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ABSTRACT

Data sharing enables critical advances in many research areas and business appli-
cations, but it may lead to inadvertent disclosure of sensitive summary statistics
(e.g., mean, standard deviation). Existing efforts mainly focus on protecting a
single confidential quantity, while in practice, data frequently involves a range of
sensitive quantities. We propose a novel framework to define, analyze, and protect
multi-secret summary statistics privacy in data sharing. Specifically, we measure
the privacy risk of any data release mechanism by the worst-case probability of
an attacker successfully inferring summary statistic secrets. Within diverse data
sharing paradigms, given an attacker’s objective spanning from inferring a subset
to the entirety of summary statistic secrets, we systematically design and analyze
tailored privacy metrics. Defining the distortion as the worst-case distance be-
tween the original and released data distribution, we analyze the tradeoff between
privacy and distortion.

1 INTRODUCTION

Data sharing has become integral to modern research and applications (Lee & Whang, 2000). How-
ever, a significant challenge arises when examining the summary statistics of shared data, as they
might unintentionally disclose sensitive information that data owners wish to keep private (Suri &
Evans, 2021). For example, cloud service providers, in an effort to protect their business secrets,
may hide information like the average cluster usage of each server type (Lin et al., 2020). In a similar
vein, companies may hesitate to share average transaction amounts categorized by race, considering
the sensitive nature of this data (Gelb & Decker, 2012). Notably, while many studies address indi-
vidual privacy concerns (e.g., Dwork et al. (2006)), there remains a noticeable lack of research on
protecting the summary statistics of shared datasets.

In Lin et al. (2023), a novel privacy framework is introduced, designed to identify and analyze con-
cerns related to summary statistics privacy. Lin et al. (2023) focus solely on the scenario where
only one summary statistic is deemed confidential by the data owner. In real-world scenarios, how-
ever, multiple summary statistics properties of the disseminated data may be regarded as proprietary
information or contain sensitive information. For example, in a web traffic dataset, disclosing the
average daily page views of any health-related website can raise privacy concerns (Libert, 2015).
Hence, there is a compelling need to expand the current framework, ensuring it encompasses cases
with multiple confidential statistics.

The privacy metric and analysis in Lin et al. (2023) cannot be trivially extended to address the multi-
secret case. Given the varied data sharing contexts and the intricacies of summary statistics secrets,
data holders’ requirements can differ. Some scenarios require no secrets being disclosed, while oth-
ers may only demand not all secrets being revealed simultaneously. As an example, for a web traffic
dataset, revealing any single secret related to health-related websites can give rise to significant pri-
vacy concerns. While for the cluster performance traces dataset, only when the proportions of all
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server types are disclosed, the business secret about overall deployment of servers is leaked. To
this end, we propose a framework to quantify, analyze and protect multi-secret summary statistics
privacy under different protection scenarios. The contributions of our paper are shown as follows.

Metric Design (§3, §5) In contrast to the single secret privacy framework, we introduce and ana-
lyze several novel metrics to measure the privacy risks of data release mechanisms for multi-secret
protection. In §3.1, we tackle the strictest scenario by defining the privacy metric as the worst-case
probability of an attacker correctly guessing any single secret within a specified tolerance range.
This metric is particularly relevant for scenarios where the data holder seeks to conceal all secrets.
Subsequently, in §5, we explore three relaxed scenarios wherein the data holder aims to thwart the
attacker from correctly guessing either a group of or the entirety of secrets simultaneously, estab-
lishing the appropriate privacy metric for each.

Privacy-Distortion Tradeoff Analysis(§4, §5) With different privacy metrics, we provide the gen-
eral lower bounds of the distortion (lower is better) given a certain constraint on the privacy. Those
lower bounds are non-trivial extensions of the tradeoff analysis in Lin et al. (2023). The analysis of
the lower bound is general, regardless of data distributions and secret types. The bound also reveals
how the number of secrets affect the privacy-distortion tradeoffs under different privacy metrics.

2 RELATED WORKS

We discuss the related work in detail in App. A. Briefly, previous works on protecting summary
statistic secrets can be categorized into four classes.

Heuristics Heuristics, commonly adopted in industries for data sharing (Hundepool et al., 2010),
often lack rigorous privacy guarantees and can be vulnerable in real-world scenarios (Elliot &
Dale, 1999), with methods like subsetting (Reiss et al., 2012), culling (Reiss et al., 2012), and de-
identification (Garfinkel et al., 2015), being susceptible to re-identification threats or unintentional
data property leakage (Narayanan & Shmatikov, 2006; Sweeney, 2013; El Emam & Dankar, 2008).

Indistinguishability Methods Differential privacy (DP) (Dwork et al., 2006), ensures indistin-
guishability between neighboring datasets. However, its design is more aligned with protecting
individual record contributions rather than overarching distributional statistical properties. Notably,
mechanisms like the Laplacian (Dwork et al., 2006) introduce zero-mean noise to samples but often
leave certain integral statistics, like means, less affected. Derived from the spirit of DP, methods such
as attribute privacy (Zhang et al., 2022) aim to safeguard specific dataset properties. However, their
applications do not always align with data sharing scenarios as those methods only output certain
statistical queries. Similarly, paradigms like distribution privacy (Kawamoto & Murakami, 2019)
and distribution inference (Suri & Evans, 2021) prioritize preserving the confidentiality of statisti-
cal secrets (e.g., mean). Their robust nature, ensuring indistinguishability across a broad range of
distributions (e.g., a Dirac delta distribution and a Gaussian distribution with the same mean), can
sometimes be excessive, leading to reduced data utility.

Leakage-Based Methods A set of research works utilize information-theoretic methods to delin-
eate and safeguard statistical privacy, typically balancing between limiting the disclosure of private
data and promoting the release of non-sensitive data. They often characterize the exposure of confi-
dential information through the concept of leakage (Alvim et al., 2014; Smith, 2015). Various mea-
sures, including Shannon entropy (Makhdoumi et al., 2014), min-entropy (Asoodeh et al., 2017),
and gain function (M’rio et al., 2012) have been employed to define leakage. A notable advance-
ment in this area is the concept of maximal leakage (Issa et al., 2019), which quantifies the increased
likelihood of correctly inferring secrets post-data release. However, maximal leakage and its gener-
alizations, such as Gilani et al. (2023), may not be applicable to our context due to their assumption
that secrets are not known in advance.

Summary Statistic Privacy The recently introduced summary statistic privacy (Lin et al., 2023)
aligns closely with our objective, emphasizing the protection of the dataset’s summary statistics
during data sharing. In their approach, privacy is measured by the worst-case likelihood of an
adversary accurately discerning the secret within a defined range. However, their framework mainly
concentrates on safeguarding a singular secret under one-shot attack and confines the data analysis
to one dimension, which may not cater comprehensively to practical applications. While a direct
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expansion of this framework to guard multiple secrets proves challenging, its foundational principles
for formulating a privacy metric resonate with our work.

3 PROBLEM FORMULATION

Notation Let X denote any random variable. Its distribution is represented by ωX . When X is
part of a parametric family, represented by a parameter θ that lies in Rq (q ≥ 1), our notation
becomes more specific: Xθ for the random variable and ωXθ

for its distribution. Additionally, when
considering θ not as a fixed value but as a realization of another random variable, denoted by Θ, its
distribution is captured by ωΘ. ωΘ acts as the prior distribution of parameter θ.

Original Data and Summary Statistic Secrets to Protect Consider a data holder in possession
of a dataset, denoted as X = {x1, x2, . . . , xm}, comprising m i.i.d. samples drawn from a certain
distribution. Given the ability to represent diverse datasets using parametric generative models, we
posit that this distribution belongs to a parametric family characterized by a parameter θ ∈ Rq . The
data holder aims to hide d summary statistic secrets from the original data distribution ωXθ

. We can
express those secrets as d functions g = [g1, · · · , gd], where gi (θ) : Rq → R for each function gi.

Data Release Mechanism To release data, the data holder passes the original distribution parameter
θ through the data release mechanism Mg . The released data distribution parameter θ′ satisfies
θ′ ∼Mg (θ).

Threat Model We assume the attacker knows the parametric family where the original data dis-
tribution is from, but does not know the distribution parameter θ. The attacker also knows the
released parameter θ′ and the mechanism Mg , but does not know the realization of the internal
randomness of the mechanism. Based on the released parameter θ′, the attacker guesses the secrets
g(θ) = [g1 (θ) , g2 (θ) , · · · , gd (θ)] by strategies ĝ(θ) = [ĝ1(θ), ĝ2(θ), · · · , ĝd(θ)].

3.1 METRICS FOR PRESERVING MULTIPLE SECRETS

We define the privacy and distortion metrics and formulate the data holder’s objective as follows.

Privacy Metric We start by considering the case where the data holder aims to prevent attackers
guessing any secret correctly. For example, consider the web traffic dataset with secrets as the aver-
age daily page views of health-related websites. Disclosing any secret may cause privacy concerns.

We define the union privacy metric Πϵ,ωΘ as the probability of the attacker guessing any secret to
within a tolerance range, ϵi for secret gi, employing the best attack strategy:

Πϵ,ωΘ
≜ sup

ĝ
P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 , (1)

where the probability is taken over the randomness of the original data distribution parameter θ, the
data release mechanismMg , and the attacker strategy ĝ.
Union privacy is the strictest privacy metric for the data holder, as the attacker guessing any secret
successfully will result in protection failure. In §5, we introduced several relaxed privacy metrics.

Union privacy also accommodates to multi-shot attack scenario where the attacker guesses the secret
multiple times, and the data holder aims to prevent success in any guess. In this scenario, g1 = g2 =
· · · = gd and ĝ represents strategies guessing the secret.

Distortion Metric Since the goal of data sharing is to maintain the high utility of the disseminated
data, it is important to discern the extent to which the released data diverges from the original. In
this context, we introduce the concept of distortion, denoted as ∆. Specifically, the distortion of a
mechanism is characterized by the worst-case discrepancy between the original distribution and the
released distribution:

∆ ≜ sup
θ∈Supp(ωΘ),

θ′∈Supp(Mg(θ))

D
(
ωXθ
∥ωXθ′

)
, (2)
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where Supp (·) is the support of the distribution and D can be any general distance metric defined
over distributions. In this paper, we specify the distance metric as Wasserstein-2 distance, as it is
widely adopted in data quality estimation (e.g., Korotin et al. (2021)).

Objective The data holder’s objective is to choose a data release mechanism that minimizes distor-
tion metric ∆ subject to a constraint on privacy Πϵ,ωΘ :

min
Mg

∆

subject to Πϵ,ωΘ
≤ T.

(3)

4 GENERAL LOWER BOUND ON PRIVACY-DISTORTION TRADEOFFS

Given the metrics defined in §3.1 and a privacy budget T , we present a lower bound on distortion
that applies regardless of the distribution of data and regardless of the secrets g = [g1, g2, · · · , gd].
In App. C, we instantiate this general result on Gaussian distributions with multiple secrets, devise
data release mechanisms, and assess their privacy-distortion performance.
Theorem 4.1 (Lower bound of privacy-distortion tradeoff). Let D (Xθ1 , Xθ2) ≜

1
2D
(
ωXθ1

∥ωXθ2

)
.

Further, let R (Xθ1 , Xθ2) ≜
∏

i∈[d]|gi(θ1)− gi(θ2)|1/d and

γ ≜ inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
. (4)

For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T ,

∆ > 2γ ·

⌈
1

1− (1− T )
1/d
− 1

⌉
·

∏
i∈[d]

ϵi

1/d

. (5)

The proof is shown in App. B.1, and we provide the proof sketch as below. From Thm. 4.1, we
can observe that the lower bound is proportional to the geometric mean of the tolerance ranges
ϵ1, · · · , ϵd, and is negatively correlated to the privacy budget T . γ acts as a conversion parameter that
bridges the difficulty of guessing the secrets and the distributional disparity, and its value depends
on secret types and data distribution. The impact of the secret number d on the lower bound depends
on the characteristics of secrets (i.e., γ) and their tolerance ranges (i.e., the geometric mean of
tolerance ranges). However, as the ceiling term in Eq. (5) increases with the growth of secret number,
achieving a lower value for the lower bound becomes much more challenging with a larger number
of secrets. This aligns with intuition: with more secrets, the attacker can more easily succeed
in guessing at least one secret. For the multi-shot attack scenario, where g1 = · · · = gd and
ϵ1 = · · · = ϵd, the lower bound increases as the attacker’s trial count d grows.

Proof Sketch We prove the tradeoff lower bound by constructing a sequence of attackers, such that
some of them can successfully guess at least one secret. We take the 2-secret case (i.e., d = 2)
as an example, as illustrated in Fig. 1. For each secret gi(θ), we partition the range of possible
secret values into Ni segments of length 2ϵi and design Ni individual-secret attack strategies ĝ

(j)
i

(j ∈ [Ni]), each guessing the midpoint of a segment. We subsequently formulate multi-secret
attack strategies ĝ(j,k) (j ∈ [N1] , k ∈ [N2]) by combining individual-secret strategy ĝ

(j)
1 for secret

g1(θ) and ĝ
(k)
2 for secret g2(θ). The yellow g(θ) region in Fig. 1 represents where the attacker ĝ(2,2)

correctly guesses at least one secret within the tolerance range. We then establish the distortion lower
bound based on the privacy constraint that the attack success rate is at most T and by utilizing the
conversion parameter γ, which serves as a linkage between the distributional distance and possible
ranges of secrets.

5 ALTERNATIVE PRIVACY METRICS AND ANALYSIS

In §3.1, we define the privacy metric for the worst case: attacker guessing any of the secrets within
the tolerance range will result in the failure of secret protection. In practice, sensitive information
is sometimes significantly compromised only when the attacker successfully guesses all or a group
of secrets. In this section, we relax the privacy metric and propose alternatives that apply to such
scenarios. The corresponding case studies and mechanism analysis are shown in App. D.
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Figure 1: Attacker construction for proof of Thm. 4.1 under the 2-secret case.

5.1 INTERSECTION SUMMARY STATISTIC PRIVACY

We first consider the scenario where secrets are severely compromised when the attacker guesses all
of them simultaneously. This is for example the case when a data holder is only concerned about an
adversary obtaining the full picture of the data rather than specific summary statistics.

We define the intersection privacy metric as the probability of attacker guessing all secrets within
their respective tolerance ranges, ϵi for secret gi, employing the best attacker strategy:

Πϵ,ωΘ
≜ sup

ĝ
P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 . (6)

Under intersection privacy, given a privacy budget T , we then present a general lower bound on
distortion.

Theorem 5.1 (Lower bound of privacy-distortion tradeoff for intersection privacy). Let
D (Xθ1 , Xθ2) ≜

1
2D
(
ωXθ1

∥ωXθ2

)
. Further, let R (Xθ1 , Xθ2) ≜

1
d

∑
i∈[d]|gi(θ1)− gi(θ2)| and

γ ≜ inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
. (7)

For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T ,

∆ > 2γ ·
⌈
1

T

⌉1/d
·

∏
i∈[d]

ϵi

1/d

− 2γ · 1
d

∑
i∈[d]

ϵi. (8)

(Proof in App. B.2.) From Thm. 5.1, we know that the distortion lower bound is negatively cor-
related to the privacy budget T . As the secret number d increases, achieving a lower value for the
lower bound becomes easier, which aligns with intuition: with more secrets, it becomes increasingly
challenging for the attacker to succeed in guessing all secrets. Since intersection privacy is the least
strict privacy metric for the data holder, the optimal achievable distortion for intersection privacy is
no greater than that for union privacy, as demonstrated in Prop. 5.2 (proof in App. B.3).

Proposition 5.2. Given a privacy budget T and tolerance ranges ϵ1, · · · , ϵd, we have ∆union ≥
∆inter, where ∆union and ∆inter are the achievable distortion lower bounds for union privacy and
intersection privacy.
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5.2 GROUP SECRETS SUMMARY STATISTIC PRIVACY

We then consider the case where the data holder divides secrets into distinct groups, aiming to
thwart the attacker from successfully guessing an entire group of secrets. We define the group
secrets privacy metric as the probability of attacker guessing any disjoint group b = {gi}i∈Ib

∈ B
of secrets to within tolerance ranges, ϵi for secret gi, adopting the best attack strategy:

Πϵ,ωΘ
≜ sup

ĝ
P

(⋃
b∈B

(⋂
i∈Ib

|ĝi (θ′)− gi (θ)| ≤ ϵi

))
,

where the secret index set Ib satisfies Ib1 ∩ Ib2 = ∅ for any distinct group b1, b2 ∈ B.

