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Abstract

Retrieval-Augmented Generation (RAG) en-
hances LLMs by grounding answers in re-
trieved passages, which is key in factual Ques-
tion Answering. However, generated answers
may still be unfaithful, either due to retrieval
or generation errors. We introduce the problem
of Answering with Faithfulness (AwF), which
brings faithfulness prediction to the forefront,
explicitly coupling it with answer generation.
We define precision-recall metrics tailored to
this problem and present a unified framework
allowing for (1) tunable control over faithful-
ness precision and (2) direct evaluation and
comparison of different AWF methods. We con-
duct a comprehensive empirical study across
multiple models and benchmarks, evaluating di-
verse AwF methods, and identifying consistent
performance trends. Additionally, we demon-
strate the usage of AWF methods in applica-
tions that incorporate different strategies for
handling unfaithful answers. Our findings es-
tablish AwWF as a robust framework, providing
a principled approach to balance between pro-
viding answers and applying corrective actions
in RAG-based Question Answering.

1 Introduction

Retrieval Augmented Generation (RAG) enhances
Large Language Models (LLMs) by grounding
their responses in an external corpus, ensuring that
answers are based on retrieved evidence rather than
only the LLM parametric memory. An answer
is said to be faithful when it is indeed grounded
by the retrieved content. This property is key in
factual questions where the user is asking for a
well-defined piece of information (as opposed to
opinion-based or creativity-seeking queries).

A key challenge in RAG-based factual Ques-
tion Answering, is thus to ensure that generated
answers are supported by retrieved passages. Er-
rors in this process can stem from two sources:
retrieval failures, where the retrieved passages are

misleading or irrelevant; and generation failures,
where the LLM produces an incorrect or unsup-
ported answer, due to hallucinations, confusion, or
misinterpretation of the passages. Approaches to
mitigate such issues include adapting retrieval to
generation (Zhang et al., 2023; Shi et al., 2024),
chain-of-thought (CoT) reasoning to ignore irrele-
vant passages and extract useful information from
relevant ones (Wei et al., 2024), and parallel gener-
ation, i.e., generating an answer for each retrieved
passage and choosing the best one (Lewis et al.,
2020). In these examples, the objective is answer
quality, and the intermediate task of faithfulness
prediction typically is solved only implicitly. In
this paper, we bring this problem to the spotlight
and evaluate this task explicitly. Beyond its clear
contribution to the answering quality, we note that
this problem is also fundamental for transparency:
without a supporting passage, the system cannot
provide users with a verifiable basis for the gener-
ated answer.

In our setting, given a user question and a set
of retrieved passages, the goal is to generate both
an answer and a faithfulness prediction, indicating
whether the answer is supported by the passages.
We refer to this problem as “Answering with Faith-
fulness" (AwF). This formulation couples answer
generation and faithfulness assessment into one
component that produces both an answer and the
assessment, allowing for explicit control over when
to trust a generated response.

While related problems have been studied, most
approaches address faithfulness implicitly or indi-
rectly. For example, Query Performance Prediction
(QPP)(Asai et al., 2024) assess whether retrieval
is likely to be useful before generation, while CoT
reasoning promotes faithfulness by first reasoning
about which passages contain relevant data. How-
ever, these methods lack explicit faithfulness pre-
diction, offering no direct evaluation, control, or
transparency over the response’s trustworthiness.



Our AwF framework generalizes these ap-
proaches by making faithfulness prediction an ex-
plicit output, along with the generated answer. Re-
spectively, we define metrics of AwF precision and
AwF recall, tailored to our setting. Using these
definitions, our AwF framework provides three key
advantages: (1) It allows for tuning the balance be-
tween providing answers and applying corrective
actions (e.g., abstaining, invoking a stronger LLM,
generating a different answer), as different applica-
tions have different tolerances for uncertainty. (2) It
enables a systematic comparison between different
methods within a unified evaluation framework. (3)
It supports method composition, where different
techniques can be combined to improve answering
faithfulness.

We conduct a line of experiments on top of a
diverse collection of benchmarks, to evaluate the
performance of different AWF methods for answer-
ing with faithfulness. We consider (1) unified ap-
proaches that simultaneously provide an answer
along with its faithfulness prediction, (2) composi-
tions of answer generation methods with faithful-
ness prediction methods.

Beyond evaluating AwF methods, we explore
their use in applications that incorporate different
strategies for handling unfaithful answers, such as
reverting to non-RAG answering or switching to a
larger, more expensive LLM. Our analysis reveals
consistent trends, showing that AwF methods can
be chosen based on their performance within our
framework, enabling informed selection and fine-
tuning of the application’s operating point.

Summarizing, our contributions are as follows:
(1) We define the AwWF problem, allowing for ex-
plicit tuning of faithfulness prediction. (2) We intro-
duce tailored precision-recall metrics and propose
a unified framework enabling comparison across
AwF methods. (3) We conduct a comprehensive
study across models and benchmarks, revealing
consistent performance trends of AwWF methods. (4)
We exemplify the use of AwWF methods and our
framework in applications with different strategies
for handling unfaithful answers.

2 Related Work

We divide the existing works related to our task by
the input they use: just the query, the query and
retrieved data, and the query, retrieved data, and
generated response. This division is inspired by
the pre-retrieval and post-retrieval categorization

used in Query Performance Prediction (QPP) lit-
erature (Arabzadeh et al., 2024). This IR task of
predicting the retrieval performance is highly re-
lated to ours: rather than predicting IR metrics, in
the RAG setting, we would like to predict whether
retrieved content will actually improve the quality
of the generated response.

Decision based on the query. A few publica-
tions tackled this RAG-QPP problem, though it
was part of a wider effort: (Asai et al., 2024) have
a complete RAG system that among other things,
before generating predicts whether retrieval would
be helpful. Wang et al. (2024a) propose an adap-
tive RAG system for conversations that decides
whether retrieval should be invoked via prompting
the LLM or an external model. In our experiments,
we did not explore these strategies since they are
intuitively but also empirically (Wang et al., 2024a)
less effective than post-retrieval QPP.

