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ABSTRACT

Federated learning (FL) has recently been actively studied to collaboratively train
machine learning models across clients without directly sharing data and to address
data-hungry issues. Many FL works have been focusing on minimizing a loss
function but many important machine learning tasks such as adversarial training,
GAN:s, fairness learning, and AUROC maximization are formulated as minimax
problems. In this paper, we propose a new federated learning method for minimax
problems. Our method allows client drift and addresses the data heterogeneity issue.
In theoretical analysis, we prove that our method can improve sample complexity
from O(e3) to O(e~2). We also give convergence guarantees for the updates
of the model parameters, i.e., the sequences generated by the method. Given the
Kurdyka-t.ojasiewicz (KL) exponent of a novel potential function related to the
objective function, we demonstrate that the sequences generated by our method
converge finitely, linearly, or sublinearly. Our assumptions on the KL property are
weaker than previous work on the sequential convergence of centralized minimax
methods. Additionally, we further weaken the KL assumption by deducing the KL
exponent of the maximizer-dependent potential function from that of the maximizer-
free function. We validate our federated learning method on AUC maximization
tasks. The experimental results demonstrate that our method outperforms state-of-
the-art federated learning methods when the distributions of local training data are
non-IID.

1 INTRODUCTION

In recent years, federated learning (FL) has garnered significant attention within the machine learning
community, owing to its wide real-world applications in finance, healthcare, edge computing, AloT,
and more. Federated learning allows multiple clients to collaboratively train the same model locally
on their own devices. Once trained, the local models are sent to a central server, where they are
aggregated, and the updated global model is returned to the clients for further local training. This
decentralized approach enables the training of machine learning models using datasets from different
clients without the need for data sharing. Additionally, it avoids the transfer of large datasets to a
central server, thereby reducing bandwidth requirements and associated costs.

The classical federated learning problem focuses on minimizing a loss function using local training
datasets. However, many emerging scenarios, such as adversarial training (Tramer et al.| 2018}
Bai et al., 2021)), distributionally robust optimization (Levy et al., 2020; |Gao & Kleywegt, 2023}
Madras et al., 2018]), generative adversarial networks (GANs) (Goodfellow et al.,|2014), and AUROC
(Area Under the ROC Curve) maximization (Lei & Ying| [2021), often formulate their objectives
as minimax optimization problems. While centralized methods for solving minimax problems are
well-explored, federated learning methods for minimax optimization are still in their early stage.
These problems face similar challenges as traditional federated learning, particularly regarding data
sharing and communication overhead. Hence, it is necessary develop federated methods for these
minimax problems.
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Table 1: Local(L) SDGA (Sharma et al., [2022), Momentum Local (ML) SGDA (Sharma et al.}
2023)), FedSGDA (Wu et al, 2023)), FEDNEST (Tarzanagh et al., 2022). BH=Bounded Heterogeneity
Assumption, F/P=Partial/Full attendance, « is the KL exponent, p; € (0,1), b and ¢ are constants.

Sample Complexity Model Parameter Convergence
FIP | Free of BHA | (pis(0, VY7 | 1 £i(1)+g(21)) A1zt~ =1
LSDGA F X O(kT o Te ) X
MLSGDA | P X O(x™nTe T X
FedSGDA | F X O(k d I “) X
FEDNEST | P X O(k = () X
FedSGDA | F X O(5n e D) X
finite step convergence when oo = 0
Ours P v O(x?log(k)n~1e~2) O(p}) (linear convergence) when a € (0, 3]
O(t_ﬁ) (sublinear convergence) when o € (3,1)

In this work, we focus on developing federated methods specifically for minimax optimization
problems. We consider the following general formulation:

minmafofl x,y) + g(x), (D

z€R yeRI N

where each f;(z,y) = > jen, f (x,y;&;), with D; being the dataset of the ith client and ; represent-
ing individual data points within it. Here, f is a smooth function that is nonconvex in x and strongly
concave in y, and g represents a proper closed function. Examples of strongly concave f include
fairness classification problems (Nouiehed et al.| [2019), adversarial training (Sinha et al., [2017),
and GAN training (Vlatakis-Gkaragkounis et al.l [2021). Common choices for g include convex
regularizers or indicator functions corresponding to convex constraints. In this work, we assume that
the proximal operator for g is easy to compute.

A key challenge in federated minimax optimization lies in handling the max problem nested within
the min problem, particularly when training must occur locally. In centralized settings, the Gradient
Descent Ascent (GDA) method is a classical approach to minimax problems. To extend this to
federated learning, one could adapt GDA to the FedAvg method, resulting in LocalSGDA (Deng
et al., [2020)). Other variations, such as Momentum Local SGDA (Sharma et al., [2022), accelerate
convergence by adding momentum to local updates, while FedSGDA+ (Wu et al., 2023) further
reduces complexity. However, these methods require all clients to participate in every training round,
which introduces the risk of client drift due to unstable network connections. To address this, we
propose methods that allow only a subset of clients to participate in each training round.

In addition to client drift, data heterogeneity—where local data distributions vary significantly—poses
another challenge in federated learning. This heterogeneity can slow down training and reduce the
model’s performance. Previous works (Sharma et al.| 2023]; 2022} [Wu et al., [2023)) have proposed
methods to address heterogeneity, assuming bounds on the degree of heterogeneity and studying its
impact on convergence complexity. However, in real-world scenarios, these bounds can be large,
leading to loose convergence guarantees. Our work introduces methods that offer convergence
guarantees without relying on these heterogeneity bounds.

Moreover, while much of the existing research focuses on the complexity of federated learning

methods—such as the convergence of Zt 1 Edist(0,V S+ fi(2")4+0g(2")), (2" representing
model parameters), little attention has been given to the convergence of the model parameters
themselves. Even for minimization problems, such as those tackled by the classical LocalSGD
method (Stich} 2019), the primary focus has been on complexity rather than parameter convergence.
Understanding the convergence of model parameters is crucial for evaluating the method’s ability
to reach a solution. To the best of our knowledge, parameter convergence has only been studied for
strongly convex minimization problems in federated learning (Pathak & Wainwright, [2020). In this
work, we provides the first analysis of parameter convergence for nonconvex minimax problems.

1.1 CONTRIBUTIONS

In this work, we develop a novel federated learning method specifically designed for minimax
optimization problems, addressing the unique challenge of solving nested minimax problems in
a federated setting. Our approach allows for partial client participation during training rounds,
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mitigating client drift caused by unstable network conditions. Additionally, it effectively handles data
heterogeneity without relying on strict bounds for data distribution discrepancies, ensuring robust
convergence in real-world applications. By introducing a new termination criterion for local training,
we enhance the sample complexity of existing federated minimax methods, reducing the complexity
from O(e?) to O(e~?) while maintaining a fixed number of local iterations.

In addition, we provide convergence guarantees for the sequence of model parameters generated
by the method, which we refer to as sequential convergence. We demonstrate that when all clients
participate in training and the local solvers are deterministic, the accumulation points of the sequence
generated by our method converge to a stationary point. Furthermore, we establish the convergence
rate of the sequence in nonsmooth and nonconvex settings. To achieve this, we leverage the Kurdyka-
Lojasiewicz (KL) framework, which specializes in analyzing sequence convergence in nonsmooth,
nonconvex cases (Attouch et al., 2010; L1 & Pong, |2018; |Attouch et al., 2013; |Bolte et al.| [2017).
We show that, depending on the KL exponent of the potential function, the sequence generated by
our method converges finitely, linearly, or sublinearly when the KL exponent is 0, (0, 1], or (3,1),
respectively.

Our method is the first one in federated learning that is able to have sequential conver-
gence guarantees in nonconvex nonsmooth settings.

Furthermore, we weaken the KL assumptions made on the potential function compared to previous
work on sequential analysis for the centralized minimax problem in |Chen et al.| (2021). In their work,
the potential function depends on the maximizer y(z) := argmax f(z,y) and the maximum function
f(z) := max, f(z,y). The potential nonconvexity and nonsmoothness of the max function generally
make its subgradient discontinuous, posing challenges in calculating its KL exponent. In contrast,
our potential function does not rely on y(z) := argmax f(x,y). We introduce a calculus rule
(Proposition [3)) to deduce the KL exponent of our potential function directly from the maximizer-free
function. As a result, our analysis offers a weaker assumption for sequential convergence in federated
learning methods for minimax optimization problems.

We apply our method to the AUC maximization problem in federated learning, particularly under
conditions of data heterogeneity. Our experiments demonstrate that the proposed method outperforms
existing federated minimax approaches in both efficiency and performance.

1.2  RELATED WORK

Federated learning for minimization problem Classical federated learning methods for minimiza-
tion problem include FedAvg (McMahan et al., 2017)), LocalSGD (Stich, 2019), FedDualAvg, (Yuan
et al.} 2021a)), FedSplit (Pathak & Wainwright, 2020) and SCAFFOLD (Karimireddy et al.,|2020). In
order to address the heterogeneity problem in FL, federated splitting methods are proposed, see Yuan
et al.[(2021a);|Li et al.| (2020); Reddi et al.| (2021)); Pathak & Wainwright| (2020); Tran-Dinh et al.
(2021) for examples. When the objective is minimizing a strongly convex objective function, Stich
(2019) shows the convergence rate of LocalSGD is O(1/nTb), where n is the number of clients,
b is the batch size and T is the communication round. On the other hand, |Pathak & Wainwright
(2020) shows the sequence generated by their proposed method converges linearly when the objective
function is strongly convex. Our method is closely related to the FedDR method for the minimization
problem in [Tran-Dinh et al.| (2021). However, our work differs from [Tran-Dinh et al.| (2021)) in
three perspectives: 1. We work on minimax problems. The existence of the maximization problem
raises new challenges in theoretical analysis. To address this challenge, we propose new potential
functions related to the variables in the maximization problem and are key to all our analysis. 2. We
provide comprehensive sequential convergence analysis. Our result is also new when our method
degenerates to solve the minimization problems in federated learning. 3. We conducted further
investigation on the KL assumption used for analyzing the minimax problems. The existing studies
on the KL property for minimax problems are quite few. |[Li & So| (2022); |[Zheng et al.| (2023)
investigate a global KL property. [Li & So|(2022) show that when the objective function is nonconvex
in x and nonconcave in y, if the objective function is a KL function with respect to y with an
exponent in [0, %] their method can achieve optimal iteration complexity. In Zheng et al.| (2023)),
the authors propose a unified single-loop algorithm for solving centralized nonconvex-nonconcave,
nonconvex-concave, and convex-nonconcave minimax problems. Under a one-sided KL assumption,
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they show that the proposed method achieves a complexity of O(e~*) in all cases and can improve
upon previously existing complexity results in the same scenarios under specific KL. exponents.
On the other hand, (Chen et al.|(2021) also analyzes the sequential convergence of methods for the
centralized minimax problem. Compared with |Chen et al.| (2021), we weakened the KL assump-
tions made on the potential function. In their work, the potential function relies on the maximizer
y(x) := argmax f(x,y) and the maximum function f(z) := max, f(z,y). The exact form of y(x)
is not known, which makes verifying the KL exponent difficult. In our work, the potential function
does not rely on y(z) := argmax , f(z, y), and we provide Proposition 3| to deduce the KL exponent
of the maximizer-dependent potential function from that of the maximizer-free function. Therefore,
our analysis provides a weaker assumption for the sequential convergence analysis of the method for
the minimax optimization problem.

Federated methods for minimax|Li et al.|(2023); Deng et al.|(2020); Peng et al.|(2020) are among the
early works that proposed federated minimax methods for adversarial training problems. [Sharma et al.
(2022) investigated local stochastic gradient descent ascent in nonconvex-concave and nonconvex-
nonconcave settings. Their analysis assumed an equal number of SGDA-like local updates with
full client participation, whereas our method allows for different local updates and partial client
participation. Sharma et al.| (2023) proposed a federated minimax optimization framework that
includes local SGDA as a special case. They analyzed the convergence of the proposed algorithm
under a global heterogeneity assumption that addresses inter-client data and system heterogeneity.
Wu et al.| (2023) analyzed the nonconvex-strongly-concave case and showed that their proposed
method has a gradient complexity of O(k?n~te~3). Tarzanagh et al. (2022) proposed FEDNEST to
address the general bilevel federated learning problem and discuss the minimax problem as a special
case.

In contrast to the previous work on federated learning minimax methods, we do not assume hetero-
geneity bound assumption while achieving a smaller sample complexity. More importantly, we have
convergence guarantees for the updates of the model parameters in nonconvex settings. This makes
our method novel not only among federated minimax methods but also among federated minimization
methods. We summarize the comparison in Table/[T}

2 PRELIMINARIES

We denote R™ as the n-dimensional Euclidean space with inner product (-,-) and Euclidean
norm || - [ We denote the unit ball in R™ as B(0,1). We denote the set of positive real
value as R, ;. Given a point x € R™ and a set A, we denote the distance from z to A
as d(xz,A). An extended-real-valued function f : R™ — [—o0,00] is said to be proper if
dom f := {z € R™ : f(x) < oo} is not empty and f never equals —oco. We say a proper
function f is closed if it is lower semicontinuous. Following Definition 8.3 of Rockafellar & Wets
(1998), the regular subdifferential of a proper function f : R™ — [—o00, 00] at 2 € dom f is defined

as: O flx) = {f eR™liminf, Z¢z% > 0} . The (limiting) subdifferential of f at
x € dom f is defined as O f(x) := {EGR” =l ime,fk — Ewithek eéf(xk),Vk} , where z* EAgS

means both ¥ — z and f(z¥) — f(z). For z & dom f, we define §f(x) = df(z) = (). We denote
dom Of := {z : 3f(x) # 0}. When f is convex, the limiting subdifferential reduces to the classical
subdifferential in convex analysis.

