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Abstract

Particle-based Bayesian deep learning often requires a similarity metric to compare
two networks. However, naive similarity metrics lack permutation invariance and
are inappropriate for comparing networks. Centered Kernel Alignment (CKA) on
feature kernels has been proposed to compare deep networks but has not been used
as an optimization objective in Bayesian deep learning. In this paper, we explore
the use of CKA in Bayesian deep learning to generate diverse ensembles and
hypernetworks that output a network posterior. Noting that CKA projects kernels
onto a unit hypersphere and that directly optimizing the CKA objective leads to
diminishing gradients when two networks are very similar. We propose adopting
the approach of hyperspherical energy (HE) on top of CKA kernels to address this
drawback and improve training stability. Additionally, by leveraging CKA-based
feature kernels, we derive feature repulsive terms applied to synthetically generated
outlier examples. Experiments on both diverse ensembles and hypernetworks
show that our approach significantly outperforms baselines in terms of uncertainty
quantification in both synthetic and realistic outlier detection tasks.

1 Introduction

Bayesian deep learning has always garnered substantial interest in the machine learning community.
Instead of a point estimate which most deep learning algorithms obtain, a posterior distribution of
trained models could significantly improve our understanding about prediction uncertainty and avoid
overconfident predictions. Bayesian deep learning has potential applications in transfer learning,
fairness, active learning, and even reinforcement learning, where reducing uncertainty can be used as
a powerful intrinsic reward function (Yang & Loog, 2016; Ratzlaff et al., 2020; Wang et al., 2023).

One line of approach to Bayesian deep learning is to add noise to a single trained model. Such
noises can either be injected during the training process, e.g. as in the stochastic gradient Langevin
dynamics (Welling & Teh, 2011), or after the training process (Maddox et al., 2019). However, many
such approaches often underperform the simple ensemble method (Lakshminarayanan et al., 2017b)
which merely trains several deep networks with different random seeds. Intuitively, an ensemble,
because it starts from different random initializations, might be able to “explore" a larger portion of
the parameter space than those that are always nearby one specific model or training path. Because of
this, ensembles may capture different modes and therefore better represent the posterior distribution
of “well-trained" network functions (Fort et al., 2019; Wilson & Izmailov, 2020).

However, a critical question is, how different are the networks in an ensemble from one another? And
can we utilize the idea of diversification to further improve these networks by making them even more
diverse? In order to answer these questions, we first need a metric to compare those networks, which is
in itself a significant problem; regular L1/L2 distances, either in the space of the network parameters,
or in the space of the network activations, are not likely to work well. First, they suffer from the curse
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Figure 1: Overview of feature repulsive loss construction: Starting with a batch of examples (left),
optionally including synthetic outliers, ensemble features at each layer l are used to construct centered
Gram matrices projected onto the unit hypersphere (middle). The hyperspherical energy is then
calculated between models, weighted by layer, and incorporated into the loss function (right).

of dimensionality due to the excessive number of parameters in modern deep networks. Moreover,
there is the peculiar permutation invariance, where one can randomly permute the different channels
of each layer and result in a network that has vastly different parameters and activations, yet represents
the same function. The popular RBF kernel lacks this permutation invariance inhibiting methods like
Stein Variational Gradient Descent (SVGD) from working effectively on larger networks (D' Angelo
& Fortuin, 2021). Therefore, a proper kernel for comparing network functions should address these
critical issues by being effective in high-dimensional spaces and invariant to permutations of neural
network channels.

Kornblith et al. (2019) proposed an interesting approach for performing this comparison based
on Centered Kernel Alignment (CKA). The idea is, instead of directly comparing activations or
parameters, comparison is made between the Gram matrices of the same dataset fed into two different
networks. Each example will generate a feature vector at each layer of the network, and a kernel
matrix can be constructed based on the similarity between all example pairs in the dataset. Then, a
CKA metric measures the similarity of these two Gram matrices as the similarity of the two networks.
This idea addresses the permutation invariance issue and generates meaningful comparisons between
deep networks.

In this paper, we propose to explicitly promote diversity of network functions by adding CKA-based
loss terms to deep ensemble learning. Given that CKA projects all kernels on a hypersphere, we
further propose to use Hyperspherical Energy (HE) minimization as an approach to more evenly dis-
tribute the ensemble of neural networks on the hypersphere. Experiments on synthetic data, MNIST,
CIFAR, and TinyImageNet show that our approach maintains the predictive accuracy of ensemble
models while boosting their performance in uncertainty estimation across both synthetic and realistic
datasets. Besides, we demonstrate that our method can also be applied to training hypernetworks,
improving the diversity and uncertainty estimation of the networks generated by a hypernetwork. Ad-
ditionally, we propose using synthetic out-of-distribution (OOD) examples, to reduce their likelihood,
and introducing feature repulsive terms on synthetic outlier examples to enhance OOD detection
performance. We hope that our approach provides a different perspective to variational inference
methods and contributes to improving uncertainty estimation in deep networks. Code is publicly
available at https://github.com/Deep-Machine-Vision/he-cka-ensembles.

2 Related Work

Uncertainty Estimation. A large body of literature has studied the problem of uncertainty estimation
for neural networks. Bayesian neural networks (Gal & Ghahramani, 2016; Krueger et al., 2017;
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Nazaret & Blei, 2022) approximate a posterior distribution over the model parameters and therefore
estimate the epistemic uncertainty of the predictions. Non-Bayesian approaches, on the other hand,
rely on bootstrap (Osband et al., 2016), ensemble (Lakshminarayanan et al., 2017b; Wen et al.,
2020; Park & Kim, 2022), and conformal prediction (Bhatnagar et al., 2023) to generate multiple
neural networks of the same structure. Our approach is most closely related to ensemble methods
for estimating predictive uncertainty. We follow the common practice of evaluating uncertainty by
distinguishing between inlier and outlier images for datasets like CIFAR/SVHN and MNIST/FMNIST.
Most approaches typically evaluate the separation or distance within the feature space of a model
between inliers and outliers (Mukhoti et al., 2023; Van Amersfoort et al., 2020; D' Angelo & Fortuin,
2021; Ovadia et al., 2019b; Lakshminarayanan et al., 2017a; Liu et al., 2020). Deep deterministic
uncertainty (DDU) utilizes a single deterministic network with a Gaussian mixture model (GMM)
fitted on the observed inlier features before the last layer and calculates separation of inliers and
outliers using feature log density. We refer the reader to Mukhoti et al. (2023) for more information.
For a more comprehensive survey and benchmarking of different uncertainty estimation approaches,
refer to Ovadia et al. (2019a); Gawlikowski et al. (2022).

ParVI. Particle-based variational inference methods (ParVI), such as Stein Variational Gradient
Descent (SVGD) (Liu & Wang, 2016; Chen et al., 2018; Liu & Zhu, 2018), use particles to
approximate the Bayes posterior. Our work most closely resembles work done by D' Angelo &
Fortuin (2021), which explores adapting kernelized repulsive terms in both the weight and function
space of deep ensembles to increase model diversity and improve uncertainty estimation. Our work,
however, focuses more on constructing a new kernel rather than exploring new repulsive terms that
utilize an RBF kernel on weights or network activations.

