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ABSTRACT

In this paper, we tackle the problem of Generalized Category Discovery (GCD).
Given a dataset containing both labelled and unlabelled images, the objective is
to categorize all images in the unlabelled subset, irrespective of whether they are
from known or unknown classes. In GCD, an inherent label bias exists between
known and unknown classes due to the lack of ground-truth labels for the latter.
State-of-the-art methods in GCD leverage parametric classifiers trained through
self-distillation with soft labels, leaving the bias issue unattended. Besides, they
treat all unlabelled samples uniformly, neglecting variations in certainty levels and
resulting in suboptimal learning. Moreover, the explicit identification of semantic
distribution shifts between known and unknown classes, a vital aspect for effective
GCD, has been neglected. To address these challenges, we introduce DebGCD, a
Debiased learning with distribution guidance framework for GCD. Initially, De-
bGCD co-trains an auxiliary debiased classifier in the same feature space as the
GCD classifier, progressively enhancing the GCD features. Moreover, we intro-
duce a semantic distribution detector in a separate feature space to implicitly boost
the learning efficacy of GCD. Additionally, we employ a curriculum learning strat-
egy based on semantic distribution certainty to steer the debiased learning at an
optimized pace. Thorough evaluations on GCD benchmarks demonstrate the con-
sistent state-of-the-art performance of our framework, highlighting its superiority.
Project page: https://visual-ai.github.io/debgcd/

1 INTRODUCTION

Over the years, the field of computer vision has witnessed remarkable progress in diverse tasks such
as object detection Girshick (2015); Ren et al. (2015), classification Simonyan & Zisserman (2015);
He et al. (2016), and segmentation He et al. (2017); Wang et al. (2020). These advancements have
predominantly stemmed from the availability of expansive labelled datasets Deng et al. (2009); Lin
et al. (2014). However, the prevalent insufficiency of training data in real-world scenarios is a note-
worthy concern. This has engendered a surge in research on semi-supervised learning Chapelle
et al. (2009) and self-supervised learning Jing & Tian (2020), yielding promising outcomes in com-
parison to supervised learning approaches. Recently, the task of category discovery, which was
initially studied as novel category discovery (NCD) Han et al. (2019) and subsequently extended
to its relaxed variant, generalized category discovery (GCD) Vaze et al. (2022b), has emerged as a
research task attracting increasing attention. GCD considers a partially-labelled dataset, where the
unlabelled subset may contain instances from both labelled and unseen classes. The objective is to
learn to transfer knowledge from labelled data to categorize unlabelled data.

In GCD, there exists an inherent label bias between known and unknown classes due to the ab-
sence of ground-truth labels for the latter. This label bias has the potential to cause the model to
inadvertently develop a decision rule making confident predictions that inclined to known classes.
Similar problem has been identified in the area of long-tailed recognition Tang et al. (2020); Yang
et al. (2022). Besides, in other fields such as object classification Choi et al. (2019); Bahng et al.
(2020); Geirhos et al. (2020), it is widely known that model performance suffers from task-specific
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Figure 1: (a) The parametric GCD classifier Wen et al. (2023) is trained on labelled and unlabelled
images using ground-truth hard labels and soft labels, respectively. (b) The auxiliary debiased learn-
ing: training another classifier using debiased labels. (c) The process of label debiasing: keep the
hard labels unchanged and transform soft labels to one-hot hard labels; samples that do not meet
the threshold are removed. (d) The illustration of distribution guidance: if a sample receives a high
in-distribution/out-of-distribution score, its weight in GCD training will be increased accordingly.

bias. State-of-the-art parametric classifier methods in GCD, such as those proposed by Wen et al.
(2023); Zhao et al. (2023); Vaze et al. (2023), leverage the self-distillation Caron et al. (2021) mech-
anism based on soft labels generated from the model’s predictions of another image view. While
these methods have shown promising results, they still rely on biased labels for training (as shown
in Fig. 1(a)). The issue of label bias remains an unattended problem in the realm of GCD. Addition-
ally, existing approaches uniformly handle all unlabelled samples without explicitly accounting for
their different certainty, which may introduce noise to the model training due to unreliable samples.
Moreover, they do not explicitly address semantic shifts, especially in a scenario like GCD involv-
ing both known and unknown classes within unlabelled data. Notably, these concerns have been
demonstrated to provide significant advantages in related tasks, such as open-world semi-supervised
learning Cao et al. (2022). In this area, OpenCon Sun & Li (2022) has attempted to identify novel
samples based on their proximity to known prototypes. However, its performance is heavily contin-
gent on predefined distance thresholds, ultimately yielding suboptimal accuracy.

We propose DebGCD, a novel framework designed to tackle the challenges of GCD. DebGCD
introduces Debiased learning with distribution guidance for GCD, incorporating several innovative
techniques specifically tailored for this task. Firstly, we introduce a novel auxiliary debiased learning
paradigm for GCD (as shown in Fig. 1(b) and (c)). This method entails training an auxiliary debiased
classifier in the same feature space as the GCD classifier. Unlike the GCD classifier, both labelled
and unlabelled data are trained using one-hot hard labels to prevent label bias between known and
unknown classes. Secondly, to discern the semantic distribution of unlabelled samples, we propose
to learn a semantic distribution detector in a decoupled normalized feature space, which we empir-
ically find it enhance the learning effect of GCD implicitly. Furthermore, we propose to measure
the certainty of a sample based on its semantic distribution detection score. This certainty score
then enables the gradual inclusion of unlabelled samples from both known and unknown classes
during training, allowing the auxiliary debiased learning to function in a curriculum learning ap-
proach (as shown in Fig. 1(d)), thus further enhancing its performance. We develop our framework
upon the parametric baseline Wen et al. (2023). By effectively incorporating these components
into a unified framework, DebGCD can be trained end-to-end in a single stage while not introduc-
ing any additional computational burden during inference. Despite its simplicity, DebGCD attains
unparalleled performance on the public GCD datasets, including the generic classification datasets
CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), and ImageNet Deng et al.
(2009), as well as the fine-grained SSB Vaze et al. (2022a) benchmark.

We make the following key contributions in this work: (1) We propose DebGCD, a novel framework
that addresses the challenging GCD task by considering both label bias and semantic shift, marking
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the first exploration of these aspects for the challenging GCD task. (2) Within DebGCD, we propose
a novel auxiliary debiased learning paradigm to optimize the clustering feature space, in conjunction
with the distribution shift detector in a distinct feature space. They work tightly to enhance the
model’s discovery capabilities. (3) We introduce a curriculum learning mechanism that steers the
debiased learning process using a distribution certainty score, effectively mitigating the negative
impact of uncertain samples. (4) Through extensive experimentation on public GCD benchmarks,
DebGCD consistently demonstrates its effectiveness and achieves superior performance.

2 RELATED WORK

Category Discovery. This task is initially studied as novel category discovery (NCD) Han et al.
(2019), aiming to discover categories from unlabelled data consisting of samples from novel cate-
gories, by transferring the knowledge from the labelled categories. Many methods have been pro-
posed to tackle NCD, such as Han et al. (2019; 2020; 2021); Fini et al. (2021); Zhao & Han (2021);
Joseph et al. (2022). Vaze et al. (2022b) extends NCD to a more relaxed task, generalized category
discovery (GCD), wherein unlabelled datasets encompass both known and unknown categories. A
baseline method is presented for this task, incorporating self-supervised representation learning and
semi-supervised k-means clustering, and extending popular NCD methods such as RankStats Han
et al. (2020) and UNO Fini et al. (2021) to GCD. CiPR Hao et al. (2024) proposes to bootstrap
the representation by leveraging cross-instance positive relations in the partially labelled data for
contrastive learning. Cao et al. (2022) addresses a similar problem to GCD from the perspective
of semi-supervised learning. SimGCD Wen et al. (2023) introduces a strong parametric baseline
achieving promising performance improvements. In Vaze et al. (2023), a new dataset is introduced
to illustrate the limitations of unsupervised clustering in GCD. To address these limitations, a method
based on the ‘mean-teachers’ approach is proposed. In Rastegar et al. (2023), a category coding ap-
proach is introduced, considering category prediction as the outcome of an optimization problem.
Recently, SPTNet Wang et al. (2024c) is proposed to consider the spatial property of images and
presents a spatial prompt tuning method, enabling the model to better focus on object parts for
knowledge transfer. Furthermore, there are a growing number of efforts aimed at addressing cate-
gory discovery from various perspectives. For instance, Jia et al. (2021) focuses on multi-modal
category discovery, while Zhang et al. (2022) and Cendra et al. (2024) explore continual category
discovery. Additionally, Wang et al. (2024b) examines category discovery with domain shifts.