For a proper function f : R" — [—o0, 0o], we denote the proximal operator of f as Proxgs(z) :=
Argmin. g { () + 351z — |}

Next, we make a general assumption on equation [T}

Assumption 1. For equation[l] we assume the followings hold:

(i) Each f; is strongly concave in y with modulus 1, > 0.

(ii) Each f; is differentiable and V f; is Lipschitz continuous with modulus L.

For the maximum of a strongly concave function, we have the following property, see [Lin et al.
(2020); Huang et al.|(2021); Chen et al.| (2021)) for examples.
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Algorithm 1 Fast Federated Minimax DR (FFMDR) method for equation ]

1: Input: 2%, 29, 49, T 0. Set w? = 22. Sete; ., >0, 8 € ). Lett = 0.
2: Sample cllents Stc{1,. n} according to AssumptloniFor each client i € S*:
Let

it =2l 42t — Wl 2)
Find an approximate solution (w! ", y*!) to min,,, max,, r; ;41 (w;, y;) such that equation10]

is satisfied, where r; 111 is defined in equatlonl
Let th = 2wt+1 xtﬂ
3: For the server: Let '

1~
S Proxgg <n szJrl) 3)
i=1

4: If a termination criterion is not met, let £ = ¢ 4+ 1 and go to Step 2.

Proposition 1. Consider equation|l} Suppose Assumption|l| holds. Then for any x, there exists
unique y(x) such that F;(x) = fi(z,y(x)). In addition, F; is continuously differentiable and

VF;(x) =V fi(x,y(x)) is Lipschitz continuous with modulus L := Ly (1 + k), where k := %

We say x is a stationary point of equation[ﬂif it satisfies 0 € VY " | %fi(x) + dg(z). Thanks to
Exercise 8.8 and Theorem 10.1 of Rockafellar & Wets|(1998)), we know that if x is a local minimizer
of equation[I] it is a stationary point.

Now we give the definition of the KL property.

Definition 1 (Kurdyka-k.ojasiewicz property and exponent). A proper closed function f : R™ —
(—o00, 00| is said to satisfy the Kurdyka-Lojasiewicz (KL) property at an & € dom Of if there are
a € (0,00], a neighborhood V' of & and a continuous concave function ¢ : [0,a) — [0, 00) with
©(0) = 0 such that

(i) ¢ is continuously differentiable on (0, a) with ¢’ > 0 on (0, a);
(ii) forany x €V with f(£) < f(z) <f(&)+a, it holds that ©'(f(x) — f(£))dist(0,0f (x)) > 1

If f satisfies the KL property at & € dom Of and @ can be chosen as p(v) = agv'~% for some
ag > 0and o € [0, 1), then we say that f satisfies the KL property at & with exponent o.. A proper
closed function f satisfying the KL property at every point in dom Of is called a KL function, and
a proper closed function f satisfying the KL property with exponent « € [0,1) at every point in
dom Of is called a KL function with exponent a.

Many functions are KL functions. It is known that proper closed semi-algebraic functions (i.e.,
functions whose graphs are unions and intersections of polynomial functions) satisfy the KL property,
see|Attouch et al.| (2010); [Li & Pong|(2018); |Attouch et al.| (2013)); Bolte et al.|(2017)). Semi-algebraic
functions include widely used losses such as quadratic loss, L2 loss, Huber loss, hinge loss, and 0-1
loss. KL property is a general property in convergence analysis when the considered function is not
smoothness.

3 FAST FEDERATED MINIMAX DR METHOD

The proposed Fast Federated Minimax DR (FFMDR) method is presented in Algorithm [I] The idea
is based on the Douglas-Rachford splitting method (Lions & Mercier) for the following reformation
of equation|[I}

mmfZF i)+ g(x1) + de(x1,. .., Tn),

ﬁ_/ §(X)

“
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where Fj(x;) := max,,cra fi(2i, %), X = (21,...,2,) and C = {X : x1 = 20 = -+ = 2}
The Classic DR method (Lions & Mercier) to equation [4]is as follows: pick any X°, let Z° = X°
and W° = proxg(X°). Then for t = 0,...,T, update:

XtJrl _ Xt 4 Zt o Wt,
W' = Proxgpe(X'1), )
Z' = Proxgg (2W' ! — X,

Noting that F in equation [1|is a maximization function and F is separable, the update of W' in
equation [5]is equivalent to

1
t+1 __ : . . . L o t1y2
W = minmax E fi(ws, i) + *Qﬁllwz z; % (6)

where W = (wy,...,w,) and Y = (y1,...,yn). The above problem is a minimax problem and
cannot be solve exactly in the federated setting. This requires us to consider an efficient method
that can find an good inexact solution to equation[6] We notice that equation [6]is a smooth strongly
convex strongly concave (SC-SC) minimax problem. Since we let § < %, Proposition guarantees
the existence of the unique solution to the minimax subproblem.

Denote
rir1 (Wi, yi) = fi(ws, yi) + %HW — 2. @)
Then equation [6]is equivalent to
min max 1y, (wi, yi), ®)
fori =1,...,n. Then, we only need an inner solver to solve a SC-SC smooth minimax problem.

Many methods such as those in Benjamin et al.| (2022); [Fallah et al.[(2020); Lin et al.| (2020); Kovalev
& Gasnikov| (2022)); [Palaniappan & Bach|(2016)) can be applied as an inner solver for our subproblem.
On the other hand, to have better convergence gurantees, we need an efficient termination criterion to
terminate the inner solver. In the following lemma, we show how the SAGA in [Palaniappan & Bach
(2016) can be terminated in constant iterations when satisfying a termination criterion that depends
on the current updates.

Proposition 2. Suppose r : Rl x R? — R is a pu,,-strongly convex Ly Strongly convex smooth
Sfunction. Suppose N1 is Lipschitz continuous with modulus . Apply SAGA in|Palaniappan & Bach
(2016) to solve min,, max, r(w,y). Let (w*,y*) be the ks, iteration of SAGA. Let (w, y) satisfies
Vr(z,7) # 0. Let €, > 0. Then there exists k = O(max{-L,log(k)}) such that

2 _ .
E [[ (w5 = (wop)[|” < euBll(@,9) — (@, "], ©)

where (x*,y*) is the unique solution.

In inljﬁ)ired by equation[9} we propose to terminate the solver used in client ¢ for solving equation
whe

2
Et || (w§+17 yzﬁ_l) - (wftlv yfil) H S €i,wEtTi,t+1a (10)
where (wf»jl, yfjl) is the exact solution to equation and

Yoo o= |(wh,y)) — (w2

On the other hand, using the first-order optimality condition of the problem in the update of z* in equa-

tion , Z'*1 in equation [5|is equivalent to (2", ..., 2""!) with 2'*1 = Proxs (5 3, (2w —
—_——— n

xit1Y), see Appendix of A.1 in|Tran-Dinh et al. (2021) for more details.

Finally, considering the cliendt drift, we make the following assumption.

Assumption 2. At each round, the client i has the probability p; € (0, 1] to attend the training.

Based on this fact, Assumption [2]and Proposition[2} we obtain Algorithm

'We denote E:¢ as the expectation of the outputs ¢ of local stochastic solver conditioned on
{ol,an byl {2 {wl, o wn )
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Figure 1: AUC values w.r.t. communication rounds on test dataset: a9a, covtype, gisette, ijcnnl,
phishing and w8a.

4 CONVERGENCE ANALYSIS

4.1 SAMPLE COMPLEXITY OF ALGORITHM(I]
In this section, we analyze Algorithm[T]in a general stochastic case. We first present a descent-type
lemma of a new potential function.

Theorem 1. Consider equation Suppose Assumptionsand hold. Assume % > L, where L is
defined as in Proposition[l} Let {(z,... 2t )L {(yt ..., y5)} {(wh, ..., wh)}, {2'} be generated

by Algorithm[I| Let L be the one in Proposition[I} Given a 6 > 0, define
1 1
.mxmzxwﬂﬂ:meﬂ@+%WX—WWww—mﬁ+ﬂW—mF

; ey 1 o an
+ W = WP+ g Sl ) = o)

where F and § is defined in equation 4} Denote X' = (x},... al), Y' = (y},... ,yl), W'
(wh, ... wh), Zt = (2%,...,2"). and H; := EH (X!, W', Zt Y, WL Yt=1). Let 65 € (0,
Let 3 € (0, +) be such that (1 + BL)* — 34+ 58L < —6p. Let &' €[0,03). Letv > 0and 7 € (0,1)
be small enough such that *=2272 4 (1 + BL)? (2t + 12) + (BL — 1)%1 < &'. Denote § := 65 — &'

2
Suppose that €, is small enough such that (F(%EL)Q + 4 %ELJ 6C L%, < 6%&, for some

72

L

2 142 2
0c > 0, where T := (1;0 + % (% + BL — 1) and C := 2 ((Lf:f) + 1> (Lf + %) .
Then, fort > 1,
Oe _
mﬂgm—EMW—W“W. (12)
Remark 1. By letting 55 = 1/4,8' = 1/8, 7 = 1/v/8,1=1/64,6, = 1/16, 8 < =282 gpd ¢, <
392 AI=BL)° =11~ e have the conclusion in Theoremwith Hiy < Hy — 7= |[WE— W12
96 53 4 t+1 > t 163 .

Now we calculate the complexity of Algorithm |T]
Theorem 2. Let assumptions in Theorem|I|hold. Let {(z%, ...,z L {(yt ..., y5)} {(wl, ..., wt)},

n

{z'} be generated by Algorithm We further suppose €, and B are small enough such that



Under review as a conference paper at ICLR 2025

Table 2: Maximum AUC values obtained by each algorithm after 1000 communication rounds.

Algorithm a%9a  covtype gisette ijcnnl phishing w8a
CODASCA (Yuan et al., 2021b)) 0.8920 0.7967 0.9982 0.9264 0.9758 0.9007
Fed-Norm-SGDA (Sharma et al., 2023) 0.8961 0.7645 0.9961 0.9273 0.9786 0.8959

FedSGDA (Wu et al., [2023)) 0.8963 0.7645 0.9962 0.9272 0.9786 0.8958
FEDNEST (Tarzanagh et al.,[2022)  0.8963 0.8132 0.9989 0.9037 0.9714 0.9075
FFMDR (This Work) 0.8998 0.8208 0.9994 0.9288 0.9797 0.9076

L) Cey + 6L2 > < ﬁ, where C is defined in Theoreml Then it holds that

T+1
1
Ed*(0 Fi(2)+0g( i DyHy+DsYo+ D3| YO —y(W?°
T+1§: v§j Y +0g(2")) < lIlszTH( 1 Ho+ Dy Yo+ D3|V —y(WO)|?)

— - 2
where Hy = F(W°) + §(Z°) + 55 X° — W2 — L[| X° — 2°|2, Dy = 85, D, =
1L
6max{1, L}e, + PELC,, Dy = 3C, + 2E2 62(13 Cew, Cy = 20(ey + 1) + 27 (5 —
1)ew + 6 max{1, L}e, and (X°, YO, WO Z°) are deﬁned as in Theorem!l]

Remark 2. This theorem indicates that the communication complexity of Algonthml is O(k
When the inner solver is chosen_as SAGA, Theorem 2] together with Proposition 2] shows that the
sample complexity ofAlgorithm is O(k?log(k)n=1e).

2 72)

4.2  SEQUENTIAL CONVERGENCE OF ALGORITHM[I]

In this section, we are devoted to analyze the convergence properties of the sequence generated by
Algorithm [T with equation[I0] We make the following assumption.

Assumption 3. Suppose for all t, equation|l0|is deterministic and all clients attend the training at
each round.

Theorem 3. Consider equation|l} Let {(X*,W*, Z*,Y"*)} as in Theorem|[l} Suppose Assumption
holds. Suppose F' and g are bounded from below and g is level-bounded. Suppose in addition that
H is a KL function with exponent o € [0,1). Then {(X*, W, Z* Y*)} is convergent. In addition,
denoting (X*, W*, Z*,Y*) := limy(Xt, W?t, Zt Y?), it holds that

(i) If « = 0, then {( X', W', Z!)} converges finitely.