Hypernetworks. Hypernetworks have been used for various specific tasks, some are conditioned on
the input data to generate the target network weights, such as in image conditioning or restoration
(Alaluf et al., 2022; Aharon & Ben-Artzi, 2023). It has seen popular use in meta-learning tasks related
to reinforcement learning (Beck et al., 2023, 2024; Sarafian et al., 2021), and few-shot learning in
Zhmoginov et al. (2022). Hypernetworks conditioned on a noise vector to approximate Bayesian
inference have been proposed (Krueger et al., 2018; Ratzlaff & Fuxin, 2019), but either require an
invertible hypernet or do not diversify target features explicitly. Our motivation is to provide Bayesian
hypernetworks by explicitly promoting feature diversity in target networks.

3 Measurements of Network Diversity

In order to generate an ensemble of diverse networks, we first need a measurement of similarity
between internal network features. Throughout this paper, we denote a deep network with L
layers as f(x, θ) = fL(f(...)(f1(x, θ1), · · · ), θL), where fl(x, θl) ∈ Rpl are the features of layer l
parameterized by θl, where pl ∈ N is the output feature dimension.

3.1 Comparing two networks with CKA

We will compare two networks with the same architecture layer-by-layer. Given two networks at
layer l with weights θ1l , θ

2
l and feature activations fl(x, θ1l ), fl(x, θ

2
l ), a naive approach would be to

take some Euclidean Lk norm between the weights ∥θ1l − θ2l ∥k or features ∥fl(x, θ1l )− fl(x, θ
2
l )∥k,

but those tend to be bad heuristics for similarity measures in high-dimensional vector spaces due
to the curse of dimensionality (Reddi et al., 2014; Aggarwal et al., 2001; Weber et al., 1998). A
better approach to measuring similarity would be to analyze the statistical independence or alignment
of features between networks, through Canonical Correlation Analysis (CCA), Singular Vector
CCA (SVCCA), Projection-Weighted CCA (PWCCA), Orthogonal Procrustes (OP), Hilbert-Schmidt
Independence Criterion (HSIC), or Centered Kernel Alignment (CKA)(Raghu et al., 2017; Gretton
et al., 2005; Kornblith et al., 2019). Ideally, the chosen metric should be computationally efficient,
invariant to isotropic scaling, orthogonal transformations, permutations, and be easily differentiable.
However, CCA methods and OP require the use of Singular Value Decomposition (SVD) or iterative
approximation methods, which can be computationally intensive. Additionally, HSIC and OP are not
invariant to isotropic scaling of fl.

As a comparison metric between networks, Kornblith et al. (2019) propose to utilize CKA on Gram
matrices, obtained by evaluating the neural network on a finite sample. CKA is based on the non-
parametric statistical independence criterion HSIC, which has been a popular method of measuring
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statistical independence as a covariance operator in the kernel Hilbert spaces (Gretton et al., 2005).
An empirical estimation of HSIC on a dataset of N examples is given by 1/(N − 1)2tr(K1HK2H),
where the two Gram matrices K1

i,j = k(fl(xi, θ
1
l ), fl(xj , θ

1
l )) and K2

i,j = l(fl(xi, θ
2
l ), fl(xj , θ

1
l ))

are constructed through the k(·, ·) kernel function, and H = I − 1
N 11⊺ a centering matrix to center

the Gram matrices around the row means, where 1 denotes the all ones vector, and I as the identity
matrix. This function, however, is not invariant to isotropic scaling. The isotropic scaling invariant
version of HSIC is termed Centered Kernel Alignment (CKA) (Kornblith et al., 2019),

CKA(K1,K2) =
HSIC(K1,K2)√

HSIC(K1,K1)HSIC(K2,K2)
. (1)

We stick with the linear kernel for k, unless otherwise specified, due to its computational simplicity.
The RBF kernel works, but it is computationally expensive and requires the use of heuristic like
the median heuristic to perform well and make CKA isotropic scaling invariant (Reddi et al., 2014;
Kornblith et al., 2019).

3.2 Generalizing to multiple networks

Given an ensemble of M models, a simple approach to generalizing Eq. (1) to measure the similarity
of an ensemble would be to construct a pairwise alignment metric. For each layer l of each member
of the ensemble m, we construct the set of kernel matrices K = {Km

l }m=1,...,M
l=1,...,L . The mean pairwise

loss across all layers L is as follows,

CKApw(K) =
1

LM(M − 1)

L∑
l=1

M,M∑
m,m′=1
m̸=m′

CKA(Km
l ,Km′

l ), (2)

In its current form, CKApw provides a good approximate metric to evaluate the similarity among
members of an ensemble. We found that rewriting Eq. (2) gives us another perspective on optimizing
CKA. First, to simplify notation, let K̄m = 1

∥KmH∥F
vec(KmH) be the centered and normalized

Gram matrix, and rewriting the inner product in Eq. (1) results in the cosine similarity metric
CKA(Km,Km′

) = K̄m⊤K̄m′
. The matrix of the vectorized kernels from the set Kl can be

represented in a compact form Kl, and CKApw can be rewritten using this compact form,

CKApw(K) =
1

LM(M − 1)

L∑
l=1

1⊺zd(KlK
⊺
l )1 s.t Kl =

 K̄l
1

...
K̄l

M

 ∈ RM×N2

(3)

where zd(X) = X ⊙ (11⊺ − I) is a function that zeros out the diagonal of a matrix.

Now each row m of Kl is a vectorized Gram matrix with unit length from the model m. We can view
these vectors as the Gram matrices projected on the unit hypersphere as shown in Fig. 1. For each
pair of models i, j on the hypersphere, with an angle ϕi,j between the feature gram vectors, CKA is
equivalent to cos(ϕi,j). Thus minimizing pairwise CKA would reduce the sum of cos(ϕi,j), pushing
Gram matrices between model pairs apart.

3.3 Comparing Networks with Hyperspherical Energy

Note that CKA suffices as a differentiable measure between deep networks and one can directly
minimize CKA to push different models in the ensemble apart from each other. However, CKA may
have a specific deficiency as an optimization objective in that the gradient of cos(ϕ) is − sin(ϕ),
which is close to 0 when ϕ is close to 0. In other words, if two models are already very similar
to each other (their CKA being close to 1), then optimizing with CKA may not provide enough
gradient to move them apart. Hence, we explore further techniques to alleviate this drawback.
Minimum Hyperspherical Energy (MHE) (Liu et al., 2021) aims to distribute particles uniformly on a
hypersphere, which maximizes their geodesic distances from each other. In physics, this is analogous
to distributing electrons with a repellent Coloumb’s force.

Inspired by MHE, we propose to adopt the idea of hyperspherical energy (HE) on top of the CKA
kernel to compare neural networks, termed HE-CKA, which is novel to our knowledge. For each
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Figure 2: Comparison between optimizing cosine similarity (cossim) or HE on a sphere. (a) initial random set
of points placed on sphere. (b-c) the final set of points after 50 iterations either cossim or HE as the similarity
metric. (d-e) the value of cossim/HE with respect to the number of iterations. The orange line indicates that
cossim is minimized and the black line indicates that HE with s = 2 is minimized. Both methods used gradient
descent with a learning rate of 0.75 and momentum 0.9.

layer l we treat the M model Gram vectors K̄m
l as particles on the hypersphere, its geodesic on the

hypersphere is then di,j = arccos(CKA(Ki
l ,K

j
l )) = arccos(K̄i⊺

l K̄j
l ), we define the energy function

by simulating a repellent force on the particles via Fi,j = (di,j)
−s as shown in Fig 1. Incorporating

this across all layers, weighted by wl, and model pairs results in the overall hyperspherical energy of
CKA between all models is.