Debiased Learning. The issue of bias in data and the susceptibility of machine learning algorithms
to such bias have been widely recognized as crucial challenges across diverse tasks. Numerous
methodologies have been developed to address and alleviate biases inherent in training datasets
or tasks. The studies by Ponce (2006); Torralba & Efros (2011) elucidate that many training sets
impose regularity conditions that are impractical in real-world settings, leading to machine learning
models trained on such data failing to generalize in the absence of these conditions. Furthermore,
recent research by Hendrycks et al. (2021); Xiao et al. (2021); Li et al. (2021) demonstrate biases in
state-of-the-art object recognition models towards specific backgrounds or textures associated with
object classes. Additionally, Sagawa et al. (2020) investigate the vulnerability of overparametrized
models to spurious correlations, resulting in elevated test errors for minority groups. Notably, large
language models also exhibit biased predictions towards certain genders or races, as indicated by
Cheng et al. (2021). Furthermore, the severity of biased predictions and fairness concerns related to
deployed models are extensively explored across various tasks Zemel et al. (2013); Noble (2018);
Bolukbasi et al. (2016). In this paper, we examine the inherent label bias in GCD, representing the
initial exploration of this issue.

Out-of-distribution Detection. In the realm of out-of-distribution (OOD) detection, the objective
is to identify samples or data points that originate from a distribution distinct from the one on which
the model was trained, encompassing both semantic and domain distributions Yang et al. (2021);
Wang et al. (2024a). The simplest method in this area involves utilizing the predicted softmax class
probability to detect OOD samples Hendrycks & Gimpel (2017). ODIN Liang et al. (2018) further
enhances this approach by introducing temperature scaling and input pre-processing. Additionally,
Bendale & Boult (2016) proposes an alternative approach by calculating the score for an unknown
class using a weighted average of all other classes. OOD detection has been applied in various
open-set tasks, such as open-set semi-supervised learning Yu et al. (2020) and universal domain
adaptation Saito & Saenko (2021), where it is utilized to select in-distribution data during training.
In contrast, our focus lies in the exploration of semantic shift detection considering the specific
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challenges of GCD. OpenCon Sun & Li (2022) has attempted to explore the semantic shift for open-
world semi-supervised learning. However, its reliance on a predefined distance threshold to rigidly
distinguish inliers and outliers leads to suboptimal accuracy. In contrast, our method takes a distinct
approach by avoiding a rigid separation. We subtly utilize the predicted OOD score by our model as
a guiding factor for debiased learning, further enabling a curriculum learning scheme.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Generalized category discovery (GCD) aims to learn a model that can not only correctly classify
the unlabelled samples of known categories but also cluster those of unknown categories. Given an
unlabelled dataset Du = {(xu

i , y
u
i )} ∈ X × Yu and a labelled dataset Dl = {(xl

i, y
l
i)} ∈ X × Yl,

where Yu and Yl are their label sets respectively. The unlabelled dataset contains samples from both
known and unknown categories, i.e., Yl ⊂ Yu. The number of labelled categories is M = |Yl|. We
assume the number of categories K = |Yl ∪ Yu| to be known following previous works Han et al.
(2021); Wen et al. (2023); Vaze et al. (2023). When it is unknown, methods like Han et al. (2019);
Vaze et al. (2022b) can be applied to provide a reliable estimation.

3.2 BASELINE

Wen et al. (2023) introduces a robust parametric GCD baseline, which has been widely adopted
in the field ever since Vaze et al. (2023); Wang et al. (2024c). It employs a parametric classifier,
implemented in a self-distillation manner Caron et al. (2021). The classifier is randomly initialized
with K normalized category prototypes C = {c1, ..., cK}. For the randomly augmented view of an
image xi and its corresponding normalized hidden feature vector hi = ϕ(xi)/||ϕ(xi)||, the output
probability for the kth category is given by:

pi
(k) =

exp(hi · ck/τs)∑K
j=1 exp(hi · cj/τs)

, (1)

where τs is the scaling temperature for this ‘student’ view. The soft label qi is produced by the
‘teacher’ view with a sharper temperature τt using another augmented view in the same fashion.
The self-distillation loss of the two views is then simply calculated following the cross-entropy loss
ℓce(q

′,p) = −
∑K

j=1 q
′(j)log p(j). Given a mini-batch B containing both labelled samples Bl and

unlabelled images Bu, the self-distillation loss is calculated using all the samples in the mini-batch:

Lu
cls =

1

|B|
∑
i∈B

ℓce(q
′
i,pi)− ξH(p), (2)

where p = 1
2|B|

∑
i∈B(pi +p′

i) denotes the mean prediction within a batch and its entropy H(p) =

−
∑K

j=1 p
(j)log p(j) weighted by ξ. For the labelled samples, the supervised classification loss is

written as Ls
cls = 1

|Bl|
∑

i∈Bl
ℓce(pi,yi), where yi represents the one-hot vector corresponding to

the ground-truth label yi. The whole classification objective is Lcls = (1 − λgcdb )Lu
cls + λgcdb Ls

cls.
Combining with the representation learning loss Lrep adopted from Vaze et al. (2022b), the overall
training objective becomes:

Lgcd = Lcls + Lrep. (3)

Through training with Lgcd on both Dl and Du, the classifier can directly predict the labels for
unlabelled samples after training.

4 DEBIASED LEARNING WITH DISTRIBUTION-GUIDANCE FOR GCD

In this section, we present our Debiased Learning with Distribution-Guidance (DebGCD) framework
for GCD (see Fig. 2). First, in Sec. 4.1, we present the semantic distribution learning on the GCD
task. Next, in Sec. 4.2, we demonstrate the training paradigm of the debiased classifier. Finally, we
describe the joint training and inference process of our full framework in Sec. 4.3.
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Figure 2: Overview of the DebGCD framework. In the upper branch, raw features are transformed
using an MLP and then normalized. These normalized features are used for semantic distribution
learning with a one-vs-all classifier. In the lower branch, a GCD classifier is trained on the normal-
ized raw features. The predictions from both branches are combined to train the debiased classifier.
As DebGCD aligns with prior work in representation learning, it’s not explicitly depicted here.

4.1 LEARNING SEMANTIC DISTRIBUTION

OOD detection methods have been employed in tasks like universal domain adaptation Saito &
Saenko (2021) and open-set semi-supervised learning Yu et al. (2020), obtaining improved perfor-
mance. In these tasks, the identified OOD samples are treated as a single background class to
avoid affecting the recognition of unlabelled samples from the labelled classes, and the distribu-
tion shifts can be of any type. In GCD, we are particularly interested in identifying the semantic
shifts. The instances from the labelled classes are considered in-distribution (ID) samples, while
the instances from the novel classes are considered OOD samples. However, the potential of effec-
tively introducing OOD techniques for GCD remains under-explored. An intuitive approach for
OOD detection is to examine the class prediction probabilities. Generally, the maximum softmax
or logit score of a closed-set classifier can serve as a good indicator of OOD Vaze et al. (2022a);
Wang et al. (2024a). However, this is not suitable for the common GCD classifier, which contains
an mean entropy regularization term in the loss function to prevent biased predictions. Nevertheless,
we find that it also results in the classifier’s predictions on known categories being less confident,
thereby degrading the OOD detection performance. Moreover, these OOD methods need to carefuly
select a threshold Geng et al. (2020) for rejecting “unknown” samples, which relies on validation
or a pre-defined ratio of “unknown” samples, making them impractical for the GCD due to the ab-
sence of such validation samples. One-vs-all (OVA) classifier Saito & Saenko (2021), which has
consistently shown promise in the literature Saito et al. (2021); Fan et al. (2023); Li et al. (2023),
can be a more suitable option. Moreover, in the context of OOD, the objective is not to differentiate
between multiple distinct unknown categories, as we do in GCD; rather, we aim to distinguish all
unknown classes from the known classes, effectively framing this as a binary classification problem.
This calls for the need of a different feature space that is better suited for this task. Therefore,
as depicted in Fig. 2, we introduce an additional multi-layer perceptron (MLP) projection network
ρs, to project raw features into another embedding space, followed by ℓ2-normalization to attain
the embedding space for distribution discrimination. Different from the prior works applying OOD
in the magnitude-aware feature space for other tasks Yu et al. (2020); Saito et al. (2021); Li et al.
(2023), we empirically found that the ℓ2-normalized feature space aligns more seamlessly with the
DINO pre-trained weights in GCD. Subsequently, we devise M ℓ2-normalized binary classifiers,
denoted as χ = {χ1, χ2, ..., χM}, for semantic OOD detection in GCD.

