
Under review as a conference paper at ICLR 2022

PRIVACY-PRESERVING TASK-AGNOSTIC
VISION TRANSFORMER FOR IMAGE PROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed collaborative learning approaches such as federated and split learning
have attracted significant attention lately due to their ability to train neural net-
works using data from multiple sources without sharing data. However, they are
not usually suitable in applications where each client carries out different tasks
with its own data. Recently, Vision Transformer (ViT) has been widely explored
in computer vision applications due to its capability to learn the common repre-
sentation through global attention of the embedded input sequence. By leveraging
the advantages of ViT, here we present a new distributed learning framework for
image processing tasks, allowing clients to learn multiple tasks with their private
data. The key idea arises from a disentangled representation of local and non-local
features using a task-agnostic Vision Transformer and a task-specific head/tail. By
connecting task-specific heads and tails at client sides to a task-agnostic Trans-
former body at a server side, each client learns a translation from its own task
to a common representation, while the Transformer body learns global attention
between the features embedded in the representation. To enable decomposition
between the task-specific and common representation, we propose an alternating
training strategy in which task-specific learning for the heads and tails is run on
the clients by fixing the Transformer, which alternates with task-agnostic learn-
ing for the Transformer on the server by freezing the heads and tails. Once the
Transformer body is fully trained with a sufficient number of tasks and clients,
additional training of the Transformer body is no longer required when a new client
is added with a new task, and all that is required is the training of customer-specific
head and tail. Experimental results on multi-task learning for various low-level and
high-level computer vision including medical image data show that our method
synergistically improves the performance of the task-specific network of each client
while maintaining privacy.

1 INTRODUCTION

Deep learning approaches have demonstrated the state-of-the-art performance and fast inference
time in computer vision tasks (Ronneberger et al., 2015; Zhang et al., 2017a; Wang et al., 2017). In
particular, convolutional neural networks (CNN) can learn the hierarchy of complex image features,
so that a variety of CNN-based methods have been developed for denoising (Zhang et al., 2017b;
Chang et al., 2020), deraining (Wei et al., 2019; Ren et al., 2019), deblurring (Nah et al., 2017; Kupyn
et al., 2019), deblocking (Li et al., 2020b; Maleki et al., 2018), etc. However, the performance of
CNN typically depends on a large number of training data (Chervenak et al., 2000; Krizhevsky et al.,
2017), and it is often difficult to collect data from various entities due to privacy and regulation
issues (Price & Cohen, 2019). Since the amount of data from a single source may not be enough,
a deep learning framework that can leverage many datasets without violating privacy is required in
real-world applications.

To address this, distributed collaborative learning (DCL) approaches, which jointly train a single
network on multiple systems or devices without revealing distributed data to a central entity or to each
device, have been investigated (Konečnỳ et al., 2016; McMahan et al., 2017a; Gupta & Raskar, 2018).
For example, federated learning (FL) (McMahan et al., 2017a; Li et al., 2020c) is studied to aggregate
all data to the center under privacy constraints. Thanks to the parallel communication between each
client, FL enables fast training of the network across multiple clients. Also, split learning (SL) (Gupta
& Raskar, 2018; Vepakomma et al., 2018) is developed as an enhanced privacy-preserving model that

1

Under review as a conference paper at ICLR 2022

splits a network into clients and server so that each client does not share all network parameters but
only train a part of networks. From the advantages of FL and SL, a combination of split and federated
learning, named SplitFed learning (SFL) (Thapa et al., 2020), has been recently proposed to provide
efficient training and a high level of privacy with a less computational burden. However, the existing
CNN-based methods are difficult to determine the proper layer of the network to split. Also, although
training data are distributed across each client, all clients usually consider a common learning task.

Meanwhile, in many practical image processing applications, it is unlikely that all the clients are
interested in the same applications. For example, some of the clients may be interested in image
denoising (Zhang et al., 2017b), whereas the other clients are focused on image deblurring (Nah
et al., 2017), deraining (Wei et al., 2019), deblocking (Li et al., 2020b), etc. As each task is different
from the others, the existing distributed learning framework may not work. That said, these image
processing tasks still require understanding of common image representation, so one may wonder
whether there is any systematic way of synergistically learning multiple image processing tasks in a
privacy-preserving manner.

One of the most important contributions of this work is to show that Task-agnostic Vision Transformer
(TAViT), composed of the CNN-based head and tail and ViT-based body, is nicely fit to this purpose.
Specifically, the head and tail are placed on each client to learn specific image processing tasks,
while the body is stored and trained on a server to learn common representation across all tasks of
clients. In contrast to the existing SL framework where the network split is arbitrary, TAViT provides
a systematic way of splitting neural networks between clients and servers for privacy-preserving
training without losing any performance. Furthermore, TAViT allows clients to use a common
Transformer body model to learn multiple image processing tasks and synergistically improve the
performance of their task-specific networks.

One may think that the proposed method is similar to the image processing transformer (IPT) (Chen
et al., 2020), which consists of CNN-based heads and tails and a Transformer body. However, IPT
requires centralized data and large computation resources for both pretraining and task-specific
fine-tuning the whole model. Also, the Transformer in IPT has an encoder-decoder architecture which
needs an explicit conditioning vector to convert the Transformer for a specific task. Thus, to our best
knowledge, IPT is not suitable for distributed learning. In contrast, the body of TAViT is made of an
encoder-only Transformer architecture to learn global embedding features of multiple tasks without
any condition. Besides, by imposing computation of this Transformer body on the server rather than
clients, our framework enables clients to reduce the computational burden while maintaining the
overall performance for specific image processing tasks.

In addition, TAViT views the heads and tail at the clients and the body at the server as two-part
players and updates them alternately. Specifically, our training step is composed of task-specific
learning and task-agnostic learning: the former is to train the client-side heads and tails to learn
each task of the client, while the latter is to train the server-side Transformer body to learn general
feature interpretation over multiple tasks. When there are more than two clients for any single task,
parameters of their heads and tails can be aggregated through FL. Accordingly, TAViT offers seamless
integration between SL and FL approaches to protect privacy.

Recall that one of the most unique advantages of Transformer body is to convert “unattended ” input
features into “attended ” output features by learning global attention and non-local interactions
between the input features. Accordingly, with the help of aforementioned alternating training scheme,
the task-specific head/tail can be only trained to learn task-specific local features, whereas the global
feature can be learned through the Transformer. In fact, this disentangled representation of local
and non-local features has been pursued throughout the development of deep networks (Ye et al.,
2018; Zhang et al., 2019b; Wang et al., 2018). Thus, the proposed Transformer-based approach
is considered to be one of the most advanced architectures for achieving this goal, as it improves
synergistically overall performance, and at the same time leads the privacy-preserving split learning.

We validate the performance of TAViT on multiple image processing tasks. Experimental results show
that our multi-task distributed learning framework using the alternating training strategy outperforms
the end-to-end learning of each individual task thanks to the decomposition of the task-agnostic
Transformer body and task-specific networks. This suggests that our framework is a promising
approach for learning multiple tasks with distributed privacy-sensitive data. In sum, our contributions
are summarized as follows:

2

Under review as a conference paper at ICLR 2022

Figure 1: Overall framework of TAViT. (a) By subscribing a task-agnostic Transformer body, (b)
clients train their heads and tails with the fixed body in parallel by task-specific learning, while a
server trains the body with the fixed head and tail of randomly chosen client for each iteration by
task-agnostic learning, (c) and that the body consists of encoder-only Transformer architecture.

• We propose a novel distributed learning framework, TAViT, that carries out multiple image process-
ing tasks using distributed data.

• The proposed method consists of task-specific heads and tails on clients and a task-agnostic
Transformer body on a server, which reduces the computational cost of clients and does not require
centralized data for multi-task learning.

• An alternating training strategy between the task-specific and task-agnostic learning for the split
networks shows the synergy effect of performance improvement, which is demonstrated by experi-
mental results on multiple tasks.

2 RELATED WORKS

Federated learning In the FL setting, multiple clients learn locally stored data while one server
aggregates information of clients by various methods including FedAvg (McMahan et al., 2017a).
For the efficient implementation of FL, practical challenges of unstable networks, hardware capacity
difference, and statistical heterogeneity of data distributions (Li et al., 2020c; Smith et al., 2017; Li
et al., 2018) have been actively studied. Corinzia et al. (2019) performs FL with multiple classification
tasks, and He et al. (2020) loads a huge network to a server and small CNNs to clients and trains
them by knowledge distillation. Yao et al. (2019) presents an unbiased gradient aggregation for FL
and meta updating of the model. In contrast, our method is presented for effectively learning on task
heterogeneity using distributed data. Although Li et al. (2020a) presents task-agnostic FL method
based on the feature extractor, each client trains the task-specific network independently, while our
model can learn multiple tasks simultaneously for synergistic performance improvement.