HE-CKA(K) =
1

LM(M − 1)

L∑
l=1

M,M∑
m,m′=1
m′ ̸=m

(
arccos(K̄m⊺

l K̄m′

l )
)−s

, (4)

where s > 0 is the Riesz s-kernel function parameter. For more information regarding the layer
weighting wl and smoothing terms please see Appendix C.

HE has been shown as a proper kernel (Liu et al., 2021). The minimization of HE, as mentioned in
Liu et al. (2021), asymptotically corresponds to the uniform distribution on the hypersphere, In order
to demonstrate the difference between HE and the pairwise cosine similarity, we conducted a test on a
synthetic dataset by generating random vectors from two Gaussian distributions in R3, and projecting
on the unit hypersphere. We then minimized pairwise cosine similarity and HE respectively. Figure 2
illustrates that minimizing HE converges faster and achieves a more uniform distribution compared
to minimizing cosine similarity. Specifically, as observed in Figure 2 (b), minimizing the cosine
similarity loss caused particles to cluster towards two opposite sides of the sphere, as the gradient of
this optimization – as mentioned in the beginning of the subsection, – becomes very small between
particles that are clustered together. In Fig. 2(d), we show that minimizing HE actually leads to
lower cosine similarity than directly minimizing cosine similarity, showing that minimizing cosine
similarity could fall into local optima as described.

4 Particle-based Variational Inference by Minimizing Model Similarity

Armed with the comparison metrics between deep networks, we now proceed to incorporate the
minimization of network similarity into deep ensemble training. In this section, we explore two
different types of ensembles. The first is a regular ensemble where deep networks are trained to
maximize the data likelihood, and we would add a term minimizing model similarity to it. Afterwards,
we also explore the application of the idea on generative ensembles by hypernetworks, which aims to
train a generator that generates network weights so that one can directly sample the posterior from it.
Such a generator can easily exhibit mode collapse by always generating the same function, and we
hope the idea of minimizing the similarity of generated networks would help alleviate this issue.

Suppose we are given a deep network with L layers f(x, θ) = fL(f(...)(f1(x, θ1), · · · ), θL). We
denote the ensemble of target network layer at layer l as El(x, θ) = [fl(x, θ

1), ..., fl(x, θ
M )], with

the ensemble parameters θ = {θm}Mm=1, and the training set of N examples as D = {xi, yi}Ni=1.
From a Bayesian perspective, incorporating CKApw/HE-CKA into the ensemble training can be
interpreted as imposing a Boltzmann prior with HE-CKA over the ensemble network parameters
θ that produce feature Gram matrices uniformly distributed on the unit hypersphere. Specifically,
p(θ) ∝ exp(−γHE-CKA(K(E(·)(·, θ)), where K(E(·)(·, θ)) is the set of feature Gram matrices,
constructed from the ensemble E, as described in Sec. 3.2. The posterior distribution now becomes:

p(θ|D) ∝ p(D|θ) exp(−γHE-CKA(K(E(·)(·, θ)) (5)
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(a) Ensemble (b) SVGD + RBF (c) fSVGD + RBF (d) KDE WGD +
RBF

(e) fKDE WGD +
RBF

(f) SVGD +
HE-CKA

(g) Ensemble +
HE-CKA

(h) Ensemble + OOD
HE-CKA

(i) Hypernetwork (j) Hypernetwork +
OOD HE-CKA

Figure 3: Predictive entropies (PE) on a four-cluster 2D classification task. Darker values indicate higher
entropy, lower confidence regions, and lighter values indicate higher confidence regions. (b) and (d) use an
RBF kernel on ensemble member weights, whereas (c) and (e) use an RBF kernel on ensemble member outputs.
(f) and (g) use the HE-CKA, RBF feature kernel, for feature diversity on inlier points. Both (h) and (j) use
HE-CKA and OOD entropy terms. All methods were trained on an ensemble of 30 four layer MLPs for 1k
iterations with the same seeds.

The MAP estimate of the posterior in Eq. (5) results in the following objective:

min
θ

M−1
M∑

m=1

[
N∑
i=1

L(f(xi, θ
m), yi)

]
+ γHE-CKA(K(E(·)(·, θ)), (6)

The left hand side is the negative log likelihood term where L(x, y) is the target loss, such as cross-
entropy or MSE. Minimizing θ, while adjusting the constant γ used in the Boltzmann prior, allows
us to balance between gram matrix hyperspherical uniformity and fitting the training data. Further
explanation of Eq. (6)’s relationship to ParVI is given in Appendix A. Note that the same approach
can be used to derive the formula for the CKA kernel in Eq. (2) as well.

4.1 Diverse Generative Ensemble with Hypernetworks

Besides diversifying ensemble models, we also explore using CKApw /HE-CKA in learning a non-
deterministic generator (Krueger et al., 2018) which gives us the ability to sample from a continuous
nonlinear posterior distribution of network weights. This is appealing since it can generate any
amount of network with a single training run of the generator, without being restricted by the fixed
amount of posterior samples one can access with a regular ensemble.

The approach we take uses the concept of hypernetworks (Ha et al., 2016; Krueger et al., 2018).
However, current variational inference methods are not scalable to larger models and generally require
a change of variables or invertible functions (Krueger et al., 2018). Naively using a hypernetwork
to transform a prior distribution to generate θ of the target network may result in the collapse of
the posterior θ distribution. Hence, it would be interesting to explore using CKApw /HE-CKA to
avoid such mode collapses. We use the surrogate diversity loss in Eq. (4) to impose non-parametric
independence of feature distributions. With hypernetworks we aim to transform, using a network h(z),
some prior distribution z ∼ N (0, I), z ∈ RP to h(z) = θ ∈ R

∑
l wl , where P is the dimensionality

of the latent space, and wl the number of parameters for layer l. To learn the function h(·) we sample
a batch M of θ’s, feed through the ensemble E(x, θ) and calculate loss, similar to a fixed ensemble as
in Eq. (6). With the difference being that now we are backpropagating gradients to h(·) accumulated
from the M ensemble members.

Using a plain MLP for the hypernetwork h would require the last layer’s weight matrix to contain∑
l wl ×J entries, where J is the activation dimension right before the last layer. This could possibly

result in a matrix of millions of trainable parameters. To overcome this challenge we follow the
approach by Ratzlaff & Fuxin (2019) of decomposing h into several parts. First a layer code generator
h(z) = c ∈ RL,csize , and the layer generators θl = gl(cl), where each layer generator g is a separate
smaller network per layer l. See Fig. 4 for a visualization. Note c is a matrix with L layer codes of
size csize.
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Figure 4: Hypernetwork h(z) model architecture example on a four layer CNN

To further reduce size of the hypernetwork, for convolutional networks, we use the assumption that
filters in convolutional layers can be independently sampled. For each convolutional layer l we
create layer code vectors via the layer code generator cl = h(zl), where each code vector i in cli
corresponds to a latent vector for a single convolution filter i. We feed each filter code i through a
filter generator gl(cli) separately to generate the filter for layer l. An example architecture can be
seen in Fig. 4.