Decision based on the query and retrieved con-
tent. A direct approach towards solving this prob-
lem is given by Thakur et al. (2024). They provide
a dataset (NoMiracl) of queries and retrieved pas-
sages along with labels for answerability of queries.
The passages are related to the query but in the
unanswerable case, do not contain the information
needed to answer the query. Using this dataset,
they show how LLMs perform poorly in identifying
these unanswerable cases. Wang et al. (2024a) pro-
pose an adaptive RAG system that decides whether
retrieved content should be used in the generation
phase and show that fine-tuned LLMs perform bet-
ter than a BERT-based model. Ye et al. (2024) and
Wei et al. (2024) fine-tune an LLM to generate a re-
sponse using CoT, where it first decides which pas-
sages are useful, then generates a response. Meng
et al. (2024) propose using LLM-generated binary
relevance labels that are subsequently used to com-
pute continuous QPP scores tailored towards a de-
sired retrieval metric, such as the precision-oriented
reciprocal rank, or the recall-oriented NDCG. Fi-
nally, some papers (Yoran et al., 2024; Jin et al.,
2024) have an implicit approach to the problem,
where rather than letting the LLM or another model
decide whether retrieved content is useful, they fine-
tune the LLM to be robust to irrelevant data.

Decision based on the query, retrieved content,
and response. Here, the challenge is to decide
whether a given response has sufficiently high qual-
ity given the retrieved content. A natural way of do-



ing so is determining whether the answer is implied
by the retrieved content, otherwise, retrieval was in
retrospect unnecessary. This challenge is closely re-
lated to fact-checking (Wang et al., 2024b), where
NLI is a popular approach for verifying a statement
given evidence (see (Honovich et al., 2022) and
references within).

A computationally expensive alternative to stan-
dard NLI models is represented by RAGAS faithful-
ness (Es et al., 2024), a metric evaluating whether
the generated answer is faithful to the retrieved
context via several invocations to a powerful LLM.
We consider this technique as well as other NLI
models in our paper.

Wu et al. (2024) studied the inclination of RAG
models to prefer their parametric memory over the
provided context, and vice versa. They provide
a test for faithfulness in which they compare the
perplexity of an answer generated by an LLM with
and without retrieved content. We make use of this
technique in our paper.

Uncertainty estimation. Outside the RAG sce-
nario, a related line of work concerns uncertainty
estimation in LLMs. Estimating uncertainty/con-
fidence is crucial for assessing the reliability of
LLMs (Geng et al., 2024). Earlier studies (Mur-
ray and Chiang, 2018; Malinin and Gales, 2020;
Jiang et al., 2021) estimated model confidence by
computing the marginal probability of the gener-
ated sequences based on the language model’s to-
ken probabilities. Other works directly prompted
LLMs to generate their confidence (Mielke et al.,
2022; Lin et al., 2022; Tian et al., 2023; Zhou et al.,
2023). Another line of works (Si et al., 2023; Lin
et al., 2023; Nikitin et al., 2024) used sampling
decoding to generate multiple answers to the same
question and considered semantically different an-
swers as a proxy for uncertainty. All these works
are general-purpose and do not specifically address
our scenario: LLMs can generate responses with
high confidence even when the retrieved context
doesn’t actually support their claims.

3 Problem Definition & Metrics

We provide a formal definition of the AWF problem
and then show how a line of methods fits into this
framework. The input to the AWF problem consists
of a question ¢, and a collection of passages P,
typically obtained via retrieval. Our goal is building

an AwF method M that computes
M(Q7P) = (a’v)a

where a is the generated answer, and v € {0, 1} is
its predicted faithfulness indicator. The faithfulness
indicator aims to predict the true faithfulness of an
answer given the passages:

1 P supports the statement:
“the answer to g is a”,
0 otherwise.

Vg.p(a) =

Vg, p(a) can be estimated by human annotators, a
judge LLM (Chiang and Lee, 2023; Zheng et al.,
2023; Es et al., 2024), or comparison with a given
ground truth answer known to be faithful to P.

The predictions a and v are highly related, and
their quality should be evaluated as a whole. In
particular, the metrics measuring the performance
of M should capture the fact that when v = 0, the
quality of a is not important. Indeed, one can think
of making use of v as a gating mechanism to invoke
a different generation process when v = 0 thereby
ignoring a in this case. Similarly, when M fails
to produce a faithful answer, v should be 0 even
if a supported answer can be generated from the
passages. Moreover, note that the cost of provid-
ing a wrong answer vs. the cost of not providing
an answer when a proper answer can be inferred
from the passages, depends on the specific use case.
Thus, we want to maximize two competing objec-
tives that capture this tradeoff. To that end, we
introduce a tailored notion of precision and recall,
defined below.

Assume we are given a set of question and
passage pairs {(q;, P)}Y,, and M is used to
append to each such pair its predictions a;, v;.
We define our metrics w.r.t. to the set of tuples
{(gi, Pi, a;,v;) } ;. Throughout, all sums are over
these N tuples, and we denote their corresponding
ground truth labels as V; = V,, p,(a;).

AWF Precision is similar to the standard classifi-
cation precision - the fraction of answers the gen-
erator correctly deemed faithful, out of the total
number of faithful answers. The number of cor-
rectly classified faithful answers (True Positives)
is True-Pos = ), v; - V;, and the total number of
answers that were classified as faithful (Predicted
Positive) is Pred-Pos = ). v;. The answering
faithfulness precision is therefore

True-Pos

AwF-Precision = —————
wE-Precision = 5=~



We note that even though the precision appears
identical to the standard classifier precision at first
glance, it also depends on the generated answers
as well, since the ground truth label V; depends on
the answer a;.

AwF Recall is the fraction of answers cor-
rectly deemed faithful, out of the total num-
ber of faithfully answerable questions, mean-
ing questions that have a faithful answer w.r.t.
the passages. Formally, the number of faith-
fully answerable questions is F-Answerable =
1{(gi, P;) : Ja* such that V,, p,(a*) = 1}/, and the
answering faithfulness recall is

True-Pos
F-Answerable

A connection to the classical notion of classifier
recall can be obtained from a simple reformulation.
Denoting by Faithful the number of faithful gener-
ated answers, Faithful = Zz V;, the recall can be
reformulated as

AwF-Recall =

True-Pos Faithful
Faithful F-Answerable
——— N——

classifier recall

AwF-Recall =

answering recall

Thus, our notion of recall is the classifier recall
given the answers, multiplied by the ability of the
generator to produce faithful answers whenever a
faithful answer exists.