Split learning Split learning (SL) is designed to train networks over distributed data by splitting
networks into two parts, which updates client-part and server-part networks sequentially (Gupta &
Raskar, 2018). By extending this idea, Vepakomma et al. (2018) presents several ways to use SL,
and Abuadbba et al. (2020) applies SL to 1D CNN models. However, the existing SL methods are
designed using CNN, and to our best knowledge, there is no principle way of splitting the network
for the best performance. In particular, Thapa et al. (2020) proposes a combination of FL and SL, but
the server requires labels from clients to update the split networks, which may lose data privacy. Also,
since outputs are generated from a shared network on the server when there are multiple clients, these
methods can be narrowly applied to a single task. In contrast, our model presents Transformer-based
shared body that enables multi-task learning of clients without sharing data.

Vision Transformer for image processing Recently, inspired by the success of Transformer in
natural language processing (Vaswani et al., 2017; Devlin et al., 2018), Transformer-based image
processing methods have been extensively explored (He et al., 2021; Han et al., 2021). In particular,
Dosovitskiy et al. (2020) proposes a Vision Transformer (ViT) with an encoder-only architecture to
learn image recognition tasks. Also, Chen et al. (2020) presents an image processing Transformer
(IPT) that learns low-level vision tasks by pretraining and task-specific fine-tuning. However, to
the best of our knowledge, there are no existing works that exploit ViT architecture for distributed
learning applications.

3

Under review as a conference paper at ICLR 2022

Figure 2: Training scheme of the proposed TAViT, where S denotes a common server, and C denotes
clients. The FedAvg with dashed line is applied at the weight aggregation steps.

3 PRIVACY-PRESERVING TASK-AGNOSTIC VISION TRANSFORMER

3.1 SUBSCRIPTION-BASED SERVICE MODEL

As illustrated in Figure 1(a), TAViT is designed for subscription-based services. Specifically, a
client subscribes to a task-agnostic Transformer model at the server side that has learned global
attention over the image features from other datasets. Then, the client can build the head and
tail proper to its own image processing task, and connect them to the Transformer body at the
server. At the subscription time, there may be already multiple clients that subscribe to the same
Transformer body. Accordingly, each client can train its own head and tail using its local data
whereas the common Transformer body is regularly updated using embedding features from all
subscribers through alternating training strategy as shown in Figure 1(b), or even fixed if training
has been performed with sufficient number of tasks and clients. As a result, the latest version of the
Transformer body trained using more training data can be maintained on the server side so that it
can be offered to new clients at the next subscription. Since the local data are not centralized to one
device and are not shared with other clients, our framework can preserve data privacy.

In the proposed framework, we consider the features from the head as a sequence of tokens similar to
natural language processing. Specifically, as shown in Figure 1(c), we reshape the features f with
Y ×X×D size into a sequence of patches f = {f1, f2, . . . , fS}, whereX,Y,D denote width, height,
and channel dimension of image features, respectively, S is the number of patches, i.e. S = Y X/p2

for patch size p, and fs denotes the s-th patch of the features with p2 ×D size. Then, these reshaped
features f are taken into the Transformer body as an input sequence, which is added to learnable
positional embeddings to keep the position information of each feature patch. The Transformer body
consists of several encoder layers proposed in Vaswani et al. (2017) so that the encoded features pass
through several multi-head self-attention modules and feed-forward modules for each layer. And
then, the body output of transformed features is reshaped into the original shape of features f to be
used as input for the tail CNN.

Here, for the Transformer body, we employ the encoder-only architecture as a task-agnostic network,
compared to IPT (Chen et al., 2020) that uses both encoder and decoder of Transformer. The encoder-
only Transformer learns the global relationship between features in the input corpus, and that global
attention may be all we need for better performance in vision tasks as demonstrated in ViT. Therefore,
the body of our framework can be trained to translate the input embedding features into globally
self-attended features independent of specific tasks. Moreover, the heads are guided to learn the
task-specific embedding from the input images to the common feature representation, and the tails
are trained to learn the attended features for the specific image processing tasks. This architectural
modification enables the framework to be suitable for multi-task distributed learning.

3.2 TRAINING SCHEME

For distributed datasets of different tasks, we apply the alternating training strategy between clients
and the server by considering them as two players. Specifically, as shown in Figure 2, TAViT trains
the client-side task-specific head and tail networks and the server-side task-agnostic body network in
an alternating manner. In the task-specific learning, clients train their own heads and tails with the
fixed body weights in parallel using locally stored datasets. In contrast, in the task-agnostic learning,

4

Under review as a conference paper at ICLR 2022

Algorithm 1 TAViT: C = {C1, C2, . . . , CK} is a group of client sets with different tasks each other.
Is and Ia denote the number of optimization iterations for each task-specific and task-agnostic step
in one cycle. Hc and Tc are the head and the tail of a client c, and B is the Transformer body on the
server.
Initialization :H,T to all clients, B to a body
for i in [1, num_cycles] do

for is in [1, Is] do // task-specific learning (heads & tails)
for each client c ∈ Ck ⊂ C in parallel do

update Hc, Tc with fixed B
end
if is is aggregation step then // for case of multi-clients with one task

for each client subset Ck ⊂ C, s.t. |Ck| > 1 do
unify Hc and Tc of client c ∈ Ck (e.g. FedAvg)

end
end

end
for ia in [1, Ia] do // task-agnostic learning (body)

k ← randomly selected task
update B with fixed Hc, Tc, s.t. c ∈ Ck

end
end
Output: H,T,B

the server trains the Transformer body with the fixed head and tail of a randomly chosen client for
each iteration. More details are as follows.

3.2.1 TASK-SPECIFIC LEARNING

Let C =
⋃K

k=1 Ck be a group of client sets participating different image processing tasks, where
K denotes the number of tasks, and Ck has one or more clients with different datasets for the k-th
task, i.e. Ck = {ck1 , ck2 , . . . , ckNk

} with Nk ≥ 1. Each client c ∈ Ck has task-specific own network
architecture for a head Hc and a tail Tc, which are connected to the Transformer body B in the server.

In the task-specific learning, for the given freezed Transformer B at the server and the local training
data {(x(i)c , y

(i)
c }Nc

i=1, the c-th client then trains the neural networksHc and Tc by solving the following
optimization problem:

min
Hc,Tc

Nc∑
i=1

`c(y
(i)
c , Tc(B(Hc(x

(i)
c)))), (1)

where `c(y, ŷ) refers to the c-th client specific loss between the target y and the estimate ŷ. The
parameters of Hc and Tc are iteratively updated using ∂`c/∂Tc and ∂`c/∂Hc. These gradients are
calculated by back-propagation through the entire model which can be expressed by the chain rule:

∂`c
∂Tc

=
∂`c
∂ŷ
· ∂ŷ
∂Tc

,
∂`c
∂Hc

=
∂`c
∂fH

· ∂fH
∂Hc

=
∂`c
∂fB

· ∂fB
∂fH

· ∂fH
∂Hc

(2)

where fH = Hc(x
(i)
c), fB = B(fH) and ŷ = Tc(fB). This implies that to update the head Hc and

the tail Tc, the gradient ∂`c/∂fB is transmitted to the server after back-propagation through the tail,
and also the ∂`c/∂fH computed from back-propagation through the body is transported to each
client.

Federated learning In the task-specific learning, when there are multiple clients for the same
task k (i.e. Nk > 1), their heads and tails can be trained in parallel. Suppose that cki has training
dataset size of |Di| and the total size of dataset in Ck is

∑
|Di| = |D|. In this case, the back-

propagation and optimization process are the same with the single client case, but additionally applies
FedAvg(McMahan et al., 2017a) to the parameters Hc and Tc of c ∈ Ck for every assigned period,
which is written as:

(Hcj , Tcj)←

(
Nk∑
i=1

|Di|
|D|

Hci ,

Nk∑
i=1

|Di|
|D|

Tci

)
, where 1 ≤ j ≤ Nk. (3)

5

Under review as a conference paper at ICLR 2022

The period of the weight aggregation is adjustable (50 epochs in our experiments). From this federated
learning, clients corresponding to the k-th task share the same parameters at the end of task-specific
learning as shown in Figure 2.

3.2.2 TASK-AGNOSTIC LEARNING

Once the heads and tails of multiple clients are trained, the Transformer body is trained by fixing the
heads and tails at the clients. To train the Transformer body that learns the common representation in
a task-agnostic manner, we construct a subset of the client CB by selecting one client from each task:

CB = {c1n1
, c2n2

, . . . , cKnK
}, cknk

∈ Ck. (4)

Then, the training data {x(i)c , y
(i)
c }Nc

i=1 corresponding to the task of the client are also selected, and
the Transformer body in the server is updated by solving the optimization problem as follows:

min
B

∑
c∈CB

Nc∑
i=1

`c(y
(i)
c , Tc(B(Hc(x

(i)
c)))). (5)

Similar to the task-specific learning, the parameters of B are updated using ∂`c/∂B, where the client
c is randomly chosen from CB at each optimization step. The required gradients also come from
back-propagation as following:

∂`c
∂B

=
∂`c
∂fB

· ∂fB
∂B

, where
∂`c
∂fB

=
∂`c
∂ŷ
· ∂ŷ
∂fB

, (6)

where fB = B(fH) and ŷ = Tc(fB). Here, the gradient ∂`c/∂fB is only transported to the server
after back-propagation through the tail. Through this task-agnostic learning, the Transformer body in
the server learns global embedding representation and provides task-agnostic self-attended features
for various image processing. The pseudocode of the overall TAViT is described in Algorithm 1 with
more details in Appendix A.