4.2 Synthetic OOD Feature Diversity

Striking a balance between ensemble member diversity and inlier performance is a challenge. En-
forcing strong feature dissimilarity on observed inlier examples could degrade inlier performance if
not tuned correctly. ParVI methods that only observe inlier points, like SVGD, can achieve better
diversity but often at the expense of inlier accuracy (D' Angelo & Fortuin, 2021). We have found that
a more effective strategy is to reduce the feature similarity on obvious OOD examples, and reduce
their likelihood, which could be synthetically generated. Intuitively, we want more diverse features
on obvious outlier examples to indicate uncertainty because the networks trained on these examples
should not be confident. We found this approach to generate OOD examples and increase their feature
diversity to be very effective.

Importantly, the OOD points do not need to be close to the inlier data manifold at all. For images, we
generate outlier points via random grids, lines, perlin noise, simplex noise, and vastly distorted and
broken input samples. See Appendix E.2 for more details and example images. For vector datasets,
such as the test 2D datasets presented in Fig. 3, we identify outlier points by locating the minimum
and maximum values across training examples. Generally, the boundary does not need to be close
to the in-distribution (ID) dataset to achieve good results. We split the Gram matrices into KID and
KOOD and apply HE-CKA to them separately, with respective hyperparameters γID and γOOD. The
parameter value γID can be adjusted to be smaller than γOOD. Additionally, for classification tasks, we
add an entropy-maximizing term, scaled by hyperparameter β, for synthetic OOD points to Eq. (6).
Similar loss terms may be constructed for other tasks, such as variance for regression tasks, but we
have not explored them yet.

(a) Ensemble (b) Ensemble + HE-CKA (c) Hypernetwork (d) Hypernetwork +
HE-CKA

Figure 5: 1D regression task comparing uncertainty estimation between different approaches
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(a) Ensemble (b) SVGD + RBF (c) SVGD + HE-CKA (d) Ensemble + OOD
HE-CKA

Figure 6: Predictive softmax entropy between MNIST, Dirty-MNIST (with aleatoric uncertainty),
and OOD Fashion-MNIST. Utilizing an ensemble of 5 LeNets. It can be seen that HE-CKA and
OOD HE-CKA better separates the inlier Dirty-MNIST from outlier Fashion-MNIST.

5 Experiments

In this section, we conduct experiments on several datasets, ranging from synthetic tasks to realistic
out-of-distribution (OOD) detection problems, to validate our approach. We compare OOD results
between ensembles, ParVI, and other baselines.

5.1 Synthetic Data

We start by testing our approach on two synthetic tasks to visually assess the uncertainty estimation
capability on both classification and regression problems. The first task is a 2D four-class classification
problem, where each class is distributed in one quadrant of the 2D space with points sampled from
Gaussians with σ = (.4, .4) and µ = (±2,±2). The objective is to evaluate whether the models
can accurately predict uncertainty, ideally showing low uncertainty near training examples and high
uncertainty elsewhere. We employed a three-layer MLP trained with cross-entropy on the four classes
and measured the predictive entropy of points sampled uniformly from a 10× 10 grid.

When using cross-entropy alone, the decision boundaries among the four classes tend to be very
similar. Deep ensembles classify with high confidence in most areas where they have never observed
data before (Fig. 3(a)). Introducing the HE-CKA diversity term to the ensemble significantly
reduces the ensemble’s confidence on points outside the in-distribution set (Fig.3(g)). Furthermore,
incorporating the HE-CKA and entropy term for OOD points allows the model to better estimate
uncertainty, with only inliers being confident (Fig. 3(h)). In the case of hypernetworks, we observe
the importance of a diversity term. Without it, hypernetwork predictions tend to be overconfident on
outliers (Fig. 3(i)). However, when introducing HE-CKA hypernetwork, we achieve results closely
resembling that of the ensemble + HE-CKA term (Fig. 3(j)).

In our second test, we perform a 1D regression modeling task. We aim to learn the function y(x) =
− sin (1.2x) (1 + x) within x ∈ (−6, 6) with high certainty everywhere except in x ∈ (−2, 2). The
training dataset involves sampling the function with 40 points uniformly from both (−6,−2) and
(2, 6), with 2 points from (−2, 2). We then fit a four layer MLP to approximate y(x).

The visual result of each method is shown in Fig. 5. The fixed ensemble (Fig. 5(a)) has little diversity
between the areas with low density, in contrast to the ensemble plus the HE-CKA term (Fig. 5(b)).
The hypernetwork, without any feature diversity term (Fig. 5(c)) collapses, producing very similar
weights. However, adding the HE-CKA term to the hypernetwork (Fig. 5(d)) alleviates this issue.

5.2 OOD Detection on Real Datasets

We evaluated our proposed approach on a variety of real-world datasets, including Dirty-MNIST,
Fashion-MNIST, CIFAR-10/100, SVHN, and TinyImageNet. We employ different CNN architectures
such as LeNet, ResNet32, and ResNet18 to demonstrate the versatility of our method across models of
varying complexity. Our experiments compare the out-of-distribution (OOD) detection performance
of our approach against several approaches, including Deep Deterministic Uncertainty (DDU), deep
ensembles and Stein Variational Gradient Descent (SVGD) equipped with the RBF kernel.

We provide experimental settings and training details here and additionally in Appendix C. Limita-
tions of this approach are discussed in Appendix D, while further insights into memory usage and
computational efficiency are discussed in Appendix G. Details regarding synthetic OOD example
generation is described in Appendix E.2.
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Table 1: OOD detection results with inlier Dirty-MNIST and outlier Fashion MNIST, over 5 runs. All models
were trained on a LeNet, with HE-CKA and CKApw utilizing a cosine similarity feature kernel. One exception
to predictive entropy (PE) report is DDU, which uses feature space density, indicated by a star, to calculate
AUROC Mukhoti et al. (2023). More training details can be found in Appendix C.