Given an augmented image view xi, its ℓ2-normalized feature in the semantic distribution feature
space is fi = ρs(ϕ(xi))/||ρs(ϕ(xi))||. Subsequently, the output of the k-th binary classifier is
oi,k = softmax(χk(fi)), where oi,k = (o+i,k, o

−
i,k) and o+i,k+o

−
i,k = 1. For labelled samples, a multi-
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binary cross-entropy loss with a hard-negative sampling strategy Saito et al. (2021) is employed:

Ls
sdl =

1

|Bl|
∑
i∈Bl

(− log(o+i,yi
)− min

k ̸=yi

log(o−i,k)), (4)

where yi represents the ground-truth category label of the sample xi. For unlabelled samples, an en-
tropy minimization technique Saito & Saenko (2021) is applied to improve low-density separation:

Lu
sdl = − 1

Bu

∑
i∈Bu

M∑
j=1

(o+i,j log(o
+
i,j) + o−i,k log(o

−
i,k)), (5)

where Bu denotes the unlabelled subset in current mini-batch. The loss function for the semantic
distribution learning is defined as:

Lsdl = Ls
sdl + Lu

sdl. (6)

By optimizing Lsdl, our detector distinctly segregates the feature distributions between known and
unknown categories. Additionally, it generates a predicted score based on the maximum output from
all M binary classifiers, denoted as:

si = o−i,yp
, yp = argmax

j
o+i,j . (7)

This score will serve as a crucial cue for the debiased learning to be introduced next.

4.2 AUXILIARY DEBIASED LEARNING

As depicted in Fig. 2, the raw features are normalized to the clustering feature space in the lower
branch, wherein novel categories are discovered. In order to minimize the unintended negative im-
pact of biased labels while maintaining the basic probability constraints Assran et al. (2022) and
consistency regularization Caron et al. (2021) in the GCD classifier, we propose an auxiliary debi-
ased learning mechanism. Specifically, a parallel debiased classifier ψs initialized with K normal-
ized prototypes Ca = {ca1 , ..., caK}, is trained in the same embedding space using debiased labels.
Note that in our experiment, we only finetune the last two transformer blocks of the DINO Caron
et al. (2021) pre-trained ViT backbone. The k-th softmax score of sample xi is given by:

pa
i
(k) =

exp(hi · cak/τa)∑K
j=1 exp(hi · caj /τa)

, (8)

where τa is the scaling temperature. The maximum classification score has demonstrated promising
performance in several semi-supervised learning methods and we find it also a good indicator of
sample quality in the context of GCD task. For an augmented view xi and its GCD classifier
prediction pi, a debiasing threshold τ is set on the max(pi), with only samples surpassing τ being
utilized to train the debiased classifier, expressed as 1(max(pi) > τ). Additionally, given that
the semantic distribution detector and the GCD classifier are learned in different feature spaces and
paradigms, it is essential to ensure the alignment of their predictions. Consequently, we introduce a
function to indicate the task consistency of these two tasks, defined as:

F(ŷi, si) = 1(ŷi ∈ Yu ∧ si > 0.5) ∨ 1(ŷi ∈ Yl ∧ si < 0.5), (9)

where ŷi = argmax(pi) represents the predicted category index by the GCD classifier, and ŷi

denotes its corresponding one-hot vector. This function aims to selectively filter out samples with
identical distribution predictions across the two tasks.

Furthermore, as previously stated, given the inclusion of both known (in-distribution) and unknown
(out-of-distribution) samples in the unlabelled data, it is imperative to devise a learning strategy
based on semantic distribution information. With the training progresses, the semantic OOD scores
gradually approach the two extremes (i.e., 0 and 1). The score of the unknown class sample steadily
increases to 1, while the score of the known class gradually decreases to 0. Prior techniques Saito
et al. (2021); Li et al. (2023) simply employ a threshold to determine whether the sample belongs
to the known or unknown. Such a naı̈ve method is unreliable and may introduce many noises to
the model training for GCD. In our approach, we prioritize samples with distinct distributions for
self-training, aligning with the principles of curriculum learning. To establish a consistent metric for
assessing sample discriminability, we introduce a normalized distribution certainty score:

di = |2× si − 1|, (10)
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Algorithm 1 End-to-end Training Algorithm for DebGCD.
Input: Set of labelled data Dl = {(xl

i, y
l
i)}, set of unlabelled data Du = {(xu

i , y
u
i )}. Data aug-

mentation function A. Model parameters w, learning rate η, epoch Emax, iteration Imax, trade-off
parameters, λsdl, λadl;
for Epoch = 1 to Emax do

for Iteration = 1 to Imax do
Sample labelled data Bl, unlabelled data Bu; i ∈ Bu

Compute model prediction pi, pa
i , si; loss function Lgcd, Lsdl // Eq.3,6,8

Compute debiased label ŷi; task consistency F(ŷi, si) // Eq.9
Compute loss function Ls

adl, Lu
adl, Ladl // Eq.11,12,13

Compute loss function Lall = Lgcd + λsdlLsdl + λadlLadl

Update model parameters w = w − η▽w Lall

end
end
Output: Model parameter w.

which approaches the value 0 for ambiguous samples and the value 1 for certain samples. This
score, to a certain extent, indicates the learning status of samples and can serve as a crucial cue
for our debiased classifier. Therefore, the auxiliary debiased learning loss for unlabelled samples is
written as:

Lu
adl =

1

Bu

∑
i∈Bu

1(max(pi) > τ)×F(ŷi, si)× di × ℓce(p
a
i , ŷi). (11)

In this manner, the training of the debiased classifier transforms into a curriculum learning process,
where easily identifiable samples that are clearly semantic in-distribution or out-of-distribution are
given higher priority for learning. Moreover, our debiased classifier also retains the prior knowledge
from the labelled data. For the labelled samples, it’s is simply trained with the cross-entropy loss:

Ls
adl =

1

Bl

∑
i∈Bl

ℓce(p
a
i ,yi). (12)

Finally, the overall training loss for the debiased classifier is:

Ladl = Ls
adl + Lu

adl. (13)

In this manner, all the samples are trained using one-hot hard labels, irrespective of their belongings
to known or unknown categories. Operating within the same feature space, our debiased classi-
fier collaborates closely with the GCD classifier, thereby facilitating the joint optimization of the
clustering feature space.

4.3 LEARNING AND INFERENCE FRAMEWORK

Based on the baseline GCD classifier, our framework is designed to be trained in a multi-task man-
ner. Different from previous approaches in the open-set literature Yu et al. (2020), our DebGCD
framework employs a one-stage training process, eliminating the necessity for task-specific warm-
up phases. Consequently, the three tasks can be jointly trained end-to-end with the overall loss:

Lall = Lgcd + λsdlLsdl + λadlLadl, (14)

where λsdl and λadl denote the loss weights for the semantic distribution detector and debiased
classifier, respectively. The complete training pipeline of the framework is illustrated in Algorithm 1.

Throughout the joint training process, the three branches are collectively optimized in an end-to-
end manner. During inference, only the GCD classifier is retained. This indicates that our method
does not impose any additional computational overhead compared to the baseline approach during
inference, further emphasizing its simplicity and efficiency.

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of the proposed DebGCD framework and fur-
ther perform meticulous ablation studies to showcase the effectiveness of its individual components.
More results and analysis can be found in the Appendix.
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5.1 EXPERIMENTAL SETUP

Datasets. We conduct a comprehensive evaluation of our method across diverse benchmarks, en-
compassing the generic image recognition benchmark (CIFAR-10/100 Krizhevsky et al. (2009),
ImageNet-100 Deng et al. (2009)), the Semantic Shift Benchmark (SSB) Vaze et al. (2022c) com-
prising fine-grained datasets CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-
Aircraft Maji et al. (2013), along with the challenging ImageNet-1K Deng et al. (2009). For each
dataset, we adhere to the data split scheme detailed in Vaze et al. (2022b). The method involves
sampling a subset of all classes as the known (‘Old’) classes Yl. Subsequently, 50% of the images
from these known classes are utilized to construct Dl, while the remaining images are designated as
the unlabelled data Du. The statistics can be seen in Tab. 1.