(ii) If a € (0, 3], then there existb > 0, t; € Nand py € (0,1) such that max{||[W* —W*||, || X* —
X128 2 20, Y — Y} < bl fort > o

(iii) If a € (%, 1), then there exist ty € N and ¢ > 0 such that max{||[W*—W*||, | Xt =Y ™|, || 2t -
ZH YT =Y*[} < ot T fort >t

Finally, we elaborate on how to verify the KL assumption in Theorem[3] Note that the KL assumption
ison H in equation Since the F'in H is a max function, H can be viewed as a max function, i.e.,

"

H(X,W,Z,Y,W'".Y') = maxU(X,W, Z,Y, WYY,
Y//

where Y = (9,1,7 o 79;;) and

1o 1
UXW.ZY. WY W) i= 2 filwisy:) +3(2) + 55 (1IX =W =X = Z])

i=1

1 2, 0 me ., L RANTD
+ W = 24 GIW =W+ g Sl wn) - G

Therefore, it is hard to directly verify the KL property of H. However, it is easier to verify the KL,
property of U. For example, when U is a proper closed semi-algebraic function that has a closed
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Figure 2: AUC values w.r.t. communication rounds on test dataset: a9a, covtype, gisette, ijcnnl,
phishing and w8a.

domain and is continuous on their domains, U is a KL function (Attouch et al.,|2010). Given this
fact, it is natural to ask whether we can deduce the KL property of a max function like H from the
KL property of the objective in the maximization like U. The following property provides a positive
answer.

Proposition 3. Ler f(z,y) : R™ x R" — (—00,00) be a smooth function strongly concave in y
and g : R™ — (—00,00) is a continuous function. Let F(z,y) := f(z,y) + g(x). Suppose for
any y, F(-,y) has the KL property at x with exponent « € [0, 1) with constants €(y), c(y) and a(y).
Suppose €(y), c(y) and a(y) are continuous in y. Let G(x) = maxy F'(x,y). Let x € dom 0G.
Then G has KL property at x with exponent .

Remark 3. If we further use Theorem 3.3 in|Li & Pong| (2018), the KL exponent of U can be
deduced from that of f(x,y) + g(z). A similar rule is investigated in |Yu et al.|(2022) where the
authors address the infimum projection of a function, i.e., h(z) := inf, f(z,y), while we address
the max function h(x) := max, f(x,y). The maximization is more challenging for preserving the
KL exponent compared to the infimum projection. Here is a counterexample mentioned in|Jiang
& Li|(2019). Suppose Hing(v) = min{hy(z) := 23, ha(x) := (x1 + 1)® + 23 — 1}. According
to Theorem 3.1 in [2], the KL exponent of Hins is 1/2. However, if we consider the maximization
Hpax : R? — R with Hypax(2) = max{h; (z) := 2%, ha(z) := (z1 + 1)? + 23 — 1}, the following
work shows that the KL exponent is 3/4 when hy = ho, even though the KL exponents of both hy
and hs are 1/2. Thus, the maximization requires more assumptions to preserve the KL exponent. In
the minimax problem we consider, the objective function is strongly concave. In this case, we show
that the KL exponent of the maximization function is preserved.

Remark 4. We provide an example where the assumptions in Proposition[3\is satisfied. For simplicity,
we consider the following robust classification problem (Sinha et al.||2017):

mgin max F(6,6) :=log(1 + exp(—y0(z + 6))) —c|d|*> + A4,

£(0,5)

(13)

where (z,y) € R x {—1,1} is a data point, 0 € R is the weight, 0 is a perturbation and ¢, A > 0 are
scalers. Now fix any 0. For any 0, there exists €(0) continuous w.r.t. 0 such that F(-,0) satisfies the
KL property at 0 with exponent % and constants €(3), ¢ = 1 and a = 1. More details can be found in
the supplementary material.
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5 EXPERIMENTS

Learning task In this section, we apply our method to maximizing the Area under the ROC curve
(AUC) problem (Natole et al., [2018)) in the federated learning settings. This problem is formed as the
following minimax problem:

min maxl Z Z [fl(waa/abva?n)] —|—g(W), (14)

wcER aeR,bER a€ER N 4
i=1neD;

where, n = (x,y) is a datapoint, n is the number of clients, f;(w,a,b,a;n) = p(1 —p) + (1 —
p)(whz— a)Q]I[yzl] +p(wha — b)z]l[y:—l] +2(1+ Oé)WTx(PH[y:—l] —(1=p)y=1)) —p(1— p)a’,
Ia(x) = 1 when z € A for any set A and [4(z) = 0 otherwise. Here p is the probability of
Pr(y = 1). The goal of AUC maximization tasks is to pursue a high AUC score for binary
classification, which is defined by Pr(wlz > wlz'|y = 1,4/ = —1). This F is an equivalent
formulation and it is strongly concave in . The g(w) in equationis a convex regularization. In
our experiments, we consider g(w) = A||w||; where A = 0.001 is fixed during the experiment. In
our experiment, the total number of clients is set to 20.

Dataset We perform our experiments on six real-world dataset for binary classification: a9a,
covtype, gisette, ijennl, phishing and w8a, all of which can be downloaded from the LIBSVM
repository (Chang & Lin}[2011)). The training data is distributed to all clients heterogeneously where
each client only owns the data from one class.

Compared methods We compare our stochastic method with CODASCA in|Yuan et al.|(2021b),
Fed-Norm-SGDA in |Sharma et al.|(2023)) and FedSGDA in /Wu et al.| (2023)). All these baselines are
applicable to the AUC maximization problem in stochastic manner with a non-smooth regularization.
CODASCA is an algorithm to solve federated AUC maximization problem for heterogeneous data.
Other compared methods are general minimax algorithms which have been introduced in previous
sections. In our experiments, the local solver of FFMDR is chosen as SGDA.

Parameters For FFMDR, we select the best value of ﬁ from {1, 0.1, 0.01, 0.001}, €, from

{0.95, 0.75, 0.5, 0.25, 0.05}. For all methods, the stepsize is selected from {0.1, 0.01, 0.001, 0.0001,
0.00001} so that it achieves the best experimental result. The batchsize is fixed to be 40. The local
epoch is fixed to be 5.

Results In Figure[I] we plot the AUC values of each algorithm with respect to the number of
communication rounds. In Table[2] we report detailed AUC scores obtained by each algorithm after
1000 communication rounds. From these experimental results we can see our FFMDR algorithm
achieves the best AUC scores on all of the six datasets. Also, our method converges faster than the
compared methods in most cases. These experimental results verify the performance of our proposed
method to solve federated minimax problems with data heterogeneity.

Additionally, we also test our FFMDR method in the case where only a fraction of clients can
participate in the training process in each communication round. The result is shown in Figure [2]
where the percentage of clients attending the training in each round is 100%/50% /25%. Figure
indicates that in most cases, our FFMDR method with partial attendance of the clients also works as
well as FFMDR with full attendance of clients.

6 CONCLUSION

In this paper, we proposed a new federated minimax method for nonconvex, strongly concave
minimax problems. We demonstrated that our method has smaller sample complexity compared to
existing federated minimax methods. More importantly, we showed the proposed method has global
finite-step/linear/sublinear convergence guarantees for the updates of model parameters under KL
assumption on novel potential function. We further made the KL exponent of the potential function
easier to check by relating the maximizer-dependent potential function from that of the maximizer-
free function. Empirically, our method is applied to the AUC maximization problem and consistently
outperforms existing federated minimax methods in scenarios with high data heterogeneity.
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A PROOF OF PROPOSITION 2|

The minimax subproblem in Algorithm|I] for each selected client can be generalize to the following
problem: Consider the general minimax problem

l
1
mlnrwy YZ (w,y;&5)

w,y

l (15)
1 1 A 1y
ij w,y3 &) = 751wl + Hy||2+ H =73l
j=1
Rj(w,y:&;) s(w,y)
where {1, ..., &} is the dataset, r is A-strongly convex and ~-strongly concave. We consider the

Algorithm 2 (SAGA) in (Palaniappan & Bach| 2016)). For completeness, we let present Algorithm
[2) for equation [T5] The next proposition restate Proposition 2] and shows that equation [I0] can be
satisfied after finite iterates of Algorithm

Algorithm 2 SAGA for equation T3]
1: Input: (W,Y) € R! x R% ¢ > 0. Mini-batch size m. L > 0and L > 0. Let o :=
(max{% —1,L% + 3%})7
2: Compute g/ = VR;(w,y;&) forj =1,....land G = V Y, R;(w,y:&))
Letk = 0.

4: Uniformly sample a mini-batch {j1,...,jm} C {1,...,1}. Compute h; = VR;, (w,y;&;,) for

ie{l,...,m}.
Let

ol

1 Jm
+ 0 1 .
(o) =Proxy, (o) =0 [ 9] (G 25 (s~ 1)
v J=i
5: Replace G with G — L 3" (g% — h;) and let gt = hj fori € {1,...,m}
6: If a termination criterion is satisfied, terminate and output (w, y). Else, let k = k 4+ 1 and go to
Step 3.

Proposition 4. Apply Algorithm[2|to equation[13] Let (w,y) satisfies Vr(z,y) # 0. Let €, > 0.
Then, there exists k = O(max{-L, log(k)}) such that

E |[(w,y) = (we, y)|* < 0B (@,5) = (w, )|

Proof. Since r is strongly convex stronly concave, min,, max, r(w,y) has the unique solution

(24, yx). Using Theorem 2 in Palaniappan & Bach! (2016), there exist A\ = (max{-2L, 1+ mm{LA N
z;af?%%;;a})‘l € (0, 1) such that

E ||(wk+17yk+1) _ (w*’y*)H? <(1- )\)k H(wo,yo) . (w*,y(w*))HQ, (16)
Since Vr(w,y) 7& 0, we know that (w,§) is not the solution to min, r(w,w(y)). Thus,
H(wvy) ( y*)” > 0.

Since a? > Z(a + b)? — b for any vectors a and b, it holds that
. 1 .
Bl g™ ) = @01 = Sl (wepe) = @ 9 = Bl (™55 = (05017

> 2l ) — @0~ (1= WF [ ,°) ~ (s,

where the second inequality uses equation

a7

)

15



Under review as a conference paper at ICLR 2025

3)”2 = O(max{ L, log(x

Let k > 10g1 Y ”(4”(10*7?4* ))”2 _

—(z
) y(

~—

}) such that

1wy, y2) = (@, 7)1

N |

2
2(1 - )\)k ||(w0ay0) - w*vy(w*))H <
Then equation[I7]can be further passed to
o 2
E"(wk+1’yk+1) - (x,y)H2 > (1 - /\)k H(Wtﬂyt) - wi+17y(wi+1))||

> B (b, ) - (w0 a8

Combining this with equation [I8] and equation[T16] we have that
B,y = ()| < BN @) — @) (19
O

B DETAILS FOR RESULTS IN SECTION [4.1]

We first present the following useful fact.

Fact 1. Let f : R™ — R be a strongly convex function with modulus p. Suppose in addition that f is
smooth and has Lipschitz continuous gradient with modulus L. Then there exists unique minimizers
x* that minimize f and it holds that

IVf()|]* > 20 (f(x) = f(z*)) > p?lle — > (20)

We next present a proposition on T; ;1.
Proposition 5. Suppose Assumptionsand hold. Assume % > L, where L is the one defined as in
Proposition Suppose 12max{1, L}e,, < ;. Assume that Y;, —yi(w) )N+ l|wf , —w§

where wg* = miny, f(w;,yi(w;)) + %le — 29||%. Then,

(i) Fort > 0,

1
zi:piETi,t—i-l < 3 (Zz: Pl — ;piETi7t+1> +6L° zz:pz]EHlUf — w2,
(21)

(ii) When we choose the deterministic case. It holds that

ZPiEHVMtH(wa, yi(wi™))I? < Cey ZpiETi,Hlv (22)

o Litd)? 1)?
where C 1= 2 ( #2’3 + 1) (Lf—|— 3) .