3.3 COMMUNICATION COST AND PRIVACY PRESERVATION BY TAVIT
Given that gradients have to be transmitted two-way or one-way for training head/tail and body parts
of the architecture, one many wonder whether additional communication overhead is significant.
However, since the Transformer body is a shared model on the server that does not perform any
weight aggregation, our model has much smaller cost for one communication between the client and
the server in the task-agnostic learning. This comes from the small size of transported features and
gradients for the heads and tails. If we sample clients in the network training, the communication cost
can be further controlled. Therefore, up to a certain epoch size, our model is more communication
bandwidth efficient compared to the classical FL, and the advantage increases if a bigger Transformer
body is used for better representation of global attention. For detailed analysis, see Appendix D.4.

The proposed TAViT is designed to use distributed local data for distinct tasks without sharing the
data to the other clients or any central device. Although the privacy attack on the transported features
between the server and clients can be occurred, yet another powerful and unique mechanism for
maintaining privacy in TAViT arises when the client-side network of the proposed method has a skip
connection between the head and the tail. In this case, the transported feature characteristics can
contain very lossy information from the original data, and one cannot reconstruct data only using the
transmitted hidden features of the proposed method as detailed in Appendix D.1.

4 EXPERIMENTAL RESULTS

We examine the performance of TAViT with the following image processing tasks: deblocking (JPEG
artifact removal), denoising, deraining, and deblurring. Additional experiments for image inpainting
and medical data are also performed to investigate its performance for high-level computer vision
tasks and different domain data, respectively, which can be found in Section D.5 of Appendix. With a
single server, we set two clients to carry out FL on the deblocking task and set one client for each of
the other tasks, so the total number of clients is five in our experiments. We evaluate results using
two metrics of PSNR and SSIM.

Datasets The public datasets we used are as follows. For deblocking and denoising, we use 10,582
images from PASCAL VOC 2012 (Everingham et al., 2010) and Segmentation Boundaries Dataset

6

Under review as a conference paper at ICLR 2022

(SBD) (Hariharan et al., 2011). Particularly, for FL on the deblocking, we split the data into two
sets with 5,291 images and distribute them to each client. Deblocking results are evaluated on
Berkely Segmentation Database (BSD500) (Martin et al., 2001b) that provides 200 test images.
For the denoising, we apply random Gaussian noise with the level of σ = 30 to images. The
Denoising model is evaluated on CBSD68 that contains 68 test images extracted from the BSD500.
For deraining, following the experiment setting of Jiang et al. (2020), we use data from Rain14000
(Fu et al., 2017b), Rain1800 (Yang et al., 2017), Rain800 (Zhang et al., 2019a), and Rain12 (Li
et al., 2016) that provide 13,711 pairs of clean and synthetic rain images. Deraining results are
evaluated on Rain100H and Rain100L (Yang et al., 2017), each of which has 100 synthetic rainy
images. Deblurring is performed using a GoPro dataset (Nah et al., 2017) that contains 2,103 and
1,111 pairs of sharp and blurry images for training and test sets, respectively.

Implementation details To implement our TAViT, we use the encoder and decoder of DDPM (Ho
et al., 2020) with three stages as our backbone of each head and tail at the client. For the Transformer
body in the server, we use 8 encoder layers of the vanilla Transformer (Vaswani et al., 2017) with 256
words and 512 embedding dimensions. The total number of parameters for networks at each client
and the server is about 28M and 17M, respectively. Using 4 Nvidia Quadro RTX 6000 cards and
2 Nvidia Geforce GTX 1080Ti cards, we train the networks using Adam optimizer with a learning
rate of 3× 10−5. We initialize parameters of the networks with those of the pre-trained model by an
autoencoder scheme. For the data augmentation, we apply random horizontal and vertical flipping,
rotating with 90 degrees, and cropping by a patch size of 64× 64× 3. For three cycles, by setting
the batch size as 20, we perform the task-specific learning for 200, 400, 400, and 2000 epochs on
deblocking, denoising, deraining, and deblurring, respectively. Also, we perform the task-agnostic
learning for 1000 epochs with 1/4 data for each task. We implement our TAViT using PyTorch library
under BSD-style license using Flower federated learning protocol (Beutel et al., 2020) under Apache
2.0 License. The details of datasets and implementation are described in Appendix B.

4.1 RESULTS

Convergence of TAViT for multi-task distributed learning We evaluated the results of the pro-
posed TAViT of multi-task distributed learning with all participated clients and one common Trans-
former body in the server. Figure 3 shows the gradual progression of quality metrics through the
alternating training scheme. The performance of all tasks from our method increased and outper-
formed as the task-specific learning and the task-agnostic learning continued. This demonstrates the
synergistic improvement of the task-specific heads/tails and the task-agnostic body: the heads and
tails learn more accurate feature embedding for given tasks, and the common body learns the global
attention general to multiple image processing tasks by looking at various datasets. Although there
were some tasks in which the score of each step was slightly lower than that of the previous step by
the interaction of different task datasets, the overall performance of TAViT was improved as the cycle
progressed. Detailed quantitative results for each cycle are described in Appendix C.

Figure 3: Results of TAViT for multi-task distributed learning. Each column shows the PSNR and
SSIM according to i-th cycle for the deblocking, denoising, deraining, and deblurring, respectively.

Comparison of TAViT to other strategies We compared our TAViT with other distributed learning
strategies: SL and FL. We conducted both SL and FL with the two clients assigned for the deblocking
task. For SL, as designed in Vepakomma et al. (2018), we placed the head and tail networks on
clients and the body on the server, and trained those split networks without the weight aggregation for
the head and tail. For FL, we placed the entire model composed of the head, body, and tail on each

7

Under review as a conference paper at ICLR 2022

client, and trained the network in parallel by carrying out the aggregation with FedAvg (McMahan
et al., 2017a) using a common server. Figure 4 shows these scenarios, where C1 and C2 are clients
for the deblocking, C3, C4, and C5 are clients for the denoising, deraining, deblurring, and S is the
server. As reported in Table 1, the proposed method achieves better performance compared to the
other strategies even though ours learns multiple tasks.

Figure 4: Scenarios of TAViT (pink arrow)
and other strategies of (a-b) SL and (c) FL,
where C# is clients and S is the server.

Table 1: Comparison result of our TAViT to other dis-
tributed learning strategies. Q# denotes the quality of
JPEG images for deblocking task.

Method Device Q10 Q50
PSNR SSIM PSNR SSIM

Split learning (SL) C1, S 27.55 0.781 32.97 0.921
Split learning (SL) C2, S 27.51 0.781 32.88 0.921
Federated learning (FL) C1, C2, S 27.46 0.780 32.79 0.919
TAViT (Ours) C1, C2, S 27.69 0.786 33.20 0.924

Comparison of TAViT to learning each separate task To verify the capability of the task-agnostic
Transformer body learning from multiple tasks, we compared TAViT with the models independently
trained on each individual task. Under the setting of centralized data for each task, we implemented
this study in two manners: end-to-end learning (EL) and single-task learning (STL). For EL, we
trained the whole network in one device through the end-to-end optimization scheme. For STL, we
distributed the decomposable head, body, and tail to a client and a server as the proposed method, and
trained the networks by the alternating training strategy for one cycle. Table 2 reports the results on
Benchmark datasets for each task. This shows that our TAViT trained on multiple tasks simultaneously
outperforms both EL and STL, which suggests that the task-agnostic body of our framework does not
degrade the model by task heterogeneity but enhances the performance for various tasks.

Comparison of TAViT to CNN-based models To compare the performance of TAViT with CNN-
based deep learning models, we tested several existing methods on benchmark datasets for each
task. Table 2 and Figure 5 show the qualitative and visual comparison results, respectively. For
the deblocking, when comparing with DnCNN Zhang et al. (2017a), AR-CNN Dong et al. (2015),
and QCN (Li et al., 2020b), the proposed method outperforms for both the 10 and 50 levels of
quantization quality. Visual comparisons also show that the proposed method removes block artifacts
clearly compared to the others. For the denoising, we compared our method with CBM3D (Dabov
et al., 2007), DnCNN (Zhang et al., 2017a), FFDNet (Zhang et al., 2018b), IRCNN (Zhang et al.,
2017b), DHDN (Park et al., 2019), and SADNet (Chang et al., 2020). The results show that our

Table 2: Comparison results on Benchmark datasets. For Transformer-based methods, EL is the
end-to-end learning, STL is the single-task learning, and ours is the multi-task learning using TAViT.