Table 1: Overview of dataset, including the classes in the la-
belled and unlabelled sets (|Yl|, |Yu|) and counts of images
(|Dl|, |Du|). ‘FG’ denotes fine-grained.

Dataset FG |Dl| |Yl| |Du| |Yu|
CIFAR-10 Krizhevsky et al. (2009) ✗ 12.5K 5 37.5K 10
CIFAR-100 Krizhevsky et al. (2009) ✗ 20.0K 80 30.0K 100
ImageNet-100 Deng et al. (2009) ✗ 31.9K 50 95.3K 100
CUB Wah et al. (2011) ✓ 1.5K 100 4.5K 200
Stanford Cars Krause et al. (2013) ✓ 2.0K 98 6.1K 196
FGVC-Aircraft Maji et al. (2013) ✓ 1.7K 50 5.0K 100
ImageNet-1K Deng et al. (2009) ✗ 321K 500 960K 1000

Evaluation metrics. We assess the
GCD performance using the cluster-
ing accuracy (ACC) in accordance
with established conventions Vaze
et al. (2022b). For evaluation, the
ACC on Dl is computed as follows,
given the ground truth yi and the pre-
dicted labels ŷi:

ACC =
1

|Du|

|Du|∑
i=1

1(yi = h(ŷi)),

(15)
where h represents the optimal per-
mutation that aligns the predicted
cluster assignments with the ground-truth class labels. ACC for ‘All’ classes, ‘Old’ classes and
‘New’ classes are reported for comprehensive assessment.

Implementation details. Following previous attempts in GCD Vaze et al. (2022b); Wen et al.
(2023), our model is structured with a ViT-B/16 Dosovitskiy et al. (2021) backbone pre-trained using
DINO Caron et al. (2021), and the feature space centers around the 768-dimensional classification
token. The projection networks for representation learning and semantic distribution detection com-
prise three-layer and five-layer MLPs, respectively. The model is trained with a batch size of 128,
initiating with an initial learning rate of 10−1 which decays to 10−4 using a cosine schedule over
200 epochs. Notably, the loss weights λsdl and λadl are set to 0.01 and 1.0, while the loss balancing
weight λgcdb is assigned to 0.35 following Wen et al. (2023). Regarding the temperature parameters,
the initial temperature τt is established at 0.07, subsequently warmed up to 0.04 employing a cosine
schedule during the first 30 epochs, whereas the other temperatures are set to 0.1.

5.2 BENCHMARK RESULTS

We present benchmark results of our method and compare it with state-of-the-art techniques in gen-
eralized category discovery (including ORCA Cao et al. (2022), GCD Vaze et al. (2022b), XCon Fei
et al. (2022), OpenCon Sun & Li (2022), PromptCAL Zhang et al. (2023), DCCL Pu et al. (2023),
GPC Zhao et al. (2023), CiPR Hao et al. (2024), SimGCD Wen et al. (2023), µGCD Vaze et al.
(2023), InfoSieve Rastegar et al. (2023), and SPTNet Wang et al. (2024c)), as well as robust base-
lines derived from novel category discovery (RankStats+ Han et al. (2021), UNO+ Fini et al. (2021),
and k-means MacQueen (1967)). All methods are based on the DINO Caron et al. (2021) pre-trained
backbone. This comparative evaluation encompasses performance on the fine-grained SSB bench-
mark Vaze et al. (2022c) and generic image recognition datasets Krizhevsky et al. (2009); Deng et al.
(2009), as shown in Tab. 2 and Tab. 3.

Results on SSB. As shown in Tab. 2, DebGCD demonstrates superior performance across the three
datasets, achieving an average ACC of 64.4 on ‘All’ categories, surpassing the second-best SPT-
Net Wang et al. (2024c) by 3%. It maintains the best on both Stanford Cars and FGVC-Aircraft
dataset, while ranking second on CUB, where it is outperformed only by InfoSieve Rastegar et al.
(2023), a hierarchical encoding method specifically designed for fine-grained GCD. In contrast, De-
bGCD aims for broader improvements across both generic and fine-grained datasets. These results
reveal DebGCD’s exceptional ability to uncover new categories, while also showcasing remarkable
performance in recognizing known categories.
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Table 2: Comparison of state-of-the-art GCD methods on SSB Vaze et al. (2022c) benchmark.
Results are reported in ACC across the ‘All’, ‘Old’ and ‘New’ categories.

CUB Stanford Cars FGVC-Aircraft Average

Method All Old New All Old New All Old New All
k-means MacQueen (1967) 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8 21.1
RankStats+ Han et al. (2021) 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 29.5
UNO+ Fini et al. (2021) 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 37.0
ORCA Cao et al. (2022) 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 26.9
GCD Vaze et al. (2022b) 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 45.1
XCon Fei et al. (2022) 52.1 54.3 51.0 40.5 58.8 31.7 47.7 44.4 49.4 46.8
OpenCon Sun & Li (2022) 54.7 63.8 54.7 49.1 78.6 32.7 - - - -
PromptCAL Zhang et al. (2023) 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 55.1
DCCL Pu et al. (2023) 63.5 60.8 64.9 43.1 55.7 36.2 - - - -
GPC Zhao et al. (2023) 52.0 55.5 47.5 38.2 58.9 27.4 43.3 40.7 44.8 44.5
SimGCD Wen et al. (2023) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 56.1
µGCD Vaze et al. (2023) 65.7 68.0 64.6 56.5 68.1 50.9 53.8 55.4 53.0 58.7
InfoSieve Rastegar et al. (2023) 69.4 77.9 65.2 55.7 74.8 46.4 56.3 63.7 52.5 60.5
CiPR Hao et al. (2024) 57.1 58.7 55.6 47.0 61.5 40.1 - - - -
SPTNet Wang et al. (2024c) 65.8 68.8 65.1 59.0 79.2 49.3 59.3 61.8 58.1 61.4
DebGCD 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4

Table 3: Comparison of state-of-the-art GCD methods on generic datasets. It includes CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), ImageNet-100 Deng et al. (2009),
and ImageNet-1K Deng et al. (2009) dataset.

CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

Method All Old New All Old New All Old New All Old New
k-means MacQueen (1967) 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3 - - -
RankStats+ Han et al. (2021) 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8 - - -
UNO+ Fini et al. (2021) 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9 - - -
ORCA Cao et al. (2022) 69.0 77.4 52.0 73.5 92.6 63.9 81.8 86.2 79.6 - - -
GCD Vaze et al. (2022b) 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3 52.5 72.5 42.2
XCon Fei et al. (2022) 96.0 97.3 95.4 74.2 81.2 60.3 77.6 93.5 69.7 - - -
OpenCon Sun & Li (2022) - - - - - - 84.0 93.8 81.2 - - -
PromptCAL Zhang et al. (2023) 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3 - - -
DCCL Pu et al. (2023) 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2 - - -
GPC Zhao et al. (2023) 90.6 97.6 87.0 75.4 84.6 60.1 75.3 93.4 66.7 - - -
SimGCD Wen et al. (2023) 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9 57.1 77.3 46.9
InfoSieve Rastegar et al. (2023) 94.8 97.7 93.4 78.3 82.2 70.5 80.5 93.8 73.8 - - -
CiPR Hao et al. (2024) 97.7 97.5 97.7 81.5 82.4 79.7 80.5 84.9 78.3 - - -
SPTNet Wang et al. (2024c) 97.3 95.0 98.6 81.3 84.3 75.6 85.4 93.2 81.4 - - -
DebGCD 97.2 94.8 98.4 83.0 84.6 79.9 85.9 94.3 81.6 65.0 82.0 56.5

Results on generic datasets. In Tab. 3, we report results on three widely used generic datasets
(CIFAR-10, CIFAR-100 and ImageNet-100) in GCD, as well as the challenging ImageNet-1K. Our
method attains superior performance in terms of ACC across ‘All’ categories, establishing the new
state-of-the-art, except CIFAR-10, on which the performance is nearly saturated (over 97% ACC)
for our method and other most competitive methods. On the challenging ImageNet-1K, containing
1, 000 classes with diverse images, DebGCD also establishes the new state-of-the-art, surpassing the
previous best-performing method by 7.9%. These results validate the effectiveness and robustness
of our method for generalized category discovery on generic datasets.