Under group secrets privacy, given a privacy budget T , we then present a general lower bound on
distortion.
Theorem 5.3 (Lower bound of privacy-distortion tradeoff for group secrets privacy). Let
D (Xθ1 , Xθ2) ≜

1
2D
(
ωXθ1

∥ωXθ2

)
. Further, let R (Xθ1 , Xθ2) ≜

1
d

∑
i∈[d]|gi(θ1)− gi(θ2)| and

γ ≜ inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
. (9)

For any T ∈ (0, 1), when Πϵ,ωΘ
≤ T ,

∆ > 2γ


1(

1− (1− T )1/β
)β/d


∏

i∈[d]

ϵi

1/d

− 2γ · 1
d

∑
i∈[d]

ϵi,

where β is the number of groups, i.e., β = |B|.

(Proof in App. B.4.) When β = 1, group secrets privacy reduces to intersection privacy, the least
strict privacy metric. As β grows to d, group secrets privacy transforms into union privacy, the
strictest metric. From Thm. 5.3, we can also observe that the distortion lower bound is positively
correlated with the group number β.

5.3 lp NORM SUMMARY STATISTIC PRIVACY

Finally, we consider the scenario where the data holder aims to ensure a significant separation be-
tween the original and the attacker guessed secret vectors, rather than emphasizing whether a single
or a group of secrets are disclosed. For example, consider the cluster performance traces with se-
crets as the proportions of different server types. The data holder may care more about whether the
attacker can approximate the overall deployment of servers.

We adopt lp norm (p > 0) as the distance metric and define the lp norm privacy metric as the
probability of the lp norm distance between the attacker guessed secret vector ĝ and the original
secret vector g being within a tolerance εp, taking the best attack strategy:

Πϵ,ωΘ ≜ sup
ĝ

P (∥ĝ (θ′)− g (θ)∥p ≤ εp) . (10)

Under lp norm privacy, given a privacy budget T , we then present a general lower bound on distor-
tion.
Theorem 5.4 (Lower bound of privacy-distortion tradeoff for lp norm privacy). Let D (Xθ1 , Xθ2) ≜
1
2D
(
ωXθ1

∥ωXθ2

)
. Further, let R (Xθ1 , Xθ2) ≜

1
d

∑
i∈[d]|gi(θ1)− gi(θ2)| and

γ ≜ inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
.

For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T ,

∆ > 2γ ·

(⌈
1

T

⌉1/d
− 1

)
· εp/d

1
p .
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(Proof in App. B.6.) From Thm. 5.4, we know that the distortion lower bound is positively correlated
to the tolerance range εp and negatively correlated to the privacy budget T . As shown in Prop. 5.5,
lp norm privacy metric is less strict than union privacy but stricter than intersection privacy.

Proposition 5.5. For union and intersection privacy, let ϵ1, · · · , ϵd be the tolerance ranges. Let the

tolerance εp for lp norm privacy be εp =
(∑

i∈[d] ϵ
p
i

)1/p
. Given a privacy budget T , for any p > 0,

we have

∆inter ≤ ∆lp ≤ ∆union,

where ∆union, ∆inter, and ∆lp represents the achievable distortion lower bounds for union privacy,
intersection privacy, and lp norm privacy respectively.

The proof and further analysis for lp norm privacy with different norm order p are detailed in
App. B.7.

6 ACKNOWLEDGMENTS

This paper was prepared for informational purposes in part by the CDAO group of JPMorgan Chase
& Co and its affiliates (“J.P. Morgan”) and is not a product of the Research Department of J.P.
Morgan. J.P. Morgan makes no representation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information contained herein. This document is
not intended as investment research or investment advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial instrument, financial product or service, or to be
used in any way for evaluating the merits of participating in any transaction, and shall not constitute
a solicitation under any jurisdiction or to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.

REFERENCES

Mário S Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Morgan, Catuscia
Palamidessi, and Geoffrey Smith. Additive and multiplicative notions of leakage, and their ca-
pacities. In 2014 IEEE 27th Computer Security Foundations Symposium, pp. 308–322. IEEE,
2014.

Shahab Asoodeh, Mario Diaz, Fady Alajaji, and Tamás Linder. Privacy-aware guessing efficiency.
In 2017 ieee international symposium on information theory (isit), pp. 754–758. IEEE, 2017.

Shahab Asoodeh, Mario Diaz, Fady Alajaji, and Tamás Linder. Estimation efficiency under privacy
constraints. IEEE Transactions on Information Theory, 65(3):1512–1534, 2018.

Flavio P Calmon, Ali Makhdoumi, and Muriel Médard. Fundamental limits of perfect privacy. In
2015 IEEE International Symposium on Information Theory (ISIT), pp. 1796–1800. IEEE, 2015.

Michelle Chen and Olga Ohrimenko. Protecting global properties of datasets with distribution pri-
vacy mechanisms. In International Conference on Artificial Intelligence and Statistics, pp. 7472–
7491. PMLR, 2023.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Khaled El Emam and Fida Kamal Dankar. Protecting privacy using k-anonymity. Journal of the
American Medical Informatics Association, 15(5):627–637, 2008.

Mark Elliot and Angela Dale. Scenarios of attack: the data intruder’s perspective on statistical
disclosure risk. Netherlands Official Statistics, 14(Spring):6–10, 1999.

Simson Garfinkel et al. De-identification of Personal Information:. US Department of Commerce,
National Institute of Standards and Technology, 2015.

7



Published as a workshop paper at ICLR 2024

Alan Gelb and Caroline Decker. Cash at your fingertips: Biometric technology for transfers in
developing countries. Review of Policy Research, 29(1):91–117, 2012.

Arpita Ghosh and Robert Kleinberg. Inferential privacy guarantees for differentially private mecha-
nisms. arXiv preprint arXiv:1603.01508, 2016.

Atefeh Gilani, Gowtham R Kurri, Oliver Kosut, and Lalitha Sankar. (α, β)-leakage: A unified
privacy leakage measure. arXiv preprint arXiv:2304.07456, 2023.

Clark R Givens and Rae Michael Shortt. A class of wasserstein metrics for probability distributions.
Michigan Mathematical Journal, 31(2):231–240, 1984.

Anco Hundepool, Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing, Rainer Lenz, Jane
Longhurst, E Schulte Nordholt, Giovanni Seri, and P Wolf. Handbook on statistical disclosure
control. ESSnet on Statistical Disclosure Control, 2010.

Ibrahim Issa, Aaron B Wagner, and Sudeep Kamath. An operational approach to information leak-
age. IEEE Transactions on Information Theory, 66(3):1625–1657, 2019.

Yusuke Kawamoto and Takao Murakami. Local obfuscation mechanisms for hiding probability
distributions. In European Symposium on Research in Computer Security, pp. 128–148. Springer,
2019.

Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A framework for mathematical privacy
definitions. ACM Transactions on Database Systems (TODS), 39(1):1–36, 2014.

Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and Evgeny
Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark.
Advances in Neural Information Processing Systems, 34:14593–14605, 2021.

Gowtham R Kurri, Lalitha Sankar, and Oliver Kosut. An operational approach to information leak-
age via generalized gain functions. arXiv preprint arXiv:2209.13862, 2022.

Hau L Lee and Seungjin Whang. Information sharing in a supply chain. International journal of
manufacturing technology and management, 1(1):79–93, 2000.

Jiachun Liao, Oliver Kosut, Lalitha Sankar, and Flavio du Pin Calmon. Tunable measures for infor-
mation leakage and applications to privacy-utility tradeoffs. IEEE Transactions on Information
Theory, 65(12):8043–8066, 2019.

Timothy Libert. Privacy implications of health information seeking on the web. Communications of
the ACM, 58(3):68–77, 2015.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing net-
worked time series data: Challenges, initial promise, and open questions. In Proceedings of the
ACM Internet Measurement Conference, pp. 464–483, 2020.

Zinan Lin, Shuaiqi Wang, Vyas Sekar, and Giulia Fanti. Summary statistic privacy in data sharing.
arXiv preprint arXiv:2303.02014, 2023.

Ali Makhdoumi, Salman Salamatian, Nadia Fawaz, and Muriel Médard. From the information
bottleneck to the privacy funnel. In 2014 IEEE Information Theory Workshop (ITW 2014), pp.
501–505. IEEE, 2014.

S Alvim M’rio, Kostas Chatzikokolakis, Catuscia Palamidessi, and Geoffrey Smith. Measuring
information leakage using generalized gain functions. In 2012 IEEE 25th Computer Security
Foundations Symposium, pp. 265–279. IEEE, 2012.

Arvind Narayanan and Vitaly Shmatikov. How to break anonymity of the netflix prize dataset. arXiv
preprint cs/0610105, 2006.

Borzoo Rassouli and Deniz Gündüz. On perfect privacy. IEEE Journal on Selected Areas in Infor-
mation Theory, 2(1):177–191, 2021.

8



Published as a workshop paper at ICLR 2024

Charles Reiss, John Wilkes, and Joseph L Hellerstein. Obfuscatory obscanturism: making workload
traces of commercially-sensitive systems safe to release. In 2012 IEEE Network Operations and
Management Symposium, pp. 1279–1286. IEEE, 2012.

Sara Saeidian, Giulia Cervia, Tobias J Oechtering, and Mikael Skoglund. Pointwise maximal leak-
age. IEEE Transactions on Information Theory, 2023.

Geoffrey Smith. On the foundations of quantitative information flow. In International Conference
on Foundations of Software Science and Computational Structures, pp. 288–302. Springer, 2009.

Geoffrey Smith. Recent developments in quantitative information flow (invited tutorial). In 2015
30th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 23–31. IEEE, 2015.

Anshuman Suri and David Evans. Formalizing and estimating distribution inference risks. arXiv
preprint arXiv:2109.06024, 2021.

Anshuman Suri, Yifu Lu, Yanjin Chen, and David Evans. Dissecting distribution inference. In 2023
IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), pp. 150–164. IEEE,
2023.

Latanya Sweeney. Matching known patients to health records in washington state data. arXiv
preprint arXiv:1307.1370, 2013.

Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. Journal of
the American Statistical Association, 105(489):375–389, 2010.

Amirreza Zamani, Tobias J Oechtering, and Mikael Skoglund. Bounds for privacy-utility trade-off
with non-zero leakage. In 2022 IEEE International Symposium on Information Theory (ISIT), pp.
620–625. IEEE, 2022.

Wanrong Zhang, Olga Ohrimenko, and Rachel Cummings. Attribute privacy: Framework and mech-
anisms. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Trans-
parency, pp. 757–766, 2022.

9



Published as a workshop paper at ICLR 2024

Appendix
CONTENTS

A Related Works 1

B Proofs 1

B.1 Proof of Thm. 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B.2 Proof of Thm. 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B.3 Proof of Prop. 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

B.4 Proof of Thm. 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

B.5 Comparsion Between Union Privacy and Group Secrets Privacy . . . . . . . . . . 9

B.6 Proof of Thm. 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

B.7 Proof of Prop. 5.5 and More Analysis of lp Norm Privacy . . . . . . . . . . . . . . 11

B.8 Theoretical Lower Bounds of Surrogate Metrics with Secrets = Three Means . . . . 12

C Case Studies under Union Privacy 14

C.1 Secrets = Mean and Standard Deviation, Distribution = 1-Dimensional Gaussian . 14

C.2 Secrets = {Mean,SD}d, Distribution = Multivariate Gaussian with Dimensionally
Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.3 Secrets = {mean,SD}d, Distribution = Multivariate Gaussian . . . . . . . . . . . 16

C.4 Extending Data Release Mechanisms to Accommodate Dataset Input/Output . . . . 17

C.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D Case studies under Alternative Privacy Metrics 28

D.1 Intersection Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.2 Group Secrets Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

D.3 lp Norm Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10



Published as a workshop paper at ICLR 2024

A RELATED WORKS

Heuristics While heuristics are widely adopted in industries for data sharing Hundepool et al.
(2010), many lack theoretical privacy guarantees and can be vulnerable in real-world scenarios Elliot
& Dale (1999). For example, subsetting aims to protect sensitive information by only selecting a
part of available data to release Reiss et al. (2012). However, sub-sampling data will not change the
data distribution, and thus the statistical properties are still preserved. Culling and de-identification
remove certain attributes of the dataset Reiss et al. (2012), but they may excise too much information
and are risked from re-identification attacks based on side information or cross-attribute correlations
Narayanan & Shmatikov (2006); Sweeney (2013); El Emam & Dankar (2008).

Indistinguishability Methods Differential privacy (DP) Dwork et al. (2006) is one of the most
widely adopted privacy metric, and it provides privacy by ensuring that any two input neighboring
datasets are indistinguishable. However, DP cannot be directly applied to protect summary statistic
secrets as it aims to protect whether an individual record (or group) contribute to the released data,
rather than to hide statistical properties of a distribution. For example, typical DP approaches like
Laplacian mechanism Dwork et al. (2006); Wasserman & Zhou (2010) would add zero mean noise
to each sample. Obfuscating data in such way will not change statistical properties like the expected
mean of the distribution.

Motivating by differential privacy, several works proposed approaches aiming to make pairs of
datasets or distributions with similar summary statistic secrets indistinguishable Zhang et al. (2022);
Ghosh & Kleinberg (2016); Chen & Ohrimenko (2023); Suri & Evans (2021). Attribute privacy
Zhang et al. (2022) also aims to protect properties of the dataset and parameters of the underlying
distribution from which dataset is sampled, but not under the data sharing scenarios. Adopting the
Pufferfish privacy framework Kifer & Machanavajjhala (2014), the paper designed mechanisms en-
suring indistinguishablility. However, the attribute privacy framework only outputs certain statistical
query, rather than releases the dataset, making it not suitable for data sharing. Distribution privacy
Kawamoto & Murakami (2019) and distribution inference Suri & Evans (2021); Suri et al. (2023)
also share the similar goal of protecting statistical secrets of the data. Roughly, they design indis-
tinguishably mechanisms ensuring that the output distribution are similar for any input distribution
with similar statistical secrets. Since we only aim to hide certain statistics rather than the whole
distribution, this framework is far stronger than what we need and will cause worse utility. To-
tally different distributions may have similar statistics (e,g, a Dirac delta distribution and a Gaussian
distribution may have the same mean), and prohibitive noise should be added to make the whole
distributions indistinguishable.

Leakage-Based Methods Another category of works adopt information theoretic approaches to
define and protect statistical privacy. Typically, works in this category aim to limit the disclosure
of private information while maximizing disclosure of others. Specifically, those works quantify
disclosure of sensitive information by the notion of leakage Alvim et al. (2014); Smith (2015).
Leakage can be defined by various of measures, such as Shannon entropy Makhdoumi et al. (2014);
Rassouli & Gündüz (2021); Zamani et al. (2022); Calmon et al. (2015), min-entropy Asoodeh et al.
(2017; 2018); Smith (2009), and gain function M’rio et al. (2012); Alvim et al. (2014); Liao et al.
(2019); Saeidian et al. (2023). One important theme is the development of leakage measures with
operational significance Alvim et al. (2014). Maximal leakage Issa et al. (2019), an operationally-
interpretable and robust measure, has been proposed recently. Maximal leakage is defined as the
increase of the probability of correctly guessing the secrets after observing the released dataset.
However, maximal leakage and its generalizations (e.g., Gilani et al. (2023); Kurri et al. (2022)) are
unsuitable to our scenario since they assume the secrets to protect are not known in advance and
therefore take the worst-case leakage over all possible secrets.

B PROOFS

B.1 PROOF OF THM. 4.1

Proof. We prove the tradeoff lower bound by constructing a sequence of attackers guessing different
possible secrets values, such that there exists attackers guessing at least one secret successfully.
Specifically, for each secret, we divide the range of possible secret values into segments, and design a
series of individual-secret attack strategies, guessing the midpoint of each segment. We subsequently

1



Published as a workshop paper at ICLR 2024

formulate multi-secret attack strategies by choosing one individual-secret strategy for each secret.
We then establish the distortion lower bound based on the privacy constraint that the attack success
rate is at most T and by utilizing the conversion parameter γ that serves as a linkage between the
distributional distance and the distance between secrets.

