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Abstract

We present a novel human-aware epistemic planning frame-
work designed for collaborative human-robot interactions,
specially tailored for situations where the agents’ shared ex-
ecution experiences can be interrupted by the uncontrollable
nature of humans. Our objective is to generate a robot pol-
icy that accounts for such uncontrollable behaviors, thus en-
abling the anticipation of potential progress achieved by the
robot when the experience is not shared, e.g., when humans
are briefly absent from the shared environment to complete a
subtask. But this anticipation is considered from the perspec-
tive of humans who keep an estimated robot’s model. As a
first step to address it, we propose a general planning frame-
work and build a solver based on AND/OR search which in-
tegrates knowledge reasoning; this includes assessing situa-
tions by perspective taking. Our approach dynamically mod-
els and manages the expansion or contraction of potential
worlds while tracking whether or not agents share the task ex-
ecution experiences. This helps the planner (or the robot) to
prepare itself with a set of worlds that humans would consider
possible. The robot assesses the situation from the human
perspective and removes the worlds that it has reason to think
are impossible. However, there might still be an impossible
world that is indistinguishable from the real world. In differ-
ent situations, thanks to our planning framework, the robot’s
policy built offline can determine an appropriate course of ac-
tion, such as answering human queries, explicitly communi-
cating some fact without being annoying, or taking appropri-
ate action in the presence of the human to help them narrow
down the possibilities further, facilitating collaboration. Our
preliminary experiments show that the framework is effective
for behavior planning in different situations. We discuss the
practical issues in different problem settings.

Introduction
The increasing number of robot-assisted applications has
led to a focus on human-robot collaboration (HRC) re-
search (Baratta et al. 2023; Semeraro, Griffiths, and Can-
gelosi 2023). Collaborative robots are beneficial in real-
world scenarios like construction engineering (Liang et al.
2021), workshops (Coupeté, Moutarde, and Manitsaris
2015), and nursing care (Nieto Agraz et al. 2022).

Planning and decision-making are crucial for successful
collaboration and task completion in multi-agent scenarios.
However, uncontrollable human behavior in Human-Robot
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Figure 1: Our planning framework is endowed with the abil-
ity to make the difference between H&R shared and in-
dividual execution experiences in the planned activities. It
can anticipate potential belief divergence between H&R
and also estimate the updated beliefs of H when they meet
again (situation assessment) based on a distinction between
observable and non-observable facts. This will be used to
plan communicative actions or adapt the plan to ensure the
shared experience of some actions.

Collaboration (HRC) can disrupt shared execution experi-
ences. For example, when humans temporarily leave the
shared environment, it poses unique challenges for collabo-
rative robots, potentially leading to false beliefs or impacting
overall task performance. So, automated planning is essen-
tial to overcome these challenges and maintain efficiency.

Recent efforts such as Dynamic Epistemic Logic (DEL)
based framework introduced in (Bolander, Dissing, and Her-
rmann 2021), propose an epistemic planning approach for
human-robot collaboration. In addition, efforts have been
made to tackle challenges related to human absence from the
environment. For instance, addressing first- and higher-order
false beliefs in (Dissing and Bolander 2020), drawing inspi-
ration from the well-known Sally and Ann test (Wimmer and
Perner 1983). In the context of planning (Favier, Shekhar,
and Alami 2023b) and shared plan execution (Devin and
Alami 2016), approaches have been proposed, with the latter
focusing on a reactive strategy to manage the unpredictabil-
ity of human absence. Favier, Shekhar, and Alami (2023)
propose an offline planning approach that considers pre-
dictable human absence. When the humans are back, they
still hold the outdated (false) beliefs that they possessed ear-
lier. Situation assessment allows them to update the progress
made by the robot if any, however, those false beliefs remain
that cannot be corrected by situation assessment. They sug-



gested methods to tackle collaboration under false beliefs.
We propose a novel human-aware epistemic planning

framework. It enables the robot to estimate, anticipate, and
adapt to the scenarios in which human and robot partners
have disrupted shared execution experiences. However, it
considers the human’s perspective and estimation regarding
the potential progress achieved when the exact progress is
not experienced directly by them. Figure 1 provides a high-
level illustration of what happens when agents share execu-
tion experience and when they do not. This proactive strat-
egy ensures that the robot interacts in a way that corresponds
with the human’s expected perceptions, hence improving the
effectiveness of task performance.

To systematically track instances of shared execution ex-
periences, we present our concepts abstractly and symbol-
ically. For instance, we adapt the notion of “Places” to
denote locations within the environment. When an action
occurs at a place, only agents present there share this ex-
perience, either by observing the execution or as the ac-
tor (Shekhar et al. 2023; Favier, Shekhar, and Alami 2023b).

As the first step, we build an AND/OR search-based of-
fline planner that facilitates Theory of Mind (ToM) by inte-
grating knowledge reasoning and incorporating perspective-
taking to assess situations. It dynamically manages the evo-
lution or contraction of estimated possible worlds from the
human’s point of view. It helps the planner to prepare itself
with a set of worlds that humans would consider possible.