Task Method
Dataset Metric CNN-based Transformer-based

Deblocking Input DnCNN AR-CNN QCN EL STL Ours

BSDS500
(Q10)

PSNR 25.67 26.70 26.42 27.66 27.67 27.59 27.69
SSIM 0.719 0.755 0.777 0.811 0.785 0.785 0.786

BSDS500
(Q50)

PSNR 31.51 32.70 - 33.00 33.01 32.93 33.20
SSIM 0.902 0.918 - 0.934 0.923 0.924 0.924

Denoising Input CBM3D DnCNN FFDNet IRCNN DHDN SADNet EL STL Ours

CBSD68
(σ=30)

PSNR 19.03 29.71 30.32 30.31 30.22 30.41 30.64 30.43 30.65 30.69
SSIM 0.336 0.843 0.861 0.860 0.861 0.864 - 0.864 0.870 0.871

Deraining Input DerainNet SEMI UMRL PreNet MSPFN EL STL Ours

Rain100H PSNR 12.13 14.92 16.56 26.01 26.77 28.66 28.88 28.95 29.35
SSIM 0.349 0.592 0.486 0.832 0.858 0.860 0.863 0.864 0.875

Rain100L PSNR 25.52 27.03 25.03 29.18 32.44 32.40 32.93 32.50 34.30
SSIM 0.825 0.884 0.842 0.923 0.950 0.933 0.937 0.935 0.949

Deblurring Input DeblurGAN Nah et al. (2017) Zhang et al. (2018a) DeblurGANv2 EL STL Ours

GoPro PSNR 25.64 28.70 29.08 29.19 29.55 28.62 29.28 30.06
SSIM 0.790 0.858 0.914 0.931 0.934 0.864 0.877 0.894

8

Under review as a conference paper at ICLR 2022

Figure 5: Visual comparisons for multiple tasks: (a) deblocking, (b) denoising, (c) deraining, and (d)
deblurring. Yellow values are PSNR, and inset box is a magnified view of a red rectangle.

TAViT achieves better PSNR/SSIM scores, and also provides more clearly denoised images while
preserving structure and texture details than the comparisons. For the deraining, we tested our model
in addition to DerainNet (Fu et al., 2017a), SEMI (Wei et al., 2019), UMRL (Yasarla & Patel, 2019),
PreNet (Ren et al., 2019), and MSPFN (Jiang et al., 2020). We used Y channel in YCbCr color space
followed by Jiang et al. (2020) for the evaluation. As a result, our model outperforms the comparative
methods on both Rain100H and Rain100L. Also, the images restored by ours are closer to the
references by removing rain streaks than the others. For the deblurring, we employed DeblurGAN
(Kupyn et al., 2018), Nah et al. (2017), Zhang et al. (2018a), DeblurGANv2 (Kupyn et al., 2019) for
comparisons. The results show that the proposed method achieves comparable performance to the
existing approaches. Visual results show that our TAViT restores blurry images with sharp edges,
while the others still contain blurry artifacts or position shifting of objects compared to the references.

5 CONCLUSION

In this work, we present a multi-task distributed learning framework called TAViT. In TAViT, the
task-specific head CNN and the tail CNN are distributed to clients that have their own data, which
are connected to a common Transformer body placed in the server. With an alternating training
scheme, the heads and tails on client sides are trained by task-specific learning, while the body
is trained by task-agnostic learning. We conduct experiments on four different image processing
tasks, which shows the success of task-agnostic learning of the Transformer body and its synergistic
improvement with the task-specific heads and tails. Through our model, the participating clients can
design and train their own networks depending on the task using local data in parallel. We expect
that the proposed TAViT can be efficiently used in the case that sharing data with other institutions is
sensitive such as medical fields.

9

Under review as a conference paper at ICLR 2022

Ethics statement As our work utilizes distributed learning models, similar to the existing FL and
SL, our method may be vulnerable to privacy attacks against the server such as inversion attacks
(Yin et al., 2021). Although the proposed framework is designed by encoding the feature maps and
gradients under Flower protocol which makes it difficult for attackers to restore the original data,
the hidden feature may leak the raw data to some degree. Thus, privacy-related techniques such as
differential privacy (McMahan et al., 2017b) and authenticated encryption of data (Rogaway, 2002)
should be analyzed for practical applications.

Reproducibility statement The source code and our trained models to reproduce the proposed
method are available at https://github.com/TAViT2022/TAViT. For the detailed pseu-
docode, refer to Appendix A. Also, the data processing steps for datasets used in the experiments are
provided in Appendix B.

REFERENCES

Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit A Camtepe, Yansong Gao,
Hyoungshick Kim, and Surya Nepal. Can we use split learning on 1d cnn models for privacy
preserving training? In Proceedings of the 15th ACM Asia Conference on Computer and Commu-
nications Security, pp. 305–318, 2020.

Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and
hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(5):898–916, 2011. doi: 10.1109/TPAMI.2010.161.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and Nicholas D Lane.
Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390,
2020.

Meng Chang, Qi Li, Huajun Feng, and Zhihai Xu. Spatial-adaptive network for single image
denoising. In European Conference on Computer Vision, pp. 171–187. Springer, 2020.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. arXiv preprint
arXiv:2012.00364, 2020.

Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke. The data grid:
Towards an architecture for the distributed management and analysis of large scientific datasets.
Journal of network and computer applications, 23(3):187–200, 2000.

Luca Corinzia, Ami Beuret, and Joachim M Buhmann. Variational federated multi-task learning.
arXiv preprint arXiv:1906.06268, 2019.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing, 16
(8):2080–2095, 2007.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang. Compression artifacts reduction by a
deep convolutional network. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 576–584, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

10

https://github.com/TAViT2022/TAViT

Under review as a conference paper at ICLR 2022

Xueyang Fu, Jiabin Huang, Xinghao Ding, Yinghao Liao, and John Paisley. Clearing the skies: A
deep network architecture for single-image rain removal. IEEE Transactions on Image Processing,
26(6):2944–2956, 2017a.

Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao Ding, and John Paisley. Removing
rain from single images via a deep detail network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3855–3863, 2017b.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. arXiv preprint arXiv:2103.00112, 2021.

Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Semantic
contours from inverse detectors. In 2011 International Conference on Computer Vision, pp.
991–998. IEEE, 2011.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. arXiv preprint arXiv:2007.14513, 2020.

Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li, and Wei Jiang. Transreid: Transformer-based
object re-identification. arXiv preprint arXiv:2102.04378, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020.

Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin Huang, Yimin Luo, Jiayi Ma, and Junjun
Jiang. Multi-scale progressive fusion network for single image deraining. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8346–8355, 2020.

Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiří Matas. Deblurgan:
Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8183–8192, 2018.

Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. Deblurgan-v2: Deblurring
(orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8878–8887, 2019.

Ang Li, Huanrui Yang, and Yiran Chen. Task-agnostic privacy-preserving representation learning via
federated learning. In Federated Learning, pp. 51–65. Springer, 2020a.

Jianwei Li, Yongtao Wang, Haihua Xie, and Kai-Kuang Ma. Learning a single model with a wide
range of quality factors for jpeg image artifacts removal. IEEE Transactions on Image Processing,
29:8842–8854, 2020b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020c.

Yu Li, Robby T Tan, Xiaojie Guo, Jiangbo Lu, and Michael S Brown. Rain streak removal using
layer priors. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2736–2744, 2016.

Danial Maleki, Soheila Nadalian, Mohammad Mahdi Derakhshani, and Mohammad Amin Sadeghi.
Blockcnn: A deep network for artifact removal and image compression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2555–2558, 2018.

11

Under review as a conference paper at ICLR 2022

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 2,
pp. 416–423 vol.2, 2001a. doi: 10.1109/ICCV.2001.937655.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its
application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. 8th
Int’l Conf. Computer Vision, volume 2, pp. 416–423, July 2001b.

Cynthia McCollough, Baiyu. Chen, III Holmes, David, Xinhu. Duan, Zhicong. Yu, Lifeng. Yu, Shuai.
Leng, and Joel. Fletcher. Data from low dose ct image and projection data, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017a.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017b.

Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
for dynamic scene deblurring. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3883–3891, 2017.

Bumjun Park, Songhyun Yu, and Jechang Jeong. Densely connected hierarchical network for
image denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 0–0, 2019.

W Nicholson Price and I Glenn Cohen. Privacy in the age of medical big data. Nature medicine, 25
(1):37–43, 2019.

Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, and Deyu Meng. Progressive image
deraining networks: A better and simpler baseline. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3937–3946, 2019.

Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, pp. 98–107, 2002.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. arXiv preprint arXiv:1705.10467, 2017.

Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit Camtepe. Splitfed: When
federated learning meets split learning. arXiv preprint arXiv:2004.12088, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive generation via
adversary for object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2606–2615, 2017.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7794–7803,
2018.