T ≥ Πϵ,ωΘ

= sup
ĝ

P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi


= sup

ĝ
E

P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


= E

sup
ĝ

P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′
 , (11)

where Eq. (11) is due to the fact that ĝ only depends on θ′ and therefore one can devise an at-
tacker that for each θ′, performs the optimal attack. It follows from Eq. (11) there exists θ′ s.t.

supĝ P
(⋃

i∈[d] |ĝi (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′) ≤ T . For any i ∈ [d], let L(i)
θ′ and H

(i)
θ′ be the smallest

and the largest possible value of secret gi given the released distribution parameter θ′:

L
(i)
θ′ ≜ inf

θ∈Supp(ωΘ):Mg(θ)=θ′
gi (θ) ,

H
(i)
θ′ ≜ sup

θ∈Supp(ωΘ):Mg(θ)=θ′
gi (θ) .

For each secret gi, where i ∈ [d], we partition the range of possible secret values, i.e., [L(i)
θ′ , H

(i)
θ′ ],

into segments with length 2ϵi. Subsequently, we develop a set of individual-secret attack strategies
by guessing the midpoint of each segment. As a result, the number of individual-secret attack
strategies, denoted as Ni, satisfies L(i)

θ′ + 2Niϵi ≥ H
(i)
θ′ > L

(i)
θ′ + 2(Ni − 1)ϵi.

We then construct multi-secret attack strategies by selecting one individual-secret strategy for each
secret. For the multi-secret attack strategy ĝ(v), where v = [v1, v2, · · · , vd] and vi ∈ [Ni] for all i ∈
[d], it guesses the secret gi as the midpoint of the vi-th segment, i.e., ĝ[v]i (θ′) = L

(i)
θ′ +(vi − 0.5)·2ϵi.

The number of multi-secret attack strategies, denoted as N , is N =
∏

i∈[d] Ni. We can get that

T · N ≥
∑
v

P

⋃
i∈[d]

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


1
=
∑
v

∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

P

 ⋂
i∈{i1,i2,··· ,ij}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


2
≥
∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

N∏
k∈{i1,i2,··· ,ij} Nk

. (12)
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where 1
= is because for any attack strategy ĝ(v), we have

P

⋃
i∈[d]

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


=
∑
i∈[d]

P
(
|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′)− ∑
i1<i2

i1,i2∈[d]

P

 ⋂
i∈{i1,i2}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


+ · · ·+ (−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

P

 ⋂
i∈{i1,i2,··· ,ij}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


+ · · ·+ (−1)d−1 P

⋂
i∈[d]

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


=
∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

P

 ⋂
i∈{i1,i2,··· ,ij}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′
 .

2
≥ is because∑

v

∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

P

 ⋂
i∈{i1,i2,··· ,ij}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


=
∑
j∈[d]

(−1)j−1
∑
v

∑
i1<i2<···<ij
i1,i2,··· ,ij∈[d]

P

 ⋂
i∈{i1,i2,··· ,ij}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


=
∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

∑
v

P

 ⋂
i∈{i1,i2,··· ,ij}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


≥
∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

∏
k1∈[d]\{i1,i2,··· ,ij}

Nk1

=
∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

N∏
k∈{i1,i2,··· ,ij} Nk

.

Since H
(i)
θ′ > L

(i)
θ′ + 2(Ni − 1)ϵi, ∀i ∈ [d], we can get that∏

i∈[d]

(
H

(i)
θ′ − L

(i)
θ′

)
>
∏
i∈[d]

2ϵi (Ni − 1)

=
∏
i∈[d]

2ϵi ·
∏
i∈[d]

(Ni − 1)

=

N −∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

N∏
k∈{i1,i2,··· ,ij} Nk

 · ∏
i∈[d]

2ϵi

1
≥ ⌈(1− T )N⌉ ·

∏
i∈[d]

2ϵi, (13)
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where
1
≥ is because based on Eq. (12) and the fact that Ni is an integer for any i ∈ [d], we have

∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

N∏
k∈{i1,i2,··· ,ij} Nk

≤ ⌊TN⌋.

We analyze the value of N as follows. Based on Eq. (12), we have

T · N ≥
∑
j∈[d]

(−1)j−1
∑

i1<i2<···<ij
i1,i2,··· ,ij∈[d]

N∏
k∈{i1,i2,··· ,ij} Nk

= N −
∏
i∈[d]

(Ni − 1) . (14)

Define ai = Ni − 1. Then we have ai ≥ 0 and N =
∏

i∈[d] (ai + 1). We can get that

N =
∏
i∈[d]

(ai + 1)

= 1 +
∑
j∈[d]

∑
i1<i2<···<ij
i1,i2,··· ,ij∈[d]

∏
k∈{i1,i2,··· ,ij}

ak

1
≥

∑
j∈[d]∪{0}

(
d

j

)
·

∏
i∈[d]

ai


j
d

=


∏

i∈[d]

ai

 1
d

+ 1


d

=


∏

i∈[d]

(Ni − 1)

 1
d

+ 1


d

,

where
1
≥ is because when j = 0,

(
d
j

)
·
(∏

i∈[d] ai

) j
d

= 1, and for any j ∈ [d], we have

∑
i1<i2<···<ij
i1,i2,··· ,ij∈[d]

∏
k∈{i1,i2,··· ,ij}

ak ≥
(
d

j

)
·

 ∏
i1<i2<···<ij
i1,i2,··· ,ij∈[d]

∏
k∈{i1,i2,··· ,ij}

ak


1

(dj)

=

(
d

j

)
·

∏
i∈[d]

ai


(d−1
j−1)
(dj)

=

(
d

j

)
·

∏
i∈[d]

ai


j
d

.

Therefore, we can get that

∏
i∈[d]

(Ni − 1) ≤
(
N 1

d − 1
)d

.
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Combined with Eq. (14) and the fact that N is an integer, we have

T · N ≥ N −
(
N 1

d − 1
)d

(
N 1

d − 1
)d
≥ (1− T )N

N 1
d ≥ 1

1− (1− T )
1
d

N ≥


1(

1− (1− T )
1/d
)d
 .

Combined with Eq. (13), we can get that

∏
i∈[d]

(
H

(i)
θ′ − L

(i)
θ′

)
> ⌈(1− T )N⌉ ·

∏
i∈[d]

2ϵi ≥

(1− T )


1(

1− (1− T )
1/d
)d

 ·

∏
i∈[d]

2ϵi.

Hence, we have

∏
i∈[d]

(
H

(i)
θ′ − L

(i)
θ′

)1/d
> 2

⌈
(1− T )

1/d

⌈
1

1− (1− T )
1/d

⌉⌉
·

∏
i∈[d]

ϵi

1/d

. (15)

Then we have

∆ = sup
θ∈Supp(ωΘ),

θ′∈Supp(Mg(θ))

D
(
ωXθ
∥ωXθ′

)
≥ sup

θi∈Supp(ωΘ),i∈{1,2}:Mg(θi)=θ′
D (Xθ1 , Xθ2) (16)

> 2γ ·

⌈
(1− T )

1/d

⌈
1

1− (1− T )
1/d

⌉⌉
·

∏
i∈[d]

ϵi

1/d

(17)

> 2γ ·

⌈
1

1− (1− T )
1/d
− 1

⌉
·

∏
i∈[d]

ϵi

1/d

,

where in Eq. (16), θi for i ∈ {1, 2} denotes two arbitrary parameter vectors in the support space.
Eq. (16) comes from the triangle inequality, and Eq. (17) utilizes Eq. (15) and the definition of γ.

B.2 PROOF OF THM. 5.1

Proof. Similar to the proof of Thm. 4.1, we construct a sequence of attackers guessing different
possible secrets values, such that there exists attackers guessing all secrets successfully. Specifically,
for each secret, we divide the range of possible secret values into segments, and design a series
of individual-secret attack strategies, guessing the midpoint of each segment. We subsequently
formulate multi-secret attack strategies by choosing one individual-secret strategy for each secret.
We then establish the distortion lower bound based on the privacy constraint that the attack success
rate is at most T and by utilizing the conversion parameter γ that serves as a linkage between the
distributional distance and the distance between secrets.

It follows from Eq. (11) there exists θ′ s.t. supĝ P
(⋂

i∈[d] |ĝi (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′) ≤ T . For any

i ∈ [d], let L(i)
θ′ and H

(i)
θ′ be the smallest and the largest possible value of secret gi given the released
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distribution parameter θ′:

L
(i)
θ′ ≜ inf

θ∈Supp(ωΘ):Mg(θ)=θ′
gi (θ) ,

H
(i)
θ′ ≜ sup

θ∈Supp(ωΘ):Mg(θ)=θ′
gi (θ) .

For each secret gi, where i ∈ [d], we partition the range of possible secret values, i.e., [L(i)
θ′ , H

(i)
θ′ ],

into segments with length 2ϵi. Subsequently, we develop a set of individual-secret attack strategies
by guessing the midpoint of each segment. As a result, the number of individual-secret attack
strategies, denoted as Ni, satisfies L(i)

θ′ + 2Niϵi ≥ H
(i)
θ′ > L

(i)
θ′ + 2(Ni − 1)ϵi.

We then construct multi-secret attack strategies by selecting one individual-secret strategy for each
secret. For the multi-secret attack strategy ĝ(v), where v = [v1, v2, · · · , vd] and vi ∈ [Ni] for all i ∈
[d], it guesses the secret gi as the midpoint of the vi-th segment, i.e., ĝ[v]i (θ′) = L

(i)
θ′ +(vi − 0.5)·2ϵi.

The number of multi-secret attack strategies, denoted as N , is N =
∏

i∈[d] Ni. We can get that

T · N ≥
∑
v

P

⋂
i∈[d]

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′
 = 1.

Since N ∈ N+, we have N ≥
⌈
1
T

⌉
.

Therefore, we can get that∑
i∈[d]

(
H

(i)
θ′ − L

(i)
θ′

)
>
∑
i∈[d]

2ϵi (Ni − 1)

≥ 2d

∏
i∈[d]

ϵiNi

1/d

− 2
∑
i∈[d]

ϵi

≥ 2d ·
⌈
1

T

⌉1/d
·

∏
i∈[d]

ϵi

1/d

− 2
∑
i∈[d]

ϵi.

Hence, we have

∆ = sup
θ∈Supp(ωΘ),

θ′∈Supp(Mg(θ))

D
(
ωXθ
∥ωXθ′

)
≥ sup

θi∈Supp(ωΘ),i∈{1,2}:Mg(θi)=θ′
D (Xθ1 , Xθ2)

> 2γ ·
⌈
1

T

⌉1/d
·

∏
i∈[d]

ϵi

1/d

− 2γ · 1
d

∑
i∈[d]

ϵi. (18)

B.3 PROOF OF PROP. 5.2

Proof. We first prove that for any fixed distortion budget δ0, when ∆ ≤ δ0, the achievable lower
bound for union privacy, denoted as Πuni

ϵ,ωΘ
, is no smaller than that for intersection privacy, denoted

as Πinter
ϵ,ωΘ

.

For any attack strategy ĝ and data release mechanismMg that satisfies ∆ ≤ δ0, we have

P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 ≤ P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 .
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Therefore, we can get that for any data release mechanismMg that satisfies ∆ ≤ δ0:

sup
ĝ

P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 ≤ sup
ĝ

P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 ,

which indicates that with a fixed distortion budget δ0, Πinter
ϵ,ωΘ

≤ Πuni
ϵ,ωΘ

. Hence, we can easily get
that with a privacy budget T , the achievable distortion lower bounds for union privacy ∆union and
intersection privacy ∆inter satisfy ∆union ≥ ∆inter.

B.4 PROOF OF THM. 5.3

Proof. Similar to the proof of Thm. 4.1, we construct a sequence of attackers guessing different
possible secrets values, such that there exists attackers successfully guessing secrets. Specifically,
for each secret, we divide the range of possible secret values into segments, and design a series
of individual-secret attack strategies, guessing the midpoint of each segment. We subsequently
formulate multi-secret attack strategies by choosing one individual-secret strategy for each secret.
We then establish the distortion lower bound based on the privacy constraint that the attack success
rate is at most T and by utilizing the conversion parameter γ that serves as a linkage between the
distributional distance and the distance between secrets.

It follows from Eq. (11) there exists θ′ s.t. supĝ P
(⋂

i∈[d] |ĝi (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′) ≤ T . For any

i ∈ [d], let L(i)
θ′ and H

(i)
θ′ be the smallest and the largest possible value of secret gi given the released

distribution parameter θ′:

L
(i)
θ′ ≜ inf

θ∈Supp(ωΘ):Mg(θ)=θ′
gi (θ) ,

H
(i)
θ′ ≜ sup

θ∈Supp(ωΘ):Mg(θ)=θ′
gi (θ) .

For each secret gi, where i ∈ [d], we partition the range of possible secret values, i.e., [L(i)
θ′ , H

(i)
θ′ ],

into segments with length 2ϵi. Subsequently, we develop a set of individual-secret attack strategies
by guessing the midpoint of each segment. As a result, the number of individual-secret attack
strategies, denoted as Ni, satisfies L(i)

θ′ + 2Niϵi ≥ H
(i)
θ′ > L

(i)
θ′ + 2(Ni − 1)ϵi.

We then construct multi-secret attack strategies by selecting one individual-secret strategy for each
secret. For the multi-secret attack strategy ĝ(v), where v = [v1, v2, · · · , vd] and vi ∈ [Ni] for all i ∈
[d], it guesses the secret gi as the midpoint of the vi-th segment, i.e., ĝ[v]i (θ′) = L

(i)
θ′ +(vi − 0.5)·2ϵi.

The number of multi-secret attack strategies, denoted as N , is N =
∏

i∈[d] Ni. We can get that

T · N ≥
∑
v

sup
ĝ

P

(⋃
b∈B

(⋂
i∈Ib

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

))

=
∑
v

∑
j∈[β]

(−1)j−1
∑

b1 ̸=b2 ̸=···̸=bj
b1,b2,··· ,bj∈B

P

 ⋂
i∈Ib

b∈{b1,b2,··· ,bj}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


1
≥
∑
j∈[β]

(−1)j−1
∑

b1 ̸=b2 ̸=···̸=bj
b1,b2,··· ,bj∈B

N∏
b∈{b1,b2,··· ,bj}

∏
k∈Ib

Nk

= N −
∏
b∈B

(∏
i∈Ib

Ni − 1

)
, (19)
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where
1
≥ is because

∑
v

∑
j∈[β]

(−1)j−1
∑

b1 ̸=b2 ̸=···≠bj
b1,b2,··· ,bj∈B

P

 ⋂
i∈Ib

b∈{b1,b2,··· ,bj}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


=
∑
j∈[β]

(−1)j−1
∑

b1 ̸=b2 ̸=···≠bj
b1,b2,··· ,bj∈B

∑
v

P

 ⋂
i∈Ib

b∈{b1,b2,··· ,bj}

|ĝ[v]i (θ′)− gi (θ)| ≤ ϵi

∣∣∣∣θ′


≥
∑
j∈[β]

(−1)j−1
∑

b1 ̸=b2 ̸=···≠bj
b1,b2,··· ,bj∈B

∏
k1∈[d]\

⋃
b∈{b1,b2,··· ,bj} Ib

Nk1

=
∑
j∈[β]

(−1)j−1
∑

b1 ̸=b2 ̸=···≠bj
b1,b2,··· ,bj∈B

N∏
b∈{b1,b2,··· ,bj}

∏
k∈Ib

Nk
.

Define Ab =
∏

i∈Ib
Ni − 1. We have Ab ≥ 0 and N =

∏
b∈B (Ab + 1). We can get that

N =
∏
b∈B

(Ab + 1)

= 1 +
∑
j∈[β]

∑
b1 ̸=b2 ̸=···≠bj
b1,b2,··· ,bj∈B

∏
b∈{b1,b2,··· ,bj}

Ab

1
≥

∑
j∈[β]∪{0}

(
β

j

)
·

(∏
b∈B

Ab

) j
β

=

(∏
b∈B

Ab

) 1
β

+ 1

β

=

(∏
b∈B

(∏
i∈Ib

Ni − 1

)) 1
β

+ 1

β

.