The robot takes the human’s perspective for situation as-
sessment, thus discarding estimated worlds deemed impos-
sible. To allow appropriate situation assessment, we de-
fine the concept of observability of state property, extend-
ing (Shekhar et al. 2023). An appropriate course of action
based on the situation at hand is planned. The policy built of-
fline enables the robot to take proactive steps, such as wait-
ing for the human to inquire about a fact, communicating
relevant information without being annoying (e.g., not ver-
balizing a fact already known to them), or executing suit-
able actions to allow the human to narrow down possibilities
upon their return or in presence.

The paper is structured as follows. A use-case scenario
is presented next, followed by the background information,
covering tools necessary for our work. Next, we delve into
our proposed planning framework, followed by the section
describing the AND/OR search-based planning algorithm.
The section next to that discusses related work in the field.
With our preliminary experiments in the section followed,
we show the effectiveness of the proposed framework for
behavior planning for a collaborative robot in diverse sce-
narios. We conclude by summarizing our work in the end.

The Cube Organization Case Study
Take the case illustrated in Figure 2, in which the job of
arranging cubes in boxes is shared by a human and a robot.

Assume that only H is capable of moving around and
can exhibit unpredictable behavior (nondeterminism), such
as moving to the other table (ot) to retrieve cubes, while R
may continue to act in the environment. From the H’s per-
spective, R may move some or all of the cubes from the
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Figure 2: The cube organization scenario involves three
cubes: cr (red), cy (yellow), and cw (white). cr and cy are
placed on mt (main table), while cw is on ot (other table).
There are two boxes, box1 and box2, placed on mt, which
can be either transparent or opaque. The shared objective is
to organize the cubes in such a way that cubes from one ta-
ble are placed in one box. The choice of which box is flexible
as long as each table’s cubes end up in separate boxes.

main table (mt) and place them into one of the boxes, or it
may choose to take no action at all. Upon returning to the
main table mt, H may discover that some, none, or all of the
cubes originally on mt are missing, indicating that they have
been placed in one of the boxes.

If R places some cubes from mt into one of the boxes,
H will only learn about this decision upon encountering the
transparent box. But when opaque, R has several options: it
can communicate, wait for H to inquire, or select one of the
remaining cubes from mt and place it in the correct box in
the presence of H, thus implicitly communicating its choice.

We explore such collaborative scenarios and plan from the
robot’s point of view by taking into account its estimated
model of the environment and its human partner. Similarly,
the human collaborator has an approximation of the robot’s
model, enabling them to anticipate the robot’s action. We
provide more details on these models and our assumptions
about their accuracy and falsity. These models are contained
within the robot and are used in planning such that human
behavior can only be estimated and emulated.

Background
We outline the necessary tools for our framework, start-
ing with the basic concepts of Dynamic Epistemic Logic
(DEL) (Bolander, Dissing, and Herrmann 2021; Engesser
et al. 2017). Specifically, we cover epistemic states and ac-
tions, explaining how they apply to a state and the process
of transitioning to the next state. Additionally, we clarify the
conditions under which a formula holds in a given state. To
address issues such as communication between H and R, our
development adapts these concepts.
We then describe human-aware task planning as presented
in (Buisan et al. 2022; Favier, Shekhar, and Alami 2023b).

Dynamic Epistemic Logic
We will start with standard definitions from the DEL litera-
ture 1, followed by examples to explain different concepts.

1The description is drawn from the DEL literature (Bolander
and Andersen 2011; Bolander, Dissing, and Herrmann 2021), with
a few adjustments to suit our specific requirements. We also en-
sure technical simplicity by allowing accessibility of all worlds and



We define epistemic languages, epistemic states, and epis-
temic actions. All of these are defined relative to a given fi-
nite set of agent names (or simply agents, e.g., H - human
and R - robot) A and a given finite set of atomic proposi-
tions P. The epistemic language LK is:

φ ::= ⊤ | ⊥ | p | ¬φ | φ ∧ φ |Kiφ

As usual,Kiφ is read as agent i knows φ. We can generalize
it to Cφ which represents common knowledge.

We evaluate a formula in an epistemic model, M =
⟨W, (∼i)i∈A, V ⟩. Here,W is non-empty finite set of worlds,
∼i ⊆ W ×W , called the indistinguishability relation w.r.t.
agent i, and V the valuation function that maps W to 2P .
Definition 1. An (epistemic) state is s = ⟨M,Wd⟩, where
M is the epistemic model as described earlier and Wd is
the set of designated worlds. Here, Wd ⊆ W and for each
world w ∈ W and wd ∈ Wd, we require that (wd, w) ∈
(∪i∈ARi)

∗. Note that (concerning our current context), a
state sa can be represented as ⟨M, wd⟩ such that Wd =
{wd} is known as a global epistemic state.

