there exists t0 such that Ht = H∗. Since {Ht} is non-
increasing and recalling equation 40, we know that Ht ≡ H∗ and ∥W t−W t−1∥ = ∥Zt+1−Zt∥ = 0
for all t ≥ t0. This implies that W t = wt0 and Zt+1 = zt0 for all t ≥ t0. This together with
equation 38 and equation 3 induces that Xt = xt0 .

Now, we show the convergence of {Y t}. Recalling equation 21, it holds that

Υt+1 ≤ 1

2
(Υt −Υt+1) + 6L2∥W t+1 −W t∥2

⇔ 3

2
Υt+1 ≤ 1

2
Υt + 6L2∥W t+1 −W t∥2.

Taking square root on both side of the second inequality in the above relation, we have that√
3

2
Υt+1 ≤

√
1

2
Υt + 6L2∥W t+1 −W t∥2 ≤

√
1

2
Υt +

√
6L2∥W t+1 −W t∥ (96)

where the second inequality uses the fact that a2+b2 ≤ (a+b)2 for any positive a and b. Rearranging
the above inequality, we have that√

Υt+1 ≤ 1√
3− 1

(
√

Υt −
√
Υt+1) +

√
12L2

3−
√
3
∥W t+1 −W t∥. (97)

Summing the above inequality from t = 1 to T , we have that
T∑

t=1

∥Y t − Y t+1∥ ≤
T∑

t=1

√
Υt+1 ≤ 1√

3− 1

√
Υ1 +

√
12L2

3−
√
3

T∑
t=1

∥W t+1 −W t∥

Since {W t} converges finitely,
∑∞

t=1 ∥W t+1 −W t∥ < ∞. Thus, taking T in the above inequality
to infinity, we have that

∑∞
t=1 ∥Y t − Y t+1∥ < ∞, implying that {W t} is convergent.

Next, we suppose that Ht > H∗ for all t. Since H is a KL function and is constant on Ω thanks to
Theorem 7 (ii), using Lemma 6 of Bolte et al. (2014), there exists ϵ > 0, a > 0 and ϕ ∈ Ψa such that

ϕ′(H(X,W,Z, Y,W ′, Y ′)−H∗)d(0, ∂H(X,W,Z, Y,W ′, Y ′)) ≥ 1

when (X,W,Z, Y,W ′, Y ′) belongs to the set that

d((X,W,Z, Y,W ′, Y ′),Ω) ≤ ϵ

and

H∗ < H(X,W,Z, Y,W ′, Y ′) < H∗ + a.

Denote the above set as B. Thanks to Theorem 6 (ii), we know that
limt d((X

t,W t, Zt, Y t,W t−1, Y t−1),Ω) = 0. This together with the fact that {Ht} is
nonincreasing and convergent guaranteed by equation 40 and Theorem 6 (ii), we deduce that there
exists t1 such that (Xt,W t, Zt, Y t,W t−1, Y t−1) ∈ B for any t ≥ t1. Thus, for t ≥ t1, it holds that

ϕ′(H(Xt,W t, Zt, Y t,W t−1, Y t−1)−H∗)d(0, ∂H(Xt,W t, Zt, Y t,W t−1, Y t−1) ≥ 1. (98)

Using the concavity of ϕ, the above inequality further implies that

(ϕ(Ht −H∗)− ϕ(Ht+1 −H∗))) d(0, ∂H(Xt,W t, Zt, Y t,W t−1, Y t−1))

≥ ϕ′(Ht −H∗)d(0, ∂H(Xt,W t, Zt, Y t,W t−1, Y t−1)) (Ht −Ht+1)

≥ Ht −Ht+1 ≥ δϵ
β
∥W t −W t−1∥2,

where the last inequality uses equation 40. Combining the above inequality with equation 87, we
have that

(ϕ(Ht −H∗)− ϕ(Ht+1 −H∗)))
(
Γ1∥W t+1 −W t∥+ Γ2∥W t −W t−1∥+ Γ3Υt−1

)
≥ δϵ

β
∥W t −W t−1∥2.
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Rearranging and taking square roots on both sides of the inequality, we have that

∥W t −W t−1∥

≤
√

β

δϵ
(ϕ(Ht −H∗)− ϕ(Ht+1 −H∗))) (Γ1∥W t+1 −W t∥+ Γ2∥W t −W t−1∥+ Γ3Υt−1).