Proof. For (i), note that for ¢ > 0, it holds that
1Cwfs yi) = (wi ™y )
< 3||(wi, yf) — (wh, ya (W) + 3l (wf, yi (wf)) — (wi ™, yi(wi ™))
+ 3] (wi T i (wiT) = (wity T2 (23)
= 3lly; — yi(w) > + 3l (w}, yi(w))) — (wit, ya(wi TP + 3llys(wi ™) —yi 7
< 3lly; — yi(w)||? + L2 wi — wi 1?4 3llyi(wi ™) -y T2

where the second inequality uses Proposition m In addition, under the assumption that T; o >
52 — yi(w) I + [Jwy 2 fort > 0, it holds that for i € S*~1,

Ei-1lly; — yi(wi)||2 < 2B ||V — y(wi I+ 2B ly(w],) — yi(w))|?
< 2max{1, LYE, 1 (||V} — yi(w] )|I* + [lw] . — wf[]?) 24)
<2max{l,L}e,Ei_1Y; 4,

16
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where the second inequality is thanks to equation Taking expectation with respect to S*~1, the
above inequality becomes

> piEeallyl — yi(wh)|? = EsiaBoa ||y} — yi(w!)||?
i

(25)
< 2max{1, L}e,Egi1E; 1 T;; = 2max{1, L}e, ZpﬂEt_lri,t,

i

Taking expectation with respect to V' =1 = {S° ... 872 (21, YL, W), ... (!~ Y=L wi—hl,
we have

>_piEly; = yi(w)|* < 2max{1, L}ye, 3 piEYi, (26)

Similarly, for ¢ > 0, it holds that
N [ W N ) W A B
< 2max{1, L}ZP E (g™ —yiwi IO + witt —wi™?)
< 2max{l, L}e, ZPiETz‘,H—L
i (27)
Combining equation 23] equation 24] and equation 27] it holds that

> pEYii
i
<3 <2 max{1, L}e, ZpiETi,t> + 6max{1, L}e, ZpiIETZ-,tH + 312 ZpZIEtwa — w2

Since €,, is small enough such that 6 max{1, L}e,, < 6 max{l, L}e,, <

< % rearranging the above
inequality and recalling the definition of Y, ., we have that

1
Xi:piETi,t—H < 3 Zi:pz' (EY;+ —EY;441) + 6L? zi:pi]Etwa — w2,

For (ii), note that for s € S?,
HvﬁtJrl( t+17y’b( tJrl))”2
( Ly (with) = Ve (W] g IR 4 2] Ve e (wf T g )12

<2(Lf+ ) ly(wi ™) =y P + 20 Vi e (wf T I,

(28)

where the second inequality is because 7; ;41 is Lipschitz continuous with modulus L + % In
addition, since V7 ¢41(w; e+1,9; «e+1) is the solution of min,,, max,, r; ;41 (ys, w;), it holds that

fori € St,

||V7’zt+1( kH,ny)HQ_HVmH( kﬂayfﬂ) V”z‘,tﬂ(wzg*tﬂayi(wz‘,*tﬂ))HQ

2 (29)
< (wa) @ty ) = @i paCwi e )|

)

17
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where the second inequality is because 7 is Lipschitz continuous with modulus L + % Combining
equation [28|and equation we have that for i € S¢,

V71 (it a(wi )2

2
1 1 2
<Ly + Pl =y +2 (L 5 ) ) = (i)
(Ly+5)° 1\2 .
< 2Tﬁ||vwfi(wf+1,yf+1)||2 +2 (Lf + ﬁ) (W gty = (w e, g s |
(Lf + l)Q 1 2 ,
S 2 <l1,26 + 1 (Lf + ﬁ) ”(w§+1,yf+1) _ (wi,*t+1’yi,*t+1)"

where the second inequality is because yi(wEH) is the minimizer of min,, —r; ¢++1(y, w) and the
fact that —r; 411 (y, w) is strongly convex with modulus £ and Proposition the last inequality uses
equation Combining the above inequality with equation taking the expectation on St and

taking the expectation on !, we reach the conclusion (ii).

O

Before prove Theorem [T} we need the following lemma.
Lemma 1. Let
ef“ = wf“ — wftl (30)

Suppose 3 < L, where L defined in Proposition Assume w) = Proxgy, (29, y;(2Y)). Then exists
n'tt € 8§(Z1TL) such that the following relations hold:

(i) forall1,

1
0€ Vil y()(with) + B(wﬁjl — ;) 31)
and
2f+1 = 2w;§+1 — xﬁ“. (32)
Fori € St,
1
- B(wfil — ™) = Vi yi()(with)
1 1 1 1 1 &)
VN —B(wf+ —eltt =2t =V y() (with)
(ii)
77t+1 _ %(2Wt+1 _ Xt+1> _ Zt+1). (34)

Proof. We prove (i) by induction. For ¢ = 0, we have by assumption that w) = Proxgay, (z?, y;(zY)).
Then z = wf + V fi(-, yi(-))(wy,), and 2} = 2w — . Now suppose equationand equation
holds at iteration ¢. For iteration ¢ + 1, when i € S?, equation [33|follows from the firs-order optimality
condition of the subproblem in equation When i ¢ St, since a:f-*l = xﬁ, by induction, we have

that

vfl(a yZ())(wf,tl) + %(wf,tl - xEJrl) = vfz(vyl())(wf*) + l(wf,* - J}f) = 0.

In addition, for i ¢ S*, we have 2;5“

— 5t —ont _ ot o, b+l 4]
=2z = 2w; — x; = 2w, ;.

equation@follows from (i), Excercise 8.8 of Rockafellar & Wets|(1998) and the firs-order optimality
condition of the subproblem in equation 3] O

Next, we show the detailed version of Theorem|T]and its proof.

18
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Theorem 4. Consider e?uatwn [7] Suppose the conditions in Proposztlon@hold Apply Algorithm|l|

1o equatton Let {(x wi™ ot 2 t“)} be defined as in Algorlthm Deﬁne Xt=(zt,...,2%),
Y= (yi,...,4), Wt (wh,...,wt) and Z' = (z*,...,2"). Let 65 € (0, 1). Let B € (0, 1) be
such that

2 3 5

Let 6" € [0,63). Let v > 0 and 7 € (0, 1) be small enough such that

1-L
8 s

5 + (14 BL)*(2t+ %) + (BL — 1)*1 < & (36)

Denote § := 63 — §'. Suppose that €, is small enough such that

2 1 1 §—46
r + = 6C L%, < —=,
< (5-L)  7122(3 - L)) &}

for some 5. > 0, where I := (125)2 + % (% + L — 1) and C' is defined as in Propositionﬁ Then
the following statements hold:

(i) Let eﬁ“ be defined as in equation It holds that

ZpZEHetJrl”Q T (CeprlEL t+1> (37)

3
where C'is defined in Proposition[3]

m\»—‘

(ii) It holds that,

Y piElaett |
7

ﬁ

+(1+BL)? (1 + 1) (02”206“} ZPiET“> '
B i

(iii) Define
H(X, W, Z,Y, W', V")
. 1 1
=F(W)+3(2) + 2% (X =W =X - 2|*) + BIIW - Z|?

(39
5 / 2 1 ’ ’ 2
FSIW =W o Sl i) = )
where § is defined in equationd] It holds that for t > 1,
EH(XtJrl WtJrl Zt+1 YtJrl Wt t)
<EH(X' W'z Y' Wyt pilE|lw} — wiH?
-5 ol H o

1
~ 35 > pBll2i — 22
%

19
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Proof. For (i), note that r; 441 (w;, y;(w;)) is strongly convex with modulus % — L, using the definition
of el ™, it holds that

ZpiEﬂefHHQ =Es: Z EyeEellefT]? = Es Z Ey:Ee|wf ™t — wit
i ieSt ieSt
1
< gy Y BBV (u() I
€St

=
—
~

= Tl 2 EvEdVyrien (el ()P
i€S?

™=
—_

= (T PV (o ()P

=

1

< W (Cﬁw ;piETi,tJrl) )

where the first inequality uses equation [20] the second equality uses the last inequality uses equa-
tion Taking expectation on ), we obtain equation

For (ii), using equation [33] we have that

> _piElettt — il =Esi Y EyiEeflai™t - af)”
i

iest
< (14 BL)Ese Y EyeBeflwit' — wl ||
1€S?
1
< (1+ L) ((1 +0)Ese Y BypeEyflwftt —wl| + é+ L) Ese Yy BByl — et — €§|2>
iest iest

1
= (1+8L)? ((1 b0 S pilutt = w4 (14 1) SpiE] - et - ) ,
(4D)

where the second inequality uses the Young’s inequality. Noting that thanks to equation [I0} we have
that

D pE| -t —el|? =Ese Y BByl — ef Tt —ef?
i 1ES?
<2Esi Yy ByuByflef || + 2B} |

€St

2
% CeyEst S Ey (B Yss +E,Y;
—1)eve si;& vt (BeYip +BeTipi1)

(42)
<

(

= (72061” sz' (EY: +EY;¢41),

|
[N}

— L)

|~

where the last inequality is because of equation[37]

20
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Combining this with equation fT| we have that

S Bl - a2
i

<@+BL2(1+0)> piEllw!™ —w|?
1+6L)2% (1 L 2 C EY EY
+ (1 +BL) +Z (%_7[/)2 €wzi:pi( it FEYi41)

<(1+BL)2(1+0) ZPiETi,t+1

3

+ (14 BL)? <1 + 1) ((_2[1)2C5w Zpi (EY: + ETi,tH)) .

1
B
Now we prove (iii). Denote
_ - 1
HX,W,2) := FW) +4(2) + 55 (IX = WI* ~ |X — Z|").. (43)

Note that

H(X™ wt 7z — H(XY, W, Zt)
1 1
— % (||Xt+1 o WtH2 o HXt+1 o Zt||2) o % (”Xt - Wt”Q o ”Xt o Zt||2)
_ !
B

a) 1 1
G SIX X = 5 3 e
€St

<Xt+1 o Xt,Wt o Zt>

where (a) uses equation [2]and the last in equality is because X‘*! = X* fori ¢ S*.

Taking expectation on S and then on )'?, the above inequality becomes

_ _ 1
EH(X'L W, 20~ BH(X, W', 20 = 5 3 piBllel™ — ol (44)

Note that wftl in Step 3 of Algorithmis the minimizer of miny, 7; ;41 (w;, y;(w;)), where r; ; is
defined in Algorithm Since 5 < % the objective F’ (W) is strongly convex with modulus % — L.
Thus, using equation 20, we have that for i € S,

Eeri a1 (wit yi(with))

—_

< Etﬁ',tﬂ(wfil, yi(wfjl)) + Et||Vyr(w§H,yi(wf“))ﬂz

_L)

< Erip (Wit yi(wilh) + 4= (CeBi Yy 111),
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where the last inequality is due to equation [I0} the second equality uses the last inequality uses

equation[22] Using the above inequality, we have that
EH (X witt 78 B (X Wt 7Y
1
FW') = B[ X' = W2

n
= ZEtTi,tﬂ(wa’yi(wa)) - 25
=1
<D B (il ywil) + Y o ; CkwTM+1—EFUV§
iest zesf B -
E ||Xt+1 WtHQ
25 1 (45)
3 1
< D Brien (whpiud)) = P o —wl P~ EF(OV) = goB X4 — WP
€St
+ Z 3T-D) CewE T 141
1€S? E o )
i_L
- Z B E ||wthl tHQ + Z l — CewEth 41
€St zESf /3
Note that
lwi it = wil? = lwith — wit P + 2 (wil! —wi™ e —wp) 4w - wif?
1
> Jutf? - wt? = (ol = uf P+ el = ) 4t -
p ;
1
= (= wilt —wi P+ (1= )i = wi?,
where 7 € (0, 1) by assumption. Using this, equationcan be further passed to
Eﬁ@ﬁ*ﬂmdzﬁ—mﬁaﬂlwtz)
1 1 _
Z 5 S - Y (o~ DEwtt —wit?
€st icSt
+ Z CEwEtTi,t+1>
zES’
Taking expectation on St and then on ), the above inequality becomes
EHLXH1Mﬂ+1zﬂ—EHLW+Rwﬁzﬁ
1
= L
; 1_ E w —wt|? + ﬂ E wt+1 wit1)2
Zp m)E| ill” + Zp | | 46)
+ sz l — CGwETZ t+1)
i ﬁ

On the other hand, note that
H(X,W,Z)
=FW)+3(Z2) + 5
— F(W) +§(2)
57 (IX =W = (X —w* -

1
— X -Z -2+ =
55l ull” + %

(X =W = (IX =W|?=2(X =W, Z -W) + W - Z|*))

IX = Z = 2W | + | X = W2+ Z = W|* + W - Z|*))

~(l1X - W2 2w - Z]?)

=FW)+34(2) +
(47)

22
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In addition, note that Z**! is the minimizer of min §(Z) + g5 2W'*! — X**! — Z||?, whose
objective is strongly convex with modulus . Using this fact together with equation 47| we have that

H(Xt+1’ Wt+1’ Zt+1) o H(Xt+1,Wt+1, Zt)

1 1
(g(Zt+1) + ﬁHXt—H _ Zt+1 _ 2Wt+1||2 _ E||Wt+1 _ Zt+1||2>

- 1 1
—9(2) = G5 X = 20— 2 S - 2|
Zt i Xt+1 _ Zt _ 2wt+1 2 i Zt+1 _ Zt 2 l Wt+1 _ Zt-‘,—l 2 (48)
9( )+25H | 2ﬁll | B” I
1 1
(2 — X 2t 2 St
2p B
1 1 1
LR 1 e | P
2B B B

where the last equality uses equation 2]

Now, we bound the last term in the above inequality. Note that
W= 202 = W Wt - 2
= > lwi™t —wf P+ Yt - 2

icSt igSt (49)
= >l = wi? = 2 (it —wh 2 —al) 4 2l - 2P+ D wl 2
iest igSt

On the other hand, Using Exercise 8.8 of Rockafellar & Wets| (1998), it holds that O(F(-) + || -
[2)(W) = VF(W)+ LW. Since F(-) + || - |* is convex, we have that F'(-) + % || - | is monotone.
This together with equation [33|implies that for i € S¢,

1 1
0< <B(wzt,t1 - :E§+1) + Lw:,tl - <ﬁ(wf,* - l‘f) + wa,*) >w§j1 - 'LU;*>

<£t+1 +Lwt+1 é—lt _ Lwl*, t+1 wt >

1 1

= <—ﬂ(wf+1 —elt — a4 L (wit - ef“)—l—g(wt —et—al) = L (wl—el),wit wt>
1 1

N < L = e =L (b = e+ S ad = e —af) — L (uf — ), t+1+el>

Multiply both sides of the above inequality by 23 and rearranging terms, we have that

—<x§+1 t t t> < t+1 _ f,—ef+1+et-> (ﬁL )||wt+1 f||2
+2((BL - )( ﬁ“—wﬁ),— i rel) + (BL = 1)lleft! — eff?
( )L
it =il 4 o = e el + (BL = D™ = wi]®

1
o= et el + (BL = e — €]®

BL — 1
= Lt a4 (- 1+ P e e (2 g a) e e
(50)

1B = 1Pl — ) +

where ¢ > 0 and (a) uses Young’s inequality for products.
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Combining this with equation #9) we obtain that

W — ZH12 <Y lwf = 2P+ )l = wl | + [laf — 2P
igSt ieSt

+ ) et = 2+ (281 — 2+ [BL — 1) wi T — wi|?
i€S?