The truth of epistemic formulas is defined as follows:

M, w |= p iff p ∈ V (w) for p ∈ P

M, w |= ¬φ iff M, w ̸|= φ

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

M, w |= Kiφ iff M, v |= φ for all v such that w ∼i v

Also, ⟨M,Wd⟩ |= φ iff ⟨M, wd⟩ |= φ for all wd ∈Wd.
We represent epistemic states as graphs, where nodes rep-

resent worlds and edges represent indistinguishability rela-
tions. Each world is labeled with the propositions that hold
within it. Typically, we omit world names and edges that are
implied by reflexivity or transitivity. Designated worlds are
denoted by a circled marker.
Definition 2. An event model E is a tuple ⟨E, (∼i

)i∈A, pre, post⟩, where E is a non-empty finite set of events,
∼i⊆ E × E shows an equivalence relation, pre : E → LK
defines precondition of every event, and post : E → LK
defines the effect, defining the conjunction of literals p ∈ P .
An epistemic action a = ⟨E , Ed⟩, where E is the event
model and Ed ⊆ E is a non-empty set of designated events.
A state allows an action to be applied only if there is a desig-
nated event with a satisfied precondition for each designated
world in the state. Similar to a state, an epistemic action can
also be depicted, where each node represents an event with
precondition and postcondition labels, and edges depict in-
distinguishability relations.
Definition 3. Given an epistemic state s and action a the
product update s ⊗ a defines a new epistemic state s′ =
⟨M′,W ′

d⟩, such that,
• W ′ = {(w, e) ∈W × E | M, w |= pre(e)}
• ∼′

i= {((w, e), (w′, e′)) ∈W ′ ×W ′ | w ∼i w
′, e ∼i e

′}
• V ′((w, e)) = {p ∈ P | post(e) |= p or (M, w |=
p and post(e) ̸|= p)}

• W ′
d = {(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}

events from designated ones in epistemic states and actions.

To exemplify these concepts, we will explore examples
grounded in our use case scenario.

Example 1. Consider our use case with three cubes. (Note
that we use the same illustration to convey our points on
DEL-related concepts; later on, we will see that planning
for such scenarios is significantly more involved when we
introduce false beliefs.) Suppose the status of the task is in
a situation si shown in Figure 3, in which cr is inside box1
and both the boxes are opaque, and the robot holding cy and
the human comes back with cw, and assess the situation. We
assume that the human can see the robot holding cy .

w1: inside(cr, box2) w2: inside(cr, box1)
H

si :

Figure 3: It represents the epistemic state si = ⟨M, {w2}⟩.
Worlds and accessibility relations are represented by nodes
and edges, respectively, such that a designated world
is shown by a double circle. This depicts that si |=
KRinside(cr, box1), but concerning the human partner,
si |= ¬KHinside(cr, box1) ∧ ¬KHinside(cr, box2).

Example 2. The next state si+1 = si ⊗ ai while the agents
are aware of the action the robot will execute in si is ai
which is placing cy in the correct box. We describe how si+1

looks like when the human is co-present or when not with the
robot during execution (Bolander 2014):

w1: inside(cr, box2)
inside(cy , box2)

w2: inside(cr box1)
inside(cy , box1)

H: f
si+1 :

Figure 4: The next state si+1, resulting from the robot plac-
ing cy in box1 (the correct box). The indistinguishability
relation is only for humans when the formula f that is
not(copresent(H, R)) holds. The robot always knows that
the designated world is w2. For simplicity, common facts for
both the worlds like opaque(box1) and opaque(box2) are not
shown.

We now describe perspective shift or perspective taking.
For a state s = ⟨M,Wd⟩ and agent j, it represents sj =
⟨M, {v | (w, v) ∈ ∼j and w ∈ Wd}⟩. For example,
sHi = ⟨M, {w1, w2}⟩, represents how the epistemic state si
looks from the human’s perspective.

Human-Aware Task Planning
The synopsis of the human-aware task planning (HATP)
paradigm is discussed here. HATP/EHDA (Buisan et al.
2022) comprises a dual Hierarchical Task Network
(HTN (Ghallab, Nau, and Traverso 2004)) based task spec-
ification model. It is a recently proposed planner that
estimates and emulates human decisions and actions for
HRC, formalized in (Favier, Shekhar, and Alami 2023a).
The language that follows is easier to understand by adher-
ing to the latter.



Definition 4. (Human-Aware Task Planning Problem.)
The HATP problem, which extends HTN specifications, is a
2-tuple Prh = (⟨sr0, tnr,0, Dr⟩, ⟨sh0 , tnh,0, Dh⟩) where sr0 is
the initial belief state of the robot, while sh0 is the belief state
human begins with. Here, tnr,0 is the initial task network
that the robot has to solve, similarly tnh,0 — for the human.
Dr (Dh) represents the domain available for the robot (hu-
man) containing its operators and methods.

Each agent has their action model, task network (agenda),
plan, and triggers, denoted as Prh = ⟨MR,MH⟩ (Buisan
2021). (Other components of Prh are ignored for brevity
in Definition 4.) The robot with an estimated human model
MH , also estimates what it believes sr0. We consider this es-
timation the ground truth in the reference of the planner (or,
in the context of DEL, the robot’s knowledge) versus what
the robot estimates to be believed by the human sh0 by per-
spective taking. The latter may include facts that are not true
from the robot’s perspective (called false beliefs), which can
be corrected, setting this framework apart from Fully Ob-
servable Non-Deterministic (FOND) planning2, in principle.
This distinction will become clearer as we progress.