(99)

Combining equation 97 with equation 99 and denoting Γ4 := max{Γ1,Γ2,Γ3
1√
3−1

,Γ3

√
12L2

3−
√
3
},

we have that

∥W t −W t−1∥

≤ βΓ4

δϵ
(ϕ(Ht −H∗)− ϕ(Ht+1 −H∗)))

+
1

4

(
∥W t+1 −W t∥+ ∥W t −W t−1∥+ ∥W t−2 −W t−1∥+ (Υt−2 −Υt−1)

) (100)

where the second inequality is because
√
ab ≤ 1

2 (a+ b) for any positive a and b.

Rearranging the above inequality, it holds that

1

4
∥W t −W t−1∥ ≤ βΓ4

δϵ
(ϕ(Ht −H∗)− ϕ(Ht+1 −H∗)))

+
1

4

(
∥W t+1 −W t∥ − ∥W t −W t−1∥

)
+
(
∥W t−2 −W t−1∥ − ∥W t −W t−1∥

)
+

1

4
(Υt−2 −Υt−1)

Pick any t2 > t1 + 1. Sum the above inequality from t = t2 to T , it holds that

1

4

T∑
t=t2+1

∥W t −W t−1∥

≤ βΓ4

δϵ
(ϕ(Ht2+1 −H∗)− ϕ(HT+1 −H∗))) +

1

4

(
∥WT+1 −WT ∥ − ∥W t2+1 −W t1∥

)
+

1

4

(
∥W t2−2 −W t2−1∥ − ∥WT −WT−1∥

)
≤ βΓ4

δϵ
ϕ(Ht2+1 −H∗) +

1

4
∥WT+1 −WT ∥+ 1

4

(
∥W t2−2 −W t2−1∥

)
,

where the second inequality uses the fact that ϕ(w) ≥ 0. Since limt ∥WT+1 −WT ∥ = 0 thanks to
equation 6 (ii), passing T in the above inequality to infinity shows that

1

4

T∑
t=t2+1

∥W t −W t−1∥ ≤ βΓ4

δϵ
ϕ(Ht2+1 −H∗) +

1

4

(
∥W t2−2 −W t2−1∥

)
< ∞. (101)

Therefore, {W t} is convergent.

Next, we show the convergence rate of {W t}. From the assumption, we know that ϕ(w) = cy1−α

for some c > 0. Then ϕ′(w) = c(1− α)y−α. Consider the case α = 0. If Ht > H∗ for all t, using
equation 98, we deduce that

d(0, ∂H(Xt,W t, Zt, Y t,W t−1, Y t−1)) ≥ 1

c
, for t ≥ t1.

However, thanks to equation 87 and Theorem 6 (ii), we have that
limt d(0, ∂H(Xt,W t, Zt, Y t,W t−1, Y t−1)) = 0, a contradiction. Thus, when α = 0,
there exists t00 such that Ht = H∗ for t > t00. Due to the arguments at the beginning of this proof,
we know in this case, {W t} converges finitely.

Now we consider the case where α ∈ (0, 1). Still, if there is a t such that Ht = H∗, {W t}
converges finitely. Thus, we only need to consider the case where Ht > H∗ for all t. Define
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St :=
∑

j=t ∥W j+1 −W j∥ and H̄t = Ht −H∗. Thanks to equation 101, St is well defined. Using
equation 101, for t > t1, it holds that

St ≤
2βmax{Γ1,Γ2}

δϵ
ϕ(Ht2+1 −H∗) ≤

2βmax{Γ1,Γ2}
δϵ

ϕ(Ht+1 −H∗) +
1

2
(St−2 − St).

(102)

With this inequality, following the proofs in Theorem 4.3 of Wen et al. (2018) (beginning from (4.18)
of Wen et al. (2018)), we have that

(i) If α ∈ (0, 1
2 ], then there exist a > 0 and ρ ∈ (0, 1) such that

∥W t −W ∗∥ ≤ St ≤ aρt for large t. (103)

(ii) If α ∈ ( 12 , 1), then there exist b > 0 such that

∥W t −W ∗∥ ≤ St ≤ bt−
1

4α−2 for large t. (104)

To show the convergence of (Xt, Zt, Y t), we first show that {Υt} is summable. Summing equation 97
from t = t2 to T , we know that

T∑
t=t2

√
Υt+1 ≤ 1√

3− 1
(
√
Υt2 −

√
ΥT+1) +

√
12L2

3−
√
3

T∑
t2

∥W t+1 −W t∥

≤ 1√
3− 1

(
√
Υt2 −

√
ΥT+1) +

√
12L2

3−
√
3

(
4βΓ4

δϵ
ϕ(Ht2+1 −H∗) +

1

4

(
∥W t2−2 −W t2−1∥

))
.