1
≥ is because when j = 0,

(
β
j

)
·
(∏

b∈B Ab

) j
β = 1, and for any j ∈ [B], we have

∑
b1 ̸=b2 ̸=···≠bj
b1,b2,··· ,bj∈B

∏
b∈{b1,b2,··· ,bj}

Ab ≥
(
β

j

)
·

 ∏
b1 ̸=b2 ̸=···̸=bj
b1,b2,··· ,bj∈B

∏
b∈{b1,b2,··· ,bj}

Ab


1

(βj)

=

(
β

j

)
·

(∏
b∈B

Ab

) (β−1
j−1)
(βj)

=

(
β

j

)
·

(∏
b∈B

Ab

) j
β

.

Therefore, we have ∏
b∈B

(∏
i∈Ib

Ni − 1

)
≤
(
N

1
β − 1

)β
. (20)
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Combining this result with Eq. (19) and the fact that N is an integer, we have

T · N ≥ N −
(
N

1
β − 1

)β
(
N

1
β − 1

)β
≥ (1− T )N

N
1
β ≥ 1

1− (1− T )
1
β

N ≥


1(

1− (1− T )
1/β
)β
 .

Hence, we can get that∑
i∈[d]

(
H

(i)
θ′ − L

(i)
θ′

)
>
∑
i∈[d]

2ϵi (Ni − 1)

≥ 2d

∏
i∈[d]

ϵiNi

1/d

− 2
∑
i∈[d]

ϵi

≥ 2d ·


1(

1− (1− T )
1/β
)β/d

 ·
∏

i∈[d]

ϵi

1/d

− 2
∑
i∈[d]

ϵi.

Then we have

∆ = sup
θ∈Supp(ωΘ),

θ′∈Supp(Mg(θ))

D
(
ωXθ
∥ωXθ′

)
≥ sup

θi∈Supp(ωΘ),i∈{1,2}:Mg(θi)=θ′
D (Xθ1 , Xθ2)

> 2γ ·


1(

1− (1− T )
1/β
)β/d

 ·
∏

i∈[d]

ϵi

1/d

− 2γ · 1
d

∑
i∈[d]

ϵi.

B.5 COMPARSION BETWEEN UNION PRIVACY AND GROUP SECRETS PRIVACY

When the group size β is equal to d, group secrets privacy transforms into union privacy. As shown
in Prop. B.1, Thm. 4.1 provides a tighter (i.e., higher) distortion lower bound for the union privacy
compared with Thm. 5.3 when β = d.

Proposition B.1. Given a privacy budget T and tolerance ranges ϵ1, · · · , ϵd, Thm. 4.1 provides a
tighter distortion lower bound for union privacy compared with Thm. 5.3 when β = d.

Proof. When β = d, the distortion lower bound for the union privacy in Thm. 5.3, denoted as ∆g ,
is

∆g = 2γg

⌈
1

1− (1− T )
1/d

⌉∏
i∈[d]

ϵi

1/d

− 2γg ·
1

d

∑
i∈[d]

ϵi,

where γg ≜ infθ1,θ2∈Supp(ωΘ)

1
2D

(
ωXθ1

∥ωXθ2

)
1
d

∑
i∈[d]|gi(θ1)−gi(θ2)|

.

9
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The distortion lower bound for the union privacy in Thm. 4.1, denoted as ∆u, is

∆u = 2γu

⌈
1

1− (1− T )
1/d

⌉∏
i∈[d]

ϵi

1/d

− 2γu

∏
i∈[d]

ϵi

1/d

,

where γu ≜ infθ1,θ2∈Supp(ωΘ)

1
2D

(
ωXθ1

∥ωXθ2

)
∏

i∈[d]|gi(θ1)−gi(θ2)|1/d
.

According to the inequality of arithmetic and geometric means, we have

1

d

∑
i∈[d]

ϵi ≥

∏
i∈[d]

ϵi

1/d

,

1

d

∑
i∈[d]

|gi(θ1)− gi(θ2)| ≥
∏
i∈[d]

|gi(θ1)− gi(θ2)|1/d.

Therefore, we can get that γu ≥ γg as well as

∆u = 2γu

⌈
1

1− (1− T )
1/d
− 1

⌉∏
i∈[d]

ϵi

1/d

≥ 2γg

⌈
1

1− (1− T )
1/d
− 1

⌉∏
i∈[d]

ϵi

1/d

= 2γg

⌈
1

1− (1− T )
1/d

⌉∏
i∈[d]

ϵi

1/d

− 2γg

∏
i∈[d]

ϵi

1/d

≥ 2γg

⌈
1

1− (1− T )
1/d

⌉∏
i∈[d]

ϵi

1/d

− 2γg ·
1

d

∑
i∈[d]

ϵi

= ∆g.

Hence, Thm. 4.1 provides a tighter distortion lower bound for union privacy compared with Thm. 5.3
when β = d.

B.6 PROOF OF THM. 5.4

Proof. When Πϵ,ωΘ = supĝ P (∥ĝ (θ′)− g (θ)∥p ≤ εp) ≤ T , we can get that for any non-negative

values ϵ1, ϵ2, · · · , ϵd that satisfy
(∑

i∈[d] ϵ
p
i

)1/p
= εp:

sup
ĝ

P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 ≤ T.

This is because if there exists non-negative values ϵ̃1, ϵ̃2, · · · , ϵ̃d that satisfy
(∑

i∈d ϵ̃
p
i

)1/p
= εp and

sup
ĝ

P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵ̃i

 > T,

10
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then we can get that

sup
ĝ

P (∥ĝ (θ′)− g (θ)∥p ≤ εp) ≥ P (∥g̃ (θ′)− g (θ)∥p ≤ εp)

≥ P

⋂
i∈[d]

|g̃i (θ′)− gi (θ)| ≤ ϵ̃i


= sup

ĝ
P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵ̃i


> T,

which contradicts with the constraint that supĝ P (∥ĝ (θ′)− g (θ)∥p ≤ εp) ≤ T .

Based on Thm. 5.1, we know that when supĝ P
(⋂

i∈[d] |ĝi (θ′)− gi (θ)| ≤ ϵi

)
≤ T , the distortion

satisfies

∆ > 2γ ·
⌈
1

T

⌉1/d
·

∏
i∈[d]

ϵi

1/d

− 2γ · 1
d

∑
i∈[d]

ϵi.

When ϵi = εp/d
1
p for all i ∈ [d], we can get that

∆ > 2γ ·

(⌈
1

T

⌉1/d
− 1

)
· εp/d

1
p .

B.7 PROOF OF PROP. 5.5 AND MORE ANALYSIS OF lp NORM PRIVACY

B.7.1 PROOF OF PROP. 5.5

Proof. We first prove that for any fixed distortion budget δ0, when ∆ ≤ δ0, the achievable lower
bounds for union privacy Πuni

ϵ,ωΘ
, intersection privacy Πinter

ϵ,ωΘ
, and lp norm privacy Π

lp
ϵ,ωΘ satisfy

Πinter
ϵ,ωΘ
≤ Π

lp
ϵ,ωΘ ≤ Πuni

ϵ,ωΘ
.

For any attack strategy ĝ and data release mechanism Mg that satisfies ∆ ≤ δ0, when |ĝi (θ′) −

gi (θ)| ≤ ϵi, ∀i ∈ [d], we have ∥ĝ (θ′)− g (θ)∥p ≤
(∑

i∈[d] ϵ
p
i

)1/p
= εp. Besides, when ∥ĝ (θ′)−

g (θ)∥p ≤ εp, there exists i ∈ [d], such that |ĝi (θ′)− gi (θ)| ≤ ϵi. Therefore, we can get that

P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 ≤ P (∥ĝ (θ′)− g (θ)∥p ≤ εp) ≤ P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 .

Hence, for any data release mechanismMg that satisfies ∆ ≤ δ0:

sup
ĝ

P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 ≤ sup
ĝ

P (∥ĝ (θ′)− g (θ)∥p ≤ εp) ≤ sup
ĝ

P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi

 ,

which indicates that with a fixed distortion budget δ0, Πinter
ϵ,ωΘ
≤ Π

lp
ϵ,ωΘ ≤ Πuni

ϵ,ωΘ
. Therefore, we can

easily get that with a privacy budget T , the achievable distortion lower bounds for union privacy
∆union, intersection privacy ∆inter, and lp norm privacy ∆lp satisfy ∆union ≥ ∆lp ≥ ∆inter.

B.7.2 MORE ANALYSIS OF lp NORM PRIVACY

In this section, we compare the distortion lower bounds for lp norm privacy with different norm
order p.

11
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Proposition B.2. Consider two lp norm privacy metrics with norm orders p = α and p = τ

respectively. If α ≥ τ > 0, and their tolerance ranges satisfy ετ
εα
≥ d

1
τ − 1

α , given a privacy budget
T , we have

∆lα ≤ ∆lτ ,

where ∆lα and ∆lτ are the achievable distortion lower bounds for lp norm privacy with p = α and
p = τ respectively.

Proof. We first prove that for any fixed distortion budget δ0, when ∆ ≤ δ0, the achievable lower
bound for lτ privacy, denoted as Πlτ

ϵ,ωΘ
, is no smaller than that for lα privacy, denoted as Πlα

ϵ,ωΘ
.

For any attack strategy ĝ and data release mechanism Mg that satisfies ∆ ≤ δ0, we have
d

1
τ − 1

α ∥ĝ (θ′) − g (θ)∥α ≥ ∥ĝ (θ′) − g (θ)∥τ . Therefore, when ∥ĝ (θ′) − g (θ)∥α ≤ εα, we can
get that

∥ĝ (θ′)− g (θ)∥τ ≤ d
1
τ − 1

α ∥ĝ (θ′)− g (θ)∥α ≤ d
1
τ − 1

α εα ≤ ετ ,

which indicates that

P (∥ĝ (θ′)− g (θ)∥α ≤ εα) ≤ P (∥ĝ (θ′)− g (θ)∥τ ≤ ετ ) .

Then we can get that for any data release mechanismMg that satisfies ∆ ≤ δ0:

sup
ĝ

P (∥ĝ (θ′)− g (θ)∥α ≤ εα) ≤ sup
ĝ

P (∥ĝ (θ′)− g (θ)∥τ ≤ ετ ) ,

which indicates that with a fixed distortion budget δ0, Πlα
ϵ,ωΘ
≤ Πlτ

ϵ,ωΘ
. Hence, we can easily get that

with a privacy budget T , the achievable distortion lower bounds for lα privacy ∆lα and lτ privacy
∆lτ satisfy ∆lα ≤ ∆lτ .

B.8 THEORETICAL LOWER BOUNDS OF SURROGATE METRICS WITH SECRETS = THREE
MEANS

Without loss of generality, we assume our objective is to protect the means of the first three dimen-
sions of the data distribution. Let x(i) be the i-th dimension of the data sample x ∈ Rt (t ≥ 3). For
the original and released dataset X = {x1, · · · ,xm} ,Y = {y1, · · · ,ym}, the empirical means are

µ̂(1)
x =

1

m

∑
i∈[m]

x
(1)
i , µ̂(2)

x =
1

m

∑
i∈[m]

x
(2)
i , µ̂(3)

x =
1

m

∑
i∈[m]

x
(3)
i ,

µ̂(1)
y =

1

m

∑
i∈[m]

y
(1)
i , µ̂(2)

y =
1

m

∑
i∈[m]

y
(2)
i , µ̂(3)

y =
1

m

∑
i∈[m]

y
(3)
i .

Regardless of the distribution type, the surrogate distortion, i.e., Wasserstein-2 distance between X
and Y , satisfies

∆̃ = D (PX ∥PY) ≥
√(

µ̂
(1)
x − µ̂

(1)
y

)2
+
(
µ̂
(2)
x − µ̂

(2)
y

)2
+
(
µ̂
(3)
x − µ̂

(3)
y

)2
.

We analyze the theoretical lower bounds of surrogate metrics under different privacy formulations
as follows.
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For union privacy, we have

∆̃ ≥
√(

µ̂
(1)
x − µ̂

(1)
y

)2
+
(
µ̂
(2)
x − µ̂

(2)
y

)2
+
(
µ̂
(3)
x − µ̂

(3)
y

)2
=

√
ϵ21 ·
|µ̂(1)

x − µ̂
(1)
y |2

ϵ21
+ ϵ22 ·

|µ̂(2)
x − µ̂

(2)
y |2

ϵ22
+ ϵ23 ·

|µ̂(3)
x − µ̂

(3)
y |2

ϵ23

≥
√
ϵ21 + ϵ22 + ϵ23 ·min

i∈[3]

{
|µ̂(i)

x − µ̂
(i)
y |

ϵi

}

= −
√
ϵ21 + ϵ22 + ϵ23 ·max

i∈[3]

{
−|µ̂

(i)
x − µ̂

(i)
y |

ϵi

}
= −

√
ϵ21 + ϵ22 + ϵ23 · Π̃uni

ϵ,ωΘ
.

For intersection privacy, we have

∆̃ ≥
√(

µ̂
(1)
x − µ̂

(1)
y

)2
+
(
µ̂
(2)
x − µ̂

(2)
y

)2
+
(
µ̂
(3)
x − µ̂

(3)
y

)2
=

√
ϵ21 ·
|µ̂(1)

x − µ̂
(1)
y |2

ϵ21
+ ϵ22 ·

|µ̂(2)
x − µ̂

(2)
y |2

ϵ22
+ ϵ23 ·

|µ̂(3)
x − µ̂

(3)
y |2

ϵ23

≥ min {ϵ1, ϵ2, ϵ3} ·max
i∈[3]

{
|µ̂(i)

x − µ̂
(i)
y |

ϵi

}

= −min {ϵ1, ϵ2, ϵ3} ·min
i∈[3]

{
−|µ̂

(i)
x − µ̂

(i)
y |

ϵi

}
= −min {ϵ1, ϵ2, ϵ3} Π̃inter

ϵ,ωΘ
.

For group secrets privacy, let the means in the first two dimension be one group, and the third mean
be one group. Then we have

∆̃ ≥
√(

µ̂
(1)
x − µ̂

(1)
y

)2
+
(
µ̂
(2)
x − µ̂

(2)
y

)2
+
(
µ̂
(3)
x − µ̂

(3)
y

)2
=

√
ϵ21 ·
|µ̂(1)

x − µ̂
(1)
y |2

ϵ21
+ ϵ22 ·

|µ̂(2)
x − µ̂

(2)
y |2

ϵ22
+ ϵ23 ·

|µ̂(3)
x − µ̂

(3)
y |2

ϵ23

≥

√√√√min {ϵ21, ϵ22} ·max
i∈[2]

{
|µ̂(i)

x − µ̂
(i)
y |2

ϵ2i

}
+ ϵ23 ·

|µ̂(3)
x − µ̂

(3)
y |2

ϵ23

≥
√
min {ϵ21, ϵ22}+ ϵ23 ·min

{
max
i∈[2]

{
|µ̂(i)

x − µ̂
(i)
y |

ϵi

}
,
|µ̂(3)

x − µ̂
(3)
y |

ϵ3

}

= −
√
min {ϵ21, ϵ22}+ ϵ23 ·max

{
min
i∈[2]

{
−|µ̂

(i)
x − µ̂

(i)
y |

ϵi

}
,−|µ̂

(3)
x − µ̂

(3)
y |

ϵ3

}
= −

√
min {ϵ21, ϵ22}+ ϵ23 · Π̃group

ϵ,ωΘ
.
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For lp norm privacy with p = 1, we have

∆̃ ≥
√(

µ̂
(1)
x − µ̂

(1)
y

)2
+
(
µ̂
(2)
x − µ̂

(2)
y

)2
+
(
µ̂
(3)
x − µ̂

(3)
y

)2
≥
√
3

3

(
|µ̂(1)

x − µ̂(1)
y |+ |µ̂(2)

x − µ̂(2)
y |+ |µ̂(3)

x − µ̂(3)
y |
)

=

√
3

3
ε1 ·

(
|µ̂(1)

x − µ̂(1)
y |+ |µ̂(2)

x − µ̂(2)
y |+ |µ̂(3)

x − µ̂(3)
y |
)
/ε1

= −
√
3

3
ε1 · Π̃l1

ϵ,ωΘ
.