The framework uses agents’ action models and beliefs to
decompose agents’ task networks into primitive tasks (ac-
tions). The planning scheme assumes that a single agent
decides to act at a time and which action it performs, and
uses specific actions to synchronize the agent’s plans. First,
it builds the whole search space by considering all possible,
feasible decompositions. Then, considering plan evaluation
with action and social costs, it can adapt off-the-shelf search
algorithms to determine the best robot policy.
Definition 5. (Implicitly Coordinated Joint Solution.) The
solution for Prh, is represented as a tree or a graph, i.e.
G = (V,E). Each vertex (v ∈ V ) represents the robot’s
belief state, starting from the initial belief. Each edge (e ∈
E) represents a primitive task that is either a robot’s action
or, or a human’s estimated and emulated action oh. G gets
branched on the possible choices (oh1 , oh2 , ..., ohm).

Its branch is a sequence of primitive actions, say π =
(or1, o

h
2 , o

r
3, ..., o

h
k−1, o

r
k), that must satisfy all the solution

conditions. Here, each ohi represents a decision the human
could make, frequently from a range of options. This is the
factor that determines the robot’s execution strategy.

A planner extending HATP/EHDA has been proposed re-
cently. This enhancement enabled the planner to effectively
anticipate humans’ incorrect beliefs and ensure a smooth
collaboration (Favier, Shekhar, and Alami 2023b). Implic-
itly coordinated plans that incorporate both robot and human
actions can be generated by the planner.

To accomplish that, the authors modeled situation assess-
ment processes based on co-presence within the HATP/E-
HDA’s planning workflow, thus providing a symbolic ap-
proach for specifying these abilities. It enabled the planner

2It extends classical planning by addressing events beyond con-
trol, where actions lead to a set of potential outcomes (Daniele,
Traverso, and Vardi 1999; Muise, Belle, and McIlraith 2014).
While actions in FOND planning are non-deterministic, their out-
comes become observable once executed, allowing agents to adapt
their strategies based on observed results.

to be more pertinent to capture what agents can observe and
infer in their surroundings. Due to this, the planning process
assesses the detrimental effects of humans’ incorrect beliefs
on the task at hand. As a result, the robot’s plan can be to
communicate minimally and proactively. The current limita-
tion of this approach is that it systematically communicates
all those facts that may have a bad impact, and there is no
way humans can initiate the communication. Moreover, if
this false belief is the result of an unobserved robot action,
the robot’s plan might be to delay this action until the hu-
man observes it, preventing the incorrect belief from being
formed. The planner was shown to be effective.

The HAETP Planning Framework
We consider that the human maintains an estimated model
for the robot MR

H , which can be incorrect compared to MR.
We observe that while the majority of the model’s compo-
nents remain static during the planning phase, the task net-
work tnφ and agent beliefs Bel(φ) are dynamic, with φ
denoting an agent (or agent perspective). Moreover, in line
with the described previous research, we consider that only
Bel(H) and Bel(RH) can contain false beliefs, while other
components, e.g., agents’ action models and task networks,
are accurately estimated.

Our framework considers all three models MR, MH ,
and MR

H , is called human aware epistemic task planning
(HAETP). MR is used to plan the robot’s actions, while
MH to estimate and emulate humans’ decisions and actions,
while MR

H , to predict the possible actions the robot could do
from human’s perspective in their presence or absence.

Planning Workflow
Roughly, the new planning system works as follows: We
focus only on the dynamic parts of what follows. An
epistemic state, s0 is provided as an input to our sys-
tem. Each world wj in an epistemic state si represents
⟨(Bel(R), tnr), (Bel(H), tnh), (Bel(RH), tnrh)⟩. It also
includes the only designated world wd always known to the
robot. We note that these worlds are indistinguishable from
the human point of view, but human knows that the robot can
distinguish them and that the robot can identify wd. Addi-
tionally, humans also believe that, ifwj is the real designated
world, thenBel(RH)ij , is the reality as they do not have ac-
cess to Bel(R)ij . In this paper, we consider that Bel(H) is
equal to Bel(RH), but they can be different from Bel(R),
hence can contain false beliefs.

The robot, a particular epistemic state si, and possible
worlds wj are considered. We compute the set of all pos-
sible primitive actions, computed by all allowed decomposi-
tions, based on (Bel(R), tnr)ij , and whether it is different
than the set of primitive actions based on the allowed de-
compositions w.r.t. (Bel(RH), tnrh)ij . The goal is to align
these decompositions in a way that the human can correctly
estimate the progress the robot may achieve, hence utilizing
the human’s capacity for anticipating. If there is a differ-
ence, we identify the relevant facts in Belij(R) that need
to be corrected in Belij(RH), to make the decompositions
similar. To achieve that, we adapt to what is being followed



in (Favier, Shekhar, and Alami 2023b). That is, one can
plan minimal communication, possible to schedule ahead
of time during offline planning when communication is al-
lowed. Eventually, communication will also fix Belij(H),
accordingly. However, Belij(H) and Belij(RH) can still
have non-relevant false beliefs compared to the ground truth
(Belij(R)) with respect to the world wj .