1
+2(L+5L—1> | — et +ef)?

= > lwf =27+ > A+ ottt —af)® + (260 — 1+ [BL — 124 [|lwi T — wf|?

igSt ieSt
1
+ Z 2 ( +BL — 1) | — ettt + et 2.
€St L

This together with equation 48 we have that

,H(Xt+1, Wt+1, Zt+1) _ H(Xt+1,Wt+1, Zt)
<

1 1 1
—ﬁllz“r1 - Z'? - BIIZ“rl - WP+ 3 > llewf ==

igSt
1+ 1
+ 2 g et =l GEBL 14 IBL = 1P et - )
1€St
2 /1
$2(THsr-1) - ep?
1 t+1 12 1 t+1 t+112 1 t t12
S—%HZ -2 _B”W -z +BZ||wi_Zi||
igSt
1+ 1
+) TIIxEH —z|” + 5(28L—1+|5L - 120wt — wi?
1€St
2 /1
+2(FHoL-1) - el

Taking expectation on St and then on )%, the above inequality becomes

EH(Xt+1, Wt+1, Zt+1) o ]EH(Xt+1’ Wt+1,Zt)
1 1 1

< __FE Zt+lizt 277E t+172t+1 2 - 1— i t_ i 2

<57 2 - SEIW I+ 5 300 —plut =

1 1 51
+ S p el - ol + 5L 1+ 8L - 1POBful T —ufft D

2 (1
+ 5 ( + BL — 1> E|| — et 4 el)2.
L
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Now summing equation [#4] equation 6] and equation[51] we obtain that

EH(X"™L WL 2% —EH (X', W', Z")
1 1 1
< B ZpiEHaff‘H _ xf”Q _ %E||Zt+l _ ZtH2 _ BHI/Vt—l-l - Zt+1H2

)pilEl|w; ™t — wi®

1
1 —_ —
+ BZ“ —p)llwi — P+ -2

1

,7L 1
+ P (5~ UpiEllwf L —wf TP+ (CewpiEYip41)

2 2(3 - L)
L+ t+1 2, L 2 t+1 2
+ Z Pkl — ail|” + 5(25/3 =1+ |BL = 17)piE[lw; ™ — wi|
2 1 (52)
+ 5 (L +BL — 1) B[ — el 4 el||?

1 1 1
= _FE Wt o Zt 2 - Wt+1 o Zt+1 2 —E Zt+1 o Zt 2
e "= 3l "= 25El I

+-L 1 1
B tH1_ t )2
— — i E . —————(CeypiEY;
+3( — DpBl ! = w4 s (CeupET i)
1+

1
S+ BL—1)pE| —eltt +ef? El|lzi T — 2t|?
+ <L+ﬁ )p [ —e™ +eill +§i 5P ||z ||

@[

On the other hand, equation [dT]together with equation [52]yields

]E r7 (Xt+1 Wt+l Zt-‘rl) o ‘E[()('t7 th Zt)
1
”Wt Zt||2 B]E”Zt+1 _ ZtH2 o B]E”Wt+1 _ Zt+1||2

<1p
ﬁ

L+ t+1 £)12 1 t+1 £)12
S (2 (0w - W (14 ) il - e - l?) )

[

by

+

L 1
PYZRaY (CEwETi,t+1)

2(5-1)

m\'—‘

= DpilEf|w; Tt — wi ™ +

+
.
™|

2
"B < ok 1) piEll = e + el

Q

1
B
1o
> ( (261 —1+15L —11%) - £—(1- T2>> PiEw* - wf?
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Rearranging the above term we have
]EH(Xt+1’ Wt+1, Zt+1) o 19'()(157 th Zt)

1 1 1
< _E Wt o Zt 2 il Zt+1 o Zt 2 _E Wt+1 o Zt+1 2
< SEI "= 25l I” = ZEl I

2
*Z(“Ef) o5 (i +omr) ) pmi =it -t

%

1 1
+ Z [3 2 )pl]E”wt_H ;§+1||2 + m (CewEYy¢11)
1 28L — 1 L—12 ﬂ1 2 14021 + BL)? | piEljw!T? — w?||?
+Zﬁ (26L =1+ [BL —1]7) — 5 (1=77)4+ (1 +0)° (14 BL)" | piE[lw;™ — wy|
€]

(53)

Now, rearranging the formula of ©, we have that
3 5
®:(1+5L)2—§+§BL 5 2+ (1+ BL)*(2c+ %) + (BL — 1)%

1-L
<=0+ — b2 +(1 +5L)2(2L+ )+ (BL—-1)% < =55+ 6" = -9,

where the second inequality uses equation [57} the last inequality uses equation [58] and the last
equality uses the definition of 4.

Then equation [53]can be further passed to
EH(X™ Wit 2 —EH (X, W, Z%)

1 1 1
S 7E Wt _ Zt 2 _ 7E Zt+1 _ Zt 2 _ 7E WtJrl _ Zt+1 2
3 | | 25 | | 3 | |

2
+ X | U542 (T4 on-1) [ nEl - -t

i

T

1
+ Z 5 72 _ 1)EHWJ§+1 _ Wt+1||2

—_

1)
+ 27_1/) (CewpiETi’Hl) — EE”WHI . Wt||2.

—~
|~

(54)

Now, using equation [37]and equation 2} equation [54]can be further passed to
Eﬁ(Xt+1, Wt+1, Zt+1) _ EH(Xt7 Wt, Zt)

1 1 1
S*]E Wt_zt 2—7]E Zt-‘,—l_zt 2—*]E Wt+1_zt+1 2
5 | | % [ | 3 | |
2
+ Z r <(L)206wpi (B + ETi,t+1))
K3
Y D (CeupET i) + 5 (CeuETo i) — SpElul* — wl?
— 72 2(5 - L) ’ 2(5 - L) ’ B

1 1 1
= 7E||Wt _ Zt||2 o ﬁIEHZt-‘,—l _ ZtHQ N EE”Wt-&-l . Zt+1||2
+ZF<

)
+ Z 72 2 % — ) waszTz t+1) - sz]EHwH_l f”2

1 Cewpz (ETz t + ETz t+1))
5

(55)
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Now, we bound the term with T'; ; in the above inequality. Using equation 21] the above inequality
can be further passed to

EH (X Witz —EH (X, W1, Z1)

1 1 1 5
< BEIIWt - Z'? - ﬁIEIIZt+1 - 77 - B]EIIVVt+1 =2 = BpiEIIWf“ — wj|?

2 1 1 1
I = Cew | 5 (PEYi¢ — pEY; 6L%p,E|w! " — wt|?
+ ;( (% o L)2 + 72 2(% _ L))( € <2 (p ,t p ,t+1) + D ||'U)Z wl||

1 1 1 0
_ BE”Wt _ Zt||2 _ ﬁE”ZtJrl _ ZtH2 _ B]E”Wt+1 _ Zt+1||2 _ Z BpiE”warl _ wzt'H2

%

1 1 2 t—1 )2
> ( t TzM> cotip Bl

1
B

(e agt) (o o o)

(5 -

m\'—‘

,_.

1 1 §
S *E| Wt _ Zt| 2 7E Zt-‘rl _ Zt 2 7E |Wf,+1 _ Zt+1| 2 —pi E wt+l ;f 2
5 | | 23 | | 5 | I - 3 | I

) _ 1
+ Z BpiEwa P wf]f? + Z 12 (PiEYit —piEYip41)

(56)

Where the last inequality uses the assumption that ¢, is small enough such that
2 5—6.
( (1 )2+7.22(1 L)>6CL 6’u)S ,61

Rearranging the above inequality and recalling the definition of H, we have that
EH(Xt+1 WlH—l Zt-‘rl Yt-‘rl Wt Yt)

de
S EH(Xt? Wt? Zta Yt7 Wt717 thlth72’ yt—2) - Z Esz”’LUf - w§_1”2

1
-> ﬁpiEHsz — Z%.
i

Finally, we summarize and simplify the hyper parameter we use in this proof. In this proof, we first
let 65 € (0, 3). Let 8 € (0, 1) be such that
3 5
(1+BL)* — 5 T 5PL < —ds. (57)
. . N —9++/82
To satisfy this, we let dg = 1/4 and § < *T
Then we let &’ € [0,63). Let ¢ > 0 and 7 € (0, 1) be small enough such that

ﬂ# +(1+ BL)2(2u+12) + (BL - 1% < 0. (58)

To satisfy this, we let ¢’ = 1/8 T=1/V8,1=1/64and B < ;3.
Finally, we denote ¢ := dg — ¢’. Suppose that ¢,, is small enough such that

2 1 1 )
r = 6CL%,, < <. 59
<<}3—L>2+T22<1—L>> =73 e

for some 0. > 0, where I" := (HL) + 5 ( + L — 1) and C'is defined as in Propos1t10nl Note
that since 7 = 7 = 1/\/§ and . = 1/64and BL < 1, then T’ < (1;) + Z 1 and thus
2 1 1 B

P+ 5 ——— <392 .
(5-L)? 722(5-1L) 1—BL

(60)

@I
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To satisfy equation it suffices to let §. = 1/16 and

392 (1= 6L, _,
W< 2 TP peip 2
w95 ©
In summary, by ég = 1/4, 8 = 1/8, 7 = 1/V8, 1 = 1/64, 6. = 1/16, B < 79% V82 and

w < 322 (A-AL)" B L) C~1L~2, we have the conclusion. O

Next, we present a corollary that will be used in the convergence analysis.

Corollary 1. Let assumptions in Theorem[d|hold. Denote H, := EH (X', W*, Z!, Yt W'~ YVt-1),
Then it holds that

Z VI(z") +09g(2")) < % Z Ca (pilEY; ¢ + piEY 111) (61)
£
where Cy i=max{( 5 +4L%) (1+ BL)? (1 +0), (1 + BL)? (1+4) 2z Ceu}.
Proof. Recalling the definition of C in equation[d} it holds that
NC(Zt):{dl,...7 Zd =0,d; eRl} (62)
Using Corollary 10.9 and Proposition 10.5 in|Rockafellar & Wets|(1998)), we have that
03(2") = {(¢",0,...,0) : ¢ € dg(z")} + Ne(Z"). (63)

combining equation [62]and equation 63| for any (di,...,d,) € NC(Zt) and &' € 9g(2Y),

Zvn )+&| = sz +€t+zd
) (64)
Vf1 +£t+§jd sz =n|VF(Z") +n'|]?
where n* € 9§(Z").
On the other hand, using Lemmam we obtain that
Vfi(zh) = —%(w;* — )+ Vfi(2h) — Vfi(wf’*), for all 4.
This together with equation [64]and equation [34]implies that
11 ¢ ’
poul | sy vaz( N+E <EVE(ZY) +0')
i=1
- 1 t t t 1 t t 1112
= Etz | — B(wi —e; —x;) + Vfi(z") = Vfi(wi,) + B(Zwi’ —z; — )|
=1 (65)

—EY ||%e§ (VA = Vi) + (Vfilwt) — Vhiwl,)) + %wz Tk
1=1

n

4
<E Y (g5 +427) (el + 1t - wi?)

i=1

where the inequality uses the Lipschiz continuity of /' and Cauchy-Schwarz inequality.
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On the other hand, since each client has the probability p; to be sampled, it holds that

n n
Est Y llwf =217 =) pillwf = 2'(* > p ) llwf — "I, (66)
icSt i=1 i=1
where p = min{pi, ..., py,}. Similarly, we have

n
Est Y lle™ 12 >p) llei™|%.

icst i=1
Combining this with equation [65]and equation[66] we have

2

1
<-Est Y (62 +4L2> (Eellel]® + Eo| 28 — wl]?). (67

= 1€S?

nZVfZ )+ ¢

n

3

Using equation[37)and equation [38] the above inequality can be further passed to

ieSt B

1 4 9 9 9 1 2

+ *Est Z 29 + 4L (1 + ﬁL) (]. + L)]ETZ‘,HJ + (]. + 5[1) 14 - ﬁCEwETM
p €St B 4 (E - L)
1 4 1

g ( + 4L2> 1l (CeETL
vt 2 )\
1 4 9 9 1 2

+ *Est Z 29 + 4L (1 + 6[1) (1 + L) ETi’t+1 + (1 + BL) 14 - ﬁcewE’ri,t
P est s Y\(5—1)
1

< Es: D CofEXi +EYip) ZOQ (PEYi s+ pEYii11)

= 1€S?

where Cj is defined in the statement. Thus, (ii) holds. L]

Now, we give the detailed statement of Theorem [2]and its proofs.