Connection to Post-Retrieval QPP  We note that
AwF is similar to QPP, with the distinction that
the predicted faithfulness indicator V' evaluates
whether P supports the correct answer ag, rather
than the generated answer a. Due to their similarity,
techniques originally designed for QPP are evalu-
ated as AwF and vice versa. In what follows we
consider QPP-Precision and QPP-Recall, defined
analogously to AwF-Precision and AwF-Recall,
but w.r.t. the QPP variant of V.

4 Methods

We consider various methods that fit within the
AwF framework, demonstrating how our formu-
lation unifies approaches originally designed for
different problems, such as answer generation. In
some cases, we make slight adaptations to align
these approaches with AwF (e.g., pairing answer
generation with a simple faithfulness prediction
that always sets v = 1). Some of the methods
we consider provide a hard classification result,

i.e.,, v € {0,1}, whereas others provide a contin-
uous decision function that can be thresholded to
obtain v € {0,1}. We first present unified meth-
ods that simultaneously output both an answer and
its faithfulness indicator. Then, we provide com-
posed methods, that combine answering modules
with faithfulness prediction ones. The exact LLM
prompts we used in the following methods are avail-
able in Appendix A 4.

4.1 Unified Methods

Intrinsic Abstention. A straightforward tech-
nique where we prompt an LLM to answer only if
the answer appears in the context and reply with
“DONT KNOW” when it does not. We set v = 1 if
and only if the answer is not “DONT KNOW”’.

CoT few-shot Hybrid. A variant of the Intrin-
sic Abstention method using both chain-of-thought
and few-shot examples. It is inspired by the method
described in (Wei et al., 2024), where the LLM is
instructed to reason about the relevance of the pas-
sages before answering and is given two examples
comprising a question, passages, and the reason-
ing. We adapt the original method by prompting
the LLM to answer “DONT KNOW?” if an answer
cannot be deduced from the passages (v = 0).

Dual Generation. A method proposed by Wu
et al. (2024). The idea is to generate an answer
both with and without P, then compare the (nor-
malized) perplexity percentiles of both answers in
order to choose one. We define a continuous deci-
sion function for v as the difference between the
perplexities.

4.2 Composed Methods

We consider methods that compose two compo-
nents for producing the AWF output (a,v): an an-
swer generation method to generate a, and a faith-
fulness prediction method to produce v. Below we
describe concrete answer generation and faithful-
ness prediction methods we consider in this paper.

4.2.1 Answer Generation

Vanilla. The straightforward approach for an-
swering questions. Here, we instruct the LLM to
answer the question given the passages.

InstructRAG. This is a variant of the Vanilla
method using both chain-of-thought and few-shot
examples proposed by Wei et al. (2024). We



slightly modified the in-context examples and in-
structions to enable a structured response, from
which we can extract only the final answer.

4.2.2 Faithfulness Prediction

Trivial. A simple baseline that always predicts
v = 1, meaning that it believes the answer from
the generation method is always faithful.

Pre-Answering Prediction. A method originally
designed for Post-Retrieval QPP. Given ¢, P we
ask the LLM to evaluate whether P contains an
answer to q. We ask for a single yes/no answer
given all the passages and obtain a continuous de-
cision function for v by inspecting the logits of the
generated response. We use the prompt given in
(Thakur et al., 2024).

Post-Answering NLI. A faithfulness prediction
method mimicking V; p(a). Here, we first invoke
one of the answering methods described above
to generate the response a, then use the ques-
tion, passages, and the generated answer to decide
whether the question-answer pair is faithful to the
passages. We use a DeBERTa-based NLI model'
(Laurer et al., 2024) by feeding it the hypothesis
and premise as described in the definition of V.
We chose a DeBERTa-based model due to it be-
ing lightweight (< 1B parameters), and having
adequate quality. Further details about considered
alternatives such as TRUE and RAGAs and the
implementation can be found in Appendix A.1.

S Empirical Investigation

We conduct a series of experiments to evaluate the
performance of different AwF methods in terms of
precision and recall.

5.1 Experimental Setup

For our experiments, we use question-answering
benchmarks where each entry consists of a ques-
tion, one or more retrieved passages, a reference
answer, and a binary relevance label indicating
whether the answer can be inferred from the pas-
sages. We focus on single-hop questions, where
the answer is fully contained within a single pas-
sage. To compute precision and recall, as defined in
Section 3, we estimate V;, p(a) as follows. We con-
sider V, p(a) to be 1 if: (1) a is equivalent to the
reference answer, as judged by a strong language

"https://huggingface.co/MoritzLaurer/
deberta-v3-large-zeroshot-v2.0

model (Claude 3.5 Sonnet), and (2) the reference
answer is supported by at least one passage.

We evaluate our methods on three public bench-
marks: NQ (Kwiatkowski et al., 2019), NoMIR-
ACL (Thakur et al., 2024), and BioASQ (Krithara
et al., 2023). NQ consists of real-user queries with
answers retrieved from Wikipedia. NoMIRACL is
a benchmark based on real-user queries, used to as-
sess whether LLMs have the ability to abstain when
retrieval fails. BioASQ focuses on biomedical ques-
tions from PubMed abstracts. Further details on
the benchmarks collection and pre-processing are
provided in Appendix A.2.

Table 1 provides benchmark statistics: the sizes
of our datasets (number of entries), the average
number of passages per question, and the percent-
age of questions that are answerable by their asso-
ciated passages.

Benchmark size % of ansyverable passages
questions per question
NQ 5K 82% 5
NoMIRACL 3.2K 81% 10.1
BioASQ 29K 50% 6.5

Table 1: Benchmarks Statistics.

For each benchmark, we test the unified and
composed methods for the AwF task, as presented
in Section 4. For the composed methods, we test all
combinations of answer generation and faithfulness
prediction methods. Since AwF methods rely on
instruction-tuned generative models, we conduct
experiments using Llama 3 Instruct (3B, 8B, 70B),
Falcon 3 Instruct (3B, 10B), and Qwen 2.5 Instruct
(72B). Models are referred to by their first letter
and size, e.g., F10B.