Next, the planner computes the robot’s next real action
based on its task network tnidR in the designated world wd

of si, we call it the designated event. It also computes other
non-designated events based on respective decompositions
in each world wj of si. An event and a possible real action
including noops, are the same and are used interchangeably.
In other words, the planner computes a set of all possible
decompositions based on what humans can anticipate, that
means by taking into account (Bel(RH), tnrh)ij . These are
all the anticipated events that can take place due to the robot
is acting and the execution is not shared. Next, all these de-
compositions (i.e., the set of the first primitive action in each
refinement) together form an epistemic action, ai.

Executing an Epistemic Action in a State: Following
the formula provided for the cross-product operation (⊗),
it computes si+1 = si ⊗ ai. We model within the planning
algorithm (Algorithm 1, Line 8) as, if human is co-present
– an idea which is adopted from the literature and will be
described later, then they can distinguish between the desig-
nated action performed by the robot with the other possible
actions, otherwise humans consider each as the robot’s next
possible action, and accordingly the indistinguishability re-
lations are managed in si+1. Note that, within each world
of the new epistemic state, individual beliefs, i.e., Bel(R),
Bel(H), and Bel(RH) are updated corresponding to the
possible robot action (either real or anticipated) that is a part
of epistemic action ai. Also, the task networks concerning
MR and MR

H are updated in each world, accordingly.
When humans are co-present, they assess the execution of

robot actions through situation assessment process, which
further narrows down the possibilities. However, this nar-
rowing effect can also be seen as a direct consequence of the
cross-product operation (⊗), where co-presence is managed
at the representation level (Bolander 2014).

Now, we similarly focus on the human partner. They act
only if they believe that their next real ontic action, corre-
sponding to a possible decomposition, is applicable in all
possible worlds. That means, for each wj in si+1, applica-
bility is examined in (Bel(H), tnh)i+1,j . At this stage, there
are two issues: humans can act based on a false belief (if
consistent through all the worlds), or a true belief w.r.t. the
ground truth in every wj . We handle the false belief scenario
the way it is addressed in the past work, that is, by finding
out relevant belief divergence and handling it via communi-
cation and/or delay (Favier, Shekhar, and Alami 2023b).

However, we also know that facts that they are uncertain
about, which are true in some worlds and not in others, are
due to actions performed by the robot in their absence. If
such a fact is a part of the precondition for task refinements,
then humans can initiate communication, or the robot can
inform them. And, if co-present, the robot can act in reality

to implicitly share this fact.
A joint solution that is implicitly coordinated in relation

to the task is the result of this framework (Def. 5).
The discussion in this section highlights the focal

point: for each world in an epistemic state, denoted by
⟨(Bel(R), tnr), (Bel(H), tnh), (Bel(RH), tnrh)⟩, our at-
tention in what follows is directed towards the scenario
where Bel(R) = Bel(H) = Bel(RH). Addressing the
case of Bel(R) ̸= Bel(H) = Bel(RH) can be achieved
through technical adjustments of established methodologies
from prior research. However, if all three beliefs are distinct,
it would present a non-trivial challenge beyond the scope of
this paper and we leave it for future work.

AND/OR Search based HAETP Planner
Terminologies Used
We are interested in domains in which some world’s proper-
ties can be observed directly by being present in the relevant
part of the world. For example, if box1 is transparent, H can
observe inside(cr, box1) by visiting mt and is not needed
to be co-present with R when it places cr in box1. How-
ever, if box1 is opaque, humans can assess the red cube be-
ing placed in box1 by the robot and determine that inside(cr,
box1) holds. If human misses this action execution, they may
need another means to know that inside(cr, box1) holds.

In the same way, we use the definition of the observation
process from (Shekhar et al. 2023). We say that assessing
the status of an environmental feature depends on a broader
context to determine whether it can be observed, or can only
be evaluated by attending the action execution changing it.
Knowledge rules were used to address this aspect. For ex-
ample, an agent can view the current status of the variable
inside(cr, box1) as true if they meet the requirements of a
rule’s antecedent formula, such as being at the main table,
box not being opaque, and cr being inside box1. If the an-
tecedent includes a dynamic variable that holds in the first
scenario but not the second, then certain rules may apply in
one and not the other.

Definition 6. The situational assessment (SA) process con-
siders the observation process described above and an epis-
temic state si, producing an updated epistemic state s′i. This
process iterates over each world wj in si, removing it if it
can be distinguished from wd by the human.

Consider the following scenario: let w1 =
⟨(...), ({inside(cr, box1)}, ...), (...)⟩ and w2 =
⟨(...), ({inside(cr, box2)}, ...), (...)⟩, where w1 and
w2 represent distinct worlds within an epistemic state
si, with w1 as the designated world. When boxes are
transparent and the human is co-located with the main table,
the updated epistemic state s′i contains only w1.