(105)

Taking T in the above inequality to infinity, we deduce that
∑∞

t=t2

√
Υt+1 < ∞.

Since ∥Y t+1 − Y t∥ ≤
√
Υt+1 by definition of Υt, we deduce that ∥Y t+1 − Y t∥ is also summable

and thus {Y t} is convergent to some Y ∗. Furthermore, the above inequality show that

∥Y t2 − Y ∗∥ ≤
∞∑

t=t2

∥Y t+1 − Y t∥ ≤
∞∑

t=t2

√
Υt+1. (106)

Next we show that {Xt} is convergent. Taking square root of equation 38 on both sides, we have that

∥Xt+1 −Xt∥ ≤
√

(1 + βL)2 (1 + κ)Υt+1 + (1 + βL)2
(
1 +

1

κ

)
2

( 1β − L)2
CϵwΥt

≤
√
(1 + βL)2 (1 + κ)

√
Υt+1 +

√
(1 + βL)2

(
1 +

1

κ

)
2

( 1β − L)2
Cϵw

√
Υt.

Since {Υt} is summable, the above inequality show that {∥Xt+1 − Xt∥} is summable and thus
{Xt} is convergent to some X∗. In addition, the above inequality shows that

∥Xt2 −X∗∥ ≤
∞∑

t=t2

∥Xt+1 −Xt∥ ≤ O(

∞∑
t=t2

√
Υt+1 +

∞∑
t=t2

√
Υt). (107)

This implies {Xt} is convergent. Using equation 2, we deduce that {Zt} is convergent.

We next show the convergence rate of
∑∞

t=t

√
Υt. Dividing both sides of equation 96 by

√
3
2 , we

have that √
Υt+1 ≤ 1√

3Υt

+
√
2L2∥W t+1 −W t∥.
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Thus, summing the above inequality from t2 to T , it holds that
∞∑

t=t2

√
Υt ≤

∞∑
t=t2

√
Υt+1 ≤ 1√

3

∞∑
t=t2

√
Υt +

√
2L2

∞∑
t=t2

∥W t+1 −W t∥.

Rearranging the above inequality, for any t2 > t1 + 1, we have that
∞∑

t=t2

√
Υt ≤

1

1− 1√
3

√
2L2

∞∑
t=t2

∥W t+1 −W t∥ =
1

1− 1√
3

√
2L2St2 . (108)

Combining this with equation 106, equation 107, equation 103 and equation 104, we deduce that the
convergence rate of {(Xt, Y t)} is at least the same as that of {W t}. Finally, using equation 2, we
deduce that {Zt} is convergent and its convergence rate is at least the same as that of {W t}.

C.1 PROOFS OF PROPOSITION 3.

Proof. Fix an x ∈ dom ∂G. Let y(x) = argmaxy F (x, y). Consider F (·, y(x)). Since F is strongly
concave in y, we know that y(x) is continuous, see Proposition 1 in Chen et al. (2021). From the
assumption in this proposition, there exist ϵ(y(x)), c(y(x)) and a(y(x)) such that

dist
1
α (0, ∂xF (·, y(x))(x̃)) ≥ c(y(x))(F (x̃, , y(x))− F (x, y(x))

whenever x̃ ∈ dom ∂xF (·, y(x)), ∥x̃−x∥ ≤ ϵ(y(x)) and F (x, y(x))< F (x, y(x̃)) < F (x̃, y(x)) <
F (x, y(x)) + a(y(x)). Thanks to the continuity of F (·, y) for any fixed y, we suppose without
loss of generality that ϵ(y(x)) be small enough such that when ∥x̃ − x∥ ≤ ϵ(y(x)), we have that
F (x, y(x)) < F (x, y(x)) + a(y(x)). Thus, there exist ϵ(y(x)), c(y(x)) and a(y(x)) such that

dist
1
α (0, ∂F (·, y(x))(x̃)) ≥ c(y(x))(F (x̃, y(x))− F (x, y(x))) (109)

whenever x̃ ∈ dom ∂xF (·, y(x)) and ∥x̃− x∥ ≤ ϵ(y(x)).