For lp norm privacy with p =∞, we have

∆̃ ≥
√(

µ̂
(1)
x − µ̂

(1)
y

)2
+
(
µ̂
(2)
x − µ̂

(2)
y

)2
+
(
µ̂
(3)
x − µ̂

(3)
y

)2
≥ max

i∈[3]

{
|µ̂(i)

x − µ̂(i)
y |
}

≥ ε∞ ·max
i∈[3]

{
|µ̂(i)

x − µ̂(i)
y |
}
/ε∞

= −ε∞ · Π̃l∞
ϵ,ωΘ

.

C CASE STUDIES UNDER UNION PRIVACY

In this section, we instantiate the general result from §4 on Gaussian distributions with multiple
secrets. For each distribution setting, we establish the distortion lower bound, devise a data release
mechanism, and assess its privacy-distortion performance. In App. C.4, we demonstrate how to
extend the data release mechanism to accommodate dataset input/output when the data holder does
not know distribution parameters.

C.1 SECRETS = MEAN AND STANDARD DEVIATION, DISTRIBUTION = 1-DIMENSIONAL
GAUSSIAN

As a starting point, we show how to protect mean µ and standard deviation (SD) σ of a one-
dimensional Gaussian distribution with θ = (µ, σ). Note that for the 1D Gaussian distribution,
as it can be entirely characterized by parameters µ and σ, protecting both parameters is equivalent to
protecting all statistical properties of the distribution. We instantiate the privacy-distortion tradeoff
lower bound in Prop. C.1.
Proposition C.1. For 1-dimensional Gaussian distribution with θ = (µ, σ), consider the secrets
g1(θ) = µ, g2(θ) = σ. For any T ∈ (0, 1), when Πϵ,ωΘ

≤ T ,

∆ >
√
2 ·
⌈

1

1−
√
1− T

− 1

⌉
·
√
ϵ1ϵ2.

The proof is shown in App. C.5.1. We then design a data release mechanism to approximate the
tradeoff lower bound. Intuitively, we partition the ranges of possible values of µ and σ into intervals
of lengths sµ and sσ respectively. The mechanism then outputs the midpoints of the respective
intervals into which the original µ and σ fit. Precisely, the designed mechanism is shown in Alg. 1.

For the mechanism privacy-distortion analysis, we consider the case where the prior distributions of
parameters µ and σ are uniform.
Proposition C.2 (Mechanism privacy-distortion tradeoff). Under the assumption that parameters
µ, σ follow the uniform distribution, Alg. 1 has

Πϵ,ωΘ
=

2ϵ1
sµ

+
2ϵ2
sσ
− 2ϵ1

sµ
· 2ϵ2
sσ

,

∆ =
1

2

√
s2µ + s2σ < cϵ,s ·∆opt,

14
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Algorithm 1: Data release mechanism for 1-dimensional Gaussian with secrets as mean and SD.

Input: θ = (µ, σ), lower bound µ of µ, lower bound σ for σ, quantization intervals sµ, sσ .

1 µ′ ← µ+
(
⌊µ−µ

sµ
⌋+ 0.5

)
· sµ;

2 σ′ ← σ +
(
⌊σ−σ

sσ
⌋+ 0.5

)
· sσ;

3 Output Gaussian distribution with θ′ = (µ′, σ′).

where cϵ,s is a constant that depends on tolerance ranges and the interval lengths of the mechanism,
and ∆opt is the optimal achievable distortion under the privacy achieved by Alg. 1.

The proof is shown in App. C.5.2. Prop. C.2 shows that Alg. 1 achieves order-optimal privacy-
distortion performance with a constant multiplication factor.

C.2 SECRETS = {MEAN, SD}d, DISTRIBUTION = MULTIVARIATE GAUSSIAN WITH
DIMENSIONALLY INDEPENDENT VARIABLES

In practice, data often exhibits high dimensionality. In this section, we focus on k-dimensional Gaus-
sian distribution (k ∈ Z+) with dimensionally independent variables (i.e., with diagonal covariance
matrix), represented by distribution parameters θ = (µ1, · · · , µk, σ1, · · · , σk). We defer the general
analysis of multivariate Gaussian distribution in App. C.3. We aim to protect d secrets (d ≤ 2k),
where each secret can represent either mean or standard deviation of any dimension within the dis-
tribution, i.e., gi ∈ {µ1, · · · , µk, σ1, · · · , σk} , ∀i ∈ [d]. We first instantiate the privacy-distortion
lower bound in Prop. C.3.

Proposition C.3. For k-dimensional Gaussian distribution with diagonal covariance matrix and
distribution parameters θ = (µ1, · · · , µk, σ1, · · · , σk), consider d secrets (d ≤ 2k), where each
secret satisfies gi(θ) ∈ {µ1, · · · , µk, σ1, · · · , σk}, ∀i ∈ [d]. For any T ∈ (0, 1), when Πϵ,ωΘ

≤ T ,

∆ >
√
d ·

⌈
1

1− (1− T )
1/d
− 1

⌉
·

∏
i∈[d]

ϵi

1/d

.

The proof is shown in App. C.5.3. Next, we provide a data release mechanism that approximates
the tradeoff lower bound. Similar to Alg. 1, we design quantization mechanism to divide the range
of possible secret values into intervals with lengths sgi for each secret gi, i ∈ [d]. The mechanism
outputs the midpoints of the intervals within which the original secrets reside. Precisely, we provide
the mechanism in Alg. 2.

Algorithm 2: Data release mechanism for dimensionally independent multivariate Gaussian
with d secrets.

Input: θ = (µ1, · · · , µk, σ1, · · · , σk), lower bound gi for secret gi, quantization interval sgi ,
∀i ∈ [d].

1 for each i ∈ [d]: g′i(θ)← gi +
(
⌊ gi(θ)−gi

sgi
⌋+ 0.5

)
· sgi ;

2 Output Gaussian distribution with secret parameter gi as g′i(θ), ∀i ∈ [d], and non-secret
parameters as the original values.

For the mechanism performance analysis, we assume that the prior distributions of secret distribution
parameters g1, · · · , gd are uniform.
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Proposition C.4 (Mechanism privacy-distortion tradeoff). Under the assumption that secret distri-
bution parameters g1, · · · , gd follow the uniform distribution, Alg. 2 has

Πϵ,ωΘ
= 1−

∏
i∈[d]

(
1− 2ϵi

sgi

)
,

∆ =
1

2

√∑
i∈[d]

sgi
2 < cϵ,s ·∆opt.

where cϵ,s is a constant depending on tolerance ranges and the interval lengths of the mechanism,
and ∆opt is the optimal achievable distortion under the privacy achieved by Alg. 2.

The proof is shown in App. C.5.4. From Prop. C.4 we know that Alg. 2 is order-optimal with
constant multiplication factor.

C.3 SECRETS = {MEAN, SD}d , DISTRIBUTION = MULTIVARIATE GAUSSIAN

In this section, we first focus on 2-dimensional Gaussian distribution, and then generalize the data
release mechanism for multivariate Gaussian distribution.

For 2-dimensional Gaussian distribution N (µ,Σ), the distribution parameters can be represented
as µ = [µ1, µ2], and

Σ =

[
σ2
1 σ12

σ21 σ2
2

]
=

[
cosα − sinα
sinα cosα

] [
λ1 0
0 λ2

] [
cosα sinα
− sinα cosα

]
,

where α ∈ [0, π). We can see that the 2-dimensional Gaussian distribution is determined by five
independent parameters θ = (µ1, µ2, λ1, λ2, α). We consider d secrets, where d ≤ 4, and each
secret can be either mean or standard deviation of any dimension of the distribution, i.e., gi ∈
{µ1, µ2, σ1, σ2} , ∀i ∈ [d]. Let G = {gi}i∈[d] be the secret set. We first instantiate the privacy-
distortion tradeoff lower bound for 2-dimensional Gaussian in Prop. C.5.
Proposition C.5. For 2-dimensional Gaussian distribution with distribution parameters θ =
(µ1, µ2, λ1, λ2, α), consider d secrets (d ≤ 4), where each secret satisfies gi(θ) ∈ {µ1, µ2, σ1, σ2},
∀i ∈ [d]. For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T ,

∆ >
√
d ·

⌈
1

1− (1− T )
1/d
− 1

⌉
·

∏
i∈[d]

ϵi

1/d

.

The proof is shown in App. C.5.5. We then design a quantization data release mechanism to ap-
proximate the tradeoff lower bound. Intuitively, if the secret is a mean µi (i ∈ {1, 2}), we partition
the range of possible values of it into intervals of lengths sµi

. Otherwise, we divide the ranges of
possible values of

√
λ1,
√
λ2 into intervals of lengths sa and sb. The mechanism then outputs the

midpoints of the respective intervals into which the original distribution parameters fit. Precisely,
the designed mechanism is shown in Alg. 3. Here we use independent parameters (µ1, µ2, λ1, λ2, α)
so that the attacker cannot infer the value of a parameter based on any other parameters.

For the mechanism privacy-distortion analysis, we consider the case where the prior distributions of
parameters µ1, µ2,

√
λ1,
√
λ2 are uniform.

Proposition C.6 (Mechanism privacy-distortion tradeoff). Under the assumption that the distribu-
tion parameters µ1, µ2,

√
λ1,
√
λ2 follow the uniform distribution, Alg. 3 has

Πϵ,ωΘ
≤ Pµ + Pσ − PµPσ,

∆ =
1

2

√ ∑
i:µi∈G

s2µi
+ 1{σ1,σ2}∩G≠∅ · (s2a + s2b),

where Pµ = 1 −
∏

i={1,2}

(
1− 1µi∈G ·

2ϵµi

sµi

)
, Pσ = 1(σ1∈G)∩(σ2 ̸∈G) · Pσ1

+ 1(σ1 ̸∈G)∩(σ2∈G) ·

Pσ2 + 1(σ1∈G)∩(σ2∈G) · Pσ1,σ2 , Pσ1 = 1 − 1(
L

(α)
σ1

>0
)
∩
(
L

(β)
σ1

>0
) · 1

2L
(α)
σ1 L

(β)
σ1 /sasb, Pσ2 =
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Algorithm 3: Data release mechanism for 2-dimensional Gaussian with d secrets.

Input : θ = (µ1, µ2, λ1, λ2, α), lower bounds µ1, µ2, a, b for parameters
µ1, µ2, a =

√
λ1, b =

√
λ2, quantization intervals sµ1

, sµ2
, sa, sb, secret set G.

1 for each i ∈ {1, 2}:
2 if µi ∈ G: µ′

i ← µi +
(
⌊µi−µi

sµi
⌋+ 0.5

)
· sµi

;

3 else: µ′
i ← µi;

4 if {σ1, σ2} ∩ G ̸= ∅:
5 a′ ← a+

(
⌊a−a

sa
⌋+ 0.5

)
· sa;

6 b′ ← b+
(
⌊ b−b

sb
⌋+ 0.5

)
· sb;

7 else: a′ ← a, b′ ← b;

Output: Gaussian distribution with parameter θ′ =
(
µ′
1, µ

′
2, a

′2, b′
2
, α
)

.

1 − 1(
L

(α)
σ2

>0
)
∩
(
L

(β)
σ2

>0
) · 1

2L
(α)
σ2 L

(β)
σ2 /sasb, Pσ1,σ2

= 1 − 1(
L

(α)
σ1,σ2

>0
)
∩
(
L

(β)
σ1,σ2

>0
) ·

1
2L

(α)
σ1,σ2L

(β)
σ1,σ2/sasb, and

L(α)
σ1

= sa − 2
ϵσ1

cosα
−
√
2ϵσ1

cosα, L(β)
σ1

= sb − 2
ϵσ1

sinα
−
√
2ϵσ1

sinα,

L(α)
σ2

= sa − 2
ϵσ2

sinα
−
√
2ϵσ2

sinα, L(β)
σ2

= sb − 2
ϵσ2

cosα
−
√
2ϵσ2

cosα,

L(α)
σ1,σ2

= sa −max
{ ϵσ1

cosα
,
ϵσ2

sinα

}
−max

{ ϵσ1

cosα
+
√
2ϵσ1

cosα,
ϵσ2

sinα
+
√
2ϵσ2

sinα
}
,

L(β)
σ1,σ2

= sb −max
{ ϵσ1

sinα
,
ϵσ2

cosα

}
−max

{ ϵσ1

sinα
+
√
2ϵσ1 sinα,

ϵσ2

cosα
+
√
2ϵσ2 cosα

}
.

The proof is shown in App. C.5.9.

Drawing upon the similar idea used in the data release mechanism for 2-dimensional Gaussian dis-
tribution, we proceed to design a general mechanism suitable for multivariate Gaussian distributions
as follows.

For a k-dimensional Gaussian distribution (k ∈ Z+), it can be fully characterized by 3k − 1 in-
dependent parameters denoted as θ = (µ1, · · · , µk, λ1, · · · , λk, α1, · · · , αk−1). Here, µ1, · · · , µk

represent the means, while λ1, · · · , λk and α1, · · · , αk−1 correspond to the eigenvalues and eigen-
vectors of the covariance matrix, respectively. We consider d secrets, where d ≤ 2k, and
each secret can be either mean or standard deviation of any dimension of the distribution, i.e.,
gi ∈ {µ1, · · · , µk, σ1, · · · , σk} , ∀i ∈ [d]. Let G = {gi}i∈[d] be the secret set.

Similar to Alg. 3, we design a quantization data release mechanism. If a secret is mean µi (i ∈ [k]),
we partition the range of possible values of it into intervals of lengths sµi . Otherwise, we divide the
ranges of possible values for

√
λ1, · · · ,

√
λk into intervals with lengths sa1 , · · · , sak

. Subsequently,
this mechanism outputs the midpoints of the respective intervals into which the original distribution
parameters fit. Precisely, the designed mechanism is shown in Alg. 4.

C.4 EXTENDING DATA RELEASE MECHANISMS TO ACCOMMODATE DATASET
INPUT/OUTPUT

In practice, the data holder may only possess the dataset without knowing the distribution param-
eters. Similar to Lin et al. (2023), our data release mechanisms can be easily extended for dataset
input/output. Briefly, the data holder estimates the parameters θ from the data and maps them to
corresponding intervals. Once the released parameters θ′ are determined, each sample is adjusted to
conform to the distribution characterized by θ′.

We take Alg. 1 as an example to demonstrate the extension process. For a dataset X =
{x1, . . . , xm}, the concrete steps of the extended mechanism are:
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Algorithm 4: Data release mechanism for multivariate Gaussian with d secrets.

Input : θ = (µ1, · · · , µk, λ1, · · · , λk, α1, · · · , αk−1), lower bounds µ1, · · · , µk, a1, · · · , ak
for parameters µ1, · · · , µk, a1 =

√
λ1, · · · , ak =

√
λk, quantization intervals

sµ1
, · · · , sµk

, sa1
, · · · , sak

, secret set G.

1 for each i ∈ [k]:

2 if µi ∈ G: µ′
i ← µi +

(
⌊µi−µi

sµi
⌋+ 0.5

)
· sµi

;

3 else: µ′
i ← µi;

4 if {σ1, · · · , σk} ∩ G ̸= ∅:
5 for each i ∈ [k]: a′i ← ai +

(
⌊ai−ai

sai
⌋+ 0.5

)
· sai ;

6 else: for each i ∈ [k]: a′i ← ai;
Output: Gaussian distribution with parameter

θ′ =
(
µ′
1, · · · , µ′

k, a
′
1
2
, · · · , a′k

2
, α1, · · · , αk−1

)

1. Calculate the empirical mean and standard deviation from the dataset: µ̂ = 1
m

∑
i∈[m] xi,

σ̂ =
√

1
m

∑
i∈[m] (xi − µ̂)

2.

2. Determine the indices i, j of the intervals that µ̂, σ̂ fall: i = ⌊ µ̂−µ

sµ
⌋, j = ⌊ σ̂−σ

sσ
⌋.

3. Determine the released parameters: µr = µ+
(
i+ 1

2

)
· sµ, σr = σ +

(
j + 1

2

)
· sσ .

4. Modify each sample xi as x′
i = σr

σ̂ (xi − µ̂) + µr, and release the dataset X ′ =
{x′

1, . . . , x
′
m}.

This mechanism can also be integrated with generative models to alter the summary statistical prop-
erties of training samples or the generated dataset.

C.5 PROOFS

C.5.1 PROOF OF PROP. C.1

Proof. Define θ′ = (µ′, σ′). For the 1-dimensional Gaussian, we have

D (Xθ, Xθ′) =
1

2
D
(
ωXθ
∥ωXθ′

)
=

1

2

√
(µ− µ′)

2
+ (σ − σ′)

2
.