Our Planning Algorithm
Algorithm 1 takes the HAETP problem as input and pro-
duces an output as either a failure or a joint solution with
the optimal-worst case plan. We propose that primitive agent
actions, including auxiliary actions, e.g., NOOP, are instan-
taneous and of equal cost at the moment, as in classical



Algorithm 1: AND/OR Planner using Breadth-First Search.
Two key subroutines are Situation Assessment and Expand.
1: Input: A HAETP task
2: Output: A joint solution or failure
3: root epi state← ⟨M, wd⟩ ▷ (focusing

just on the essential parts) each world in w ∈ W contains
(⟨sr0, tnr,0, Dr⟩, ⟨sh0 , tnh,0, Dh⟩, ⟨srh0 , tnrh,0, Drh⟩)

4: queue.enqueue(root epi state)
5: while queue is not empty do
6: curr node′ ← queue.dequeue()
7: curr node← Situation Assessment(curr node′)
8: successors← Expand(curr node)
9: if successors ̸= ∅ then

10: for successor in successors do
11: queue.enqueue(successor)
12: end for
13: else
14: eval(curr node) ▷ assign it DONE or DEAD
15: propagate revised status(curr node)
16: end if
17: if root solved(root epi state) then
18: return extract joint solution()
19: end if
20: end while
21: return failure

planning. Our algorithm is an implementation of the clas-
sic AND/OR search algorithm using rooted graphs. Follow-
ing the search and assuming that the root node is DONE,
the joint solution policy is extracted, extract joint solution().
This process is delayed until the end (Line 18).

We consider the root node (root epi state) and the sub-
sequent actor, either R or H, to begin the plan exploration
(Line 3). Within the loop, in Line 6, we select a node/s-
tate from the queue, and next call the Situation Assess-
ment( ) subroutine. What we present in Line 7 is a lazy
approach for doing situation assessment. At this stage, the
planner already knows whether agents were co-present and
whether the designated action could be assessed by the hu-
man. This helps the planner ignore those worlds that can
be distinguished from the designated world (Definition 6).
The situation where a human moves to place where the
robot is present and then emerges as co-present is especially
well-suited for it. Another significant subroutine, Expand( ),
which we previously discussed in the HAETP framework’s
planning workflow, is called in Line 8. The children cre-
ated after the robot agent expands this popped node are AND
nodes, OR nodes, and vice versa for the case where the hu-
man agent expands this node.

If there are no successors for the current node, it in-
dicates either a goal node or a dead end. In Line 14,
we evaluate the current node, si, where si roughly cap-
tures {⟨(Bel(R), tnr), (Bel(H), tnh), (Bel(RH), tnrh)⟩}.
If both tnr and tnh are fully decomposed in the designated
world of si, we execute an auxiliary action with a precondi-
tion that the task network is solved. If both agents can exe-
cute this action, it signifies that both the human and the robot
are aware that the shared task has been achieved. (Line 15)
We propagate the status of this node to its immediate par-

ent, who then propagates its status to its parent depending
on whether it is an AND node or an OR node.

(Lines 17 & 18) We verify whether the root node is
DONE. If the task is achieved, we extract the joint solution.

The Post-processing Step Once we have an executable
AND/OR policy, we post-process it depending on whether
the agents are co-present. When agents are co-present, we
follow a turn-taking approach, but when they are not co-
present, we parallelize their actions. This involves executing
the AND/OR joint policy, and identifying where agents sep-
arate and reunite. We then group all the actions in between
to form pairs of human and robot actions. It is important to
note that in the original policy, one agent always waits while
the other acts. This post-processing step ensures that actions
performed in parallel when agents are apart, do not interact
and can occur simultaneously and independently.

Related Work
Human Robot Collaboration (HRC): Automated plan-
ning the robot’s behavior while also considering the ex-
istence of a human partner, known as human-aware plan-
ning and decision-making (Cirillo, Karlsson, and Saffiotti
2009; Cramer, Kellens, and Demeester 2021; Unhelkar, Li,
and Shah 2020; Lallement, de Silva, and Alami 2018),
parallel (online) planning and dispatching plans (Bezrucav
and Corves 2020), and negotiating role allocation (Ron-
cone, Mangin, and Scassellati 2017). Our work aligns with
this research focus, dealing with human-aware planning
and decision-making in collaborative human-robot scenar-
ios. However, we are not aware of existing approaches that
explicitly consider the human’s anticipation abilities when
direct experience is not shared in the environment during
collaboration on a shared task.

Models and Planning Approaches: Many planning mod-
els are applied in the context of HRC planning, includ-
ing HTNs (Lallement, de Silva, and Alami 2018; Roncone,
Mangin, and Scassellati 2017), POMDPs (Partially Observ-
able MDPs) (Unhelkar, Li, and Shah 2019; Roncone, Man-
gin, and Scassellati 2017; Unhelkar, Li, and Shah 2020;
Görür et al. 2017), AND/OR graphs (Darvish et al. 2021),
etc. HTNs use both abstract and non-abstract tasks to form
a hierarchical network, while AND/OR graphs cover the
causal links among subtasks (Gombolay et al. 2016), and
depth-first search is used for planning.