Recalling the continuity assumptions on c(y) as well as ϵ(y) the continuity of y(x), there exists δ > 0
small enough such that there exists ϵ ∈ (0, inf∥x̄−x∥≤δ ϵ(y(x̄))) and inf∥x̄−x∥≤δ c(y(x̄)) > 0.

Now let z be any point satisfying ∥z − x∥ ≤ min{ϵ, δ} and G(z) ≥ G(x). Then by the definition of
y(x), it holds that

F (z, y(z))− F (x, y(z)) ≥ F (z, y(z))−−F (x, y(x)) ≥ 0. (110)

For this z using equation 109, there also exist ϵ(y(z)) and c(y(z)) such that

dist
1
α (0, ∂xF (x̃, y(z))) ≥ c(y(z))(F (x̃, y(z))− F (x, y(z))) (111)

whenever x̃ ∈ dom ∂F (·, y(z)) and ∥x̃− x∥ ≤ ϵ(y(z)). By assumption of this proposition, and by
the choice of z, we have that

∥z − x∥ ≤ ϵ < inf
∥x̄−x∥≤δ

ϵ(y(x̄)) ≤ ϵ(y(z)),

where the last inequality is because ∥z − x∥ ≤ δ. Thus, using equation 111, we have

dist
1
α (0, ∂xF (z, y(z))) ≥ c(y(z))(F (z, y(z))− F (x, y(z)))

≥ c(F (z, y(z))− F (x, y(z))) = c(F (z, y(z))− F (x, y(x)))

+ c(F (x, y(x))− F (x, y(z))) ≥ c(F (z, y(z))− F (x, y(x)))

= c(G(z)−G(x)),

where c := inf∥x̄−x∥≤δ c(y(x̄)), the second inequality is because ∥z − x∥ ≤ min{ϵ, δ} and equa-
tion 110, the last inequality uses the definition of y(x).

Thus, when ∥z − x∥ ≤ δ and G(z) ≥ G(x), it holds that

dist
1
α (0, ∂xF (z, y(z))) ≥ c(G(z)−G(x)).

When G(z) < G(x), the above inequality holds trivially. Therefore, we deduce that

dist
1
α (0, ∂G(z)) = dist(0,∇xF (z, y(z)) + ∂g(x)) = dist(0, ∂xF (z, y(z))) ≥ c(G(z)−G(x)),

where the equality is from Danskin’s theorem and Exercise 8.8 in Rockafellar & Wets (1998).
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C.2 PROOFS OF REMARK 4

Proof. Fix any θ̄. By the continuity of F (·, δ), it suffices to show that there exists ϵ(δ) such that

F (θ, δ)− F (θ̄, δ) ≤ dist2(0, ∂θF (θ, δ)), for |θ| ≤ ϵ(δ),

and ϵ(δ) is continuous in δ. Without loss of generality, we let (x, y) = (0, 1). Then F (θ, δ) =
log(1 + exp(−θδ))︸ ︷︷ ︸

ℓ(θ,δ)

−c|δ|2 + λ|θ|. Thus,

∂θF (θ, δ) =
−δ exp(−δθ)

1 + exp(−δθ)
+ λ∂|θ|.

and

dist(0, ∂θF (θ, δ)) =

{
λ− δ exp(−δθ)

1+exp(−δθ) , θ ≥ 0

λ+ δ exp(−δθ)
1+exp(−δθ) , θ < 0.

(112)

Thus, for any ϵ > 0 and any |θ| ≤ ϵ, it holds that

dist2(0, ∂θF (θ, δ)) = ∥∇θF (θ, δ)∥2 = (λ− δ exp(−δθ)

1 + exp(−δθ)
)2 ≥ max

{
(λ− |δ|

2
)2, (λ− |δ|)2

}
.

(113)

Now we divided θ̄ into three cases: θ̄ = 0, θ̄ > 0 and θ̄ < 0.

Case I: θ̄ = 0. In this case,

F (θ, δ)− F (0, δ) = log(1 + exp(−θδ)) + λ|θ| − log 2.

Let ϵ > 0. When |θ| < ϵ, we have that

F (θ, δ)−F (0, δ) ≤ log(1+ exp(ϵ|δ|)) + λϵ− log 2 ≤ log(2 exp(ϵ|δ|)) + λϵ− log 2 ≤ ϵ(|δ|+ λ).
(114)

and

dist2(0, ∂θF (θ, δ)) ≥
(
λ− |δ| exp(|δ||θ|)

1 + exp(|δ||θ|)

)2

. (115)

Note that

• If |δ| = λ, then
(
λ− λ exp(|δ||θ|)

1+exp(λ|θ|)

)2
=
(

λ
1+exp(λ|θ|)

)2
≥
(

λ
1+exp(λϵ)

)2
. Let ϵ1(δ) =

( λ
1+exp(λϵ) )

2

|δ|+λ , we have that ϵ(|δ|+ λ) ≤
(
λ− λ exp(|δ||θ|)

1+exp(λ|θ|)

)2
.