We can get that

D (Xθ, Xθ′)

R (Xθ, Xθ′)
=

√
(µ− µ′)

2
+ (σ − σ′)

2

2
√

(µ− µ′) (σ − σ′)

=
1

2

√
µ− µ′

σ − σ′ +
σ − σ′

µ− µ′

≥
√
2

2
.

Hence, we have

γ = inf
θ,θ′∈Supp(ωΘ)

D (Xθ, Xθ′)

R (Xθ, Xθ′)
=

√
2

2
.

Based on Thm. 4.1, we can get that

∆ >
√
2 ·
⌈

1

1−
√
1− T

− 1

⌉
·
√
ϵ1ϵ2.
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C.5.2 PROOF OF PROP. C.2

Proof. We can easily can get that the distortion ∆ of Alg. 1 is

∆ =

√(sµ
2

)2
+
(sσ
2

)2
=

1

2

√
s2µ + s2σ.

Since µ and σ are independent distribution parameters and follow the uniform distributions, we can
get that the privacy of Alg. 1 is

Πϵ,ωΘ
= sup

ĝ
P

⋃
i∈[2]

|ĝi (θ′)− gi (θ)| ≤ ϵi


= 1− sup

ĝ
P

⋂
i∈[2]

|ĝi (θ′)− gi (θ)| > ϵi


= 1− sup

ĝ

∏
i∈[2]

P (|ĝi (θ′)− gi (θ)| > ϵi)

= 1−
∏
i∈[2]

(
1− 2ϵi

sgi

)
=

2ϵ1
sµ

+
2ϵ2
sσ
− 2ϵ1

sµ
· 2ϵ2
sσ

.

From Prop. C.3, we know that the optimal achievable distortion ∆opt satisfy

∆opt >
√
2 ·

⌈
1

1−
√
1−Πϵ,ωΘ

− 1

⌉
·
√
ϵ1ϵ2

=
√
2 ·


1

1−
∏

i∈[2]

(
1− 2ϵi

sgi

)1/2 − 1

 ·
√
ϵ1ϵ2.

Let k = ∆
∆opt

, xi =
ϵi
sgi

,∀i ∈ [2], c1 = min {x1, x2}, and c2 = max {x1, x2}, we have

k <

√
s2µ + s2σ

2
√
2 ·

⌈
1

1−
∏

i∈[2]

(
1− 2ϵi

sgi

)1/2 − 1

⌉
· √ϵ1ϵ2

=

√(
ϵ1
x1

)2
+
(

ϵ2
x2

)2
2
√
2 ·
⌈

1
1−

∏
i∈[2](1−2xi)

1/2 − 1

⌉
· √ϵ1ϵ2

≤
√
ϵ21 + ϵ22 · c2

c1(1− 2c2)
√
2ϵ1ϵ2

=

√
ϵ21 + ϵ22√
2ϵ1ϵ2

· c2
c1(1− 2c2)

.

Let cϵ =

√
ϵ21+ϵ22√
2ϵ1ϵ2

, a constant depending on the values of tolerance ranges. Denoting cϵ,s =
cϵc2

c1(1−2c2)
, we can finally get that

∆ = k∆opt < cϵ,s∆opt,
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where cϵ,s is a constant depending on tolerance ranges and the interval lengths of the mechanism.

Specifically, when ϵ1 = ϵ2, and the designed data released mechanism satisfies ϵ1
sµ

= ϵ2
sσ
≤ 1

4 , we
can get that ∆ < 2∆opt.

C.5.3 PROOF OF PROP. C.3

Proof. Define θ′ = (µ′
1, · · · , µ′

k, σ
′
1, · · · , σ′

k). We first provide the lemma as follows.

Lemma C.7. D (Xθ, Xθ′) can be derived as:

D (Xθ, Xθ′) =
1

2

√∑
j∈[k]

(
µj − µ′

j

)2
+
∑
j∈[k]

(
σj − σ′

j

)2
.

The proof is in App. C.5.3.

Based on Lemma C.7, we can get that

D (Xθ, Xθ′)

R (Xθ, Xθ′)
≥

√∑
j∈[k]

(
µj − µ′

j

)2
+
∑

j∈[k]

(
σj − σ′

j

)2
2
∏

i∈[d]|gi(θ)− gi(θ′)|1/d

≥

√∑
i∈[d] (gi(θ)− gi(θ′))

2

2
∏

i∈[d]|gi(θ)− gi(θ′)|1/d

=
1

2

√√√√∑
i∈[d] (gi(θ)− gi(θ′))

2∏
i∈[d]|gi(θ)− gi(θ′)|2/d

≥ 1

2

√√√√d ·
∏

i∈[d]|gi(θ)− gi(θ′)|2/d∏
i∈[d]|gi(θ)− gi(θ′)|2/d

=

√
d

2
.

Therefore, we have

γ = inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
=

√
d

2
.

Based on Thm. 4.1, we can get that

∆ >
√
d ·

⌈
1

1− (1− T )
1/d
− 1

⌉
·

∏
i∈[d]

ϵi

1/d

.

Proof of Lemma C.7

Proof. From Givens & Shortt (1984), we have

D
(
ωXθ
∥ωXθ′

)2
=
∑
j∈[k]

(
µj − µ′

j

)2
+Tr

(
Σ+ Σ′ − 2

(
Σ

1
2Σ′Σ

1
2

) 1
2

)
,
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where diagonal covariance matrices Σ,Σ′ are Σ =


σ2
1

σ2
2

. . .
σ2
k

 and Σ′ =


σ′
1
2

σ′
2
2

. . .
σ′
k
2

. We can get that

Σ+ Σ′ − 2
(
Σ

1
2Σ′Σ

1
2

) 1
2

=


σ1

2 + σ′
1
2

σ2
2 + σ′

2
2

. . .
σk

2 + σ′
k
2

− 2


σ1

2σ′
1
2

σ2
2σ′

2
2

. . .
σk

2σ′
k
2


1
2

=


(σ1 − σ′

1)
2

(σ2 − σ′
2)

2

. . .
(σk − σ′

k)
2

 .

Therefore, we can get that

D
(
ωXθ
∥ωXθ′

)2
=
∑
j∈[k]

(
µj − µ′

j

)2
+Tr

(
Σ+ Σ′ − 2

(
Σ

1
2Σ′Σ

1
2

) 1
2

)
=
∑
j∈[k]

(
µj − µ′

j

)2
+
∑
j∈[k]

(
σj − σ′

j

)2
.

Hence, we have

D (Xθ, Xθ′) =
1

2

√∑
j∈[k]

(
µj − µ′

j

)2
+
∑
j∈[k]

(
σj − σ′

j

)2
.

C.5.4 PROOF OF PROP. C.4

Proof. Based on Lemma C.7, we can easily can get that the distortion ∆ of Alg. 2 is

∆ =
1

2

√∑
i∈[d]

sgi
2.

Since the secret distribution parameters are independent of each other and follow the uniform distri-
butions, we can get that the privacy of Alg. 2 is

Πϵ,ωΘ = sup
ĝ

P

⋃
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi


= 1− sup

ĝ
P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| > ϵi


= 1− sup

ĝ

∏
i∈[d]

P (|ĝi (θ′)− gi (θ)| > ϵi)

= 1−
∏
i∈[d]

(
1− 2ϵi

sgi

)
.
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From Prop. C.3, we know that the optimal achievable distortion ∆opt satisfy

∆opt >
√
d ·

⌈
1

1− (1−Πϵ,ωΘ
)
1/d
− 1

⌉
·

∏
i∈[d]

ϵi

1/d

=
√
d ·


1

1−
∏

i∈[d]

(
1− 2ϵi

sgi

)1/d − 1

 ·
∏

i∈[d]

ϵi

1/d

.

Let k = ∆
∆opt

, xi =
ϵi
sgi

,∀i ∈ [d], c1 = mini∈[d] {xi}, and c2 = maxi∈[d] {xi}, we have

k <

√∑
i∈[d] sgi

2

2
√
d ·

⌈
1

1−
∏

i∈[d]

(
1− 2ϵi

sgi

)1/d − 1

⌉
·
(∏

i∈[d] ϵi

)1/d

=

√∑
i∈[d]

(
ϵi
xi

)2
2
√
d ·
⌈

1
1−

∏
i∈[d](1−2xi)

1/d − 1

⌉
·
(∏

i∈[d] ϵi

)1/d
≤

c2
√∑

i∈[d] ϵ
2
i

c1(1− 2c2)
√
d
(∏

i∈[d] ϵi

)1/d
=

√
1
d

∑
i∈[d] ϵ

2
i(∏

i∈[d] ϵi

)1/d · c2
c1(1− 2c2)

.

Let cϵ =

√
1
d

∑
i∈[d] ϵ

2
i

(
∏

i∈[d] ϵi)
1/d , and we can easily get that cϵ ≤ maxi,j∈[d]

{
ϵi
ϵj

}
, a constant depending on

the values of tolerance ranges. Denoting cϵ,s =
cϵc2

c1(1−2c2)
, we can finally get that

∆ = k∆opt < cϵ,s∆opt,

where cϵ,s is a constant depending on tolerance ranges and the interval lengths of the mechanism.

Specifically, when ϵ1 = · · · = ϵd, and the designed data released mechanism satisfy ϵ1
sg1

= · · · =
ϵg
sgd
≤ 1

4 , we can get that ∆ < 2∆opt.

C.5.5 PROOF OF PROP. C.5

Proof. Let θ′ = (µ′
1, µ

′
2, λ

′
1, λ

′
2, α

′). From Givens & Shortt (1984), we have

D
(
ωXθ
∥ωXθ′

)2
= (µ1 − µ′

1)
2
+ (µ2 − µ′

2)
2
+Tr

(
Σ+ Σ′ − 2

(
Σ

1
2Σ′Σ

1
2

) 1
2

)
.

We provide a lower bound on D
(
ωXθ
∥ωXθ′

)
in Lemma C.8.

Lemma C.8. D
(
ωXθ
∥ωXθ′

)2
can be lower bounded as

D
(
ωXθ
∥ωXθ′

)2 ≥ (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+ (σ1 − σ′

1)
2
+ (σ2 − σ′

2)
2
.

The proof is shown in App. C.5.6.
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Based on Lemma C.8, we can get that

D (Xθ, Xθ′)

R (Xθ, Xθ′)
≥

√∑
j∈[2]

(
µj − µ′

j

)2
+
∑

j∈[2]

(
σj − σ′

j

)2
2
∏

i∈[d]|gi(θ)− gi(θ′)|1/d

≥

√∑
i∈[d] (gi(θ)− gi(θ′))

2

2
∏

i∈[d]|gi(θ)− gi(θ′)|1/d

=
1

2

√√√√∑
i∈[d] (gi(θ)− gi(θ′))

2∏
i∈[d]|gi(θ)− gi(θ′)|2/d

≥ 1

2

√√√√d ·
∏

i∈[d]|gi(θ)− gi(θ′)|2/d∏
i∈[d]|gi(θ)− gi(θ′)|2/d

=

√
d

2
.

C.5.6 PROOF OF LEMMA C.8

Proof. To proof Lemma C.8, we first provide two lemmas as follows.

Lemma C.9. D
(
ωXθ
∥ωXθ′

)2
can be derived as:

D
(
ωXθ
∥ωXθ′

)2
=(µ1 − µ′

1)
2
+ (µ2 − µ′

2)
2
+ λ1 + λ′

1 + λ2 + λ′
2

− 2

√
(λ1λ′

1 + λ2λ′
2) cos

2 (α− α′) + (λ1λ′
2 + λ2λ′

1) sin
2 (α− α′) + 2

√
λ1λ′

1λ2λ′
2.

The proof is shown in App. C.5.7.

Lemma C.10.

σ1σ
′
1 + σ2σ

′
2 ≥

√
(λ1λ′

1 + λ2λ′
2) cos

2 (α− α′) + (λ1λ′
2 + λ2λ′

1) sin
2 (α− α′) + 2

√
λ1λ′

1λ2λ′
2.

The proof is in App. C.5.8

Based on Lemma C.9 and Lemma C.10, we have

D
(
ωXθ
∥ωXθ′

)2
= (µ1 − µ′

1)
2
+ (µ2 − µ′

2)
2
+ λ1 + λ′

1 + λ2 + λ′
2

− 2

√
(λ1λ′

1 + λ2λ′
2) cos

2 (α− α′) + (λ1λ′
2 + λ2λ′

1) sin
2 (α− α′) + 2

√
λ1λ′

1λ2λ′
2

= (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+ σ2

1 + σ2
2 + σ′

1
2
+ σ′

2
2

− 2

√
(λ1λ′

1 + λ2λ′
2) cos

2 (α− α′) + (λ1λ′
2 + λ2λ′

1) sin
2 (α− α′) + 2

√
λ1λ′

1λ2λ′
2

≥ (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+ σ2

1 + σ2
2 + σ′

1
2
+ σ′

2
2 − 2σ1σ

′
1 − 2σ2σ

′
2

= (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+ (σ1 − σ′

1)
2
+ (σ2 − σ′

2)
2
.

C.5.7 PROOF OF LEMMA C.9

Proof. Define A =
(
Σ

1
2Σ′Σ

1
2

) 1
2

, and we have

(TrA)
2
= Tr

(
A2
)
+ 2det (A) .
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We can get that

Tr
(
A2
)
= Tr

(
Σ

1
2Σ′Σ

1
2

)
= Tr

(
Σ

1
2Σ

1
2Σ′
)
= Tr (ΣΣ′) ,

where

ΣΣ′ =

[
cosα − sinα
sinα cosα

] [
λ1 0
0 λ2

] [
cosα sinα
− sinα cosα

] [
cosα′ − sinα′

sinα′ cosα′

] [
λ′
1 0
0 λ′

2

] [
cosα′ sinα′

− sinα′ cosα′

]
=

[
λ1 cosα −λ2 sinα
λ1 sinα λ2 cosα

] [
cos (α′ − α) − sin (α′ − α)
sin (α′ − α) cos (α′ − α)

] [
λ′
1 cosα

′ λ′
1 sinα

′

−λ′
2 sinα

′ λ′
2 cosα

′

]
.

Therefore, we have

Tr
(
A2
)
= Tr (ΣΣ′)

= λ1λ
′
1 cosα cosα′ cos (α′ − α)− λ2λ

′
1 sinα cosα′ sin (α′ − α) + λ1λ

′
2 cosα sinα′ sin (α′ − α)

+ λ2λ
′
2 sinα sinα′ cos (α′ − α) + λ1λ

′
1 sinα sinα′ cos (α′ − α) + λ2λ

′
1 cosα sinα′ sin (α′ − α)

− λ1λ
′
2 sinα cosα′ sin (α′ − α) + λ2λ

′
2 cosα cosα′ cos (α′ − α)

= (λ1λ
′
1 + λ2λ

′
2) cos

2 (α− α′) + (λ1λ
′
2 + λ2λ

′
1) sin

2 (α− α′) .

As for det (A), we have

det (A) =
√
det (A2) =

√
det
(
Σ

1
2Σ′Σ

1
2

)
=
√
det (Σ) det (Σ′) =

√
λ1λ′

1λ2λ′
2.

Therefore, we have

(TrA)
2
= Tr

(
A2
)
+ 2det (A)

= (λ1λ
′
1 + λ2λ

′
2) cos

2 (α− α′) + (λ1λ
′
2 + λ2λ

′
1) sin

2 (α− α′) + 2
√
λ1λ′

1λ2λ′
2.

Hence,

D
(
ωXθ
∥ωXθ′

)2
= (µ1 − µ′

1)
2
+ (µ2 − µ′

2)
2
+Tr (Σ + Σ′ − 2A)

= (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+Tr (Σ) + Tr (Σ′)− 2Tr (A)

= (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+ λ1 + λ′

1 + λ2 + λ′
2

− 2

√
(λ1λ′

1 + λ2λ′
2) cos

2 (α− α′) + (λ1λ′
2 + λ2λ′

1) sin
2 (α− α′) + 2

√
λ1λ′

1λ2λ′
2.