Theory of Mind in HRC: Several variants of ToM are
explored in executing shared global plans. However, the
main focus lies on perspective-taking, where a robot reasons
about what humans can perceive in the environment. This
involves constructing a world from the human’s perspective
and managing the agents’ beliefs accordingly while execut-
ing (Berlin et al. 2006). The framework proposed in (Devin
and Alami 2016) enables the robot to estimate the mental
state of the human at execution time, encompassing their
beliefs, actions, goals, and plans. This framework facilitates
the execution of shared plans in an object manipulation con-
text and illustrates how a robot can adapt to human deci-
sions and actions, and use communication when necessary.



This work serves as a loose inspiration for integrating The-
ory of Mind (ToM) into the decision-making process of so-
cial robots, as shown in (Görür et al. 2017), to better adapt
to stochastic intentions, behaviors, and expectations over a
series of repeated interactions.

Epistemic Planning: The DEL-based epistemic planning
framework, as demonstrated in (Bolander, Dissing, and Her-
rmann 2021), holds promise for capturing key elements
of ToM in autonomous robots. This framework lays the
groundwork for implicit coordination through perspective
shifts in human-robot collaboration. By adopting this plan-
ning framework and focusing on the robot’s perspective, it
could serve as a basis for addressing the core problem we
aim to solve with the shared mental model (Nikolaidis and
Shah 2012), albeit without considering false beliefs.

Explainable AI Planning (XAIP): In general, XAIP
deals with human-aware systems explaining some aspect of
their behavior during plan generation or execution (Kamb-
hampati et al. 2022). Humans can have a disparate robot
model (MH

R for MR). The model reconciliation approach
(proposed in (Sreedharan, Chakraborti, and Kambhampati
2021)) avoids soliloquies, considering the exact differences
between the two models to generate needed explanations
only. They proposed a planning approach to compute the op-
timal explanations. We adopt a similar approach, thus com-
puting relevant divergences to communicate only what is
necessary to align the decompositions.

Empirical Evaluation
We implemented our planning system using Algorithm 1 in
Python. It is based on the latest version of HATP/EHDA
code (Buisan et al. 2022).

As far as we are aware, there are no baseline planners
to compare. But, when it makes sense, we do compare our
planner to the one from (Favier, Shekhar, and Alami 2023b).

We conduct an initial assessment of our planner within
the context of the cube organization domain. The algorithm
highlights that the rapid growth in the size of the epistemic
state in terms of the number of worlds directly correlates
with the number of actions (K ) the robot can perform when
the execution experience is not shared. Furthermore, the se-
quencing of these actions significantly influences the range
of potential worlds the human might expect to encounter.

We consider the parameter K , to assess its effect on the
planner’s overall performance. During planning, we assume
that whenever the shared execution experience is disrupted,
the robot can execute a maximum of K real actions, with
the option of not acting at all. For example, when the hu-
man is away to fetch the cube and has a fixed length and
sequence of actions to perform. The exact number of real on-
tic actions the robot performs ranging from 0 to K , includ-
ing which of those allowed ones and their exact sequence,
will depend on the scenario at hand, environment dynamics
(e.g., the observability factor), and the optimization criteria.
Currently, all the actions are of unit cost and instantaneous
during planning. The option for the robot to limit its real ac-
tions whenever required is integrated into the task descrip-
tion, aligning with the turn-taking nature of the underlying

SA

change focus

H: pick(cw)
R: place(cr, box1)

H: move to ot
R: pick(cr)

H: change focus
R: do nothing

H: move to mt
R: do nothing

do nothing

SA

H: COM
empty(box2)

place(cw, box2)

do nothing

co-presence

Situation Assessment
H: COM (human enquires whether
box2 is empty)

SAR-action H-action

comm.
action

SA

HR acting in parallel

number of worlds = 4

number of worlds = 2

number of worlds = 4

number of worlds = 2

number of worlds = 2

number of worlds = 1

SA

change focus

H: pick(cw)
R: place(cr, box1)

H: move to ot
R: pick(cr)

H: change focus
R: do nothing

H: move to mt
R: do nothing

do nothing

SA

place(cw, box2)

SA

number of worlds = 4

number of worlds = 2

number of worlds = 4

number of worlds = 2

number of worlds = 2

plan trace (a)

WAIT_SIGNAL

R: COM
empty(box2)

number of worlds = 2

number of worlds = 1

plan trace (b)

WAIT_SIGNAL signifies that the human
waits to be informed

number of worlds: signifies the possible
worlds human considers after the
operation, e.g., SA, or action execution 

Figure 5: Two branches from an AND/OR joint solution are
shown: (a) R informs H proactively, thus leaving only the
designated world for them to continue with place(cw, box2).
(b) R waits to inform H about the condition empty(box2).

planner. Consequently, the planner is engineered to optimize
the robot’s policy tree branching on uncontrollable human
choices, which may include a communication action initi-
ated by either the human or the robot, to meet our objective.

Qualitative Analysis
We explore different plan traces the planner can come up
with depending on scenarios that arise. We start with two
cubes, cr and cw, placed initially on tables mt and ot, re-
spectively. Initially, there is only one designated world, wd,
in the initial epistemic state, s0. The environment otherwise
remains unchanged. The human can decide to go and re-
trieve the white cube, while the robot begins to work on other
part(s) of the shared task.

Figure 5 shows two plan traces from an AND/OR joint
plan tree. H starts to execute. H & R are co-present and the
boxes are opaque. The SA process is a systematic subroutine
of our planner, but it is depicted only at relevant places.