Wei Wei, Deyu Meng, Qian Zhao, Zongben Xu, and Ying Wu. Semi-supervised transfer learning for
image rain removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3877–3886, 2019.

12

Under review as a conference paper at ICLR 2022

Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep
joint rain detection and removal from a single image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1357–1366, 2017.

Xin Yao, Tianchi Huang, Rui-Xiao Zhang, Ruiyu Li, and Lifeng Sun. Federated learning with
unbiased gradient aggregation and controllable meta updating. arXiv preprint arXiv:1910.08234,
2019.

Rajeev Yasarla and Vishal M Patel. Uncertainty guided multi-scale residual learning-using a cycle
spinning cnn for single image de-raining. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8405–8414, 2019.

Jong Chul Ye, Yoseob Han, and Eunju Cha. Deep convolutional framelets: A general deep learning
framework for inverse problems. SIAM Journal on Imaging Sciences, 11(2):991–1048, 2018.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16337–16346, 2021.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative image
inpainting with contextual attention. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5505–5514, 2018.

He Zhang, Vishwanath Sindagi, and Vishal M Patel. Image de-raining using a conditional generative
adversarial network. IEEE transactions on circuits and systems for video technology, 30(11):
3943–3956, 2019a.

Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Linchao Bao, Rynson WH Lau, and Ming-
Hsuan Yang. Dynamic scene deblurring using spatially variant recurrent neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2529,
2018a.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7):
3142–3155, 2017a.

Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser prior for image
restoration. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3929–3938, 2017b.

Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward a fast and flexible solution for cnn-based
image denoising. IEEE Transactions on Image Processing, 27(9):4608–4622, 2018b.

Songyang Zhang, Xuming He, and Shipeng Yan. LatentGNN: Learning efficient non-local relations
for visual recognition. In International Conference on Machine Learning, pp. 7374–7383. PMLR,
2019b.

13

Under review as a conference paper at ICLR 2022

A DETAILS OF TAVIT WITH PSEUDOCODE

As described in the main paper, the task-specific heads and tails in clients and the Transformer body
in the server are trained in an alternating manner between the proposed task-specific learning and
the task-agnostic learning. In the following, we describe each step in more detail in terms of its
implementation.

Pseudocode for the task-specific learning Algorithm 2 shows the pseudocode for the task-specific
learning. Given K image processing tasks, the task-specific learning updates the heads H and the
tails T in each client with the fixed body B. The server first initializes global weights of the heads

Algorithm 2 Task-specific learning of TAViT: Is denotes the number of iterations for the task-specific
learning in one cycle. (Hc, Tc) denote the head and the tail in a client c ∈ Ck for the k-th task, and
B denotes the Transformer body in a common server. (HCk

, TCk
) are global weights of the heads

and the tails for the task k. (fH , fB) are output feature maps from the head and the body, and ŷ is the
output of the tail. `c is the task-specific loss of the client c. |Dj | is the size of training data at cj , and
|D| is the total size of training data at Ck, i.e. |D|=

∑
j |Dj |.

/* run on the server (with fixed B) */
Initialize HCk

, TCk

Send HCk
, TCk

to all clients c ∈ Ck

for is in [1, Is] do
for each client c ∈ Ck, where k = {1, 2, . . . ,K} in parallel do

fH ← ClientPhase1()
fB ← B(fH) // body output
∂`c
∂fB
← ClientPhase2(fB)

∂`c
∂fH
← ∂`c

∂fB
· ∂fB∂fH

// backpropagation through body

ClientUpdate(∂`c
∂fH

)

end
if is is weight aggregation step for |Ck| > 1 then

Get (Hcj , Tcj) from client cj , where j ∈ {1, 2, . . . , Nk}
HCk

←
∑Nk

j=1
|Dj |
|D| Hcj // FedAvg for head

TCk
←
∑Nk

j=1
|Dj |
|D| Tcj // FedAvg for tail

Send (HCk
, TCK

) to all clients c ∈ Ck

end
end
/* run on client c */
Function ClientPhase1()

x, y ← set current data and label
fH ← Hc(x) // head output
return fH

/* run on client c */
Function ClientPhase2(fB)

ŷ ← Tc(fB) // tail output
`c ← Loss(y, ŷ)
∂`c
∂Tc
← ∂`c

∂ŷ ·
∂ŷ
∂Tc

// computation of tail gradients
∂`c
∂fB
← ∂`c

∂Tc
· ∂Tc

∂fB

return ∂`c
∂fB

/* run on client c */

Function ClientUpdate(∂`c
∂fH

)
∂`c
∂Hc
← ∂`c

∂fH
· ∂fH∂Hc

// computation of head gradients

update Hc, Tc using ∂`c
∂Hc

and ∂`c
∂Tc

by optimizer e.g. Adam

14

Under review as a conference paper at ICLR 2022

Algorithm 3 Task-agnostic learning of TAViT: Ia denotes the number of optimization iterations for
task-agnostic learning in one cycle. (Hc, Tc) denote the head and tail in a client c in a client c ∈ Ck

for the k-th task, and B denotes the Transformer body in a common server. (fH , fB) are output
feature maps from the head and the body, and ŷ is the output of the tail. `c is the task-specific loss of
the client c.
/* run on the server */

Initialize CB = {c1n1
, c2n2

, . . . , cKnK
} where cknk

∈ Ck

for ia in [1, Ia] do
c← cknk

∈ CB // Random selection of client with task k
fH ← ClientPhase1()
fB ← B(fH) // body output
∂`c
∂fB
← ClientPhase2(fB)

∂`c
∂B ←

∂`c
∂fB
· ∂fB∂B // computation of body gradients

update B using ∂`c
∂B by optimizer e.g. Adam

end
/* run on client c (with fixed Hc, Tc) */
Function ClientPhase1()

x, y ← set current data and label
fH ← Hc(x) // head output
return fH

/* run on client c (with fixed Hc, Tc) */
Function ClientPhase2(fB)

ŷ ← Tc(fB) // tail output
`c ← Loss(y, ŷ)
∂`c
∂fB
← ∂`c

∂ŷ ·
∂ŷ
∂fB

// backpropagation through tail

return ∂`c
∂fc

B

and the tails and sends them to all clients in Ck, where Ck is a set of clients with different datasets
for the k-th task. When each client c ∈ Ck takes local training data x and provides a feature map
fH by the head Hc to the server (line 5 with ClientPhase1), the server-side Transformer body
takes the feature map fH as an input embedding and estimates the self-attended features fB that is
independent of specific tasks. Once the fB in the server is sent to the client, the client computes
the task-specific loss `c between the label y and the tail output ŷ (line 24 in ClientPhase2). The
gradient of the tail ∂`c/∂Tc is also computed in the client at ClientPhase2 (line 25), which is
used to compute ∂`c/∂fB that is transported to the server. Then, in the server, ∂`c/∂fH is calculated
by backpropagation through the body, which is sent to the client so as to compute the head gradient
∂`c/∂Hc and finally update Hc and Tc (lines 28-30 of ClientUpdate) using a single optimizer.

Here, when there are multiple clients for the k-th task, i.e. |Ck| > 1, we apply the federated learning
for the heads and the tails of those clients as described in lines 11-16 in Algorithm 2. The heads and
the tails are trained in parallel, and their weights are aggregated by FedAvg (McMahan et al., 2017a)
on the server side for every weight aggregation period. Then, these updated global weights of the
heads HCk

and the tails TCk
and are transmitted to all clients in Ck so that the clients train their own

head and tail using the new global weights from the next step.

Pseudocode for the task-agnostic learning In the task-agnostic learning, the Transformer body
in the server is updated with the fixed heads and tails of clients. Algorithm 3 shows the pseudocode
for the task-agnostic learning of TAViT. Given a subset of clients, CB , by selecting one client among
Ck for each task, the client c ∈ CB is randomly chosen for every iteration. Then, compared to the
task-specific learning, the implementation of the task-agnostic learning is similarly conducted but
does not need ClientUpdate process in Algorithm 2. In other words, after the gradient ∂`c/∂fB
is computed on the client side at ClientPhase2 (line 14-18) and transmitted to the server (line 6),
the server updates the Transformer body by computing the body gradients ∂`c/∂B (lines 7-8), which
is the final step of each iteration.

15

Under review as a conference paper at ICLR 2022

B DETAILS OF DATASETS AND IMPLEMENTATION

B.1 LICENSE/SOURCE FOR EACH DATASET

In our experiments, we use the public datasets for image deblocking, denoising, deraining, and
deblurring tasks. Here, we describe the specific information of each data set such as license and
source link.

PASCAL VOC 2012 The PASCAL VOC data set (Everingham et al., 2010) is publicly available,
which includes images obtained from the "flickr" website under SmugMug or its third-party licensors.
The data are protected by the United States and international intellectual property laws. The data
source is from the URL: http://host.robots.ox.ac.uk/pascal/VOC/.