MODEL NLL (↓) ACCURACY (↑) ECE (↓) AUROC FASHIONMNIST (↑)

PE MI

DDU 0.278± 0.001 82.177± 0.032 3.952± 0.317 94.168± 3.425* −
SINGLE 0.272± 0.002 82.299± 0.166 2.908± 0.129 65.935± 10.669 50.000± 0.000
ENSEMBLE 0.271± 0.001 83.915± 0.084 1.306± 0.098 86.095± 1.608 96.065± 0.798
SVGD+RBF 0.304± 0.001 83.560± 0.072 3.178± 0.076 91.003± 1.155 98.083± 0.516
SVGD+CKApw 0.377± 0.003 82.351± 0.150 7.359± 0.211 89.195± 4.260 99.207± 0.160
SVGD+HE-CKA 0.298± 0.002 83.879± 0.110 2.846± 0.153 94.380± 1.332 99.213± 0.147
HYPERNET 0.278± 0.003 81.157± 0.174 4.253± 0.092 46.393± 3.545 64.856± 2.768
HYPERNET+OOD HE-CKA 0.325± 0.014 82.398± 0.628 3.058± 0.665 98.073± 0.951 77.548± 9.526
ENSEMBLE+HE-CKA 0.306± 0.001 83.684± 0.029 3.174± 0.120 94.656± 1.095 98.866± 0.148
ENSEMBLE+OOD HE-CKA 0.277± 0.001 84.090± 0.049 1.712± 0.061 99.996± 0.001 99.742± 0.506

Table 2: OOD results on CIFAR10 vs SVHN. Methods used 10 particles of a modified ResNet32 were trained
as described in D' Angelo & Fortuin (2021). Methods with (∗) report values taken from D' Angelo & Fortuin
(2021). One exception to predictive entropy (PE) report is DDU* which uses feature space density to calculate
AUROC (Mukhoti et al., 2023).

MODEL NLL (↓) ACCURACY (↑) ECE (↓) AUROC SVHN (↑)

PE MI

SVGD + RBF(∗) 0.287± 0.001 85.142± 0.017 5.200± 0.100 82.50± 0.100 71.00± 0.200
FSVGD + RBF(∗) 0.292± 0.001 85.510± 0.031 4.900± 0.100 78.30± 0.100 71.20± 0.100
KDE − WGD + RBF(∗) 0.276± 0.001 85.904± 0.030 5.300± 0.100 83.80± 0.100 73.50± 0.400
SGE − WGD + RBF(∗) 0.275± 0.001 85.792± 0.035 5.100± 0.100 83.70± 0.100 72.50± 0.400
KDE − FWGD + RBF(∗) 0.282± 0.001 84.888± 0.030 4.400± 0.100 79.10± 0.100 75.80± 0.200
SGE − FWGD + RBF(∗) 0.288± 0.001 84.766± 0.060 4.700± 0.100 79.50± 0.100 75.40± 0.200
ENSEMBLE(∗) 0.277± 0.001 85.552± 0.076 4.900± 0.100 84.30± 0.400 73.60± 0.500
SVGD +HE-CKA 0.255± 0.008 85.890± 0.381 3.675± 0.089 89.232± 1.211 70.977± 1.445
SVGD +CKApw 0.286± 0.002 84.833± 0.292 4.945± 0.185 88.893± 1.513 70.327± 1.763
DDU 0.211± 0.002 84.695± 0.0361 4.26± 0.872 86.281± 0.020* −
ENSEMBLE + OOD HE-CKA 0.275± 0.009 86.133± 0.482 5.436± 0.599 96.478± 0.413 96.606± 1.066
HYPERNET + OOD HE-CKA 0.259± 0.002 83.640± 0.046 1.115± 0.050 88.121± 0.182 88.811± 0.134

Dirty-MNIST vs Fashion MNIST. The Dirty-MNIST vs Fashion MNIST OOD benchmark (Mukhoti
et al., 2023) examines the capability of models to discern inliers, OOD data in a similar distribution
and OOD data in a more dissimilar distribution. This dataset combines MNIST with more ambiguous
and challenging examples known as ambiguous MNIST (AMNIST). We examine the ability to to
distinguish MNIST and AMNIST from the out-of-distribution Fashion MNIST (FMNIST) (Xiao et al.,
2017). We trained a LeNet5 on Dirty-MNIST and assessed OOD classification between Dirty-MNIST
and FMNIST using predictive entropy (PE) and mutual information (MI). The area under the receiver
operating characteristic (AUROC) is used to assess the separability between MNIST and FMNIST
(Lecun et al., 1998; Bradley, 1997). For DDU a GMM is fit to the second to last layer’s features
over Dirty-MNIST, using the log density of features to distinguish inliers from outliers, rather than
predictive entropy.

Results shown in Fig. 6 and Table 1. Ensembles (Fig. 6(a)) do not exhibit significant separation
using predictive entropy (PE) alone, resulting in low AUROC with PE for FashionMNIST. While
methods like SVGD, equipped with an RBF kernel, improve separation (Fig. 6(b)), our approach
demonstrates that using HE-CKA on an ensemble alone surpasses both RBF kernels and DDU’s
approach, and when paired with OOD examples, and OOD likelihood minimization, results in almost
perfect separation with 99.99% AUROC. CKA plots of each method are presented in Appendix F.

Table 3: OOD results on CIFAR-10 vs SVHN. Methods used a ResNet18 ensemble of size 5. (·) indicates
ensemble size.

MODEL OOD METHOD NLL (↓) ACCURACY (↑) ECE (↓) AUROC PE SVHN (↑)
WIDERESNET28-10+SNMukhotiet al. (2023) (1) GMM − 95.97 0.85 97.86

RESNET18 (5) PE 0.122 96.34 1.08 96.18
RESNET18 SVGD+RBF (5) PE 0.143 95.71 1.19 95.37
RESNET18 SVGD+CKA (5) PE 0.125 96.25 0.41 96.07
RESNET18 SVGD+HE (5) PE 0.124 96.23 0.63 96.01
RESNET18+HE-CKA (5) PE 0.120 96.23 0.59 96.71
RESNET18+OOD HE-CKA (5) PE 0.123 96.24 0.58 99.86
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Table 4: Performance of a five member ResNet18 ensemble trained on TinyImageNet. All models utilized a
pretrained deep ensemble with no repulsive term, then fine tuned for 30 epochs for each method (including deep
ensemble). Methods utilizing CKApw and HE-CKA utilized a linear feature kernel.

MODEL NLL (↓) ID ACCURACY (↑) ECE (↓) AUROC PE (↑)

SVHN CIFAR 10/100 TEXTURES (DTD)

ENSEMBLE 0.775 62.95 8.90 89.81 66.85/67.33 68.96
SVGD+RBF 0.926 61.87 16.10 92.76 72.23/73.73 65.67
SVGD+CKApw 0.835 60.15 8.26 94.08 78.40/79.48 66.48
SVGD+HE-CKA 0.732 61.36 3.71 94.10 72.05/72.86 70.75
ENSEMBLE+HE-CKA 0.784 63.10 9.82 92.65 72.13/71.68 70.69
ENSEMBLE+OOD HE-CKA 0.786 61.88 8.02 99.31 81.56/87.64 90.94

CIFAR-10/100 vs SVHN. We further evaluated our method on CIFAR-10 and CIFAR-100 datasets,
testing outlier detection performance on SVHN (Table 2) (Netzer et al., 2011). For a fair comparison
with D' Angelo & Fortuin (2021), we trained ResNet32 ensembles following the training procedure
and parameters described by D' Angelo & Fortuin (2021). For more details regarding model archi-
tecture please refer to the aforementioned paper and published code. We used predictive entropy
and mutual information for the OOD classification, with the exception of DDU using feature space
density (Mukhoti et al., 2023).