5.2 Results

For each AwF method, LLM, and dataset, we com-
pute the AwWF precision, AwWF recall, and their F1
score. For the methods outputting a continuous
score (e.g., Post-Answering NLI), we evaluate their
F1 across all thresholds and report the max value.
We used the Bootstrap method to compute 95%
confidence intervals. Table 2 presents the average
F1 score obtained by each of the methods over our
three benchmarks. When using names of answer
generation methods, we implicitly refer to those
methods composed with the Trivial faithfulness
prediction method. Elaborated tables including all
benchmarks of both F1 scores and area under the
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Method F3B FI0B L3B L8B ‘ L70B  Q72B
Intrinsic 0.53 0.61 029  0.55 0.70 0.72
Trivial Vanilla 0.56 0.64 037 0.58 0.66 0.68
CoT 0.61 0.67 055 0.64 0.69 0.72

Trivial InstRAG 0.62 066 057 0.62 0.66 0.68
Pre-Ans Vanilla 0.56 065 037 0.59 0.69 0.68
Pre-Ans InstRAG ~ 0.62 0.67 0.57 0.63 0.70 0.68

NLI Vanilla 0.60 0.66 042  0.61 0.67 0.69
NLI InstRAG 0.64 068 059 0.64 0.68 0.70
Dual Gen 0.56 0.64 037 0.58 0.66 0.68

Table 2: Average F1, defined by the harmonic mean
of the average precision and recall over the datasets of
every method and model. The results of each dataset
appear in Appendix A.5.
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Figure 1: AwF-Precision and AwF-Recall of AwWF
methods using F3B on NQ benchmark.

curve (AUC), together with a 95% confidence in-
terval appear in Appendix A.5 (Tables 6 and 7).

Using large-scale LLMs. We observe an inher-
ently different behavior between AwF methods us-
ing medium-scale and large-scale LLMs. In par-
ticular, for large models, a simple method such as
Intrinsic Abstention performs very well, achieving
an F1 score that is either higher or on par compared
to other methods. Notably, Intrinsic Abstention
with large LLMs outperforms all methods with
medium-scale models, highlighting the advantage
of model size, where no sophisticated AwWF method
is necessarily required. However, since Intrinsic
Abstention lacks a decision function, it produces
fixed precision-recall values. Thus, in scenarios re-
quiring higher precision or recall, alternative meth-
ods may be preferable.

Using medium-scale LLMs. We turn to exam-
ine the behavior of AWF methods for the case of
medium-scale LLMs, and present a representative
example in Figure 1. Other LLMs and benchmarks
exhibit similar trends; full results are available
in Appendix A.6 (Figure 5). Notably, chain-of-

thought improves performance: InstructRAG con-
sistently outperforms Vanilla (as it is a variant of
Vanilla with CoT), and CoT few-shot Hybrid out-
performs Intrinsic Abstention (as it is a variant of
Intrinsic Abstention using CoT).

Moreover, looking at Table 2, as well as at
Figure 1, which is representative of the overall
trends observed across all configurations for the
case of medium LLMs, we see a clear hierarchy
between faithfulness prediction methods. Across
all medium scale models, benchmarks, and answer-
ing generation methods, the curve resulting from
the composition of Post-Answering NLI fully dom-
inates the curve resulting from the composition of
Pre-Answering Prediction on the same answering
method. This reinforces the intuition that consid-
ering the generated answer improves faithfulness
prediction. Although Dual Generation is not a com-
posed method, as it is tailored to predict the faithful-
ness of Vanilla, we see that it behaves similarly to
Pre-Answering Prediction composed over Vanilla,
and consistently underperforms compared to Post-
Answering NLIL.

Consistently, we observe that composition pre-
serves the ranking of answering methods. That
is, across all tested medium scale models and
benchmarks, when one answering method outper-
forms another (InstructRAG consistently outper-
forms Vanilla), this ordering remains unchanged
after their composition with any faithfulness predic-

tion method, resulting in a fully dominant curve?.

Finally, composing a faithfulness prediction
method with an answer generation method yields
a balanced tradeoff between recall and precision.
This allows for significant precision gains, often
by dozens of percentage points, by adjusting re-
call. This flexibility makes composition crucial
for applications requiring higher precision, such
as medical queries, where fixed-precision methods
(e.g., answer generation methods) may fall short.

Relation to QPP. Consider QPP-Precision and
QPP-Recall as defined with respect to post-
retrieval QPP in Section 3. We present the eval-
uation of those metrics using a representative ex-

“The only exception is the case of Post-Answering NLI
with Falcon10B on BioASQ, in which the domination is not
complete. Moreover, for L8B on BioASQ, InstructRAG is on
par with Vanilla, thus it is not expected that their composition
with faithfulness prediction methods will yield curves with a
clear hierarchy.
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Figure 2: QPP-Precision and QPP-Recall of AwF
methods using F3B on NQ benchmark.

ample of a medium-scale LLM (F3B) in Figure 2*
(a full visual description appears in Figure 6 of Ap-
pendix A.6). Recall that Pre-Answering Prediction
is designed to predict the QPP objective whereas
Post-Answering NLI is designed for the AWF ob-
jective. Nevertheless, the same trends as before
remain, in particular the superior performance of
Post-Answering NLI. This is somewhat surprising
and could bring insights into future solutions for
the QPP problem.

6 Applications

We present two applications of AwF, each employ-
ing a distinct strategy for handling instances where
the generated answer is predicted unfaithful (v =
0). We demonstrate how utilizing AWF methods
with better AwF-Precision/AwF-Recall curves in
these applications improves system performance.