BSDS500 and CBSD68 The Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500)
(Arbeláez et al., 2011) data set is an extended version of BSDS300 (Martin et al., 2001b), which is
a public data set originally provided for image segmentation and boundary detection by Berkeley
Computer Vision Group. This data set is widely used for measuring image restoration perfor-
mance. The color BSD68 data set (CBSD68) is extracted from the BSDS500. The BSDS500
can be downloaded at https://www2.eecs.berkeley.edu/Research/Projects/CS/
vision/grouping/resources.html.

Synthetic rainy images The synthetic rainy data set for training is collected from Rain14000
synthesized by Fu et al. (2017b), Rain1800 authored by Yang et al. (2017), Rain800 created by Zhang
et al. (2019a), and Rain12 made by Li et al. (2016). We test our method on the synthetic rainy data
sets of Rain100H and Rain100L, both of which are authored by Yang et al. (2017). All these data sets
are publicly available and can be downloaded at the following links:

- Rain14000: https://xueyangfu.github.io/projects/cvpr2017.html
- Rain1800: https://www.icst.pku.edu.cn/struct/Projects/joint_rain_
removal.html

- Rain800: https://github.com/hezhangsprinter/ID-CGAN
- Rain12: https://yu-li.github.io/
- Rain100L & Rain100H: https://www.icst.pku.edu.cn/struct/Projects/
joint_rain_removal.html

GoPro The GoPro dataset (Nah et al., 2017) provides training and test sets for deblurring. The data
are available at https://seungjunnah.github.io/Datasets/gopro.html.

B.2 DATA PROCESSING

All datasets we used in experiments provide natural images that have three RGB channels and pixel
values with a range of [0, 255]. Upon these datasets, we performed the following data processing
according to the image processing tasks.

For the image deblocking task, we quantized the images following JPEG compression. We first
transformed RGB image into YUV color space using the following equations.

Y = 0.257R+ 0.504G+ 0.098B + 16 (7)
U = −0.148R− 0.291G+ 0.439B + 128 (8)
V = 0.439R+ 0.368G− 0.071B + 128 (9)

Then, we split the image into 8x8 blocks without overlapping and apply Discrete Cosine Transform
(DCT) to each block. According to the level of quantization quality, we divided each element of the
DCT coefficients by proper predefined matrices. After that, we apply inverse DCT and aggregate all
blocks into an image, and then, we transformed the image from YUV to RGB color space.

R = 1.164(Y − 16) + 1.596(V − 128) (10)
G = 1.164(Y − 16)− 0.392(U − 128)− 0.813(V − 128) (11)
B = 1.164(Y − 16) + 2.017(U − 128) (12)

16

http://host.robots.ox.ac.uk/pascal/VOC/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://xueyangfu.github.io/projects/cvpr2017.html
https://www.icst.pku.edu.cn/struct/Projects/joint_rain_removal.html
https://www.icst.pku.edu.cn/struct/Projects/joint_rain_removal.html
https://github.com/hezhangsprinter/ID-CGAN
https://yu-li.github.io/
https://www.icst.pku.edu.cn/struct/Projects/joint_rain_removal.html
https://www.icst.pku.edu.cn/struct/Projects/joint_rain_removal.html
https://seungjunnah.github.io/Datasets/gopro.html

Under review as a conference paper at ICLR 2022

For the denoising task, we added Gaussian noise to the clean images. Specifically, we applied random
Gaussian noise with the level of (µ, σ) = (0, 30) to images, and then clipped the values into [0, 255].

For the other tasks, the datasets named Rain# and GoPro provide synthetic rainy images and blurry
images, respectively. Since we used these datasets for the deraining and deblurring tasks, we did not
perform any preprocessing such as the synthesis of rain artifacts blurry effect.

After the above data processing for all tasks, we randomly cropped the images by a patch size of
64× 64× 3. Also, we applied data augmentation using random flipping and rotating with 90 degrees.
Then, we normalized the images with the scale of pixel values from [0,255] to [-1, 1], which are final
inputs to the model.

B.3 NETWORK ARCHITECTURES

For the task-specific head and tail for each task, we use the network architecture of DDPM (Ho et al.,
2020) that is composed of residual blocks and attention modules. We set the number of two-times
downsampling/upsampling stages as 3. For each stage, the channel size is set as 128, 256, and 512,
respectively. Accordingly, given an input image x ∈ R64×64×3, the head provides a feature map
fH ∈ R16×16×512 that passes through the body, and the tail generates an output of the same size as
the input.

On the other hand, for the Transformer body, we use the encoder part of the vanilla Transformer
(Vaswani et al., 2017). As described in the main paper, the Transformer body takes a sequence of
patches f by reshaping the feature map fH as an embedding of the words. In the experiments, the
length of the input sequence is 256 by setting the patch size as 1, and the sequence dimension is 512.
Then, once the input sequence is added to learnable positional encodings, the encoded features h pass
through L encoder layers (L = 8 in our experiments). Table 3 shows the structure of each encoder
layer of the body.

Table 3: The Transformer body architecture and its parameters in our experiments. For each encoder
layer l, MHA is the multi-head attention modules, LN is the layer-normalization, DropOut is the
dropout layer, Linear is the fully-connected layer, and ReLU is the ReLU activation function.

Encoder layer Parameters

al = MHA(hl) ∈ Rn×d Notation Value Meaning

ul = LN(hl +DropOut(al)) ∈ Rn×d L 8 The number of encoder layers

vl1 = ReLU(Linear(ul)) ∈ Rn×dh n 256 The length of sequence

vl2 = DropOut(Linear(vl1)) ∈ Rn×d d 512 The sequence dimension

hl+1 = LN(ul + vl2) ∈ Rn×d dh 1024 The hidden dimension

Model sizes Table 4 shows the model sizes of the task-specific head and tail, and the Transformer
body we used. When comparing the number of parameters and the size of networks, we can observe
that the client-side networks composed of the head and the tail is larger than the task-agnostic
Transformer body. Considering the experimental results in the main paper, this model size suggests
that the body estimates task-agnostic self-attended features that provide the synergy effect in the
task-specific and task-agnostic learning even if the body size is smaller than the sum of head and tail.

Table 4: Model sizes of the head, body, and tail in our experiment.
Network Head Body Tail

Parameters 22,341,891 16,822,272 5,610,629
Size (MB) 103.54 64.98 39.00

17

Under review as a conference paper at ICLR 2022

C EXPERIMENTAL RESULTS

C.1 TAVIT ON MULTIPLE IMAGE PROCESSING TASKS

Evaluation results of TAViT Table 5 reports the quantitative evaluation results of TAViT on
multiple image processing tasks, which is visualized with graphs of scores for the cycles in the main
paper. Figure 6 shows the qualitative results of TAViT. This shows that the performance of each task
is improved according to the cycles between the task-specific and task-agnostic learning.

Table 5: Quantitative results of TAViT according to the cycles, which are visualized with graphs in
the main paper. The best results are highlighted in bold.

Task Deblocking Denoising Deraining Deblurring

Cycle BSDS500 (Q10) BSDS500 (Q50) CBSD68 (σ = 30) Rain100H Rain100L GoPro

PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

0.5 27.53 0.781 32.92 0.921 30.57 0.868 28.24 0.860 33.17 0.939 28.94 0.871
1.0 27.57 0.782 33.01 0.922 30.62 0.869 28.75 0.862 32.69 0.936 29.09 0.873
1.5 27.61 0.784 33.05 0.923 30.57 0.870 28.57 0.869 33.58 0.945 29.63 0.885
2.0 27.65 0.785 33.14 0.924 30.66 0.870 28.79 0.867 33.50 0.944 29.72 0.887
2.5 27.64 0.785 33.14 0.924 30.62 0.870 29.25 0.875 34.30 0.949 29.96 0.893
3.0 27.69 0.786 33.21 0.924 30.69 0.871 29.35 0.875 33.88 0.947 30.06 0.894

Figure 6: Qualitative results of TAViT according to the cycles. From the left to the right columns,
the deblocking results on images with the quantization quality 10 and 50, the denoising results, the
deraining results on Rain100H and Rain100L, and the deblurring results. The yellow value is PSNR,
and an inset box is a magnified view of a red rectangle.

18

Under review as a conference paper at ICLR 2022

Qualitative comparisons Besides the results presented in the main paper, here, we show more
visual comparisons of our TAViT to the existing methods. Figure 7, 8, 9, and 10 display the
deblocking, denoising, deraining, and deblurring results, respectively. All these results verify that our
TAViT as a distributed learning for multiple image processing tasks outperforms the comparisons.

Figure 7: Visual comparisons of image deblocking task using BSDS500 (Arbeláez et al., 2011). The
yellow value of each result is PSNR. We compare our TAViT with DnCNN (Zhang et al., 2017a),
AR-CNN (Dong et al., 2015), and QCN (Li et al., 2020b).