Given that the network presented in D' Angelo & Fortuin (2021) has significantly fewer parameters
than a typical ResNet, it is expected to see an inferior classification accuracy to that of standard
ResNet. In order to show that our approach generalizes to larger networks, we trained on larger
ResNet18 ensembles. Results in Table. 3 show that HE-CKA can maintain similar accuracy as
regular deep ensembles while significantly improving on ECE and AUROC of outliers. For the
CIFAR-100 results please see Appendix C.3. Our ensemble with a standard ResNet18 with batch
normalization even slightly outperforms a WideResNet-28-10 (WRN) using the approach by Mukhoti
et al. (2023). Additionally, the mean inference time for a WRN is 13ms compared to 9ms for the
ResNet18 ensemble on a Quadro RTX 8000.

TinyImageNet vs SVHN/CIFAR-10/CIFAR-100/DTD. To further evaluate the effectiveness of
our approach to larger models and more complex datasets, we conducted experiments using the
TinyImageNet dataset (Le & Yang, 2015). We trained ensembles of ResNet18 models and tested
their ability to detect OOD samples from SVHN (Netzer et al., 2011), CIFAR-10/100 (Krizhevsky,
2009), and the Describable Textures Dataset (DTD) (Cimpoi et al., 2014). Our objective was to assess
whether the proposed methods could generalize to large-scale settings and improve OOD detection
performance without compromising in-distribution accuracy. Training details, and data splits, are
provided in Appendix C.4.

Our proposed methods, especially Ensemble+OOD HE-CKA, enhanced OOD detection performance.
Notably, Ensemble+OOD HE-CKA achieved an AUROC of 99.31% on SVHN and substantial
improvements on CIFAR-10/100 and DTD datasets (Table. 4), with AUROC scores of 81.56%/87.64%
and 90.94%, respectively. This improvement in OOD detection did not come at a major expense of
ID accuracy.

6 Conclusion

In this paper, we explored the novel usage of CKA and MHE on feature kernels to diversify deep
networks. We demonstrated that HE-CKA is an effective way to minimize pairwise cosine similarity,
thereby enhancing feature diversity in ensembles and hypernetworks when applied on top of CKA.
Our approach significantly improves the uncertainty estimation capabilities of both deep ensembles
and hypernetworks, as evidenced by experiments on synthetic classification/regression tasks and real
image outlier detection tasks. We showed that diverse ensembles utilizing predictive entropy alone
can outperform other feature space density approaches, while synthetically generated OOD examples,
far from the inlier distribution, can further significantly improve the OOD detection performance.
While our current method requires fine-tuning several hyperparameters, such as layer weighting,
we believe that future work could explore strategies for automatically estimating these parameters.
We hope that our method inspires further advancements in Bayesian deep learning, extending its
application to a wider range of tasks that require robust uncertainty estimation.
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A Minimizing Model Similarity as Particle-based Variational Inference

In Bayesian deep learning, each network in an ensemble can be seen as a particle sampled from a
distribution. Hence, the training process can be seen as a variational inference problem in terms
of minimizing the KL-divergence between the empirical distribution defined by the particles and
the training data. In this section, we relate Eq. (4) with an RKHS and apply it under a particle-
based variational inference framework for supervised learning. Particle-based variational inference
methods (Liu & Wang, 2016; Chen et al., 2018; Liu et al., 2019) can be viewed from a geometric
perspective as approximating the gradient flow line on the Wasserstein space P2(X ) (Liu & Zhu,
2022). Let qt denote the gradient flow line of the KL-divergence w.r.t. some target (data) distribution
p ∈ P2(X ), for an absolutely continuous curve qt, its tangent vector at each t is given by (Villani
et al., 2009; Ambrosio et al., 2008),

grad KL(qt|p) = −∇ log p+∇ log qt. (7)
The core idea of particle-based VI is to represent qt by a set of particles {xi} and adopt a first-order
approximation of qt+ϵ through a perturbation of {xi}. In Eq. (7), while the first term corresponds to
the maximum (data) likelihood term of supervised learning, the second term is intractable. Different
variants of particle-based VI methods tackle this term via different approximation/smoothing methods.
Inspired by SVGD (Liu & Wang, 2016), we approximate ∇ log qt in an RKHS corresponding to the
HE-CKA kernel.

In particular, let T = {ϕ : X → X} denote the space of transformations on space X of particles, a
direction of perturbation can be viewed as a vector field on X , which is a tangent vector in the tangent
space Tϕ=idT , where id is the identity transformation. Under the particle representation {xi} ∼ q, let
qϕ(x) denote the distribution represented by transformed particles {ϕ(xi)}. To approximate ∇ log q,
we want to find the perturbation direction of {xi} that corresponds to the steepest ascend direction
of the loss J (ϕ) = Ex∼q[log qϕ(x)] at ϕ = id, which is the gradient of J (ϕ) in the tangent space
Tϕ=idT . This gradient is given by the following Lemma, with the proof given in Appendix B.
Lemma A.1. For J (ϕ) = Ex∼q[log qϕ(x)],

∇ϕJ (ϕ)(·)
∣∣∣
ϕ=id

= Ex∼q [∇xKHE-CKA(x, ·)] , (8)

where KHE-CKA is the HE-CKA kernel defined by Eq. (4). In practice, Eq. 8 can be approximated by
the empirical expectation,

∇ϕJ (ϕ)(·)
∣∣∣
ϕ=id

≈ Êx∼{xi} [∇xKHE-CKA(x, ·)] . (9)

In this paper, we apply Eq. (7) and Eq. (9) to the supervised tasks of classification and regression.

B Proof of Lemma A.1

Proof. To compute the gradient of J (ϕ) = Ex∼q[log qϕ(x)] at ϕ = id, by definition, we compute as
follows the differential of J at ϕ, ∀v ∈ Tϕ=idT ,

dJϕ(v)
∣∣
ϕ=id =

d

dt

∣∣∣∣
t=0

J (ϕ+ tv)
∣∣
ϕ=id

= Ex∼q

[
d

dt

∣∣∣∣
t=0

log qϕ+tv(x)

]

= Ex∼q

 d

dt

∣∣∣∣
t=0

log
q(x)∣∣∣det(∂(ϕ+tv)

∂x

)∣∣∣


= Ex∼q

[
Tr

((
∂ϕ

∂x

)−1
d

dt

∣∣∣∣
t=0

∂(ϕ+ tv)

∂x

)∣∣∣∣
ϕ=id

]

= Ex∼q

∑
j

∂vj

∂xj


= ⟨Ex∼q [∇xKHE-CKA(x, ·)] , v⟩H, (10)
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where H is the RKHS with corresponding HE kernel KHE-CKA, and the following identities are used,

qϕ(x) =
q(x)∣∣∣det(∂ϕ

∂x

)∣∣∣ ,
d log |detA| = Tr(A−1dA),

∂vi(x)

∂xj
= ⟨∇xjKHE-CKA(x, ·), vi(x)⟩H.

By definition of gradient,
dJϕ(v)

∣∣
ϕ=id = ⟨∇ϕJ

∣∣
ϕ=id, v⟩H,

comparing with Eq. 10,

∇ϕJ (ϕ)(·)
∣∣∣
ϕ=id

= Ex∼q [∇xKHE-CKA(x, ·)] .