6.1 No-RAG Fallback

This strategy falls back to generating a response
without RAG whenever v = 0, using the same
LLM but relying only on its parametric memory.
Indeed when v = 0, the retrieved content is likely
to be irrelevant and consequently it might only dis-
tract the LLLM, hurting its answer quality. There-
fore, it could be beneficial to try to generate the
answer without using the retrieved content. Figure
3 illustrates the No-RAG strategy for Llama3B on
BioASQ questions, when using the composition of

3Since QPP-Precision and QPP-Recall are independent
of the generated answer, all methods that estimate faithfulness
without considering the answer produce identical results. In
particular, this applies to all methods based on Trivial (which
always predicts v = 1) and on Pre-Answering Prediction
(where faithfulness prediction is performed before answer
generation). The respective composed methods are referred
shortly as Trivial and Pre-Answering Prediction in Figure 2.
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— = InstRAG
—= No-RAG
InstRAG + Fallback
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.
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Figure 3: No-RAG fallback. Accuracies of different
types of answers as a function of the fallback rate. Or-
ange: InstructRAG accuracy with No-RAG fallback
when NLI predicts v = 0. Green: Avg. accuracy of
InstructRAG answers predicted as unfaithful. Red: Avg.
accuracy of No-RAG answers for unfaithful Instruc-
tRAG cases.

InstructRAG and Post-Answering NLI. The figure
presents overall answer accuracy (i.e., the percent-
age of generated answers that match the reference)
as a function of the fallback rate which can be con-
trolled via different thresholding of the soft score
Post-Answering NLI generates for v. Incorporating
fallback improves accuracy over InstructRAG for
fallback rates up to 70%, peaking around 50% rate
before declining. These results are not surprising,
since 50% of BioASQ questions are not answerable
from the passages; this is a demonstration of AwF
ability to detect those cases. This can be further
explained by comparing InstructRAG and No-RAG
answers when v = 0 (w.r.t. InstructRAG answer):
in low fallback rates No-RAG outperforms Instruc-
tRAG, so replacing the answers enhances overall
accuracy. However, as fallback increases, the ac-
curacy gap between the two narrows, and beyond
70%, InstructRAG surpasses No-RAG, making fur-
ther fallback detrimental.

In Table 3 we compare Pre-Answering Predic-
tion and Post-Answering NLI (both composed with
InstructRAG) for this application*. We present
here results only for BioASQ, since for NQ and
NoMIRACL we observe little to no improvement
in overall system accuracy for most LLMs, likely
due to them having mostly (~82%) questions with
relevant passages. In BioASQ however, only 50%
of the questions contain relevant context and the
overall improvement is significant for most LLMs.
The results for all benchmarks can be found in Ap-

*We use 5-fold cross-validation, optimizing the threshold
on four folds and evaluating performance on the fifth.



LLM  Pre-Ans NLI
Q72B 426% 6.51%
L70B 7.39% 8.72%
L8B 1.33% 3.13%
L3B -0.10%  2.32%
F10B 0.51% 0.20%
F3B 0.03% 0.07%

Table 3: Accuracy improvement with No-RAG fallback
over InstructRAG answers, using Pre-Answering Predic-
tion or Post-Answering NLI for faithfulness prediction
on BioASQ.

pendix A.3.1, along with an analysis showing that
improvements occur mainly for questions without
relevant context. In most cases, Post-Answering
NLI outperforms Pre-Answering Prediction in ac-
curacy improvement. This is consistent with Sec-
tion 5.2, where Post-Answering NLI composi-
tions achieve better AwF-Precision/AwF-Recall
curves. These findings reinforce the value of select-
ing the best AWF method and being able to tune its
faithfulness threshold (and resulting fallback rate)
for achieving a maximal accuracy for the No-RAG
fallback application.

6.2 Switching to a Larger Model

This strategy matches a scenario where the RAG
system primarily uses a small and cheap LLM, but
when v = 0, switches to a larger, more expensive
model. The system balances two competing ob-
jectives: (i) quality, measured by accuracy, and (ii)
cost, measured by switch rate, i.e., the proportion of
answers replaced by the larger model. Figure 4 il-
lustrates the trade-off between accuracy and switch
rate for Falcon3B and Llama70B on the NQ bench-
mark. The ranking of the faithfulness methods
from Section 5.2 remains consistent, showing that
better AwF-Precision/AwF-Recall curves lead to
a more favorable trade-off. Note that a baseline
that switches the answer randomly would have a
linear trade-off curve, similar to the Dual Genera-
tion one. This same trend persists across the other
benchmarks and LLM choices (full results can be
found in Appendix A.3.2).

7 Discussion

Our work introduces the Answering with Faith-
fulness problem along with tailored precision and
recall metrics, providing a unified framework for its
evaluation. By making faithfulness prediction an
explicit output, we generalize prior approaches that

70%
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3 60% v Trivial Vanilla
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x  Trivial InstRAG
—-=-=- Pre-Ans Vanilla
55% —-- Pre-Ans InstRAG
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—— NLI InstRAG
------ Dual Generation
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Figure 4: Switching to a larger model. Accuracy vs
Switch Rate, when using InstructRAG and replacing
F3B answers with L70B for cases where v = 0 on NQ.

implicitly address answer faithfulness, enabling di-
rect comparisons across methods. Evaluating all
methods on a common scale facilitates informed
trade-offs, allowing applications to balance them
based on their specific requirements.

The trends observed across the diverse AwF
methods we consider remain consistent across con-
figurations, problems (AwF and QPP), and appli-
cations explored in this work, demonstrating the
robustness of our framework. Beyond their perfor-
mance for solving the AwWF problem, we find that
AwF methods that rely on a generated answer are
also highly effective for solving the QPP problem.
In particular, we see that those methods achieve
superior results to QPP solutions, despite their in-
herent bias of solving a slightly different problem.
The same performance trends also persist in the
applications we consider, where AwWF methods are
used together with different fallback strategies for
handling unfaithful answers. This reinforces the
practical utility of AwWF methods, allowing for in-
formed selection and tuning based on specific ap-
plication needs.

Our findings also show that applications can se-
lect AWF methods solely based on their perfor-
mance, without needing to assess the quality of
specific fallback or gating strategies when handling
unfaithful answers. In some cases, this distinc-
tion is less critical, such as trivial fallbacks like
abstaining or high-cost alternatives like switching
to a larger model. However, a promising direction
for future work is to extend the AwF framework to
incorporate fallback performance, enabling a more
comprehensive evaluation of downstream correc-
tive actions.



8 Limitations

The AwF problem applies to any benchmark where
RAG provides a suitable solution. In this study, we
focused on question-answering benchmarks, specif-
ically those with factoid questions. We focused our
attention on these benchmarks since other types
would admit additional technical challenges that
are outside the scope of our study, making it diffi-
cult to understand the core problem and the analysis
of our results. For example, with long-form an-
swers, faithfulness ceases to become a binary score
since an answer can be partially supported by the
documents. An additional limitation to our study
is the language: We restricted our focus to English
benchmarks and corpora and left the analysis over
additional languages to future work.