Theorem 5. Let assumptions in Theorem|[I|hold. Let {(X ¢ Wt ,Z4)} be generated by Algorlthml
We further suppose €,, and 3 are small enough such that 5+—~ L Cew + 6L? YD < ,8, where C' is

defined as in Proposition[3] Then It holds that

T+1

THZJECPOVZL )+ 0g(21)) < 2t

L (DB + DiTy+ DAY - Y V).

\’U\S

— - 2
where Hy = F(W°) + §(Z°) + 35 (|X° = W2 — | X° = 2°|?), Dy := 5, Dy =

6max{1, L}e, + P2, D3 := 30, + L2 sy Cewn Da = 13+ BI8 0y, Ds = with

1_
Cy =2 (e + 1)+ 2 QL(T% — Dew + 6 max{1, L}e,.
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Proof. Using equation@ it holds that

ZEH*ZV‘]“Z +§t”2 < CQZCQ PzEth+szT1 t+1)

T+1
—Cy <2 > mei,t> (68)
B ' T+1
—02 (JEZ T+ 1217 Z > piEwi™! w$|2>

where the last inequahty uses equatlon@ We next bound EY;.
ET, =E|(w’,Y°) - (WLYH)|?
<3[(W,Y0) — (WO, Y (W)
+3E[(WO, Y (W) = (WHY (WhH)||2 +3E[|(WH Y (W) — (WYY (69)
=3Y° =Y (W) + 3E[(W°, Y (W) = WHLY(WH)||” + 3E[[Y (W) = Y!|?
<3| YO - Y (W2 + 3L2E(|[WY — W2 + 3E|[Y (W) — Y%,
where the second inequality uses Proposition[I] Note that
E[lY' —Y(WH|* <2E[lY" =Y (W))|* + 2E[lY (W) — Y (WH)|?
< 2max{L, L}E (Y =Y (W))|* + [W,; — W'|?) (70)
< 2max{1, L}e, Yy,

where the second inequality is thanks to equation[I0] Combining equation [69] with equation[70 we
have that

IN

I /\

EY, <3|Y° — Y (W?)|> + 3L2E|W° — W2 + 3 (2max{1, L}e,, o) (71)
Combining equation [71] with equation [68] it holds that

T n T+1

1 n _
D_ElL D VEGE +EP < (12L2 > piEw " - wf||2>
t=1 i=1 = t=1 1

+ %(,*2 (BIY° = V(W) 4 BL2E|[W° — W || + 3 (2max{1, L}e, Yo))

T+1
< g (15L2 SN piEwi Tt - w§||2> + 02% (BIY° — Y (W) + 3 (2max{1, L}e, Yo)) -
- B - (72)
On the other hand, rearranging equation we have that
> piEfw) —wi?
< ? (]EH(Xt Wt, Zt,Yt, Wtfl’thl) o ]EH(Xt+1’ Wt+1’ Zt+1,Yt+1, Wt,Yt))
_ P f+1 12
Z 5 251)7 i
S 5@ (]EH(Xt, Wt, Zt,Yt7 Wt_l,Yt_l) _ EH(Xt+1, Wt+1, Zt+17Yt+1, Wt, Yt)) .
Summing the above inequality from ¢ = 1 to 7" + 1, we deduce that
T+1
Z ZpiEHw% —wi
t=
(73)

(EH(XI Wl Zl Yl WO YO) EH(XT+1,WT+1,ZT+1,YT+1,WT,YT))

(EH(X' W', Z' v w° Y°) - B),

Mu Mu
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where B is the lower bound of EH (X T+ Wi+l zT+1 yi+l W7 yT) guaranteed in Corollary
[

Now we bound EH (X1, W', Z1 Y1 WO V?). To this end, we first bound EH (z*, W?, 21), where
H is defined in equation Making use of equation |55} it holds that

_ _ 1 1 1
EA(X' W', Z") - EH(X", W, Z2°) < BJEIIW0 i %}Ellz1 o i BEHWl -2

R Sy —wope
* (F(é — L)t T 2(% - L)) (Cew(ET1 + To)) ﬁEHW WO

1 1 1
— ZEIWO — 20012 — S RIl2L — 202 — ZRIIW! — 21|12
SEIW® =012 = B! = 201 = ZEIW! - |
2 1 1 1
r — Cen(EY o)) — =E|W! — W92,
+< (éL)l—i—Tl?(éL))( €w(ET1 + Yo)) 3 | l

(74)

where the last equality use equation and the settings that W° = 29 at Step 1 in Algorithm Using

equation[I0] it holds that
Efe']* < ew T (75)

and
E|| —e' —e||> < 2E[le!||* + 2[|e°]|* < 2 (ew Y1) + 27

< 2((ey +1)Yo) +6L7 szEHw? —wi %
i
(76)

where the last inequality uses equation 2T} Combining equation [75]and equation [76] with equation [74]
we have that

EH(X', W, ZY —EH(X°, WO, 2%
1 1
< *%]EHZI - Z°|° - EEHU’I — Z'? + 2T ((€w +1)Yo)

f B et e (CeuTy) - Bt - WO
2 72 2(3 - L) B (77)
o
<2I'((ew +1)Yo) + 5 (7_7 —1) (ewYo)
1 5
+ O, Y1 — E|lw' — W% +6L2 Eljw — w}||?
SOt 5 I +602 3 pEfo!

Combining equation [/ 1| with equation[/7] we have that
1

~ _ 1
EH(X', W', Z") —EH(X°,W°,2°) < 2T ((ew + 1)Yo) + 2 5 (= — 1) (wTo)
T
1

25 -1)
1

25 -1)

+ Cew (3[|Y° = Y(W?)||* + 3 (2max{1, L}, To))

=

§
+ Cen3LPE|W0 — W2 — B]Ele —WOP+6L%> piEllw) —wi|>  (78)
[

=l

1

< 20((ey + 1)Yo) + 2 L(% “1) (€0 L)
+ 2(}31_L)Cew BIY? =y (W°)|* + 3 (2max{1, L}€, o)) ,

where the last inequality uses the assumption that €,, and /5 are small enough such that 2(%_12)0% +
B

6L2 Zipi S %
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Rearranging the above inequality, recalling the definition of H, we have that
EH(X', Wt Z8 vt wo v?)

1

<EH(X°,W°, 2% + 20 (e +1)Yo) + 2

(5 = 1) (o)

1 2
+ m(lew (BIIY° — Y (W?)||? + 3 (2max{1, L}¢, Yo))

1
35 (le? = WOl = [la® = 2°]1%) + 20((ew + 1)Yo)

+-L 1 (79)
+ BT<ﬁ — 1) (Ew’ro)
e (3||Y° V(WO + 3 (2max{1, L}, To))

(3-1L)

= F(W°) +g(2") + 5 (Ilw = WO = Jla” = 2°|I7) + CuTo
3

s CeulY? =Y (W2
2(3 - L)

1_ 1
where Cy, := 2T'(e,,+1)+ BQL(T—lz—l)ew—&—G max{1, L}e,, Cy, := 2T+ £ 2L
Now, summing equation [73]and equation[79] we have that

T+1

> piEfwf —wi
t=1

B B
< 2y 2
<-7B+s

-<F<W°>+g<z> 25 (I2° - W°||2—||x°—20||2>+0uro+Q(f”_L)Cew|Y°—Y<W0>||2>.
B

1 1
(Tj—l)-‘rm—l-?).

Recalling equation and the definition of n?, we have that
T+1 T+1

ZEdQOVZfl )+ dg(= ZEH*Zsz ) +€

n n 15L2%3
= vO— 0)[?+3=(2 1,L}e, T =
< By (Y0 - YOV + 37 (2max{1. Lheu o) ) + 5225

1 3
| FEWO) 4+ 9(2") + o ([l = WOU? = [[2® = 2°|1%) + CuTo + 7 Ceu [V =Y (WO)|? | .
28 2(3 - L)

Finally, dividing both sides with T" + 1, we reach the conclusion. O
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C DETAILS FOR RESULTS IN SECTION [4.2]

We start with the following properties of the generated sequences.

Theorem 6. Let assumptions in Theorem [ hold. Suppose Assumption[3| holds. Suppose F' and g are
bounded from below and g is level-bounded. Then the following statements hold.

(i) {H.} is convergent.
(i) lim | X! — Xt = lim | Wi — W] = lim || 217! — Z!|| = lim [|[ Y — Y| = 0.

Proof. For (i), since ¢ is level bounded and noting that H(X! Wt 7Z!) <
H(Xt,wt zt Yyt wi=1 yt=1), forllowing similar arguments in Theorem 4 of [Li & Pong
(2016), it is easy to show that { (X, W, Z)} is bounded when €,, is small enough. Then we have
that Note that

H(Xt+1,Wt+1,Zt+1,Wt,Yt) Z F(Wt+1) +g(Zt+1)) _ i _

25 HXt—i—l _ Zt+1||2

2
> By + By — BB?.

where By, B, and B, in the second inequality are the lower bounds of f and g and bounds of
{X**1} and {Z**+'}. This together with equation [40|shows that H; is nonincreasing. Thus, {H,} is
convergent.

For (ii), since all clients attend training in eahc round, we have p; = --- = p, = 1. Summing
equation 40| from ¢ = 2 to T', we have that

H(XT+1 WT+1 ZT+1 WT YT)
2 1172 72 117l t+1 t)12 t+1 t))2
< H(X?, W2, 22, W, ZHW —W? - 252\\2 Al
Rearranging the above inequality we have that
56 = t+1 t)12 1 d t+1 t)|12
EZHW - W +%ZHZ -7
t=1

S H(X2 W2 ZQ Wl ) H(XT+17WT+17ZT+1,WT7YT)
<HX*w? zZ2why! )—Tlim HXTHwTH 2T wT vT) < oo,
— 00

(80)

where the second inequality is because {H (XT+L, Wi+l ZzT+1 WT yT)} is convergent and
nonincreading in the deterministic case thanks to equatlon @} Taking 7' in the above inequality
to infinity, we deduce that {||W**! — W?!||} and {||Z**! — Z%||} are summable. This implies that
limy [|[WHH =W = limy || 21 — Z%|| = 0. The lim, || X**! — X*|| = 0 follows from equation 38}
Now, using the deterministic case of equation @] and the definition of Y1, we have that

T
ZHW“ VP2 < ZTM <! 5 (To = Tra) +6L2 Y [[W! — W

t=0 (81)

T
1 2 t 41|12
<) T < 5 To+6L ZHW — W2,
t=0 =0
Since {||W*T? — W||} is summable, taking T in the above inequality to infinity, we deduce that
lim, [[Y! — Y*|| = 0. 0
Next, we show how the accumulation points of {(X*, W, Z* Y*)} behave.

Theorem 7. Let assumptions in Theorem@hold Suppose Assumpnon'holds Then {Y'*} is bounded.
Let (X*,W*, Z*,Y*) be any accumulation point of {( X, W, Zt,Y")}. Then the following results
hold.
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(i) W* = Z* and Z* is a stationary point of equation([]

(ii) HX,W,Z, W' Y'Y is constant on the set of accumulation points of
{(Xt-l-l, Wt+1, Zt-i—l7 Yt)}

Proof. We first show {Y} is bounded. In fact, thanks to the first relation in equation [33|and the
boundedness of {X*} shown in Theorem|6] we deduce that {Y (W} *1)} is bounded. This together
with the fact that [|[ Y| < ||V — Y (W) || + |V (W]T)| implies that {Y*} is bounded.

For (i), since (X*, W*, Z*,Y*) is an accumulation point of {(X*, W*, Z!,Y")}, there exists {¢;};
with lim; (X%, Wt 2t Yt) = (X*,W*, Z*,Y*). Using the fact that lim, | X'+! — X*|| = 0
and equation [2| we know that W* = Z*. Using Lemma there exists n* € 9g(Z") such that
equation [33)and equation 34/ hold. Thus,

1 1 1 1
0= (RVACwE) + St — e = o) oo, ST Rluh )+ luh = = ah) ) + 1

3
- %(2Wt _ Xt — 71 (82)
= V(W) 41 = ek eh) = 5K - X0,

where the second equality uses equation

On the other hand, note that z* is the minimizer of equation[3] Z% = Prox;(2W* — X*/) and thus
1 1
9(2") + g5ll2Wh — XY — 28| < g(Z7) + g5 ll2W"h — X5 - 2| (83)
Letting ¢ in the above inequality goes to infinity and making use of (i), we have that

1 1
lim g(Z"%) + BHW* — X*|? =limg(Z%) + BHWtj — Xt
J j

1
< lim sup g(ZtJ) + —H2Wtj —_ Xt — 7t ||2
i 20
—lim | = ||2W% — X% — Z%|? + —|Wh — X% 2)
(551 2+ 551 ||

1
< Z* . W*_X* 2
<o(2%)+ 55 7

where the first equality makes use of W* = Z*, which implies that limsup, g(Z%) < g(Z*).
Thus, we have that limsup, g(Z%) < g(Z*). This together with the closedness of g gives that
lim, g(Z"5) = g(Z°).