C Training Details

C.1 Smoothing Terms and Layer Weighting

To effectively train with the HE-CKA kernel for the repulsive term we found that it is essential to
smooth out the particle energy using an ϵdist on the geodesics and ϵarc on the cosine similarity values.
With larger smoothing terms we can reduce the large gradients on very similar particles, with CKA
values near 1, and ensure other particles still receive some repulsive force. Additionally, Eq. (4)
equally weighs every layer in the network. It has been empirically shown that the first few layers of
deep neural networks have high similarity (Kornblith et al., 2019), which indicates that initial layers
learn more aligned features. Enforcing strong hyperspherical uniformity, or low CKA, of feature
Gram matrices may remove useful features. We have noticed that it is difficult to train models with
a uniform HE-CKA layer weighting scheme of 1/L. To fix this we applied a custom weighting
scheme w that typically increases linearly with the number of layers, with latter layers weighted
higher. We found that using a weighting scheme in Eq. 4 allowed for finer control of the repulsive
term. Typically the first layer in a CNN is a simple feature extractor, and depending on the depth of
the network could assign too high of a repulsive term on the first layer. Additionally, the last layer
could have too high of a weight and ruin inlier performance. We utilize a custom weighting scheme
using the vector w = {w1, · · · , wL}, where ∥w∥1 is typically 1. We define the smoothed HE-CKA
version for training as HEsmooth (Eq. 11).

HEsmooth(K) =
1

M(M − 1)

L∑
l=1

wl

M,M∑
m,m′=1
m′ ̸=m

1.0 + ϵdist

arccos(K̄m⊺
l K̄m′

l /(1.0 + ϵarc))s + ϵdist
(11)

The smoothing terms gives us finer control over the interaction between particles and prevents
exploding or vanishing from the energy term. Although both ϵdist and ϵarc have a similar effect
it is more important to include the ϵarc as the gradient of arccos approaches ±∞ near −1 and 1
without any smoothing term. As demonstrated with the cosine similarity feature kernel used in
Fig. 7. It is advised to set ϵdist as a small constant then vary ϵarc and γ parameters when searching
for the right kernel. Optionally, one may replace the Riesz-s based kernel with an exponential one,
ie e−s arccos(K̄m⊺

l K̄m′
l /(1.0+ϵarc))−ϵdist , which provides a more numerically stable gradient, and more

intuitive to understand growth term s. As discussed in Appendix. D the parameters for γ, β, and
w need to be selected. For MNIST experiments we performed a bayes sweep across parameters to
select the layer weighting schemes, smoothing terms, and repulsive terms. For larger models, such as
the CIFAR and TinyImageNet experiments, we selected, by trying a few combinations, a weighting
schemes by testing values γ ∈ [0.25, 1.5], β ∈ [0.01, 10.0], and using layer weighting scheme wl

that increases proportionally with l, and with different first layer and last layer values.
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Figure 7: Effect of smoothing term when using a cosine similarity based HE-CKAsmooth kernel with SVGD on
inlier points only. All methods were trained with AdamW (lr=0.05, wd=0.0075), HE-CKAsmooth s = 2, and
ϵdist = 0.00025, and w = [0.2, 0.35, 0.85, 0.05] for 1k steps.

C.2 Dirty-MNIST

The Dirty-MNIST experiments utilized an ensemble of 5 LeNet5 models with a modified variance
preserving gelu activation function. Models were trained using AdamW with lr = 0.0065 and weight
decay of 0.001 for 50 epochs, except for Hypernetwork training which was trained for 85 epochs with
AdamW with lr = 0.0025 and weight decay 0.0025. Details such as lr warmup, gradient clipping,
repulsive terms, layer weighting, HE-CKA smoothing terms, and more can be found in the official
repository.

C.3 CIFAR-10/100

Table 5: OOD results on CIFAR-100 vs SVHN. Methods used a ResNet18 ensemble of size 5.

MODEL OOD METHOD NLL ACCURACY (↑) ECE (↓) AUROC SVHN (↑)

ENSEMBLE PE 0.74 81.81 5.77 89.62
ENSEMBLE+HE-CKA PE 0.74 80.72 3.90 91.17
ENSEMBLE+OOD HE-CKA PE 0.76 80.61 4.11 99.44

Additionally, we have some results showing much improvement on CIFAR-100 OOD detection with
SVHN when trained with synthetic OOD examples in Table 5. With about a 10% improvement
in AUROC between the inlier and outlier sets. We applied HE-CKA to an ensemble of ResNet18
models and evaluated the approach on CIFAR-10 (Table 3) and CIFAR-100 (Table 5). The models
were trained for 200 epochs using SGD with a learning rate of 0.1 and weight decay 5e-4. The
HE-CKA kernel used a linear kernel for feature calculation with the exponential kernel s = 2, and
γ = 1.0. For experiments with out-of-distribution (OOD) data, the following values were adjusted:
γ = 0.5, γOOD = 0.75, and β = 0.75. Details regarding layer weighting and smoothing are available
in the repository. Forty-eight OOD samples were taken per batch for all CIFAR experiments, where
applicable.

The feature repulsion term was not applied to every convolution of the ResNet18 architecture. To
conserve computational resources, only a subset of layers was included. Specifically, the selected
layers comprised the initial convolutional layer, the output of every other ResNet block within the
first two of the four layers, the output of all blocks in the last two layers, and the final linear layer.

Training details regarding the ResNet32 experiments follow the training procedure, learning rate
scheduling, and hyperparameters given by D' Angelo & Fortuin (2021). The hypernetwork variant,
due to the difficulty of training, was trained for 180 instead of 143 epochs, and utilized group based
normalization to stabilize feature variance.

C.4 TinyImageNet and Particle Number Ablation

All models utilized a pretrained deep ensemble without any repulsive term and then fine-tuned
using different methods, including our proposed approach. Methods utilizing CKApw and HE-CKA
employed a linear feature kernel. For OOD detection, we used predictive entropy (PE) computed from
the ensemble predictions. Additionally, we generated synthetic OOD data from noise and augmented
TinyImageNet samples to enhance the OOD detection capability. We utilized a training split of
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80:10:10 for training, validation, and testing respectively. Training utilized SGD with a learning
rate of 0.005 and weight decay of 5e-4. We additionally performed a particle number ablation on
the ResNet18 + HE-CKA ensemble, utilizing the same repulsive term, showing improvements in
accuracy, and outlier detection, when going from 2 particles to 5 (Table. 6).

Table 6: Ablation on number of training particles for ResNet18 + trained with HE-CKA TinyImageNet.

PARTICLES NLL (↓) ID ACCURACY (↑) ECE (↓) AUROC PE (↑)

SVHN CIFAR-10/CIFAR-100 TEXTURES (DTD)

2 0.791 59.21 5.21 89.87 67.34 68.48
3 0.771 60.86 5.74 91.57 69.05/70.59 69.31
4 0.761 62.26 6.90 92.92 70.83/71.44 70.89
5 0.784 63.10 9.82 92.65 72.13/71.68 70.69

D Limitations

With our approach, we are able to resolve some of the issues related to tackling permutation of
feature channels, which normally pose challenges for Euclidean-based kernels like RBF. However,
constructing a model kernel based on layer features requires tuning the repulsive term (γ), the
likelihood term (β), and the layer weighting terms (w). This introduces numerous hyperparameters
that need to be adjusted depending on the dataset and the architecture in use. Future work could
explore automating the estimation of these parameters or simplifying the HE-CKA kernel. Although
the assumption that the first few layers should have small repulsive terms seems clear, the weighting
and smoothing of later layers remain unclear. This work only explored repulsive terms that increased
with layer depth; the dynamics of which layers should have more repulsion are not well understood
and have not yet been explored. Additionally, feature-based kernels based on CKApw are sensitive to
the number of particles and the batch size sampled, as the dimensionality of the hypersphere changes,
impacting the repulsive terms. One possible solution could be to construct a normalized HE-CKA
variant, which precomputes the minimum and maximum energy available on the (N2 − 1)-sphere
with M models.