Finally, our focus was on methods that do not
require fine-tuning an LLM. This choice is due to
two reasons: (1) The popularity of such choices in
real settings, indeed it is much more convenient to
use an off-the-shelf LLM as opposed to fine-tuning
one. (2) The added technical challenges related
to such methods, such as searching for the right
hyper-parameters for training, the cost of training,
and the complexity related to in-distribution vs out-
of-distribution performance.
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A Appendix
A.1 NLI Model

A.1.1 Implementation details

For using the NLI model to predict whether the
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sages, we created the hypothesis using this tem-
plate: The answer to the question "{q}" is:
{a}, while each passage serves as an independent
premise (in preliminary experiments, we explored
rephrasing the question-answer pair into its declar-
ative form using an LLM, but it did not yield an
additional advantage). In case the passage and the
hypothesis together exceed the context window of
the NLI model, we split the passage into chunks
with an overlap of 20 words. We then use the max-
imum score of the NLI model over all premises as
the decision function for v.

A.1.2 Model selection

To select the NLI model, we conducted a prelim-
inary experiment evaluating the performance of
different models on our task using 700 questions
from NQ. We considered four bert-based models,
each with fewer than 1 billion parameters:

* MoritzLaurer/DeBERTa-v3-large-mnli-fever-
anli-ling-wanli

* MoritzLaurer/deberta-v3-large-zeroshot-
v2.0

* MoritzLaurer/ModernBERT-large-zeroshot-
v2.0

* MoritzLaurer/bge-m3-zeroshot-v2.0

Additionally, we tested TRUE (Honovich et al.,
2022), a T5-XXL-based model with 7 billion
parameters. Among the BERT-based models,
MoritzLaurer/deberta-v3-large-zeroshot-v2.0 per-
formed best, achieving results comparable to
TRUE. Given its significantly smaller size, we se-
lected it as our NLI model.

We also conducted preliminary experiments with
RAGAS faithfulness (Es et al., 2024), using Claude
3.5 Sonnet. However, the observed improvements
over the DeBERTa-based model were negligible,
and we determined that the additional computa-
tional cost of a larger model was not justified.

A.2 Benchmarks

* NQ (Kwiatkowski et al., 2019) is a general
knowledge question answering benchmark
based on queries of real users. The dataset
consists of questions and ground truth an-
swers. Specifically, we sampled, uniformly
at random, 5K question-answer pairs. For
each question, we retrieved 5 passages from
Wikipedia, using E5-base-v2 (Wang et al.,

2022) dense retrieval. Each passage was then
labeled as relevant if it contains the answer as
a (normalized) substring, or according to the
TRUE NLI(Honovich et al., 2022) °.

NoMIRACL (Thakur et al., 2024) is a public
benchmark testing whether LLMs have the
ability to abstain. Each entry contains a ques-
tion, passages, and relevance labels for the
passages. The original dataset does not have
a ground truth answer. To obtain one, we
prompted Claude 3.5 Sonnet based only on
the passages that were annotated as contain-
ing the answers. In addition, in the original
dataset, the relevant passages are separated
from the non-relevant ones. We shuffle rele-
vant and non-relevant passages together in a
random order. We consider only the English
part of this dataset, as all language and NLI
models we employed, support this language.

BioASQ (Krithara et al., 2023) is a manu-
ally generated question-answer dataset based
on abstracts of biological academic papers
available in the Pubmed corpus (we used the
snapshot published by (Xiong et al., 2024)).
We used the BioASQI12 training set, out of
which we collected the questions labeled as
factoid questions, resulting in a collection of
1.48K entries. Each entry contains a question,
a ground truth answer, and a list of relevant
passages. To obtain irrelevant passages we
used BM-25 to extract the top-10 related pas-
sages from PubMed and discard those con-
taining the ground truth answer. Finally, we
considered each question twice, using two dif-
ferent passage lists: once with only irrelevant
passages and once with the same set, but with
one randomly selected irrelevant passage re-
placed by a randomly chosen relevant one.

A.3 Applications supplementary material
A.3.1 No-RAG fallback

Table 4 includes the comparison between Pre-
Answering Prediction and Post-Answering NLI for
No-RAG fallback across all benchmarks and LLMs.

A manual inspection showed this strategy to be near per-
fect in the setting of NQ where the answers are very short and
contain only a single fact.
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Pre-Ans  Pre-Ans Pre-Ans NLI NLI NLI
(all) (relevant) (irrelevant) (all) (relevant) (irrelevant)
Benchmark LLM
F3B -0.06% -0.07% 0.00% 0.00% 0.00% 0.00%
F10B -0.02% -0.02% 0.00% -0.04% -0.02% -0.23%
NQ L3B -0.02% -0.02% 0.00% -0.04% 0.02% -0.36%
L8B -0.08% -0.07% -0.13% 0.50% 0.39% 1.00%
L70B 0.28% -0.54% 415% 1.02% 0.18% 5.02%
Q72B  -0.04% -0.05% 0.00% -0.32% -0.19% -0.89%
F3B -0.03% -0.04% 0.00% -0.06% -0.04% -0.37%
F10B 0.00% 0.00% 0.05% -0.09% -0.15% 0.14%
L3B -0.13% -0.08% -0.16% -0.16% -0.42% 0.74%
NoMIRACL L8B 0.00% 0.00% 0.00% 0.25% -0.15% 2.06%
L70B  -0.03% 0.00% -0.20%  0.06% -0.00% 0.55%
Q72B  -0.13% -0.12% -0.13% 0.34% -1.41% 8.22%
F3B 0.03% 0.00% 0.07% 0.07% -0.26% 0.36%
F10B 0.51% -0.48% 1.52% 0.20% -0.80% 1.27%
BioASQ L3B -0.10% 0.00% -0.20%  2.32% 0.68% 3.97%
L8B 1.33% -3.88% 6.52% 3.13% -1.48% 7.75%
L70B 7.39% -2.75% 17.63%  8.72% 0.49% 16.99%
Q72B 4.26% -5.25% 13.76% 6.51% 1.60% 11.27%

Table 4: Application #1 - No-RAG fallback. The improvement in Accuracy when using No-RAG fallback over the
original answers generated with InstructRAG prompt, and using Pre-Answering Prediction or Post-Answering NLI
to predict faithfulness. For each method, results are shown for (all): all questions, (relevant): only questions with
relevant retrieved passages, and (irrelevant): only questions with irrelevant retrieved passages.