Combining equation [37|and Theorem|6] (ii), we deduce that lim, ||ef|| = 0 and lim, W} = W*. With
this fact and equation [84] letting ¢ in equation[82]be ¢; and letting ¢ goes to infinity, recalling (i) and
the continuity of V F', we obtain that

0=UmVF(W}) +limn € VE(W*) + 09(Z*) = VF(Z*) + 09(Z*),
J J
where the last equality uses the fact that W* = Z*. This together with Exercise 8.8 of [Rockafellar &
Wets| (1998)) gives the conclusion.

For (ii), we first note that thank to Theorem E] (ii), it holds that lim; Y%~ = lim; Y% = Y*,
lim; W'~ = lim; W% = W*. Denote Y, = ", T;;. Then lim; Y;, = 0. Using Theorem
[6] (i), we know that there exists H, such that lim; H(X*, W*, Z!, Y*, W'~1, Y*~!) = H,. On the
other hand, note that

”Xt o Wt”Z o (HXt o WtH2 . 2<Xt o Wt,Zt . Wt> 4 HWt . ZtH2)

= Xt — w2

= (X = WP = X" = Z" = 2W P + | X = WO+ ]| 20 = WP+ W= ZY)?)
= X' = 2" —2W | — || X" - WP - 2wt - 22

(85)
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Then
H, = li{nH(Xt,Wt,Zt,Yt,Wt‘l,Yt‘l)

— hm H(th , Wtj , th , Wtjfl, Ytjil, Wtj72, Yt_7'72)
J

7 5
. t; t; 1, t t;—1(12 -
— i HCX, W5, 29) + S = WP 4 ol Y
1
@ Jim F(W") + g(2%) + a5l XY =20 W
J
1 5
+ 25 (—IX" —Wh|? = 2wt — Z%%) + BH” w2

=F(W)+g(Z)=F(W)+9(Z)+ﬁ(||X e Rl 1P e/ ”2)+B”W -z

D H(X W, 2 W WY,
(86)

where (a) uses equationand the fact that lim; Y4,y = 0, (b) and (c) use the continuity of I’ and
the fact that lim g(Z%) = g(Z*), lim; W% =1 = lim; W% = W* and the fact that W* = Z*. [

To analyze the convergence rate of the generated sequence, we need the following additional theorem.

Theorem 8. Let assumptions in Theorem [B|hold. Suppose Assumption[3|holds. Then, there exists
I't >0, s > 0andI's such that

d(O, 8H(Xt+1, Wt+1, Zt‘-i-l7 1/t-‘y-17 V[/'t7 Yf))

(87)
STy |[WH2 = W 4 Do [ W — W+ T3 /Y.

Remark 5. Note that this bound holds whenever W' in equation is solved using a deterministic
or stochastic method.

Proof. Using Proposition 10.5 of Rockafellar & Wets|(1998) together with Exercise 8.8 of Rockatellar
& Wets| (1998)), we have that

aH(Xt-‘rl Wt-‘rl Zt+1 Yt-‘rl Wt Yt)

r %(ZtJrl _ Wt+1)

VF(WH—l)— (Xt+l_Wt+1)+273(Wt+l _ Wt)_'_g(Wt—Q—l _ Zt+1)+#(Wt+l—Wt)
ag(zt+1) (Xt+1 _ ZH—l)—E(WH_l—ZH—l)

1
= B
_é(wt+l _ Wt)
Yt+1 _ Yt)

|

6L2
76%()/154»1 o Yt)
7%(Xt+2 o Xt+1)
AL A
(Xt+1 o Zt+1) o %(Wt+1 o Zt+1)
e
AR
ez (YT YY)

3§(Zt+1) _

I
=

(88)

vl tH1y L tl b1y 28 00 b+t 200 1t 1 o(ot+l ot
where A; := Vo fi(w;") = 5(2;" —w; )+ F (w7 —wi)+ 5w =27 )+ gz (w7 —wy)
and the second equation makes uses the equation[2] Now we bound the second and third coordinates

of in the above matrix.
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Using equation[33] it holds that

A= V™) = S w4 Dt )+ 2w - )
ﬁ 3 K3 B K3 1 /6 1 K3
1 Wt — ) — 1o i1 1 e t+1
+6L2( w;) B(wi €; z; ") = V= fz( )
_ t+1 1o iy 20 20 e
=V-— fz( ) — anZ(wi,* )+ 3 (w; w;) + 6(“’1‘ z)
1 1 (89)
Jas! 41 t
+ = 3 e, +— 37 (w; T —w;)
e fz( 4+ 20 (wi*t —wh) + 2 (atH = g1 4 Lot
n 3 /8 K3 K3 /B 1 1 /8 K3
AT R
+ 6[/2 (w w’i)’

where the second equality uses equation 2] Thus, using Cauchy-Schwarz inequality, we have that

(Al
6 4

=4||V- fl( A fz( PO+ 62 || A @let*z*fvt-“ll2 @II e

1
+6L2(wt+1 wf)

1642

<ALl WP+ o [l =l + et - ol et

1
F gl — )

165 4 1
_ ﬁg ” t+1 1t||2+62” t+2 §+1||2_|_ <4L2+62) H6§+1”2 6L2( t+1 U)f),

(90)

where the first inequality uses the Lipshcitz continuity of VF'.

For the third coordinate on the right hand side of equation[88] using equation [34] we have that

d2(078§(zt+1) 4 %(XtJrl _ Zt+1) _ E(Wt+1 _ Zt+1))

1 1 9
< zEWH - XMz (X = 2 — S (Wt = 2|1 oD
=0.

36



Under review as a conference paper at ICLR 2025

Denoting E* = (e, ..., ef,) and combining this with equation[88]and equation[90] gives that

d2(07aH(Xt+17Wt+17Zt+17Yt+17Wt7Yt) S %HX#{-Q _ Xt+1||2 1/62 ||Wt+1 Wt||2
16 4 842

+ @HX“FQ - X 4 <4L2 + 52) B + anf“ - W1 + 3L2 73 Tt

1 16 1662 862
— <52 T 2) ||Xt+2 _Xt+1||2 4 ( 62 4 ) HWt+1 Wt||2

4 2
+ (4L2 + B) | B + + 35T
a (1 16 1662 86
< (52 4 52> ||Xt+2 _Xt+1||2 + ( ﬂ2 + 52) HWt+1 _ Wt||2
4 1 2
2

+ (4L ﬁ2> 7(% _ L)2CEwErt+1 + @Tt

1 16 1662 862
< (ﬂz + ﬁ) ||Xt+2 Xt+1||2 + ( 52 + Bz) HWt+1 o Wt||2

a2 Lo E (R, 6L wt — wr? T
+ @ (%—L)Z €w 5 ¢+ || - H +3L2 ts
92)

where (a) uses equatlonﬂand the last inequality uses equation[38} Now we bound || X2 — X¢+1|12,
Recalling equation [38] it holds that

1 2
[ X2 — X2 < (1+ BL)? (1 + K) Togo + (1 4 BL)? (1 + H) chﬂm
=
1 2 1
< (14 BL)?(1+ k) Yipo + (14 BL)? (1 + ,-;) chw (QTt +6L2%||W* — Wt+12) .
.

(93)

where the last inequality use equation21] In addition, summing equation 21|from ¢ + 1 to t + 2, we
have that

Yoo < = (Tt Yipo) + 6L2 W — W2 )12 4 6 L2 W' — W2
94)
< §ET7§ + 6L2HWt+1 _ Wt+2||2 T 6L2||Wt _ Wt+1||.
Combining equation 03} equation 94 and equation[92} we see that there exist I'}, I'y and I such that
d?(0, 0H (X1, W, 2L YL W Y)) < T[WH2 = WEE 4 Ty W — W 4 TE

95)
Combining this with the fact that a® + b? 4+ ¢? < (a + b+ ¢)? forany a > 0, b > 0 and ¢ > 0, the
conclusion holds with T’y = /I"}, 'y = /T and I's = T'%. O

Next, we show the proofs of Theorem 3] For convenience, we restate Corollary 3 as follows.

Theorem 9. Let assumptions in Theorem|[6hold. Suppose Assumption [3|holds. Suppose in addition
that H is a KL function with exponent o € [0,1). Then {(X*, W', Z"*Y")} is convergent. In
addition, denoting (X*, W*, Z* Y*) := limy (X, W, 2t Y'?), it holds that

() If « = 0, then {( X, W', Z%)} converges finitely and {W*'} converges linearly for large t.

(I If o € (0, 3], then there exist a > 0 and p € (0,1) such that max{||W?' — W*||, | X* —
X*|, 12t = Z*||, ||Vt = Y*||} < ap’ for large t.

(Il Ifa € (%, 1], then there exist b > 0 such that max{||W'—W*|, | X' = X*||, || 2! = Z*||, ||V * -
Y*|} < bt_ﬁfor large t.
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Proof. We first show the global convergence and convergence rates of {WW}. In the deterministic
case, we have from Theorem [6] (i) that {H (X*, W, Z8, Y, W'~ Y*~1)} is convergent. De-
note its limit as H,. For simplicity of the proofs, in the rest of the proof, we denote H; :=
H(Xt, Wt zt Wi=1 Yt=1), First, suppose there exists ¢y such that H; = H.,. Since { H;} is non-
increasing and recalling equation[40} we know that H; = H, and | W' —W'}|| = |2+ - Z¢| = 0
for all t > to. This implies that W! = w'® and Z!*! = 2% for all t > to. This together with
equation [38|and equation [3induces that X* = z?.

Now, we show the convergence of {Y*}. Recalling equation it holds that
1
Torr < 5 (Te = Tega) + 6L W — w2

3 1
@ ST < 5T+ 6L2||W — W%

Taking square root on both side of the second inequality in the above relation, we have that

1 1
\/;Tm < \/th +6L2||Witl — Wt||2 < \/2Tt +VeL2|WT — W (96)

where the second inequality uses the fact that a® +b* < (a+b)? for any positive a and b. Rearranging
the above inequality, we have that
1 1212

\/Tt+1§\/§_1(\/?t_\/rt+1)+ 5-V3

Summing the above inequality from ¢ = 1 to 7', we have that

W — W (97)

T

T T
1 1212
Y=Y <) VT € =Tty 7= ) IWT =W

Since {W'} converges finitely, > .-, [|[W**! — W!|| < cc. Thus, taking T in the above inequality
to infinity, we have that >~ [|[Y* — Y**!|| < oo, implying that {W*} is convergent.

Next, we suppose that H; > H, for all ¢. Since H is a KL function and is constant on {2 thanks to
Theorem(ii), using Lemma 6 of Bolte et al.|(2014)), there exists € > 0, a > 0 and ¢ € ¥, such that

¢ (HX,W,Z, Y, W' Y") - H,)d(0,0H(X,W,Z,Y,W Y")) >1
when (X, W, Z,Y, W’ Y’) belongs to the set that
(X, W, 2,Y, W', Y"),Q) < e

and
H,<HX,W,Z,Y,W'Y') < H, +a.
Denote the above set as B. Thanks to Theorem [6 (i), we know that

lim, d((Xt, W Z8 YE WL Yi=1) Q) = 0. This together with the fact that {H;} is
nonincreasing and convergent guaranteed by equation #0]and Theorem|[6] (ii), we deduce that there
exists ¢; such that (X!, Wt Zt Yyt Wi=t Yt=1) € Bforanyt > t;. Thus, for t > t1, it holds that

S(H(X W ZL Y Wi Yyt — 7)d(0,0H (X W ZE YL Wiyt > 1. (98)
Using the concavity of ¢, the above inequality further implies that
(6(Hy — Ho) = ¢(Hyr — H.))) d(0,0H (X", W*, 2, Y, WL YT H)
> ¢ (Hy — H,)d(0,0H (X", W Z' Y* W= Y=Y (H, — Hyyq)
Je
>H, —Hyyq > EHWt - Wt_lH27

where the last inequality uses equation 40l Combining the above inequality with equation 87} we
have that

(B(Hy — H.) = 6(Hyyr — HL))) (D[ = W 4 Do — W 4+ T3

)
2 Je Wt _ Wt—l 2.
5 | |
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Rearranging and taking square roots on both sides of the inequality, we have that

W —w

< V D (@(H, — H.) = 0(Hopr — HLY)) (DLW — W4 Dol e — W 4 Ty, ).
99)

Combining equation [97| with equation and denoting 'y := max{I'y, 'y, Fgﬁ, I3 ;E\L/%},
we have that
W —w|
BTy
< =5 (@(Hy — Hi) = 6(Hirr — H.))) (100)
1
+ 7 (W= W W= W W2 = W+ (Y = Y1)

where the second inequality is because v ab < %(a + b) for any positive a and b.
Rearranging the above inequality, it holds that

P (o, — HL) — oHn — H.))