5.3 ANALYSIS

In this section, we provide ablations regarding the key components within our framework. Besides,
we study the impact of the debiasing threshold τ and labelled data.

Framework components. Starting with the baseline method trained using Lgcd (Row (1)), we
gradually incorporate our proposed techniques on the Stanford Cars dataset, as depicted in Tab. 4.
An intuitive approach is to apply debiased learning to the original classifier as in Row (2). However,
this still produces a biased supervision signal because it relies on the original GCD loss for that
classifier. It turns out that such a naı̈ve approach may even hurt the performance. Rows (1) and
(2) indicate that directly applying debiased learning to the GCD classifier can lead to a decrease in
performance, particularly affecting novel categories. The introduction of an auxiliary classifier in
Row (3) demonstrates significant performance enhancements. Similarly, our semantic distribution
learning alone results in a 2.7% improvement across all categories in Row (4). Row (5) highlights
that co-training the debiased classifier and semantic distribution detector further boosts performance.
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Table 4: Ablations. The results regarding the different components in our framework on Stanford
Cars Krause et al. (2013). ACC of ‘All’, ‘Old’ and ‘New’ categories are listed.

Debiased
Learning

Auxiliary
Classifier

Semantic Dist.
Learning

Dist.
Guidance

Stanford Cars

All Old New

(1) ✗ ✗ ✗ ✗ 53.8 71.9 45.0
(2) ✓ ✗ ✗ ✗ 51.3 72.8 40.9
(3) ✓ ✓ ✗ ✗ 58.5 78.7 48.8
(4) ✗ ✗ ✓ ✗ 56.5 73.3 48.3
(5) ✓ ✓ ✓ ✗ 60.7 78.1 52.3
(6) ✓ ✓ ✓ ✓ 65.3 81.6 57.4

Notably, guiding the debiased learning with semantic distribution certainty and task consistency
function yields a notable 4.6% performance increase in Row (6).

Table 5: Experimental results on
distillation data by using different
loss functions.

Ls
adl Lu

adl
FGVC-Aircraft

All Old New

54.2 59.1 51.8
✓ 53.1 60.5 49.4

✓ 57.9 60.1 56.9
✓ ✓ 61.7 63.9 60.6

Loss function. In addition, we explore the impact of the data
and the respective loss functions employed during the train-
ing of debiased classifier, denoted as Ls

adl and Lu
adl, targeting

the labelled and unlabelled datasets, respectively. The results
are shown in Tab. 5. These experiments are undertaken on the
FGVC-Aircraft Maji et al. (2013) using various subset com-
binations. Solely training with Ls

adl introduces bias towards
known categories, leading to a notable performance decline.
Conversely, exclusive training with Lu

adl fails to reach optimal
performance levels, underscoring the essential role of knowl-
edge derived from labelled data. These outcomes demonstrate
the vital significance of both Ls

adl and Lu
adl in optimizing the debiased classifier.

Table 6: Experimental results regarding thresh-
old τ on the unlabelled set and validation set of
FGVC-Aircraft Maji et al. (2013) dataset.

Unlabelled Set Validation Set

τ All Old New All Old New

0.90 59.4 64.7 56.7 58.9 61.1 56.8
0.85 61.7 63.9 60.6 61.1 62.0 60.3
0.80 60.7 61.5 60.3 60.6 61.6 59.6

Debiasing threshold τ . Similar to self-training
approaches Sohn et al. (2020); Zhang et al.
(2021), the selection of the threshold for gen-
erating pseudo-labels also plays a crucial role
in our approach. Consistent with the methods
outlined in Wen et al. (2023) and Vaze et al.
(2022b), we calibrate the threshold based on its
performance on a separate validation set of the
labelled data. Detailed results regarding differ-
ent thresholds on the FGVC-Aircraft Wah et al.
(2011) dataset, covering performance on both the unlabelled training dataset and the validation set,
are presented. As shown in Tab. 6, the threshold is incrementally adjusted in intervals of 0.05. No-
tably, the performance trends for both datasets align, with optimal performance achieved when the
threshold is set to 0.85.

5.4 VISUALIZATION RESULTS

Baseline Ours
Figure 3: T-SNE visualization of 20 classes ran-
domly sampled from the CIFAR-100 Krizhevsky
et al. (2009) dataset.

Additionally, we explore the visual repre-
sentation of the baseline and our method
using t-SNE Van der Maaten & Hinton
(2008). Specifically, we randomly select
a set of 20 classes, including 10 from the
‘Old’ categories and 10 from the ‘New’ cat-
egories. The clearly distinguishable clusters
depicted in Fig. 3 indicate that the features
obtained within our framework form no-
tably cohesive groupings compared to those
of the baseline. This effectively demon-
strates the optimization impacts induced by
our method on the clustering feature space.
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6 CONCLUSION

This paper presents DebGCD, a distribution-guided debiased learning framework for GCD, com-
prising three primary components. Firstly, we introduce an auxiliary debiased learning mechanism
by concurrently training a parallel classifier with the GCD classifier, thereby facilitating optimiza-
tion in the GCD feature space. Secondly, a semantic distribution detector is introduced to explicitly
identify semantic shifts and implicitly enhance performance. Lastly, we propose a semantic distribu-
tion certainty score that enables a curriculum-based learning approach, promoting effective learning
for both seen and unseen classes. Despite its simplicity, DebGCD showcases superior performance,
as evidenced by comprehensive evaluation on seven public benchmarks.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Fernando Julio Cendra, Bingchen Zhao, and Kai Han. Promptccd: Learning gaussian mixture
prompt pool for continual category discovery. In ECCV, 2024.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning. IEEE Trans-
actions on Neural Networks, 2009.

Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si, and Lawrence Carin. Fairfil: Contrastive
neural debiasing method for pretrained text encoders. In ICLR, 2021.

Jinwoo Choi, Chen Gao, Joseph CE Messou, and Jia-Bin Huang. Why can’t i dance in the mall?
learning to mitigate scene bias in action recognition. In NeurIPS, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Yue Fan, Anna Kukleva, Dengxin Dai, and Bernt Schiele. Ssb: Simple but strong baseline for
boosting performance of open-set semi-supervised learning. In ICCV, 2023.

Yixin Fei, Zhongkai Zhao, Siwei Yang, and Bingchen Zhao. Xcon: Learning with experts for fine-
grained category discovery. In BMVC, 2022.
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A IMPLEMENTATION DETAILS

We adopt the class splits of labelled (‘Old’) and unlabelled (‘New’) categories in Vaze et al. (2022b)
for generic object recognition datasets (including CIFAR-10 Krizhevsky et al. (2009) and CIFAR-
100 Krizhevsky et al. (2009)) and the fine-grained Semantic Shift Benchmark Vaze et al. (2022c)
(comprising CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji
et al. (2013)). Specifically, for all these datasets except CIFAR-100, 50% of all classes are selected
as ‘Old’ classes (Yl), while the remaining classes are treated as ‘New’ classes (Yu\Yl). For CIFAR-
100, 80% of the classes are designated as ‘Old’ classes, while the remaining 20% as ‘New’ classes.
Furthermore, for ImageNet-1K Deng et al. (2009), which is not covered in Vaze et al. (2022b), we
follow Wen et al. (2023) to select the first 500 classes sorted by class ID as the labelled classes.
For all the datasets, 50% of the images from the labelled classes are randomly sampled to form the
labelled dataset Dl, and all remaining images are regarded as the unlabelled dataset Du. Moreover,
following Vaze et al. (2022b) and Wen et al. (2023), the model’s hyperparameters are chosen based
on its performance on a hold-out validation set, formed by the original test splits of labelled classes
in each dataset. All experiments utilize the PyTorch framework on a workstation with an Intel i7
CPU and eight Nvidia Tesla V100 GPUs. The models are trained with a batch size of 128 on a single
GPU, except for the the model on CIFAR-100, ImageNet-100 and ImageNet-1K dataset, for which
the training is performed with eight GPUs.
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B RESULTS ON ADDITIONAL DATASETS

To assess the performance of the proposed method comprehensively, we conducted evaluations on
two more fine-grained datasets: Oxford-Pet Parkhi et al. (2012) and Herbarium 19 Tan et al. (2019).
Oxford-Pet is a challenging dataset featuring various species of cats and dogs with limited data.
Herbarium19, on the other hand, is a botanical research dataset encompassing diverse plant types,
known for its long-tailed distribution and fine-grained categorization. The outcomes of our ex-
periments on these datasets are detailed in Tab. 7. The results of SimGCD Wen et al. (2023) on
Oxford-Pet are obtained through the execution of the officially released code. Our DebGCD model
consistently demonstrates superior performance on both datasets.