A.3.2 Switch to a larger model

Table 5 extends the analysis of Section 6.2 across
all medium-sized LLMs and datasets. We evaluated
all methods with continuous decision functions,
which allow control over the switch rate. Accuracy
is reported at a fixed 20% switch rate, simulating
a scenario with a constrained budget for expensive
LLM calls. As shown, accuracy rankings at a 20%
switch rate align with F1 rankings from Section 5.2,
reinforcing trend consistency.

A.4 Method prompts

Below are the prompts to the Vanilla, Intrinsic Ab-
stention, and No Context methods.

system: You are a helpful assistant that answers
a question based on the context provided. Please
be as concise as possible, do not add any
additional information, and do not refer to the
context in anyway.

user: Read the following context carefully and
answer the question below.

Question:

<Question>

Context:
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<Passage 1>

<Passage 2>

<Passage n>

Intrinsic Abstention

system: You are a helpful assistant that answers
a question based on the context provided. Please
be as concise as possible, do not add any
additional information, and do not refer to the
context in anyway. If the answer does not exist
in the context, you should output the special
string __DONT_KNOW__ .

user: Read the following context carefully and
answer the question below only if the answer is
supported by the context.

Question:

<Question>

Context:

<Passage 1>

<Passage 2>

<Passage n>




Random

Pre-Ans

NLI Pre-Ans NLI

DualGen 'y illa  Vanilla Vanilla IntRAG InstRAG ~ ©/0B

Benchmark LLM
F3B  60.04% 5920% 60.84% 64.46% 63.66% 66.98% 69.54%
NO FIOB  65.90% 65.16% 67.18% 68.24% 68.02% 69.02% 69.54%
L3B  57.74% 5626% 57.36% 60.88% 62.78%  65.04% 69.54%
L8B  63.28% 6181% 62.86% 6530% 66.58% 67.92% 69.54%
F3B  63.96% 63.74% 64.62% 68.44% 71041% 72.98% 716.14%
NoMiRacL F1OB  7L16%  7043% 71.79% 73.61% 7592% 71.71% 76.14%
L3B  52.85% 49.24% 49.41% 53.10% 69.32%  71.35% 76.14%
L8B  6437% 64.55% 64.65% 67.56%  T2.29%  T4.48% 76.14%
F3B  56.68% 55.80% 56.54% 58.28% 61.00% 62.47% 67.17%
BioASQ FIOB  64.07% 63.16% 6437% 6420% 66.72%  66.49% 67.17%
L3B  3031% 27.44% 27.55% 29.02% 5456%  55.69% 67.17%
L8B  5838% 57.17% 58.17% 58.92%  59.98%  60.83% 67.17%

Table 5: Application #2 - switch to a larger model. Accuracy of different methods where the switch rate is fixed at
20%. The Random Vanilla method switches to a bigger LLM uniformly at random, and serves as a baseline.

system: You are a helpful assistant that answers

a question based on your knowledge. Please be

concise as possible.

user: <Question>

Below are the prompts of the InstructRAG and
CoT few-shot Hybrid methods. We note that each
dataset has its own set of example questions and
“rationales” for analyzing them. Below is the struc-
ture of the prompts.

InstructRAG

user: Your task is to analyze the provided
documents and answer the given question. Please
generate a brief explanation of how the contents
of these documents lead to your answer. If the
provided information is not helpful in answering
the question, you only need to respond based
on your own knowledge, without referring to
the documents. After your analysis, give the
final answer in a self-contained manner after a
"Response: " prefix.

Below are some of how to answer
the question:

examples

H#HHHH
Example 1

Question: <Example question 1>?

Answer: <Rationale 1>
H#HHH#
Example 2

Question: <Example question 2>?
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Answer: <Rationale 2>
#H##

Now it is your turn to analyze the following
documents and answer the given question.

Document 1: <Passage 1>

Document 2: <Passage 2>

Document 4: <Passage n>

Based on your knowledge and the provided
information, answer the question:
<Question>?

CoT few-shot Hybrid

user: Your task is to analyze the provided
documents and answer the given question. Please
generate a brief explanation of how the contents
of these documents lead to your answer. If the
provided information is not helpful in answering
the question, you need to respond __DONT_KNOW__.
After your analysis, give the final answer in
a self-contained manner after a "Response: "
prefix.

Below are some examples of how to answer

the question:

H#it#

Example 1

Question: <Example question 1>7?
with instruction to

Answer : <Rationale 1

abstain>



#Hit#

Example 2

Question: <Example question 2>?
with instruction to

Answer: <Rationale 1

abstain>
H#H#

Now it is your turn to analyze the following
documents and answer the given question.

Document 1: <Passage 1>

Document 2: <Passage 2>

Document 4: <Passage n>

Either answer the following question based on the
provided information, or reply __DONT_KNOW__:

<Question>?

Here is an example of a question and the
corresponding rationale for NQ:

Question: who won season 13 so you think you can
dance?

Rationale: After analyzing the provided
documents, I found that none of them directly
mention the winner of Season 13 of "So You
Think You Can Dance”. However, I can use my own
knowledge to answer the question.

According to various online sources, including
Wikipedia and other reputable dance websites,
the winner of Season 13 of "So You Think You Can
Dance” is indeed Leon "Kida" Burns.

To deduce this answer, I used my knowledge of
the show’s history and its format. The show
typically features a new season every year, and
each season has a different winner. By analyzing
the provided documents, I noticed that they only
mention winners from previous seasons (Seasons
8, 1, and no mention of Season 13). This led me
to conclude that the documents are not relevant
to the question.

Therefore, I relied on my own knowledge
to answer the question, which is that Leon
"Kida" Burns won Season 13 of "So You Think You
Can Dance”.