E Synthetic OOD examples

E.1 OOD points for 2D datasets

The selection of an OOD set can help force ensemble members to learn unique internal features for
outliers, resulting in more diverse output features. For simple datasets it can be easy to construct an
OOD set by simply taking min/max + padding as shown in Fig. 8 for the 2D classification tasks.

Figure 8: Example boundary set for 2d classification task. Note the boundary OOD set can be far away from in
distribution points.
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Table 7: Average pairwise unbiased CKA across all layers of an ensemble of 5 ResNet18 trained on
CIFAR-10.

METHOD LAYER MEAN CKA

RESNET18 DEEP ENSEMBLE 0.955
RESNET18 SVGD+RBF 0.972
RESNET18 SVGD+CKA 0.870
RESNET18 SVGD+HE 0.816
RESNET18 HE 0.479

E.2 OOD Images for MNIST and CIFAR

Images are harder to define boundary/ood points, but we found in practice that generating images by
transforming inliers to outliers via typical augmentations, and generating synthetic random channel
data worked well in practice. Our approach to transforming inlier points to outlier points consists
of the following augmentations in random order: blurring, affine transform, perspective transform,
elastic deformations, erasures, Gaussian noise, Gaussian blurring and inversions. Examples of such
images are shown in Fig. 9 for MNIST, Fig. 10 for CIFAR, and Fig. 11 for TinyImageNet. The ID to
OOD set of images accounts for roughly 30-40% of the dataset, whereas the other 60% are randomly
generated. Synthetic OOD images are generated via combinations of perlin noise, simplex noise,
gaussian noise, lines, alternating grids, inversions, and random area thresholding. For images with
more than one channel, such as CIFAR and TinyImageNet, we either apply different noise to each
channel, use the same method but different seed, or occasionally broadcast one channel along all
channels.

F MNIST CKA Results

We present the CKA plots of each method: Ensemble (Fig. 12), Hypernetwork (Fig. 13), SVGD
+ RBF (Fig. 14), SVGD + CKApw (Fig. 15), SVGD + HE-CKA (Fig. 16), Ensemble + HE-CKA
(Fig. 17), Ensemble + OOD HE-CKA (Fig. 18), and Hypernetwork + OOD HE-CKA (Fig. 19).
Each plot shows a grid comparing layerwise estimation of pairwise CKA, equipped with a linear
feature kernel on the inlier Dirty-MNIST dataset, while using an unbiased estimator for CKA. To our
surprise we found that CKApw and HE-CKA results in fairly similar unbiased CKA estimates across
the ensemble, but overall performance of the models in uncertainty estimation and accuracy presented
in Table. 1 by HE-CKA were better. Nevertheless, methods utilizing CKApw and HE-CKA kernels
significantly reduce similarity of features compared to methods with no repulsive terms or RBF based
kernels. This was especially true for our hypernetwork tests.

G Memory Footprint and Time Complexity

We compare the training runtime of our HE-CKA term to ParVI based methods presented in
D' Angelo & Fortuin (2021). We evaluated mini-batch training time averaged over 50 batches on a
Quadro RTX 8000. Each method used a ResNet18 fed with batches of 128 images from CIFAR-10.
The results are presented in Table 8. Reported CUDA memory includes all ensemble members,
loss, batch statistics, feature kernels (if applicable), and gradients. We see that all ParVI methods
increase training time by 2.2x for 5 ensemble members and 1.2x for 10. Given that HE-CKA is
applied layerwise, our method does require a slight increase in memory compared to the other ParVI
methods, but is comparable to other methods in terms of training batch time increase. The time
complexity for each minibatch of HE is O(LN2n2) compared to typical function space O(N2n2)
or weight space O(n2) kernels, where n is the number of particles, N is the mini-batch size and L
is the number of layers we use to compute HE-CKA. However, n and N are typically small, 5 and
up to 128 respectively in our experiments, and one can use a subset of the layers L, as we did with
our experiments. While using the HE-CKA kernel does have an increased memory and computation
cost than using the RBF kernel, the benefit of having a kernel invariant to feature permutations and
scaling are worth the minor additional cost.
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Figure 9: MNIST generated OOD set.
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Figure 10: CIFAR generated OOD set.
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Figure 11: TinyImageNet generated OOD set.
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Figure 12: CKA values of a deep ensemble.

Figure 13: CKA values of a hypernetwork.

Table 8: Training compute and memory usage of a ensemble between various ParVI methods on
CIFAR-10.

APPROACH ENSEMBLE SIZE CUDA MEMORY (GB) BATCH TIME (MS) BATCH TIME INCREASE

DEEP ENSEMBLE 5 0.75 75± 33 1.00
SVGD + RBF 5 1.13 163± 23 2.17
KDE-WGD + RBF 5 1.14 165± 17 2.20
SSGE-WGD + RBF 5 1.58 194± 22 2.59
HE-CKA (OURS) 5 1.65 163± 34 2.17

DEEP ENSEMBLE 10 1.35 297± 36 1.00
SVGD + RBF 10 2.18 346± 25 1.16
KDE-WGD + RBF 10 2.19 346± 17 1.16
SSGE-WGD + RBF 10 3.13 391± 22 1.32
HE-CKA (OURS) 10 3.29 395± 37 1.33
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Figure 14: CKA values of an ensemble trained with SVGD + RBF.

Figure 15: CKA values of a ensemble trained with SVGD + CKApw regularization.
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Figure 16: CKA values of a ensemble trained with SVGD + HE-CKA regularization.

Figure 17: CKA values of a deep ensemble trained with HE-CKA regularization.
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Figure 18: CKA values of a deep ensemble trained with OOD + HE-CKA and entropy terms.

Figure 19: CKA values of a deep ensemble sampled from a hypernetwork trained with OOD
HE-CKA and entropy terms .
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H NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations on training time and memory consumption was shown in Table 8.
This paper has no ethical limitations. Additional limitations of our approach are discussed
in Appendix. D.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Appendix A and B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed algorithm is completely defined and the network structures are
either defined/referenced or are standard.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is publicly available, and contains the relevant instructions
at the following public repository https://github.com/Deep-Machine-Vision/
he-cka-ensembles.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setups are described clearly. Training details and data splits
are described in Appendix. C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard deviations are provided whenever necessary by multiple runs.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: See Appendix. G for details regarding memory footprint, and a comparison to
other ParVI methods.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conducted the research ethically.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper does not have significant social impact to be discussed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not have a high risk for misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the appropriate sources.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We didn’t release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing or human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not conduct human subject research.
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