19

Under review as a conference paper at ICLR 2022

Figure 8: Visual comparisons of image denoising task using CBSD68 (Martin et al., 2001a). The
yellow value of each result is PSNR. We compare the proposed TAViT with CBM3D (Dabov et al.,
2007), DnCNN (Zhang et al., 2017a), FFDNet (Zhang et al., 2018b), IRCNN (Zhang et al., 2017b),
and DHDN (Park et al., 2019).

20

Under review as a conference paper at ICLR 2022

Figure 9: Visual comparisons of image deraining task using Rain100H and Rain100L data sets (Yang
et al., 2017). The yellow value of each result is PSNR. DerainNet (Fu et al., 2017a), SEMI (Wei et al.,
2019), UMRL (Yasarla & Patel, 2019), and PreNet (Ren et al., 2019) are used to compare our TAViT.
(a) Results on Rain100H data set. (b) Results on Rain100L data set.

21

Under review as a conference paper at ICLR 2022

Figure 10: Visual comparisons of image deblurring task using GoPro (Nah et al., 2017) dataset. For
visualization, we enlarge a region of red inset box (left column) for all images and denote PSNR of
each result with yellow. We compare our TAViT with DeblurGAN (Kupyn et al., 2018), Nah et al.
(2017), and DeblurGANv2 (Kupyn et al., 2019).

22

Under review as a conference paper at ICLR 2022

C.2 ABLATION STUDY OF TAVIT

Study on the amount of data for each task in the task-agnostic learning In the main paper, we
implemented our method using 1/4 of the dataset for each task in the task-agnostic learning. To
verify that this amount of data is enough for the task-agnostic learning, we performed the ablation
study using different amounts of data with a 1/2 ratio for each deblocking, denoising, deraining, and
deblurring task. Table 6 and Figure 11 show the quantitative results of TAViT on the multiple tasks
using 1/2 data in the task-agnostic learning. Similar to the results with a 1/4 data ratio, the scores of
PSNR and SSIM tend to increase as the cycle continues. When comparing the best results from the
1/4 and 1/2 data ratio, we can observe that performance for each task using even 1/4 amount of data
is comparable or better than using 1/2 data. This suggests that using 1/4 of data for each task in the
task-agnostic learning is sufficient to train the Transformer body and obtain high performance.

Table 6: Quantitative results of TAViT on multiple image processing tasks with 1/2 data for each task
in the task-agnostic learning. The best results are highlighted in bold.

Task Deblocking Denoising Deraining Deblurring

Cycle BSDS500 (Q10) BSDS500 (Q50) CBSD68 (σ = 30) Rain100H Rain100L GoPro

PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

0.5 27.53 0.781 32.92 0.921 30.57 0.868 28.24 0.860 33.17 0.939 28.94 0.871
1.0 27.57 0.782 33.02 0.922 30.62 0.869 28.78 0.862 32.47 0.933 29.18 0.875
1.5 27.63 0.784 33.10 0.923 30.58 0.870 28.92 0.867 33.28 0.942 29.63 0.887
2.0 27.65 0.785 33.15 0.924 30.67 0.870 29.18 0.870 33.71 0.946 29.83 0.890
2.5 27.66 0.785 33.15 0.923 30.56 0.870 29.35 0.875 33.83 0.945 29.94 0.893
3.0 27.69 0.786 33.20 0.924 30.69 0.870 29.53 0.877 33.68 0.945 30.18 0.897

* 1/4 data for each task
Best 27.69 0.786 33.21 0.924 30.69 0.871 29.35 0.875 34.30 0.949 30.06 0.894

Figure 11: Results of TAViT with 1/2 data for each task in the task-agnostic learning. Each col-
umn shows PSNR and SSIM according to i-th cycle for the deblocking, denoising, deraining, and
deblurring, respectively.

Study on the weight aggregation period In the main paper, we conducted the experiment of
TAViT by applying FL to the deblocking task that has two clients with their own data. In FL, the
weights of the network in each client are averaged in the server for every weight aggregation period
that is given as a hyperparameter. Here, since this period can influence learning performance in that
the clients and the common server communicate to aggregate network weights, we performed the
ablation study on the weight aggregation period for training the client-side networks. As reported in
Table 7, for the deblocking task, we trained the model with the aggregation period of 20, 50, and 100
epochs. When we evaluated the deblocking results, the weight aggregation per 50 epochs provides
better performance with 27.53dB/0.781 and 32.92dB/0.921 of PSNR/SSIM for the quality 10 and
50, respectively, compared to the other methods. This verifies that the weight aggregation period
of 50 epochs presented in the main paper is proper to train and evaluate the proposed TAViT in our
experiments.

23

Under review as a conference paper at ICLR 2022

Table 7: Results of study on the weight aggregation period of FL for image deblocking task. The best
results are highlighted in bold. Q# denotes the quantization quality of JPEG images.

Aggregation period Q10 Q50

PSNR SSIM PSNR SSIM

per 20 epochs 26.53 0.769 30.91 0.910
per 50 epochs 27.53 0.781 32.92 0.921

per 100 epochs 26.73 0.772 31.16 0.910

D DISCUSSION

D.1 SKIP-CONNECTION OF HEAD AND TAIL FOR PRIVACY PRESERVATION

When configuring the task-specific heads and tails with skip-connections, our model can avoid the
privacy attack in some degree while maintaining the encoding information for the tail to generate
outputs. This is because the skip-connected features are isolated on each client and not transported
to the server. Accordingly, the transported features between the clients and the server may contain
far less information about the original data. Figure 12 shows examples of the outputs with and
without skip-connections. This shows that the network output without skip-connections barely has
the property of original data, which indicates that one may not be able to reconstruct the original data
using the transmitted hidden features of the proposed method.

Figure 12: The network output with and without skip-connections between task-specific heads and
tail for denoising and deraining task.

D.2 EFFECT OF TASK-AGNOSTIC TRANSFORMER BODY

As we described in the main paper, the reason for developing our model with CNN-based heads/tails
and the Transformer-based body is to take advantage of each network. In particular, Transformer
learns the global attention of the input sequence through self-attention modules and has recently
been extensively studied for various computer vision tasks. One of the most unique advantages of
Transformer is to convert “unattended ” input feature vectors into “attended ” output feature vectors
by learning global attention and non-local interactions between the input features. Accordingly, the
task-specific head / tail can be only trained to learn task-specific local features, whereas the global
feature can be learned through the Transformer body. This disentangled representation of local
and non-local features has been pursued throughout the development of deep networks. Thus, the
proposed Transformer-based approach is considered to be one of the most advanced architectures for
achieving this goal, as it improves synergistically overall performance, and at the same time leads the
privacy-preserving split-learning architecture.

In order to show that this design is proper to the multi-task distributed learning, we additionally
conducted the experiment by replacing the Transformer body to the CNN model. Specifically, we
configured the CNN body with CBR blocks, where C is a convolutional layer with the consistent
channel 512, B is a batch normalization layer, and R is an activation by ReLU layer. For a fair
comparison, we set the CBR blocks as 7 to have almost the same number of learnable parameters

24

Under review as a conference paper at ICLR 2022

with the Transformer body we used (16,522,240 of CNN body vs. 16,953,344 of Transformer body).
Then, using this CNN body, we implemented our proposed task-specific and task-agnostic learning
for one cycle on the multiple image processing tasks as the main paper. As a result, Table 8 shows
that our model with the Transformer body achieves higher performance in both task-specific and
task-agnostic learning. This indicates that the Transformer can be used as a general task-agnostic
body for multi-task learning.

Table 8: Results of study on the effect of the Transformer body of TAViT versus CNN body.

Body Cycle
Deblocking Denoising Deraining Deblurring

BSDS500 (Q10) BSDS500 (Q50) CBSD68 (σ = 30) Rain100H Rain100L GoPro

PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

CNN 0.5 26.42 0.752 32.92 0.921 30.22 0.866 28.23 0.851 31.58 0.930 28.78 0.865
1.0 26.49 0.755 32.95 0.921 30.50 0.866 28.26 0.852 31.77 0.930 28.94 0.868

Ours 0.5 27.53 0.781 32.92 0.921 30.57 0.868 28.24 0.860 33.17 0.939 28.94 0.871
1.0 27.57 0.782 33.01 0.922 30.62 0.869 28.75 0.862 32.69 0.936 29.09 0.873

D.3 SAMPLING STRATEGY OF CLIENTS

When there are multiple clients for one task in task-specific learning, the task-specific networks of
clients are aggregated through the sampling strategy of FedAvg. On the other hand, in task-agnostic
learning of the proposed TAViT, one client is sampled for each iteration. Since the networks of clients
for the same task are aggregated before the task-agnostic learning, we can readily sample one client
for each task. Then, choosing one client for the subset of Eq. (4) can be viewed as sampling one task,
which naturally reduces the communication cost.