• If δ = 0, then
(
λ− λ exp(|δ||θ|)

1+exp(λ|θ|)

)2
= λ2. Let ϵ2(δ) = λ2

|δ|+λ , we have that ϵ(|δ| + λ) ≤(
λ− λ exp(|δ||θ|)

1+exp(λ|θ|)

)2
.

• If δ ̸= 0 and λ < 1
2 |δ|, then log

(
λ

|δ|−λ

)
> 0. Also, λ = |δ| exp(|δ||θ|)

1+exp(|δ||θ|) if and only if

|θ| = ϵ3(δ) with ϵ3(δ) :=
1
|δ| log

(
λ

|δ|−λ

)
. Thus, when |θ| < 1

2ϵ3.5(δ),(
λ− |δ| exp(|δ||θ|)

1 + exp(|δ||θ|)

)2

>

(
λ−

|δ| exp( 12ϵ3.5(δ)|δ|)
1 + exp( 12ϵ3.5(δ)|δ)

)2

> 0.

Letting ϵ3(δ) =

(
λ−

|δ| exp( 1
2
ϵ3(δ)|δ|)

1+exp( 1
2
ϵ3(δ)|δ)

)2

|δ|+λ , we have that ϵ(|δ|+ λ) ≤
(
λ− λ exp(|δ||θ|)

1+exp(λ|θ|)

)2
.
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• If δ ̸= 0 and λ ≥ 1
2 |δ|, then λ− |δ| exp(|δ||θ|)

1+exp(|δ||θ|) > 0. Thus,(
λ− |δ| exp(|δ||θ|)

1 + exp(|δ||θ|)

)2

≥ max

{
(λ− |δ|

2
)2, (λ− |δ|)2

}
.

Let ϵ4(δ) =
max{(λ− |δ|

2 )2,(λ−|δ|)2}
|δ|+λ , we have that ϵ(|δ|+ λ) ≤

(
λ− λ exp(|δ||θ|)

1+exp(λ|θ|)

)2
.

Therefore, let ϵ(δ) := mini=1,2,3,4 ϵi(δ), we know that ϵ(δ) is continuous and

ϵ(|δ|+ λ) ≤
(
λ− |δ| exp(|δ|θ|)

1 + exp(|δ||θ|)

)2

.

This together with equation 114 and equation 115 shows that

F (θ, δ)− F (0, δ) ≤ dist2(0, ∂θF (θ, δ)), for |θ| ≤ ϵ(δ).

Thus, F (·, δ) satisfies the KL property at 0 with exponent α and constants ϵ(δ).

Case II: θ̄ > 0. Let ϵ > 0. For any θ ∈ [θ̄ − ϵ, θ̄ + ϵ], we have that

F (θ, δ)− F (θ̄, δ) ≤ log(1 + exp(θ|δ|)) + λθ − log(1 + exp(−θ̄δ))− λθ̄

≤ log(2 exp(θ|δ|)) + λθ ≤ θ(|δ|+ λ) + log 2 ≤ (θ̄ + ϵ)(|δ|+ λ) + log 2.

Following similar argument after (14) in Case I, we can show that there exists ϵ(δ) continuous w.r.t δ
such that F (·, δ) satisfies the KL property at θ̄ with exponent α and constants ϵ(δ).

Case III: θ̄ < 0. Let ϵ > 0. For any θ ∈ [θ̄ − ϵ, θ̄ + ϵ], we have that

F (θ, δ)− F (θ̄, δ) ≤ log(1 + exp(|θ||δ|)) + λ|θ| − log(1 + exp(−θ̄δ))− λ̄|θ|
≤ log(2 exp(|θ||δ|)) + λ|θ| ≤ |θ|(|δ|+ λ) + log 2 ≤ (|θ̄|+ ϵ)(|δ|+ λ) + log 2.

Following similar argument after (14) in Case I, we can show that there exists ϵ(δ) continuous w.r.t δ
such that F (·, δ) satisfies the KL property at θ̄ with exponent α and constants ϵ(δ).
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