Table 7: Comparison with state-of-the-art GCD methods on Herbarium19 Tan et al. (2019) and
Oxford-Pet Parkhi et al. (2012).

Oxford-Pet Herbarium19

Method All Old New All Old New
k-means MacQueen (1967) 77.1 70.1 80.7 13.0 12.2 13.4
RankStats+ Han et al. (2021) - - - 27.9 55.8 12.8
UNO+ Fini et al. (2021) - - - 28.3 53.7 14.7
ORCA Cao et al. (2022) - - - 24.6 26.5 23.7
GCD Vaze et al. (2022b) 80.2 85.1 77.6 35.4 51.0 27.0
XCon Fei et al. (2022) 86.7 91.5 84.1 - - -
OpenCon Sun & Li (2022) - - - 39.3 58.9 28.6
DCCL Pu et al. (2023) 88.1 88.2 88.0 - - -
SimGCD Wen et al. (2023) 91.7 83.6 96.0 44.0 58.0 36.4
µGCD Vaze et al. (2023) - - - 45.8 61.9 37.2
InfoSieve Rastegar et al. (2023) 90.7 95.2 88.4 40.3 59.0 30.2
DebGCD 93.0 86.4 96.5 44.7 59.4 36.8
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C EXPERIMENTS WITH THE STRONGER DINOV2 REPRESENTATIONS

To further evaluate the robustness of the proposed method, we also evaluate the performance of
DebGCD utilizing the stronger DINOv2 Oquab et al. (2023) pre-trained weights. Like in Vaze et al.
(2023), in Tab. 8, we also compare our method with the k-means MacQueen (1967) baseline, and
SimGCD Wen et al. (2023), µGCD Vaze et al. (2023). Our method outperforms other methods on
CUB Wah et al. (2011) and FGVC-Aircraft Maji et al. (2013) on ‘All’, ‘Old’ and ‘New’ classes
consistently. On Stanford Cars Krause et al. (2013), our method outperforms other methods on
‘New’ classes, while performing the second-best on ‘All’ and ‘Old’ classes. Moreover, for the
average performance of ‘All’ classes across the three datasets, DebGCD outperforms the SimGCD
baseline by about 6% and µGCD by about 3%. Additionally, we also evaluate our model on generic
datasets and compare it with the SimGCD baseline in Tab. 9, demonstrating consistent improvement.
The results on both fine-grained and generic datasets validate the robustness of our proposed method
on the stronger DINOv2 representations, further showcasing its effectiveness.

Table 8: Comparison with state-of-the-art GCD methods on SSB leveraging DINOv2 Oquab et al.
(2023) pre-trained weights.

CUB Stanford Cars FGVC-Aircraft Average

Method All Old New All Old New All Old New All
k-means MacQueen (1967) 67.6 60.6 71.1 29.4 24.5 31.8 18.9 16.9 19.9 38.6
GCD Vaze et al. (2022b) 71.9 71.2 72.3 65.7 67.8 64.7 55.4 47.9 59.2 64.3
CiPR Hao et al. (2024) 78.3 73.4 80.8 66.7 77.0 61.8 59.2 65.0 56.3 68.1
SimGCD Wen et al. (2023) 71.5 78.1 68.3 71.5 81.9 66.6 63.9 69.9 60.9 69.0
µGCD Vaze et al. (2023) 74.0 75.9 73.1 76.1 91.0 68.9 66.3 68.7 65.1 72.1
SPTNet Wang et al. (2024c) 76.3 79.5 74.6 - - - - - - -
DebGCD 77.5 80.8 75.8 75.4 87.7 69.5 71.9 76.0 69.8 74.9

Table 9: Comparison with state-of-the-art GCD methods on generic datasets leveraging DI-
NOv2 Oquab et al. (2023) pre-trained weights.

CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K

Method All Old New All Old New All Old New All Old New
GCD Vaze et al. (2022b) 97.8 99.0 97.1 79.6 84.5 69.9 78.5 89.5 73.0 - - -
CiPR Hao et al. (2024) 99.0 98.7 99.2 90.3 89.0 93.1 88.2 87.6 88.5 - - -
SimGCD Wen et al. (2023) 98.7 96.7 99.7 88.5 89.2 87.2 89.9 95.5 87.1 58.0 66.9 53.2
SPTNet Wang et al. (2024c) - - - - - - 90.1 96.1 87.1 - - -
DebGCD 98.9 97.5 99.6 90.1 90.9 88.6 93.2 97.0 91.2 71.7 86.2 64.5
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D CATEGORY DISCOVERY WITH ESTIMATED CATEGORY NUMBERS

Following the majority of the literature, we experiment mainly using the ground-truth category num-
bers. In this section, we report the results of DebGCD using the number of categories estimated
utilizing an off-the-shelf method Vaze et al. (2022b), to showcase the performance with the ground-
truth category numbers are not available. Tab. 10 reports the estimated numbers. We compare
DebGCD with SimGCD Wen et al. (2023), µGCD Vaze et al. (2023), and GCD Vaze et al. (2022b)
in Tab. 11. For both CUB Wah et al. (2011) and Stanford Cars Krause et al. (2013), despite a discrep-
ancy of approximately 15% between the ground-truth and estimated category numbers, our method
exhibits a smaller decline in performance compared to GCD and SimGCD. The same trend is also
observed on Imagenet-100 Deng et al. (2009). DebGCD remains the most competitive method on
‘All’ classes using the same estimated category numbers on all four datasets, which clearly demon-
strates the robustness and effectiveness of our proposed method.

Table 10: Estimated class numbers in the unlabelled data using method proposed in Vaze et al.
(2022b).

CUB Stanford Cars CIFAR-100 ImageNet-100

Ground-truth K 200 196 100 100
Estimated K 231 230 100 109

Table 11: Results with the estimated number of categories. The estimated class numbers in Tab. 10
are adopted for all methods.

CUB Stanford Cars CIFAR-100 ImageNet-100

Method All Old New All Old New All Old New All Old New
GCD Vaze et al. (2022b) 47.1 55.1 44.8 35.0 56.0 24.8 73.0 76.2 66.5 72.7 91.8 63.8
SimGCD Wen et al. (2023) 61.5 66.4 59.1 49.1 65.1 41.3 80.1 81.2 77.8 81.7 91.2 76.8
µGCD Vaze et al. (2023) 62.0 60.3 62.8 56.3 66.8 51.1 - - - - - -
DebGCD 64.5 68.5 62.5 63.3 78.6 55.8 83.0 84.6 79.9 84.9 93.3 80.7
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E EXTENSION TO INCREMENTAL GENERALIZED CATEGORY DISCOVERY

To further assess the effectiveness of DebGCD, we extend it to the more challenging task of In-
cremental Generalized Category Discovery (IGCD) Zhao & Mac Aodha (2023). This presents a
challenging category-incremental learning scenario, wherein the objective is to construct models ca-
pable of accurately classifying images from previously encountered categories while also identifying
new ones. Learning takes place over a sequence of time steps during which the model acquires new
labelled and unlabelled data, and discards old data at each iteration. Both DebGCD and the base-
line SimGCD Wen et al. (2023) can be expanded to this incremental learning setup by integrating
them with iCaRL Rebuffi et al. (2017). We compare these two extended methods with approaches
specifically created for IGCD, including GM Zhang et al. (2022) and the method proposed in Zhao
& Mac Aodha (2023), on the fine-grained dataset CUBWah et al. (2011) and the generic dataset
CIFAR-100 Krizhevsky et al. (2009). It can be observed from Tab. 12 that our method yields the best
performance on Md while maintaining comparable Mf with the state-of-the-art methods. Across
both generic and fine-grained datasets, DebGCD achieves an improvement of 2.2% to 4.8% in terms
of Md and Mf . The results demonstrate the adaptability of DebGCD in more challenging settings
such as IGCD, thereby further underscoring its advantages.