In fact, the performance of TAViT is not affected by the number of sampled clients in the task-agnostic
learning, since the task-agnostic body is updated for sufficient iterations. To demonstrate this, we
performed the task-agnostic learning for the four tasks in our experiments by varying the sampling
strategy. Table 9 shows the results after training our model for one cycle according to the number
of sampled clients in the task-agnostic learning. The results show that sampling one client achieves
comparable or higher performance for all tasks, compared to the results of sampling more than one
clients. This supports that our sampling strategy is an efficient way to train the Transformer body
with less computational cost even when the number of clients increases.

Table 9: Results of the study on the sampling strategy of clients in task-agnostic learning.
Task Deblocking Denoising Deraining Deblurring

Sampling BSDS500 (Q10) BSDS500 (Q50) CBSD68 (σ = 30) Rain100H Rain100L GoPro

PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

1 27.57 0.782 33.01 0.922 30.62 0.869 28.75 0.862 32.69 0.936 29.09 0.873
2 27.57 0.782 33.01 0.922 30.62 0.869 28.68 0.861 32.59 0.935 29.10 0.873
4 27.57 0.782 33.01 0.922 30.62 0.869 28.75 0.862 32.35 0.933 29.11 0.873

D.4 COMMUNICATION COST BETWEEN CLIENTS AND SERVER

In the proposed TAViT, the features and gradients of the networks are transported between clients
and server, so one may wonder how much additional communication cost occurs. To compute
the communication cost of our method, we assume that the cost is proportional to the number of
transported elements. Also, since the size of features and gradients from clients to the server are
the same with those from the server to client, we only consider one direction from clients to the
server. Then, we computed the maximum cost for one communication to update our model for each
task-specific and task-agnostic learning, and compared our cost to the method of FL (McMahan et al.,
2017a).

Specifically, when there Nk clients for the k-th task, let PH , PB and PT be the number of parameters
of the head, body, and tail, respectively. In the case of FL that aggregates the whole model composed
of the head, body, and tail, the communication cost per communication can be represented as:

CostFL = Nk(PH + PB + PT). (13)

25

Under review as a conference paper at ICLR 2022

On the other hand, our model does not require the transportation of learnable parameters except for
the aggregation step in the task-specific learning. Thus, the communication cost can be computed as
follows:

CostTAV iT =

{
Nk(PH + PT), if an aggregation step (task-specific learning)
Nk(F +G), else if a non-aggregation step (task-specific learning)
F +G, otherwise, (task-agnostic learning)

(14)

where F and G are the number of elements of transported features and gradients, respectively.

From (14), we can see that the communication cost at the network aggregation step in the task-specific
learning of the proposed method is smaller than FL that needs to transport the parameters of the
whole model including head, body, and tail. Specifically, instead of aggregating parameters of the
Transformer body, the TAViT transports features and gradients that have much smaller size than
the body parameters, which can reduce the cost per communication significantly. For example,
the proposed model for the deblocking task contains PH + PB + PT = 44, 774, 792 parameters
whose memory size is about 207.5MB. Suppose that 10 clients participate in FL to train this model.
Then, 447.7M elements are transported from the clients to the server, and the network of the
server should handle more than 2GB load per communication. In contrast, our model transports
PH + PT = 27, 952, 520 parameters whose memory size is approximately 142.5MB. Thus, even
with 10 clients, 279.5M elements are transported, and the network of the server is supposed to
handle about 60% load of FL. In addition, since the number of features and gradients is F = G =
20× 16× 16× 512 = 2, 621, 440 which is 10MB of memory, the number of transported elements
per communication for 10 clients is 52.4M, and the server is pressed by only 200MB load per
communication.

On the other hand, in task-agnostic learning, the server updates the body with the sampled client
without any weight aggregation. Accordingly, only the features and gradients are transported from
the client to the server. In particular, in the case of the communication from the server to the client,
the server does not need to transport the gradients to the client, but only transmit the features. Thus,
the cost per communication in the task-agnostic learning phase is significantly reduced.

Therefore, up to a certain epoch size, our model is more communication bandwidth efficient compared
to the classical FL, and the advantage increases more if a bigger Transformer body is used for better
representation of global attention.

Scalability Suppose that there are K tasks, and let the total number of clients connected to a server
be Nall. For simple analysis of the scalability, we assume that each communication between clients
and the server takes a constant time. The scalability is computed on the time complexity for one
communication between clients and the server to update the models. For our task-specific learning,
the one communication has time complexity O(Nall) if we update the heads and tails of all clients.
This means that the communication cost would increase according to the number of clients, which can
limit the scalability of the proposed method. However, if we apply the client sampling strategy of the
FedAvg, we can control the number of communications and the one communication will have time
complexity Ω(K). This sampling strategy can be readily adapted to our model without significant
modification. On the other hand, for the task-agnostic learning phase, the one communication has
time complexity O(K), since the network parameters of clients for the same task are aggregated
before the task-agnostic optimization. Also, according to the sampling strategy of one task in the
proposed method, one communication has time complexity Ω(1), which is studied in Appendix D.3.

D.5 APPLICATION TO HIGH-LEVEL VISION TASKS AND MEDICAL DATA

In the main paper, the proposed TAViT was demonstrated on multiple low-level computer vision tasks.
However, the TAViT framework can be also used for a wide range of high-level computer vision tasks,
and even with different data domains such as medical images. To demonstrate this, we additionally
conduct on inpainting task for natural images and denoising task for X-ray CT images. Here, the
image inpainting is a higher-level computer vision task which requires more semantic information,
and the denoising of X-ray CT requires domain-specific knowledge about the data. In particular,
to show that our task-agnostic Transformer body provides a positive effect on the training of new
task-specific networks, we performed the task-specific learning only for the client-side heads and
tails by subscribing to the pre-trained Transformer body, which was trained on the four natural image
processing tasks without additional fine-tuning. The details of training and results are as follows.

26

Under review as a conference paper at ICLR 2022

Dataset For the image inpainting task, we used PASCAL VOC2012 dataset which contains 10,582
natural images. The information about license and source of this dataset can be found in Appendix
B. For the preprocessing, we scaled the image from [0, 255] to [-1, 1] and randomly cropped by
128× 128 patches. Then we multiplied the image with the zero-box mask that has a random size of
width and height from 48 to 64 according to Yu et al. (2018). For the X-ray CT denoising task, we
used the 2016 AAPM Low-dose CT Grand Challenge dataset (McCollough et al., 2020) that provides
noisy CT images with quarter dose and clean CT images with routine dose of X-ray. Since the X-ray
CT data are measured in the Hounsfield unit, we divided the intensity by 4,000 and randomly cropped
by 64× 64 patches.

Implementation details For the image inpainting task, we employed the network architecture of
Yu et al. (2018) and decomposed it into two parts for the task-specific head and tail. We performed
task-specific learning by minimizing the adversarial generative loss for 400 epochs using Adam
optimizer with learning rate 1× 10−4. For the X-ray CT denoising task, we used the same network
architecture of head and tail implemented in this paper. We trained the task-specific networks with
the fixed task-agnostic body for 400 epochs using Adam optimization algorithm with learning rate
5× 10−3.

Results To evaluate the performance of image inpainting and medical image denoising, we com-
pared our method to the CNN model that has the same network architectures of head and tail with ours
but does not have the Transformer body. The quantitative evaluation results are shown in Table 10,
and the visual comparisons are shown in Figure 13. We can see that the performance of inpainting is
improved when training the client-side networks with our pre-trained Transformer body, even though
we use the Transformer body pre-trained using low-level computer vision tasks. This implies that the
proposed method can be extended to various high-level tasks. In addition, we can observe that our
model on the medical image denoising task achieves higher performance than the comparative CNN
model and provides clean images, although the Transformer body was trained on the natural image
domain. From these results, we can confirm that our task-agnostic Transformer body has a capability
to learn the domain gap even in different data sources. Also, this suggests that clients do not need to
train the server-side body from the scratch when they subscribe the body for the other tasks.

Table 10: Results of applications to diverse image processing tasks using different image domains.

Task Domain CNN TAViT

PSNR SSIM PSNR SSIM

Inpainting Natural Image 24.50 0.861 24.85 0.865
Denoising Medical Image (CT) 41.28 0.958 42.05 0.961

27

Under review as a conference paper at ICLR 2022

Figure 13: Visual comparisons of the application results: (a) inpainting of natural images, and (b)
denoising of medical CT images. The average values of PSNR / SSIM are displayed on each result.

28

	Introduction
	Related works
	Privacy-preserving task-agnostic Vision Transformer
	Subscription-based service model
	Training scheme
	Task-specific learning
	Task-agnostic learning

	Communication cost and privacy preservation by TAViT

	Experimental results
	Results

	Conclusion
	Details of TAViT with pseudocode
	Details of datasets and implementation
	License/source for each dataset
	Data processing
	Network architectures

	Experimental results
	TAViT on multiple image processing tasks
	Ablation study of TAViT

	Discussion
	Skip-connection of head and tail for privacy preservation
	Effect of task-agnostic Transformer body
	Sampling strategy of clients
	Communication cost between clients and server
	Application to High-level Vision Tasks and Medical Data