E

1
It Wi < 2
1 _
+ 5 (I =W — |t — )
1
(W2 = WL = W= W) (T = Te)

Pick any ¢ > t; + 1. Sum the above inequality from ¢ = 5 to 7T, it holds that

1 T
1 > Wt —w
t=to+1
BF4 1 T+1 T to+1 t1
< &5 (@(Hur = Ho) = ¢(Hran = Ha)) + 3 (IWHH =W — W=t —wh )
1
+3 (Iwe=2 —we=t — W' —wT )
/BF 1 T+1 T to—2 to—1
< ; ¢(Ht2+1—H*)+1||W -Wil++ (||W - W),

where the second inequality uses the fact that ¢(w) > 0. Since lim, [|[WZ+1 — WT|| = 0 thanks to
equation[6] (ii), passing 7" in the above inequality to infinity shows that

1 o)y 1
1 O W W < S0 ( iy — Ha) + 4 (W72 = WETH) <co. (10D

t=to+1 Oc

Therefore, {W*} is convergent.

Next, we show the convergence rate of {WW*}. From the assumption, we know that ¢(w) = cy'=*

for some ¢ > 0. Then ¢'(w) = ¢(1 — o)y~ . Consider the case o = 0. If H, > H, for all ¢, using
equation[08] we deduce that

1

d0,0H (X Wt Z8 Y Wit yi=h) > 2 fort > ;.

c
However, thanks to equation @ and Theorem E] (>i1), we have that
lim, d(0, 0H (Xt Wt Zt Yt Wi Y'=1)) = 0, a contradiction. Thus, when a = 0,
there exists too such that H; = H, for t > 4. Due to the arguments at the beginning of this proof,
we know in this case, {TW'} converges finitely.

Now we consider the case where o € (0,1). Still, if there is a ¢ such that H; = H,, {W'}
converges finitely. Thus, we only need to consider the case where H; > H, for all . Define
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Sy =, |IWitt —WJ| and H; = H; — H*. Thanks to equation Sy is well defined. Using
equation for t > ty, it holds that

St < 2B maX6{F17F2}

Qﬂ maX{I‘l, FQ}

¢(Hi,41 — Hy) < 5

1
G(Hip1 — Ho) + 5(&572 —5).
(102)

With this inequality, following the proofs in Theorem 4.3 of |Wen et al.|(2018) (beginning from (4.18)
of [Wen et al.|(2018))), we have that

(i) If o« € (0, 1], then there exist a > 0 and p € (0, 1) such that
[W* —W*|| <8, < ap' for large ¢. (103)
(ii) If a € (3, 1), then there exist b > 0 such that
W — W*|| < S, < bt~ 77 for large t. (104)

To show the convergence of (X*, Z¢, Y'*), we first show that { Y} is summable. Summing equation[97]
from ¢ = t5 to T', we know that

1212
Z\/Tt+1< T (VT =V Tr) + ZHWHI W

t=ta

12L2 (48T 1
_f_lx/nz Vi) + ﬁ(ie‘*wﬂtm H.)+ 4(||Wt2‘2—Wt2‘1||)>-
(105)

Taking 7" in the above inequality to infinity, we deduce that Ztoitz Tit1 < o0.

Since ||V — Y| < \/T;41 by definition of Y;, we deduce that ||Y*™ — Y|| is also summable
and thus {Y'*} is convergent to some Y *. Furthermore, the above inequality show that

o0 oo
Y2 =y <> Iy =Y <Y Ve (106)

t=to t=to

Next we show that { X'} is convergent. Taking square root of equation |38|on both sides, we have that

X — X < \/(1 +BL)2(1+K) Tryr + (1 + BL) (1 + i) p_QL)zCGth
B

< VO +BLZ(1+ r)\/Tesr + \/(1 + BL)? (1 1) cew\ﬁ

G-L2

Since {Y;} is summable, the above inequality show that {||X**! — X*||} is summable and thus
{ X} is convergent to some X *. In addition, the above inequality shows that

o0 o o0
X% =X < D IXH =X <O Ve + Y V). (107)
t=to t=to t=ty

This implies {X*} is convergent. Using equation 2] we deduce that {Z*} is convergent.

We next show the convergence rate of Zfi .V T¢. Dividing both sides of equationby %, we
have that

1
T < —— + V2L2||[WHL — W,
VY Ned I [
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Thus, summing the above inequality from to to 7, it holds that

S VTS VT € = VT VIR Y W .

t=to t=to t to t=t2

Rearranging the above inequality, for any 2 > t; + 1, we have that

Zw/ < V2Ll ant“ W = 5
t=ts \/5 t=t V3
Combining this with equatlon@ equation[T07} equation[T03]and equation[T04} we deduce that the
convergence rate of {(X*,Y?)} is at least the same as that of {//*}. Finally, using equation[2] we
deduce that {Z'} is convergent and its convergence rate is at least the same as that of {W*}. O

212

(108)

C.1 PROOFS OF PROPOSITION[3]

Proof. Fixanx € dom 0G. Lety(r) = arg max, F(x,y). Consider F'(-,y(x)). Since F"is strongly
concave in y, we know that y(z) is continuous, see Proposition 1 in|Chen et al.|(2021). From the
assumption in this proposition, there exist (y(x)), c(y(x)) and a(y(x)) such that

dist= (0,9, F(-, y(2))(7)) = e(y())(F(Z,,y(x)) — F(z,y(x))
whenever Z € dom 0, F (-, y(z)), || —z|| < e(y(x)) and F(z,y(x))< F(z,y(2)) < F(Z,y(z)) <
F(z,y(z)) + a(y(x)). Thanks to the continuity of F(-,y) for any fixed y, we suppose without
loss of generality that ¢(y(z)) be small enough such that when ||z — x| < e(y(z)), we have that
F(z,y(z)) < F(x,y(z)) + a(y(x)). Thus, there exist ¢(y(z)), ¢(y(z)) and a(y(z)) such that

dist (0,0F (-, y(2))(7)) > e(y(2))(F (&, y(x)) — F(z,y())) (109)
whenever & € dom 0, F(-,y(z)) and ||Z — x| < e(y(x)).

Recalling the continuity assumptions on ¢(y) as well as €(y) the continuity of y(x), there exists 6 > 0
small enough such that there exists € € (0, infz_, (<5 €(y(Z))) and inf |z _, <5 c(y(Z)) > 0.

Now let z be any point satisfying ||z — z|| < min{e, §} and G(z) > G(z). Then by the definition of
y(x), it holds that

F(z,y(2)) = Fla,y(2)) 2 F(2,y(2)) = =F(z,y(z)) > 0. (110)
For this z using equation[I09] there also exist €(y(z)) and c(y(z)) such that
)

(2)
dist (0,0, F(#,y(2))) > e(y(2))(F(Z,y(2)) — F(,y(2))) (111)
(u(

(F
whenever Z € dom OF (-, y(z)) and ||Z — z|| < €(y(z)). By assumption of this proposition, and by
the choice of z, we have that

o=zl <e< it ely(@) <ely(z)),

where the last inequality is because ||z — z|| < §. Thus, using equation|[111] we have
dist= (0,0, F(2,9(2))) > c(y(2))(F(2,4(2)) = F(=,y(2)))
2 o(F(z,y(2)) — F(z,y(2))) = c(F(z,y(2)) = F(z,y(x)))

) =
+c(F(z,y(z) — F(,y(2) = e(F(2,y(2)) = F(a,y(2)))
= c(G(2) - G(x)),

where ¢ := inf);_,<s c(y(Z)), the second inequality is because ||z — z|| < min{e, §} and equa-
tion {110} the last inequality uses the definition of y(z).

Thus, when ||z — z|| < ¢ and G(z) > G(x), it holds that
dist™ (0,0, F(z,y(2))) > c(G(z) — G(x)).
When G(z) < G(x), the above inequality holds trivially. Therefore, we deduce that
dist= (0,0G(z)) = dist(0, Vo F(z,y(z)) + 9g(x)) = dist(0, 0, F (2, y(2))) > ¢(G(z) — G(z)),
where the equality is from Danskin’s theorem and Exercise 8.8 in|Rockafellar & Wets|(1998). [

41



Under review as a conference paper at ICLR 2025

C.2 PROOFS OF REMARK 4]
Proof. Fix any . By the continuity of F(-, ), it suffices to show that there exists ¢(J) such that
F(6,0) — F(6,0) < dist?(0, 05 F (0, 0)), for |0] < €(6),

and €(d) is continuous in §. Without loss of generality, we let (z,y) = (0,1). Then F(0,6) =
log(1 + exp(—05)) —c||?> + \|6)]. Thus,

£(6,6)
—dexp(—4d0)
F _ .
0pF(0,0) = T+ exp(=00) + A0|9]
and
_ Jdexp(—40) 0>0
dist(0, 99 F (6, 8)) = LFexp(—=00)” 112
ist(0, 0p F(0, 9)) {)\+1(5+.9:f})((59) 0<0. (112)
Thus, for any € > 0 and any |0| < €, it holds that
d exp(—d6)

dist?(0, 94 F(0,8)) = [VoF(0.8)> = (A — 12 > max {(A e - 6|>2}

(113)

1+ exp(—4d6)

Now we divided § into three cases: § = 0,6 > 0 and § < 0.
Case I: 6 = 0. In this case,

F(6,0) — F(0,0) = log(1 4 exp(—66)) + A|f| —log 2.
Let € > 0. When |0| < €, we have that

F(0,6) — F(0,8) <log(1+ exp(eld])) + Ae —log 2 < log(2 exp(e|d])) + Ae — log 2 < e(|d] + A).
(114)
and

2 _ 18lexp(idl16D \* 115

Note that

2 2
. Aexp(lS[lOD \® _ (A _x
If [§] = A, then ()‘ 1+e)rc)p(/\\9|)> = (1+exp(/\\9|)) = (1+exp(/\e)) - Let e1(6) =

(oe)” Aexp(13]101)
%, we have that €(|6] + A) < ()\ - #@\WD) :

* If § = 0, then </\ — M) = A2, Let e5(8) = 2*_we have that e(|o] + A) <

14+exp(A]6]) O+
_ Aexp(l9]16])
(A 1+exp<xwe|>) :

T+exp([4]]6])

6] = €3(6) with e3(8) = & log (%) Thus, when |0] < Les 5(0),

2
(A |0] exp(]0][0]) ) ( |0 exp(z€3.5(9 )I5I)> >0
1+ exp(|d][6]) 1+ exp(z€3.5(6)[9)

</\ \é\cxp(zfs(é)\él)>

1+exp( 3 €3(8)]8)
[o]4+X

«1f6 # 0and A < 1|3, then log (T) > 0. Also, A = LexpWlOD 3 g oy if

2
, we have that €(|d] + \) < ()\ _ M) )

Letting e5(9) = Ttexp(A0])
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« It 5 #0and A > 4[], then A — I 2PAEL > 0. Thus,

ColemlaIOD N\ o Bl e
(A 1+exp<6|0|>) - {(A 5 ) '5')}'

max{(A—181)2,(x—]s])? Xexp(15]10]) \ 2
Let es(5) = 24 FiEsy } we have that e(|6] + A) < ()\— *‘(A‘M;) :

Therefore, let €(d) := min;—1 2 3.4 €;(J), we know that €(¢) is continuous and
6l exp(|d]|0 2
o+ < (3~ 1350 m)
This together with equation and equation shows that
F(6,0) — F(0,0) < dist?(0, 09 F (6, 0)), for |0] < €(6).

Thus, F(-,0) satisfies the KL property at 0 with exponent « and constants €(J).
Case II: § > 0. Let e > 0. Forany 6 € [ — ¢,0 + €], we have that

F(0,8) — F(0,5) <log(1+ exp(0]d])) + A0 — log(1 + exp(—06)) — A0

<log(2exp(0|8])) + A0 < 0(0] + \) +1og2 < (0 + €)(|5] + \) + log 2.

Following similar argument after (14) in Case I, we can show that there exists €(J) continuous w.r.t §
such that F'(-, 0) satisfies the KL property at  with exponent v and constants ¢(J).

Case ITI: § < 0. Lete > 0. Forany 6 € [ — ¢, 0 + €], we have that
F(6,5) — F(8,5) < 1o8(1 + exp((61]6])) + Alf] — log(1 + exp(—68)) — A6
< log(2exp(|0]|6])) + Al0] < 10](]0] + A) +1og2 < (|0] + €)(|0] + A) + log 2.

Following similar argument after (14) in Case I, we can show that there exists ¢(J) continuous w.r.t §
such that F'(-, §) satisfies the KL property at § with exponent « and constants €(6).

O
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