Table 12: Results on mixed incremental setting of IGCD Zhao & Mac Aodha (2023).
CUB CIFAR-100

Method Mf ↓ Md ↑ Mf ↓ Md ↑
GM Zhang et al. (2022) 3.6 30.6 6.8 26.7
IGCD Zhao & Mac Aodha (2023) 4.0 31.2 6.7 29.4
SimGCD Wen et al. (2023)+iCaRL 9.4 29.4 10.7 28.3
DebGCD+iCaRL 6.0-3.4 34.2+4.8 8.1-2.6 30.5+2.2
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F UTILIZATION RATIO OF UNLABELLED DATA

The data utilization ratio is a notable index for pseudo-labeling methods, offering clear insights into
the data efficiency. Our examination encompasses the utilization ratio of unlabelled data from both
the ‘Old’ and ‘New’ classes during the training of the debiased classifier on FGVC-Aircraft Maji
et al. (2013) and Stanford Cars Krause et al. (2013), as depicted in Fig. 4. Initially, the major-
ity of data from the unknown categories remains untapped. Subsequently, after approximately 20
epochs, samples from unknown categories start to be incorporated. The utilization ratio keeps grow-
ing, reaching a ratio of around 40% at the 100th epoch. Ultimately, more than 60% of the known
categories’ samples and nearly half of the unknown categories’ samples are utilized.

0 50 100 150 200
Epochs

0

20

40

60

80

D
at

a 
U

til
iz

at
io

n 
R

at
io

 (i
n 

%
)  Aircraft

Old Classes
New Classes

0 50 100 150 200
Epochs

0

20

40

60

80

D
at

a 
U

til
iz

at
io

n 
R

at
io

 (i
n 

%
)  Stanford Cars

Old Classes
New Classes

Figure 4: Unlabelled data utilization ratios for ‘Old’ and ‘New’ classes during training on FGVC-
Aircraft Maji et al. (2013) (left) and Stanford Cars Krause et al. (2013) (right) datasets.
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G GCD CLASSIFIER vs. DEBIASED CLASSIFER

We compare the performance between the two classifiers, the GCD Classifier and the debiased clas-
sifier, in our framework. We report the ACC results across different epochs in Fig. 5 when training
on Stanford Cars Krause et al. (2013), including unlabelled data from both training and the valida-
tion splits of the original dataset. Initially, the debiased classifier exhibits bias towards the ‘Old’
classes, given that the training data primarily comprises labelled data from known categories. How-
ever, as predicted scores of the unlabelled samples, particularly those from the unknown categories,
progressively surpass the debiasing threshold, the performance on the unknown categories gradu-
ally improves and eventually matches with the labelled categories. Ultimately, upon convergence of
the model, the performance on both known and unknown categories converges to that of the GCD
classifier.

Figure 5: ACC evolution on both the ‘Old’ and ‘New’ classes of GCD Classifier and debiased
classifier during training on Stanford Cars dataset Krause et al. (2013). The top two figures depict
ACC on the unlabelled training set, while the bottom two illustrate ACC on the validation set.
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H PERFORMANCE OF THE SEMANTIC DISTRIBUTION DETECTOR

We evaluate the OOD detection performance of our semantic distribution detector in DebGCD, us-
ing the threshold-free Area Under the Receiver-Operator curve (AUROC) as the evaluation metric,
which is widely used in the OOD detection literature. A comparison of the OOD performance
between training the entire framework and training solely the distribution detector is presented in
Tab. 13. A significant improvement in OOD performance is obtained by training jointly the GCD
classifier and debiased classifier. This aligns with the results presented in Tab. 4 of the main paper,
which demonstrate the mutual benefits among the three branches (tasks) in our framework. Addi-
tionally, we visualize the distribution of the score si on the challenging SSB datasets in Fig. 6 which
shows that our method can successfully distinguish samples from ‘Old’ and ‘New’ classes in the
unlabelled data of both the training and validation splits of the original dataset.

Figure 6: Histograms of the distribution scores si for datasets in SSB Vaze et al. (2022c).

Table 13: OOD performance in terms of AUROC on unlabelled data, including CIFAR-
10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), ImageNet-100 Deng et al. (2009),
CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji et al. (2013).

CIFAR-10 CIFAR-100 ImageNet-100 CUB Stanford Cars FGVC-Aircraft

Lsdl 66.1 90.8 96.5 77.5 78.6 76.2
Lsdl+Lgcd+Ladl 97.5 94.8 99.5 86.8 89.6 86.3
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I ANALYSIS OF ATTENTION MAPS

In our DebGCD framework, both the backbone embedding space and the GCD classifier are opti-
mized. Thus, the CLS token is indirectly optimized. We can glean insights from its attention with the
patch embeddings. In Fig. 7, we visualize the attention maps from the final transformer block in the
DINO backbone Caron et al. (2021) on the three fine-grained datasets in SSB benchmark Vaze et al.
(2022c). Within this final block, a multi-head self-attention layer with 12 attention heads attends to
the input features, producing 12 attention maps between the CLS token and patch embeddings at a
resolution of 14× 14. Following Caron et al. (2021), we compute the mean value of these attention
maps and upsample them to the image size to visualize the most prominent regions. The visualiza-
tion demonstrates that the attention maps generated by our model predominantly focus on the object
of interest, effectively ignoring spurious factors and background clutter, while those of the DINO
baseline are more scattered over the entire image.
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Figure 7: Visualization of attention maps. Our method successfully directs its attention towards
foreground objects, irrespective of whether they belong to the ‘Old’ or ‘New’ classes. The baseline
denotes the pre-trained DINO.
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J ABLATION STUDIES ON MORE DATASETS

In addition to the Stanford Cars dataset, we present ablation results on additional datasets to validate
the effectiveness of the proposed components. These include the other two datasets from the SSB
benchmark: CUB Wah et al. (2011) and FGVC-Aircraft Maji et al. (2013), as well as the generic
dataset ImageNet-100 Deng et al. (2009), detailed in Tab. 14. The results indicate that directly ap-
plying debiased learning to the original GCD classifier results in a performance decline across all
three datasets (Row (1) vs. Row (2)). In contrast, utilizing an auxiliary classifier leads to perfor-
mance improvements of 3.3%, 3.5%, and 1.7% on the three datasets, respectively, as observed in
Row (1) vs. Row (3). This underscores the importance of the auxiliary classifier in achieving effec-
tive debiased learning. Moreover, the joint training of the debiased classifier and the OOD detector
provides further enhancements (Row (3) vs. Row (5)). Lastly, the incorporation of distribution guid-
ance results in additional performance improvements. These findings align with those observed on
the Stanford Cars dataset, as demonstrated in Tab. 4.

Table 14: Ablations on more datasets, including CUB Wah et al. (2011), FGVC-Aircraft Maji et al.
(2013) and ImageNet-100 Deng et al. (2009). ACC of ‘All’, ‘Old’ and ‘New’ categories are listed.

Debiased
Learning

Auxiliary
Classifier

Semantic Dist.
Learning

Dist.
Guidance

CUB FGVC-Aircraft ImageNet-100

All Old New All Old New All Old New

(1) ✗ ✗ ✗ ✗ 60.3 65.6 57.7 54.2 59.1 51.8 83.0 93.1 77.9
(2) ✓ ✗ ✗ ✗ 58.6 72.3 51.7 53.7 62.9 49.1 82.8 94.1 77.2
(3) ✓ ✓ ✗ ✗ 63.8 69.3 61.1 57.7 59.8 56.5 84.7 94.0 80.0
(4) ✗ ✗ ✓ ✗ 61.3 69.4 57.3 56.6 64.8 52.5 83.5 92.4 78.9
(5) ✓ ✓ ✓ ✗ 64.9 70.9 61.9 59.4 64.4 56.9 85.0 93.8 80.3
(6) ✓ ✓ ✓ ✓ 66.3 71.8 63.5 61.7 63.9 60.6 85.9 94.3 81.6
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K IMPACT OF HYPERPARAMETERS

In this section, we analyze the impact of hyperparameters in our DebGCD framework, including the
depth of the projection network ρs, loss weights, and the number of tuned blocks.

Depth of projection network ρs. As discussed in the paper, it is essential to disentangle the OOD
and GCD feature spaces due to the differing learning objectives of these two tasks. To assess the
impact of the depth of the projection network ρs, we conduct an experiment on the SSB benchmark,
focusing on the number of layers in this MLP network. Here, a depth of 0 denotes the absence of
a projection network, meaning that the two tasks are optimized within the same feature space. As
shown in Tab. 15, incorporating a 1-layer ρs results in performance improvements by 1.3%, 1.6%
and 1.1% on CUB, Stanford Cars, and FGVC-Aircraft, respectively. The average GCD performance
across all categories of DebGCD gradually improves as the number of MLP layers increases from 0
to 5. However, extending the MLP to 7 layers yields little to no further improvement in performance.
In our implementation, we therefore adopt a 5-layer MLP for ρs in our framework.