Let us focus on (a): after the human shifts focus to ot,
both agents are not co-present until they reunite later in the
trace, during which they act simultaneously. (In this situa-
tion, agents must be at the same table and simultaneously
focus on it to be considered co-present.) In the first broad
rectangular box, the human moves to ot. They anticipate that
the robot may have picked cr or done nothing, but in reality,
the robot picks cr, resulting in two possibilities that will be
maintained within the robot. Similarly, in the following box,
the human picks cw at ot and anticipates that if the robot
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Figure 6: Two branches are shown: (c) R starts the process,
and (d) H takes the lead. Boxes are transparent. We can see
that as soon as H&R become co-present again, SA by per-
spective taking ignores the impossible worlds, immediately.

had picked cr, it could have placed it in one of the boxes or
held onto it, or cr is still on the table. Together, these cre-
ate four possibilities, with the reality being that cr is inside
box1. At this point, the robot currently has no feasible ac-
tion to execute, and the shared task has been not achieved
yet, too. Upon the human’s return, as per their initial agree-
ment on K , the robot has prepared itself with four possible
worlds (with a designated world that only the robot knows).
Perspective-taking and situation assessment help the robot
eliminate two worlds where cr is not on ot or in its hand.

At this stage, we present two approaches to proceed with
the task. The richer representation used in planning allows
them. In trace (a), the robot waits for human inquiry, while in
trace (b), humans wait to receive information (e.g., through
nodding or eye contact with the robot). Consequently, the
robot decides to inform that box2 is empty, resulting in only
the designated world remaining. Here, empty(box2) is a
precondition for the human to place cw in it, which is true in
one world and not in the other. With our proposed solution,
when the human waits to be informed, the robot can also
choose to take action to modify the physical environment,
conveying a variable’s value if the execution is attended.
This aspect is intended to be addressed in the future.

In our three-cube scenario, if the red cube is already in
box1 and the robot is holding the cy , it can choose to place
the cy in box1 in the presence of the human. This action re-
sults in the creation of a state with only the designated world
as the next action ordered in the task network (tnrh ) of that
world does not allow the robot to execute place(cy, box1).
The robot can only be clever if it can fully explore its op-
tions. Depending on the situation, it might not always be
preferable to place the yellow cube while the human is away
and rely on communication or other means later on.

In contrast, in (Favier, Shekhar, and Alami 2023b), the

inst K comm #states |W | #leaves time (ms) × 105

P1 (2,2,T) 2 N 218 4 3 0.089
P2 (2,2,O) 2 Y 236 4 3 0.141
P3 (3,2,T) 2 N 1643 7 6 5.906
P4 (3,2,O) 2 Y 2003 7 6 9.816
P5 (3,2,T) 4 N 4107 14 5 99.81
P6 (3,2,O) 4 Y 5607 14 5 125.3

Table 1: The planner’s performance is evaluated on differ-
ent metrics. inst is instance description. Whether communi-
cation is employed – comm. The metrics include the total
number of states explored (#states), the worst-case number
of worlds (|W |) evaluated in a state, the number of traces
(#leaves), and the execution time (measured in 105 ms).

robot informs after they become co-present again, assuming
that the human can choose to place the cw in box1 due to the
outdated (false) belief w.r.t. changes they missed when the
execution history was not shared.

Figure 6 shows plan traces for the case when the boxes
are transparent. Their explanations follow a similar pattern
as discussed in the case where the boxes were opaque.

Quantitative Results and Analysis
We refer to Table 1. The first column indicates the in-
stance number, along with the count of cubes and boxes,
and whether the boxes are transparent (T) or opaque (O),
respectively. In each instance, at least one cube is positioned
on the other table, which the human needs to retrieve to ful-
fill the objective. We show how the factor K influences the
runtime. Additionally, we present the number of states ex-
panded for each instance and, in the worst-case scenario, the
count of worlds evaluated in an epistemic state. The number
of branches in the obtained optimal AND/OR joint solution
tree is also provided. Our observation is that both |W | and K
contribute to longer runtimes. Instances requiring communi-
cation tend to take slightly longer compared to those where
communication is not required.

Conclusion
We note that our framework allows the robot to implement a
ToM not only at execution time but also at planning time and
hence explores what would be the beliefs of the human and
the robot depending on which course of action. This is done
thanks to the use of epistemic reasoning, the notion of shared
experience, and observable and non-observable facts, which
allow anticipation of human situation assessment along the
various non-deterministic shared H&R plan traces.

In the future, we plan to evaluate our planner in di-
verse domains and develop faster search methods for im-
proved scalability. While assuming Bel(H) = Bel(RH) ̸=
Bel(R) as in this paper, can solve many scenarios, we in-
tend to consider distinct Bel(R), Bel(H), and Bel(RH),
and extend our framework to allow planning with that.

We aim to adapt this framework “to explain” the robot’s
actions in different scenarios to its human partner. Note that,
in this work, we assumed that except for the Bel(.) com-
ponents, other components of MH

R are correctly estimated
(and are similar to those of MR).
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