Response: Leon "Kida"” Burns won Season 13 of
"So You Think You Can Dance”.

Rationale with instruction to abstain: After
analyzing the provided documents, I found that
none of them directly mention the winner of
Season 13 of "So You Think You Can Dance”.
However, I can use my own knowledge to answer
the question.

According to various online sources, including
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Wikipedia and other reputable dance websites,
the winner of Season 13 of "So You Think You Can
Dance"” is indeed Leon "Kida" Burns.

To deduce this answer, I used my knowledge of
the show’s history and its format. The show
typically features a new season every year, and
each season has a different winner. By analyzing
the provided documents, I noticed that they only
mention winners from previous seasons (Seasons
8, 1, and no mention of Season 13). This led me
to conclude that the documents are not relevant
to the question.

Response: __DONT_KNOW__

A.5 Full F1 and PR-AUC tables

Table 6 shows the best achievable F1 score,
whereas Table 7 shows the precision-recall AUC,
for every AwF method, benchmark, and LLM.

A.6 Graphic description of AWF methods

Figures 5 and 6 present the AwF precision-recall
curves and QPP precision-recall curves of all AwF
methods, on all LLMs and benchmarks.



Trivial Trivial Pre-Ans Pre-Ans NLI NLI

Intrinsic e COT IStRAG ~ Veanilla  InstRAG ~ Vanilla  InstRAG ~ DualGen
Model Benchmark
NQ 55414 59416 63114 64114 59415 64114 624113 66+1.4 59+1.6
F3B NoMIRACL 59422 64418 67+1.7 70417 64418 T04+1.7 68+1.9 Tli16 64418
BioASQ 41418 43419 48420 49422 43421 49422 46125  5lio.0 43421
NQ 65414 66113 68114 67114 67+15 69+1.4 68+1.4 69%1.4 66+1.3
F10B NoMIRACL ~ 68+t1.8 7ltie 75t1.7  T75t15 73+16 T7t15 Tdt1s  TTti17 Tlt16
BioASQ 48423 50420 54420 52418 51423 983419 52423 95342.4 51422
NQ 54416 55+1.5 6lii1s 62413 56+1.5 62113 59+1.6 64+1.5 55+1.5
L3B NoMIRACL ~ 23415 40418 62419 65419 40418  65%1.9 46122 67420 40417
BioASQ 09412 14417 39426 40419 14418 4l41s 18424 43424 15416
NQ 62116 62113 66116 65115 63114 66115 65414 68113 62113
L8B NoMIRACL 57419 63+1.9 724116 Tli1.9 64120 Tli1s 67+2.0 73+1.8 63+1.9
BioASQ 43421 4612.0 5042.4 46417 47421 47419 4942.0 49421 4642.0
NQ 73+1.3 69+1.2 70113 68115 Tlt13 Tliis 70+1.3  70+1.2 69+1.2
L70B NoMIRACL ~ 76+1.9 7216 77+1.6 76415 76117  80t1.5 74116  T8t1.7 72116
BioASQ 5742.0 53421 57419  5lion 58422 56421 54123 53126 53+2.1
NQ 73+1.4 T0412 T4di13  Tliia 70+1.4 Tli1s Tlt1.4 73115 70+1.3
Q72B NoMIRACL  80+1.6 76+1.6 8li14 77415 76+1.8  T8+1.7 T7+1.5 80+1.6 76+1.6
BioASQ 58422 54419 58420  5lioo 54421 Slioo 55423 53422 5442.0

Table 6: Maximum achievable AwF-F1 score, normalized to [0, 100], of each method, benchmark, and LLM, with
95% bootstrap confidence intervals in subscripts.

Intrinsic Trivial CoT Trivial Pre-Ans Pre-Ans NLI NLI Dual Gen
- Vanilla InstRAG Vanilla InstRAG Vanilla InstRAG
Model Benchmark
NQ 3l1+1.6 35+1.8 40118  4liis 43424  4T42n 50+1.9 56422 37+2.4
F3B NoMIRACL ~ 35426 4li23 46123 491023 48428  5Tio7 59426 65124 AT428
BioASQ 19417 21417 26421 27421 25423 30427 30+3.0 36133 24126
NQ 42418 44417  4T420 46119 54424 554202 58+1.9 59423 47420
F10B NoMIRACL ~ 46424 52123 56426 58422 64127 70426 694124 Tdiao 59426
BioASQ 24424 28421 3lia3 30420 34430 35428 37435 39435 33+3.5
NQ 29417 3li17 38118 39+1.6 38421 46119 4612.0 54t1.s 3442.0
L3B NoMIRACL ~ 0540.7 16115 39+t2.4 42425 19423 49429 32126 62424 20422
BioASQ 00403 0240.6 15422 184316 0240.8 21424 06115 28428 03+0.8
NQ 38+2.0 39+1.7 44121 43120 46422  BHlioo 53+1.9  98t1.s 42492
L38B NoMIRACL ~ 3342.2  4lt24 53424 5lio7 48128  59ta2.7 57426 69423 464+2.6
BioASQ 20419 24419 26424 24417 28428 294024 34134 33429 2742.8
NQ 53+2.0 48117 49118 47100 61120 61ltoa 60121 61ti1.9 52424
L70B  NoMIRACL 58429 53423 60126 59424 65+2.8 73255 68126 TTi20  59+2.6
BioASQ 35423 3lyoo 34422 304202 41429 38429 4143.0 40436 37+3.4
NQ 54420 50+1.8 H5+1.9 Blioo 56+2.2 58121 61120 64423 54421
Q72B NoMIRACL ~ 654t2.5 58124 67123 6lizs Tli26 73126 72123 T8i2.4 6312.7
BioASQ 35428 324202 35425 30424 39429  3513.0 42136 40433 38+3.1

Table 7: The AwF-Precision-AwF-Recall AUC, normalized to [0, 100], of each method, benchmark, and LLM,
with 95% bootstrap confidence intervals in subscripts. The AUC of methods producing a hard label is defined as the
product of the precision and the recall.
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Figure 5: AwF-Precision and AwF-Recall of AWF methods over different benchmark using different LLMs.
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(r) BioASQ using Q72B
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Figure 6: QPP-Precision and QPP-Recall of AWF methods over different benchmark using different LLMs.
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