Loss weights λsdl and λadl. For these two loss weights, we first intuitively set the default value
based on existing literature and our hypothesis. Our rationale for selecting values for the loss weights
is as follows: For λsdl, we take inspiration from the previous literature using OVA classifier Saito
& Saenko (2021). In the paper, the model is fine-tuned with a learning rate of 10−3 , while the
learning rate in the SimGCD baseline is 0.1 (which is 100 times larger than 10−3). To achieve a
similar learning effect, as validated in Saito & Saenko (2021), we scale our λsdl value from 1.0
down to 1/100. Therefore, we set λsdl = 0.01 by default. For λadl, the weight of the debiased
classifier, we expect it to play an important role similar to that of the original GCD classifier (where
the loss weight is set to 1.0). Thus, we have defaulted this value to 1.0. After determining the
default values, we conducted experiments on the SSB benchmark regarding the two loss weights by
exploring values around the defaults. For λsdl, the range was (0.005, 0.01, 0.02). As for λadl, the
range was (0.5, 1.0, 2.0). The impact of λsdl is detailed below in Tab. 16, with λadl set to 1.0. The
impact of λadl is illustrated below in Tab. 17, with λsdl set to 0.01. The results are in line with our
hypothesis, indicating that our selected hyperparameters are indeed reasonable.

Table 15: GCD performance on SSB Vaze et al. (2022c) using different number of layers in ρs.
CUB Stanford Cars FGVC-Aircraft Average

MLP layer All Old New All Old New All Old New All
0 63.6 75.2 57.8 62.3 76.2 54.1 59.6 62.2 58.3 61.8
1 64.9 71.6 61.6 63.9 80.2 56.0 60.7 63.7 59.2 63.1
3 66.0 73.5 62.3 64.7 82.2 56.2 61.1 64.2 59.5 63.9
5 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4
7 65.8 72.0 62.7 64.8 80.5 57.3 61.9 65.2 60.3 64.1

Table 16: GCD performance on SSB Vaze et al. (2022c) using different values of λsdl.
CUB Stanford Cars FGVC-Aircraft Average

λsdl All Old New All Old New All Old New All
0.02 65.5 73.2 61.6 64.3 79.2 57.1 60.6 63.5 59.1 63.5
0.01 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4

0.005 65.8 72.4 62.5 64.9 81.2 57.0 62.1 65.4 60.3 64.3

Table 17: GCD performance on SSB Vaze et al. (2022c) using different values of λadl.
CUB Stanford Cars FGVC-Aircraft Average

λadl All Old New All Old New All Old New All
0.5 64.3 72.2 60.3 63.6 79.3 56.1 60.2 63.5 58.6 62.7
1.0 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 64.4
2.0 65.5 70.8 62.8 64.1 83.0 55.0 60.4 63.5 58.8 63.3
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Number of tuned blocks. In the baseline configuration Wen et al. (2023), only the last transformer
block of the ViT-B/16 backbone is fine-tuned during training. In contrast, our framework incorpo-
rates additional tasks, including OOD detection and debiased learning, which would require differ-
ent embedding spaces, thus calling for the need of more trainable parameters. In our experiments
on both fine-grained and generic datasets, we explore tuning the last two blocks, and we note that
tuning more than two blocks may lead to instability during training. Furthermore, we observe that
increasing the number of tuned blocks can improve performance on specific datasets, particularly
those that are fine-grained. As shown in Table 18, tuning one additional transformer block leads to
a performance improvement of over 1% on the fine-grained datasets. In contrast, the performance
enhancement on the generic datasets is more modest, at no more than 0.6%. Similar strategies have
also been employed in previous methods, such as Infosieve Rastegar et al. (2023).

Table 18: GCD performance of SimGCD and DebGCD by tuning different numbers of transformer
blocks.

CUB Stanford Cars FGVC-Aircraft ImageNet-100 CIFAR100

Method # of tuned blocks All Old New All Old New All Old New All Old New All Old New
SimGCD 1 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 83.0 93.1 77.9 80.1 81.2 77.8
SimGCD 2 60.8 65.8 58.4 53.6 67.6 49.8 52.8 56.8 50.8 83.2 92.9 78.3 79.4 80.1 77.3
DebGCD 1 65.1 70.9 62.2 63.0 80.2 54.7 60.4 65.0 58.1 85.7 94.0 81.5 82.4 83.6 79.5
DebGCD 2 66.3 71.8 63.5 65.3 81.6 57.4 61.7 63.9 60.6 85.9 94.3 81.6 83.0 84.6 79.9
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L STABILITY ANALYSIS

Following the baseline established in Wen et al. (2023), we also assess the stability of the proposed
method across all datasets utilized in our experiments. Tab. 19 reports the average results together
with the standard deviations, over three independent runs. Compared to the baseline results reported
in Wen et al. (2023), we observe that the variance of DebGCD is even smaller, despite achieving
significantly higher performance.

Table 19: Complete results of DebGCD and SimGCD over three independent runs.
SimGCD DebGCD

Dataset All Old New All Old New
CUB 60.3±0.1 65.6±0.9 57.7±0.4 66.4±0.4 72.9±0.6 63.2±0.4
Stanford Cars 53.8±2.2 71.9±1.7 45.0±2.4 65.2±0.7 81.7±1.2 57.3±0.6
FGVC-Aircraft 54.2±1.9 59.1±1.2 51.8±2.3 61.7±0.5 65.9±1.2 59.5±1.1
CIFAR-10 97.1±0.0 95.1±0.1 98.1±0.1 97.3±0.1 95.0±0.2 98.4±0.1
CIFAR-100 80.1±0.9 81.2±0.4 77.8±2.0 83.1±0.7 84.7±0.7 80.0±0.9
ImageNet-100 83.0±1.2 93.1±0.2 77.9±1.9 86.1±0.6 94.5±0.5 81.8±0.6
ImageNet-1K 57.1±0.1 77.3±0.1 46.9±0.2 64.9±0.3 82.1±0.2 56.4±0.4
Oxford-Pet - - - 93.2±0.2 86.3±0.1 96.8±0.3
Herbarium19 44.0±0.4 58.0±0.4 36.4±0.8 44.9±0.3 59.3±0.3 37.1±0.5
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M PREDICTION ERROR ANALYSIS

In this section, we provide quantitative analysis on the improvements brought by our method from
the perspective of prediction errors. Particularly, we examine the baseline model’s prediction by
categorizing the errors into four types based on the relationship between the predicted (‘Pred’) and
ground-truth (‘GT’) classes: ‘True Old’, ‘False New’, ‘False Old’, and ‘True New’. ‘True Old’ refers
to incorrectly predicting an ‘Old’ class sample as another ‘Old’ class. ‘False New’ indicates incor-
rectly predicting an ‘Old’ class sample as a ‘New’ class. Conversely, ‘False Old’ means incorrectly
predicting a ‘New’ class sample as an ‘Old’ class, and ‘True New’ refers to incorrectly predicting
a ‘New’ class sample as another ‘New’ class. From this perspective, our debiased learning method
primarily aims to mitigate the label bias between ‘Old’ and ‘New’ classes, thereby reducing the like-
lihood of ‘New’ class samples being predicted as ‘Old’. Consequently, this reduction in bias leads
to a decrease in ‘False Old’ predictions while reducing the errors of all the other three types.

In Fig. 8, we present the ratios of the four types of prediction errors as a proportion of the total num-
ber of samples in the new or old categories across three datasets in the SSB benchmark. As shown
in Fig. 8(a), the error distributions vary significantly across datasets. Notably, the Stanford Cars
dataset exhibits the highest number (16.5%) of ‘False Old’ samples, explaining why our method
demonstrates the most substantial performance improvement on this dataset. In contrast, the CUB
dataset shows the fewest (8.0%) ‘False Old’ samples, indicating relatively limited potential for per-
formance enhancement. Comparing Fig. 8(a) and Fig. 8(b), we can see a significant reduction on
the ratio of ‘False Old’ as well as other three types of errors on all the three datasets.
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Figure 8: Ratios of the four types of prediction errors in GCD on SSB benchmark using SimGCD
and DebGCD with DINO Caron et al. (2021) pre-trained backbone. ‘Pred’ and ‘GT’ refer to the
predicted and ground-truth results, respectively.
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