C.5.8 PROOF OF LEMMA C.10

Proof. Let a =
√
λ1, b =

√
λ2, ã =

√
λ′
1 and b̃ =

√
λ′
2. We can get that

A ≜ σ1σ
′
1 + σ2σ

′
2 =

√(
a2 cos2 α+ b2 sin2 α

) (
ã2 cos2 α′ + b̃2 sin2 α′

)
+

√(
a2 sin2 α+ b2 cos2 α

) (
ã2 sin2 α′ + b̃2 cos2 α′

)
,

and

B ≜
√

(λ1λ′
1 + λ2λ′

2) cos
2 (α− α′) + (λ1λ′

2 + λ2λ′
1) sin

2 (α− α′) + 2
√
λ1λ′

1λ2λ′
2

=

√(
aã+ bb̃

)2
cos2 (α− α′) +

(
ab̃+ bã

)2
sin2 (α− α′).

We then can derive that

A2 −B2 = 2

√(
a2 cos2 α+ b2 sin2 α

) (
ã2 cos2 α′ + b̃2 sin2 α′

) (
a2 sin2 α+ b2 cos2 α

) (
ã2 sin2 α′ + b̃2 cos2 α′

)
− 2aãbb̃− 2 cosα cosα′ sinα sinα′

(
a2ã2 + b2b̃2 − a2b̃2 − b2ã2

)
.
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Let

C ≜

√(
a2 cos2 α+ b2 sin2 α

) (
ã2 cos2 α′ + b̃2 sin2 α′

) (
a2 sin2 α+ b2 cos2 α

) (
ã2 sin2 α′ + b̃2 cos2 α′

)
,

D ≜ aãbb̃+ cosα cosα′ sinα sinα′
(
a2ã2 + b2b̃2 − a2b̃2 − b2ã2

)
.

We can get that

C2 = a2ã2b2b̃2
(
cos4 α+ sin4 α

) (
cos4 α′ + sin4 α′)+ a4ã2b̃2 cos2 α sin2 α

(
cos4 α′ + sin4 α′)

+ a2b2b̃4 cos2 α′ sin2 α′ (cos4 α+ sin4 α
)
+ ã2b4b̃2 cos2 α sin2 α

(
cos4 α′ + sin4 α′)

+ a2ã4b2 cos2 α′ sin2 α′ (cos4 α+ sin4 α
)

= a2ã2b2b̃2
(
1− 2 cos2 α sin2 α

) (
1− 2 cos2 α′ sin2 α′)+ (a4 + b4

)
ã2b̃2 cos2 α sin2 α

(
1− 2 cos2 α′ sin2 α′)

+
(
ã4 + b̃4

)
a2b2 cos2 α′ sin2 α′ (1− 2 cos2 α sin2 α

)
,

and

D2 = a2ã2b2b̃2
(
1 + 4 cos2 α cos2 α′ sin2 α sin2 α′)+ 2 cosα cosα′ sinα sinα′aãbb̃

(
a2ã2 + b2b̃2 − a2b̃2 − b2ã2

)
− 2 cos2 α cos2 α′ sin2 α sin2 α′

((
a4 + b4

)
ã2b̃2 +

(
ã4 + b̃4

)
a2b2

)
.

Then we have

C2 −D2 = cos2 α sin2 α
(
a4 + b4

)
ã2b̃2 + cos2 α′ sin2 α′

(
ã4 + b̃4

)
a2b2 − 2a2ã2b2b̃2

(
cos2 α sin2 α+ cos2 α′ sin2 α′)

− 2 cosα cosα′ sinα sinα′aãbb̃
(
a2ã2 + b2b̃2 − a2b̃2 − b2ã2

)
= cos2 α sin2 α

(
a2 − b2

)2
ã2b̃2 + cos2 α′ sin2 α′

(
ã2 − b̃2

)2
a2b2 − 2 cosα cosα′ sinα sinα′aãbb̃

(
a2 − b2

) (
ã2 − b̃2

)
≥ 2

√
cos2 α sin2 α cos2 α′ sin2 α′ã2b̃2a2b2 (a2 − b2)

2
(
ã2 − b̃2

)2
− 2 cosα cosα′ sinα sinα′aãbb̃

(
a2 − b2

) (
ã2 − b̃2

)
= 0

Since C ≥ 0, we have C ≥ D. Therefore, we have

A2 −B2 = 2 (C −D) ≥ 0.

Since A ≥ 0, we have A ≥ B, i.e.,

σ1σ
′
1 + σ2σ

′
2 ≥

√
(λ1λ′

1 + λ2λ′
2) cos

2 (α− α′) + (λ1λ′
2 + λ2λ′

1) sin
2 (α− α′) + 2

√
λ1λ′

1λ2λ′
2.

C.5.9 PROOF OF PROP. C.6

Proof. Regarding the notation, we define θ′ = (µ′
1, µ

′
2, λ

′
1, λ

′
2, α

′), a =
√
λ1, b =

√
λ2, ã =√

λ′
1, b̃ =

√
λ′
2.

As for the distortion, since α′ = α, we have

D
(
ωXθ
∥ωXθ′

)2
= (µ1 − µ′

1)
2
+ (µ2 − µ′

2)
2
+ λ1 + λ′

1 + λ2 + λ′
2

− 2

√
(λ1λ′

1 + λ2λ′
2) cos

2 (α− α′) + (λ1λ′
2 + λ2λ′

1) sin
2 (α− α′) + 2

√
λ1λ′

1λ2λ′
2

= (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+ λ1 + λ′

1 + λ2 + λ′
2 − 2

√(√
λ1λ′

1 +
√
λ2λ′

2

)2
= (µ1 − µ′

1)
2
+ (µ2 − µ′

2)
2
+ a2 + ã2 + b2 + b̃2 − 2aã− 2bb̃

= (µ1 − µ′
1)

2
+ (µ2 − µ′

2)
2
+
(
a2 − ã2

)2
+
(
b2 − b̃2

)2
.

≤ 1

4

 ∑
i:µi∈G

s2µi
+ 1{σ1,σ2}∩G≠∅ ·

(
s2a + s2b

) .
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Therefore, we have

∆ = sup
θ∈Supp(ωΘ),

θ′∈Supp(Mg(θ))

D
(
ωXθ
∥ωXθ′

)
=

1

2

√ ∑
i:µi∈G

s2µi
+ 1{σ1,σ2}∩G≠∅ · (s2a + s2b).

As for the privacy, we first provide a lemma as follows.

Lemma C.11. Let δσ1,α =
ϵσ1

cosα , δσ1,β =
ϵσ1

sinα , δσ2,α =
ϵσ2

sinα and δσ2,β =
ϵσ2

cosα . For all a, b ≥ 0,
we have √

(a+ δσ1,α)
2
cos2 α+ (b+ δσ1,β)

2
sin2 α ≥

√
a2 cos2 α+ b2 sin2 α+ ϵσ1 ,√

(a+ δσ2,α)
2
sin2 α+ (b+ δσ2,β)

2
cos2 α ≥

√
a2 sin2 α+ b2 cos2 α+ ϵσ2

.

Let δ′σ1,α =
ϵσ1

cosα +
√
2ϵσ1 cosα, δ

′
σ1,β

=
ϵσ1

sinα +
√
2ϵσ1 sinα. For all a ≥ δ′σ1,α, b ≥ δ′σ1,β

, we
have √(

a− δ′σ1,α

)2
cos2 α+

(
b− δ′σ1,β

)2
sin2 α ≤

√
a2 cos2 α+ b2 sin2 α− ϵσ1

.

Let δ′σ2,α =
ϵσ2

sinα +
√
2ϵσ2 sinα and δ′σ2,β

=
ϵσ2

cosα +
√
2ϵσ2 cosα. For all a ≥ δ′σ2,α, b ≥ δ′σ2,β

, we
have √(

a− δ′σ2,α

)2
sin2 α+

(
b− δ′σ2,β

)2
cos2 α ≤

√
a2 sin2 α+ b2 cos2 α− ϵσ2 .

The proof is shown in App. C.5.10.

Suppose the parameters Alg. 3 releases satisfy ã = a+
(
Ia +

1
2

)
· sa and b̃ = b+

(
Ib +

1
2

)
· sb, and

let the secret value gσ1
(θ) that the optimal attack strategy guesses be σ̂1. Then there exist â and b̂

that satisfy â2 cos2 α+ b̂2 sin2 α = σ̂2
1 , where{

(â < a+ Iasa) ∩
(
b̂ < b+ Ibsb

)}
∪
{
(Iasa ≤ â ≤ a+ (Ia + 1) · sa) ∩

(
b+ Ibsb ≤ b̂ ≤ b+ (Ib + 1) · sb

)}
∪
{
(â > a+ ((Ia + 1) · sa)) ∩

(
b̂ > b+ (Ib + 1) · sb

)}
= True.

The probability of the attacker guessing the secret σ1 within the tolerance range is:

P (|ĝσ1
(θ′)− gσ1

(θ)| ≤ ϵσ1
) = P

(∣∣∣∣√â2 cos2 α+ b̂2 sin2 α−
√
a2 cos2 α+ b2 sin2 α

∣∣∣∣ ≤ ϵσ1

)
Based on Lemma C.11, we have√(

â− δ′σ1,α

)2
cos2 α+

(
b̂− δ′σ1,β

)2
sin2 α ≤

√
â2 cos2 α+ b̂2 sin2 α− ϵσ1

,

when â ≥ δ′σ1,α, b̂ ≥ δ′σ1,β
, and√

(â+ δσ1,α)
2
cos2 α+

(
b̂+ δσ1,β

)2
sin2 α ≥

√
â2 cos2 α+ b̂2 sin2 α+ ϵσ1 .

Let â = a + (Ia + ta) · sa and b̂ = b + (Ib + tb) · sb, where ta, tb ∈ (−∞, 0) or ta, tb ∈ [0, 1] or
ta, tb ∈ (1,∞). Besides, the original parameter a, b satisfy a ∈ [a+ Ia · sa, a+ (Ia + 1) · sa) and
b ∈ [b+ Ib · sb, b+ (Ib + 1) · sb). Therefore, we can get that

P (|ĝσ1 (θ
′)− gσ1 (θ)| ≤ ϵσ1) = P

[(√
a2 cos2 α+ b2 sin2 α ≥

√
â2 cos2 α+ b̂2 sin2 α− ϵσ1

)
∪(√

a2 cos2 α+ b2 sin2 α ≤
√

â2 cos2 α+ b̂2 sin2 α+ ϵσ1

)]
≤ sup

â,b̂

(
1−max

{
tasa − δ′σ1,α, 0

}
·max

{
tbsb − δ′σ1,β , 0

}
/sasb

−max {(1− ta) sa − δσ1,α, 0} ·max {(1− tb) sb − δσ1,β , 0} /sasb
)
.
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Let x = tasa−δ′σ1,α, y = tbsb−δ′σ1,β
, L(α)

σ1 = sa−2
ϵσ1

cosα −
√
2ϵσ1

cosα and L
(β)
σ1 = sb−2

ϵσ1

sinα −√
2ϵσ1

sinα, we have

P (|ĝσ1
(θ′)− gσ1

(θ)| ≤ ϵσ1
) ≤ sup

x,y

(
1−max {x, 0} ·max {y, 0} /sasb

−max
{
sa − δσ1,α − δ′σ1,α − x, 0

}
·max

{
sb − δσ1,β − δ′σ1,β − y, 0

}
/sasb

)
= 1− 1

2
max

{
sa − δσ1,α − δ′σ1,α, 0

}
·max

{
sb − δσ1,β − δ′σ1,β , 0

}
/sasb

=

{
1, L

(α)
σ1 ≤ 0 or L(β)

σ1 ≤ 0

1− 1
2L

(α)
σ1 L

(β)
σ1 /sasb, otherwise

= Pσ1 .

Similarly, let L(α)
σ2 = sa − 2

ϵσ2

sinα −
√
2ϵσ2

sinα and L
(β)
σ2 = sb − 2

ϵσ2

cosα −
√
2ϵσ2

cosα, we can get
that

P (|ĝσ2 (θ
′)− gσ2 (θ)| ≤ ϵσ2) ≤ sup

â,b̂

(
1−max

{
tasa − δ′σ2,α, 0

}
·max

{
tbsb − δ′σ2,β , 0

}
/sasb

−max {(1− ta) sa − δσ2,α, 0} ·max {(1− tb) sb − δσ2,β , 0} /sasb
)

=

{
1, L

(α)
σ2 ≤ 0 or L(β)

σ2 ≤ 0

1− 1
2L

(α)
σ2 L

(β)
σ2 /sasb, otherwise

= Pσ2
.

Let L
(α)
σ1,σ2 = sa − max

{ ϵσ1

cosα ,
ϵσ2

sinα

}
− max

{ ϵσ1

cosα +
√
2ϵσ1

cosα,
ϵσ2

sinα +
√
2ϵσ2

sinα
}

and
L
(β)
σ1,σ2 = sb − max

{ ϵσ1

sinα ,
ϵσ2

cosα

}
− max

{ ϵσ1

sinα +
√
2ϵσ1

sinα,
ϵσ2

cosα +
√
2ϵσ2

cosα
}

, we can get
that

P (|ĝσ1
(θ′)− gσ1

(θ)| ≤ ϵσ1
∪ |ĝσ2

(θ′)− gσ2
(θ)| ≤ ϵσ2

)

≤ sup
â,b̂

(
1−max

{
tasa −max

{
δ′σ1,α, δ

′
σ2,α

}
, 0
}
·max

{
tbsb −max

(
δ′σ1,β , δ

′
σ2,β

)
, 0
}
/sasb

−max {(1− ta) sa −max (δσ1,α, δσ2,α) , 0} ·max {(1− tb) sb −max (δσ1,β , δσ2,β) , 0} /sasb
)

=

{
1, L

(α)
σ1,σ2 ≤ 0 or L(β)

σ1,σ2 ≤ 0

1− 1
2L

(α)
σ1,σ2L

(β)
σ1,σ2/sasb, otherwise

= Pσ1,σ2
.

Besides, we have

P (|ĝµ1 (θ
′)− gµ1 (θ)| ≤ ϵµ1) =

2ϵµ1

sµ1

,

P (|ĝµ2
(θ′)− gµ2

(θ)| ≤ ϵµ2
) =

2ϵµ2

sµ2

,

P (|ĝµ1 (θ
′)− gµ1 (θ)| ≤ ϵµ1 ∪ |ĝµ2 (θ

′)− gµ2 (θ)| ≤ ϵµ2) =
2ϵµ1

sµ1

+
2ϵµ2

sµ2

− 4ϵµ1ϵµ2

sµ1
sµ2

.

Denote Pµ = 1−
∏

i={1,2}

(
1− 1µi∈G ·

2ϵµi

sµi

)
and Pσ = 1(σ1∈G)∩(σ2 ̸∈G) ·Pσ1

+1(σ1 ̸∈G)∩(σ2∈G) ·
Pσ2

+ 1(σ1∈G)∩(σ2∈G) · Pσ1,σ2
. We can get that the privacy of Alg. 3 satisfies

Πϵ,ωΘ ≤ Pµ + Pσ − PµPσ.

27



Published as a workshop paper at ICLR 2024

C.5.10 PROOF OF LEMMA C.11

Proof. Let A =
√

(a+ δσ1,α)
2
cos2 α+ (b+ δσ1,β)

2
sin2 α and B =

√
a2 cos2 α+ b2 sin2 α +

ϵσ1 , we can get that

A2 −B2 = 2aϵσ1
cosα+ 2bϵσ1

sinα+ ϵ2σ1
− 2ϵσ1

√
a2 cos2 α+ b2 sin2 α

≥ 2aϵσ1
cosα+ 2bϵσ1

sinα+ ϵ2σ1
− 2ϵσ1

(a cosα+ b sinα)

= ϵ2σ1

≥ 0.

Since A ≥ 0, we have A ≥ B, i.e.,√
(a+ δσ1,α)

2
cos2 α+ (b+ δσ1,β)

2
sin2 α ≥

√
a2 cos2 α+ b2 sin2 α+ ϵσ1

.

Similarly, we can get that√
(a+ δσ2,α)

2
sin2 α+ (b+ δσ2,β)

2
cos2 α ≥

√
a2 sin2 α+ b2 cos2 α+ ϵσ2

.

Let C =

√(
a− δ′σ1,α

)2
cos2 α+

(
b− δ′σ1,β

)2
sin2 α, D =

√
a2 cos2 α+ b2 sin2 α − ϵσ1 . We

have

C2 −D2 = ϵ2σ1
− 2aϵσ1

cosα− 2bϵσ1
sinα+ 2ϵ2σ1

(
cos4 α+ sin4 α

)
− 2
√
2aϵσ1

cos3 α− 2
√
2bϵσ1

sin3 α+ 2
√
2ϵ2σ1

+ 2ϵσ1

√
a2 cos2 α+ b2 sin2 α

≤ ϵ2σ1
+ 2ϵ2σ1

(
cos4 α+ sin4 α

)
− 2
√
2aϵσ1 cos

3 α− 2
√
2bϵσ1 sin

3 α+ 2
√
2ϵ2σ1

≤ ϵ2σ1
+ 2ϵ2σ1

(
cos4 α+ sin4 α

)
− 2
√
2
( ϵσ1

cosα
+
√
2ϵσ1

cosα
)
ϵσ1

cos3 α

− 2
√
2
( ϵσ1

sinα
+
√
2ϵσ1

sinα
)
ϵσ1

sin3 α+ 2
√
2ϵ2σ1

= ϵ2σ1
− 2ϵ2σ1

(
cos4 α+ sin4 α

)
≤ 0.

Since D ≥ 0, we have C ≤ D, i.e.,√(
a− δ′σ1,α

)2
cos2 α+

(
b− δ′σ1,β

)2
sin2 α ≤

√
a2 cos2 α+ b2 sin2 α− ϵσ1

.

Similarly, we can get that√(
a− δ′σ2,α

)2
sin2 α+

(
b− δ′σ2,β

)2
cos2 α ≤

√
a2 sin2 α+ b2 cos2 α− ϵσ2

.

D CASE STUDIES UNDER ALTERNATIVE PRIVACY METRICS

Under intersection privacy, union privacy and lp norm privacy metrics, we instantiate the privacy-
distortion lower bounds for 1-dimensional Gaussian and multivariate Gaussian with dimensionally
independent variables, and analyze the performance of Algs. 1 and 2.

D.1 INTERSECTION PRIVACY

Under the intersection privacy metric, we first focus on the multivariate Gaussian with dimensionally
independent variables, and provide the privacy-distortion lower bound in Prop. D.1.
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Proposition D.1. For k-dimensional Gaussian distribution with diagonal covariance matrix and
distribution parameters θ = (µ1, · · · , µk, σ1, · · · , σk), consider d secrets (d ≤ 2k), where each
secret satisfies gi(θ) ∈ {µ1, · · · , µk, σ1, · · · , σk}, ∀i ∈ [d]. For any T ∈ (0, 1), when Πϵ,ωΘ

≤ T ,

∆ >
√
d ·
⌈
1

T

⌉1/d
·

∏
i∈[d]

ϵi

1/d

− 1√
d

∑
i∈[d]

ϵi.

The proof is shown in App. D.1.1. We then analyze the performance of Alg. 2 under intersection
privacy as follows.

Proposition D.2 (Mechanism privacy-distortion tradeoff under intersection privacy). Under the as-
sumption that secret distribution parameters g1, · · · , gd follow the uniform distribution, Alg. 2 has

Πϵ,ωΘ =
∏
i∈[d]

2ϵi
sgi

,

∆ =
1

2

√∑
i∈[d]

sgi
2 < cϵ,s ·∆opt.

where cϵ,s is a constant depending on tolerance ranges and the interval lengths of the mechanism,
and ∆opt is the optimal achievable distortion under the privacy achieved by Alg. 2.

The proof is shown in App. D.1.2. From Prop. D.2 we know that Alg. 2 is order-optimal with a
constant multiplication factor.

For the 1-dimensional Gaussian scenario, with similar analysis, we can easily get that the privacy-
distortion lower bound and the performance of Alg. 1 are consistent with the results presented in
Prop. D.1 and Prop. D.2 (with d = 2).

D.1.1 PROOF OF PROP. D.1

Define θ′ = (µ′
1, · · · , µ′

k, σ
′
1, · · · , σ′

k). Based on Lemma C.7, we can get that

D (Xθ, Xθ′)

R (Xθ, Xθ′)
≥

√∑
j∈[k]

(
µj − µ′

j

)2
+
∑

j∈[k]

(
σj − σ′

j

)2
2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

≥

√∑
i∈[d] (gi(θ)− gi(θ′))

2

2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

≥
1√
d

∑
i∈[d]|gi(θ)− gi(θ

′)|
2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

=

√
d

2
.

Therefore, we have

γ = inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
=

√
d

2
.

Based on Thm. 5.1, we can get that

∆ >
√
d ·
⌈
1

T

⌉1/d
·

∏
i∈[d]

ϵi

1/d

− 1√
d

∑
i∈[d]

ϵi.
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D.1.2 PROOF OF PROP. D.2

Proof. Based on Lemma C.7, we can easily can get that the distortion ∆ of Alg. 2 is

∆ =
1

2

√∑
i∈[d]

sgi
2.

Since the secret distribution parameters are independent of each other and follow the uniform distri-
butions, we can get that the privacy of Alg. 2 is

Πϵ,ωΘ
= sup

ĝ
P

⋂
i∈[d]

|ĝi (θ′)− gi (θ)| ≤ ϵi


= sup

ĝ

∏
i∈[d]

P (|ĝi (θ′)− gi (θ)| ≤ ϵi)

=
∏
i∈[d]

2ϵi
sgi

.

From Prop. D.1, we know that the optimal achievable distortion ∆opt satisfy

∆opt >
√
d ·

⌈
1∏

i∈[d]
2ϵi
sgi

⌉1/d

·

∏
i∈[d]

ϵi

1/d

− 1√
d

∑
i∈[d]

ϵi

=

√
d

2
·

∏
i∈[d]

sgi

1/d

− 1√
d

∑
i∈[d]

ϵi.

Let k = ∆
∆opt

, xi =
ϵi
sgi

,∀i ∈ [d], c1 = mini∈[d] {xi}, and c2 = maxi∈[d] {xi}, we have

k <

√∑
i∈[d] sgi

2

√
d ·
(∏

i∈[d] sgi

)1/d
− 2√

d

∑
i∈[d] ϵi

=

√∑
i∈[d]

(
ϵi
xi

)2
√
d ·
(∏

i∈[d]
ϵi
xi

)1/d
− 2√

d

∑
i∈[d] ϵi

≤
c2
√∑

i∈[d] ϵ
2
i

c1
√
d ·
(∏

i∈[d] ϵi

)1/d
− 2c1c2√

d

∑
i∈[d] ϵi

=
c2
√∑

i∈[d] ϵ
2
i /d

c1

(∏
i∈[d] ϵi

)1/d
− 2c1c2

∑
i∈[d] ϵi/d

≜ cϵ,s.

Therefore, we can get that

∆ = k∆opt < cϵ,s∆opt,

where cϵ,s is a constant depending on tolerance ranges and the interval lengths of the mechanism.

Specifically, when ϵ1 = · · · = ϵd, and the designed data released mechanism satisfy ϵ1
sg1

= · · · =
ϵg
sgd
≤ 1

4 , we can get that ∆ < 2∆opt.
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D.2 GROUP SECRETS PRIVACY

Under the group secrets privacy metric, we first focus on the multivariate Gaussian with dimension-
ally independent variables, and provide the privacy-distortion lower bound in Prop. D.3.

Proposition D.3. For k-dimensional Gaussian distribution with diagonal covariance matrix and
distribution parameters θ = (µ1, · · · , µk, σ1, · · · , σk), consider d secrets (d ≤ 2k), where each
secret satisfies gi(θ) ∈ {µ1, · · · , µk, σ1, · · · , σk}, ∀i ∈ [d]. For any T ∈ (0, 1), when Πϵ,ωΘ

≤ T ,

∆ >
√
d


1(

1− (1− T )
1/β
)β/d


∏

i∈[d]

ϵi

1/d

− 1√
d

∑
i∈[d]

ϵi.

The proof is shown in App. D.2.1. We then analyze the performance of Alg. 2 under group secrets
privacy as follows.

Proposition D.4 (Mechanism privacy-distortion tradeoff under group secrets privacy). Denote B as
the set of the secrets groups, and Ib as the secret index set of group b ∈ B. Under the assumption
that secret distribution parameters g1, · · · , gd follow the uniform distribution, Alg. 2 has

Πϵ,ωΘ = 1−
∏
b∈B

(
1−

∏
i∈Ib

2ϵi
sgi

)
,

∆ =
1

2

√∑
i∈[d]

sgi
2 < cϵ,s,B ·∆opt.

where cϵ,s,B is a constant depending on tolerance ranges, the interval lengths of the mechanism, and
the set of secret groups B. ∆opt is the optimal achievable distortion under the privacy achieved by
Alg. 2.

The proof is shown in App. D.2.2. From Prop. D.4 we know that Alg. 2 is order-optimal with a
constant multiplication factor.

For the 1-dimensional Gaussian scenario where θ = (µ, σ), when µ and σ are treated as distinct
secret groups (i.e., B = {{µ} , {σ}}), the group secrets privacy is equivalent to the union privacy. If
µ and σ are in the same secret group (i.e., B = {{µ, σ}}), the group secrets privacy is equivalent to
the intersection privacy.

D.2.1 PROOF OF PROP. D.3

Define θ′ = (µ′
1, · · · , µ′

k, σ
′
1, · · · , σ′

k). Based on Lemma C.7, we can get that

D (Xθ, Xθ′)

R (Xθ, Xθ′)
≥

√∑
j∈[k]

(
µj − µ′

j

)2
+
∑

j∈[k]

(
σj − σ′

j

)2
2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

≥

√∑
i∈[d] (gi(θ)− gi(θ′))

2

2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

≥
1√
d

∑
i∈[d]|gi(θ)− gi(θ

′)|
2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

=

√
d

2
.

Therefore, we have

γ = inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
=

√
d

2
.
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Based on Thm. 5.3, we can get that

∆ >
√
d


1(

1− (1− T )
1/β
)β/d


∏

i∈[d]

ϵi

1/d

− 1√
d

∑
i∈[d]

ϵi.

D.2.2 PROOF OF PROP. D.4

Proof. Based on Lemma C.7, we can easily can get that the distortion ∆ of Alg. 2 is

∆ =
1

2

√∑
i∈[d]

sgi
2.

Since the secret distribution parameters are independent of each other and follow the uniform distri-
butions, we can get that the privacy of Alg. 2 is

Πϵ,ωΘ
= sup

ĝ
P

(⋃
b∈B

(⋂
i∈Ib

|ĝi (θ′)− gi (θ)| ≤ ϵi

))

= 1− sup
ĝ

P

(⋂
b∈B

(⋃
i∈Ib

|ĝi (θ′)− gi (θ)| > ϵi

))

= 1− sup
ĝ

∏
b∈B

P

(⋃
i∈Ib

|ĝi (θ′)− gi (θ)| > ϵi

)

= 1−
∏
b∈B

(
1−

∏
i∈Ib

2ϵi
sgi

)
.

From Prop. D.3, we know that the optimal achievable distortion ∆opt satisfy

∆opt >
√
d


1(

1−
[∏

b∈B

(
1−

∏
i∈Ib

2ϵi
sgi

)]1/β)β/d


∏

i∈[d]

ϵi

1/d

− 1√
d

∑
i∈[d]

ϵi.

Let k = ∆
∆opt

, xi =
ϵi
sgi

,∀i ∈ [d], c1 = mini∈[d] {xi}, and c2 = maxi∈[d] {xi}, we have

k <

√∑
i∈[d]

(
ϵi
xi

)2
2
√
d

 1(
1−

[∏
b∈B

(
1−

∏
i∈Ib

2xi

)]1/β)β/d


(∏

i∈[d] ϵi

)1/d
− 2√

d

∑
i∈[d] ϵi

≤

√∑
i∈[d] ϵ

2
i

2c1
√
d · 1(

1−[
∏

b∈B(1−(2c2)
|b|)]

1/β
)β/d ·

(∏
i∈[d] ϵi

)1/d
− 2c1√

d

∑
i∈[d] ϵi

=

√∑
i∈[d] ϵ

2
i /d

2c1(
1−[

∏
b∈B(1−(2c2)

|b|)]
1/β

)β/d

(∏
i∈[d] ϵi

)1/d
− 2c1

∑
i∈[d] ϵi/d

≜ cϵ,s,B.

Therefore, we can get that

∆ = k∆opt < cϵ,s,B ·∆opt,
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where cϵ,s,B is a constant depending on the tolerance ranges, the interval lengths of the mechanism,
and the set of secret groups B.

Specifically, we can get that ∆ < 2∆opt when the size of each secret group are the same (i.e.,
|b1| = |b2|,∀b1, b2 ∈ B ), ϵ1 = · · · = ϵd, and the designed data released mechanism satisfy
ϵ1
sg1

= · · · = ϵg
sgd
≤ 1

4 .

D.3 lp NORM PRIVACY

Under the lp norm privacy metric, we first focus on the multivariate Gaussian with dimensionally
independent variables, and provide the privacy-distortion lower bound in Prop. D.5.

Proposition D.5. For k-dimensional Gaussian distribution with diagonal covariance matrix and
distribution parameters θ = (µ1, · · · , µk, σ1, · · · , σk), consider d secrets (d ≤ 2k), where each
secret satisfies gi(θ) ∈ {µ1, · · · , µk, σ1, · · · , σk}, ∀i ∈ [d]. For any T ∈ (0, 1), when Πϵ,ωΘ

≤ T ,

∆ >
√
d ·

(⌈
1

T

⌉1/d
− 1

)
· εp/d

1
p .

The proof is shown in App. D.3.1. We then analyze the performance of Alg. 2 under lp norm privacy
as follows.

Proposition D.6 (Mechanism privacy-distortion tradeoff under lp norm privacy). Under the as-
sumption that secret distribution parameters g1, · · · , gd follow the uniform distribution, Alg. 2 has

Πϵ,ωΘ
≤ 1−

∏
i∈[d]

(
1− 2εp

d
1
p · sgi

)
,

∆ =
1

2

√∑
i∈[d]

sgi
2.

The proof is shown in App. D.3.2. From Prop. D.6 we know that Alg. 2 is order-optimal with a
constant multiplication factor.

For the 1-dimensional Gaussian scenario, with similar analysis, we can easily get that the privacy-
distortion lower bound and the performance of Alg. 1 are consistent with the results presented in
Prop. D.5 and Prop. D.6 (with d = 2).

D.3.1 PROOF OF PROP. D.5

Define θ′ = (µ′
1, · · · , µ′

k, σ
′
1, · · · , σ′

k). Based on Lemma C.7, we can get that

D (Xθ, Xθ′)

R (Xθ, Xθ′)
≥

√∑
j∈[k]

(
µj − µ′

j

)2
+
∑

j∈[k]

(
σj − σ′

j

)2
2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

≥

√∑
i∈[d] (gi(θ)− gi(θ′))

2

2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

≥
1√
d

∑
i∈[d]|gi(θ)− gi(θ

′)|
2
d

∑
i∈[d]|gi(θ)− gi(θ′)|

=

√
d

2
.

Therefore, we have

γ = inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)

R (Xθ1 , Xθ2)
=

√
d

2
.
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Based on Thm. 5.4, we can get that

∆ >
√
d ·

(⌈
1

T

⌉1/d
− 1

)
· εp/d

1
p .

D.3.2 PROOF OF PROP. D.6

Proof. Based on Lemma C.7, we can easily can get that the distortion ∆ of Alg. 2 is

∆ =
1

2

√∑
i∈[d]

sgi
2.

We denote Πuni
ϵ,ωΘ

as the union privacy metric with tolerance ranges ϵ1, · · · , ϵd. From App. B.7.1,

we know that Πϵ,ωΘ ≤ Πuni
ϵ,ωΘ

when
(∑

i∈[d] ϵ
p
i

)1/p
= εp. Therefore, we can get that

Πϵ,ωΘ
≤ min

ϵ1,··· ,ϵd:
(
∑

i∈[d] ϵ
p
i )

1/p
=εp

Πuni
ϵ,ωΘ

= min
ϵ1,··· ,ϵd:

(
∑

i∈[d] ϵ
p
i )

1/p
=εp

1−
∏
i∈[d]

(
1− 2ϵi

sgi

)
.

By setting ϵi = εp/d
1
p for all i ∈ [d], we can get that

Πϵ,ωΘ
≤ 1−

∏
i∈[d]

(
1− 2εp

d
1
p · sgi

)
.
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